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ABSTRACT 
 
A new combinatorial algorithm is presented, which has potential applications in cyclic scheduling. 
Specifically, the question is: given n cyclic objects, how many cyclically distinct combinations of m 
(m ≤ n) objects can be selected? In other words, if a subset m of these objects has one color, and the 
remaining (n – m) objects have another color, how many distinct arrangements can be made of all n 
cyclic objects? Integrating the tools of partition and permutation, an algorithm is developed for 
generating cyclically distinct selections. This algorithm includes a scheme for generating cyclically 
distinct permutations. A cyclic labor scheduling example is used to illustrate the applicability and 
usefulness of this algorithm. 
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 الملخص
 

.  في هذا البحث يتم تطوير طريقة خوارزمية توافيقية يمكن أن تكون لها تطبيقات متعددة في الجدولة الدورية للقوى العاملة 

من الوحدات المرتبة دائريا بحيث أن الوحدة الأولى يمكن اعتبارها ) ن(إذا كان لدينا عدد : ويمكن تحديد السؤال المطروح كما يلي 

بحيث يكون كل اختيار مختلفا عن ) ن< م (من هذه الوحدات ) م(تالية للوحدة الأخيرة ، فما عدد المرات التي يمكن فيها اختيار 

دات ـمن هذه الوحدات لون معين وللوح) م(  إذا كان لمجموعة :ة أخرى كالتالي ـؤال بطريقـالآخر دائريا ؟ ويمكن طرح الس

الباقية لون آخر ، فكم عدد المرات التي يمكن فيها ترتيب جميع الوحدات ترتيبا مختلفا دائريا ؟ وبتجميع أداتي التقسيم )  م–ن (

خدم هذه الطريقة لحل مسألة جدولة دورية وسوف تست. والتبديل التوافيقيتين يتم تطوير أسلوب للحصول على تباديل مختلفة دائريا 

 .للقوى العاملة وذلك كمثال لتوضيح الفائدة العملية للطريقة المقترحة 

 
 
1. INTRODUCTION 
 
Cyclic matrices are frequently encountered in optimization problems, such as network flow 
and labor scheduling problems. According to Montroll (1964), an nth-order matrix A, with 
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elements a(j, k) ≡ a(k – j)  that depend on only k – j, and that are periodic so that 
a(k + n) = a(k), is called cyclic. The cyclic property of the constraint matrix can be exploited 
in order to develop efficient solutions of such problems. For example, Bartholdi et al. (1980) 
devise an efficient two solution procedures for labor days-off scheduling problems in which 
the matrix is row circular. Bartholdi et al. (1980) utilize the cyclic structure of the 0-1 matrix 
to solve the integer programming model parametrically as a series of bounded network flow 
problems. 
 
Cyclic sequences and permutations are important problems in combinatorial theory. An 
example of a cyclic combinatorial problem is the Ménage problem. Krishnamurthy (1986, 
p. 92) states this problem as follows: how many ways can n married couples be seated at a 
circular table (with labeled seats) such that men and women alternate, with no husband sitting 
next to his wife? Another example is the necklace problem. The problem is stated by 
Krishnamurthy (1986, p. 101) as follows: how many distinct necklace patterns are possible 
with n beads, available in r different colors? The algorithm presented in this paper addresses a 
problem analogous to the necklace problem, which can be stated as follows: how many 
distinct necklace patterns are possible with n beads, m of which are of one color, and the rest 
are of another color?  
 
The reader should not be deceived by the apparent simplicity or the limited applicability of the 
two above combinatorial problems. The men and women, or the two colors of the beads, 
should be thought of as 0s and 1s in a 0-1 cyclic matrix. The methodology to be presented in 
this paper is generally applicable to all integer linear programming (ILP) problems of the 
form: minimize CX, subject to AX ≥ b, where X ≥ 0 and integer, and the constraint 
coefficient matrix A is a 0-1 cyclic matrix. These ILP problems are known to be difficult to 
solve (NP hard) and have tremendous applications in many areas of optimization, such as 
cyclic scheduling and knapsack problems. A similar comment must also be stated for (5, 7) 
days-off scheduling example to be solved in Section 4. This example is purposefully chosen 
for its simplicity, to clearly illustrate the methodology. The proposed methodology is certainly 
not limited to this particular problem or to problems of similar size. 
 
This paper uses concepts of combinatorial theory to develop a combinatorial algorithm for 
selecting cyclically distinct subsets out of a number of cyclic objects. Partition and 
permutation tools are combined, and a procedure for generating cyclic permutations is 
presented. The algorithm can be used to obtain optimum solutions of certain optimization 
problems with cyclic constraint matrices. Considering the columns (rows) of these matrices as 
cyclic objects, the algorithm can be used to select only cyclically distinct combinations of 
columns (rows). Using only a small subset of combinations to obtain optimum solutions, this 
process makes complete enumeration unnecessary. In comparison to complete enumeration, 
the reductions in the time and effort are tremendous. 
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2. DESCRIPTION OF THE ALGORITHM 

Given the total number of cyclic objects n, and the number of selected objects m (m ≤ n), the 
proposed combinatorial algorithm is designed to achieve two specific objectives. First, to 
determine the number of cyclically distinct combinations of m objects that can be selected. 
Second, to determine and describe each combination of the m selected objects. The two 
objectives are achieved mainly by combining two basic combinatorial tools: (i) partition of an 
integer, and (ii) permutation of objects. Therefore, these two tools will be briefly discussed 
before the steps of the algorithm are described. 

Hall (1986, p. 31) defines the partition of a positive integer n into m parts (m ≤ n) as a 
representation of n as a sum of positive integers, expressed as 

  n = v1 + v2 + … + vm,  vi > 0,   i = 1,…, m   (1) 

Wells (1971, p. 72) defines a permutation of n objects, as an order of the n objects. There are 
n! permutations of n distinct objects. Unfortunately, there is no published procedure for 
generating cyclically distinct permutations, thus a new scheme will be developed for this 
purpose. Wells (1971, p. 70) defines a combination of n distinct objects taken m at time, an 
m-combination of n elements, as a selection of m of the n objects without regard to order. 
When the selection is made without replacement (i.e. when repetitions of the objects are not 
allowed), the number of m-combinations of n elements is ( ) )!(!

!
mnm

n
m
n

−
= . When the objects are 

classified into m groups (m ≤ n), each group containing bi similar objects, i = 1,…, m, the 
number of different permutations becomes ,!!...2!1

!

mbbb
n   ∑i bi = n.  

Our algorithm combines partition with permutation, and adds safeguards to eliminate 
cyclically redundant combinations. Effectively, a scheme for generating cyclically distinct 
permutations is applied to m partitions of an integer n.  The algorithm proceeds in the 
following steps: 

0. Given integers n and m (m ≤ n), 

1. Partition n into m parts (v1, v2, … , vm) using a procedure that generates monotonic (non-
decreasing or non-increasing) partitions. If n ≤ 3, or n – m ≤ 1, or v1 = vm (all parts are 
equal), store the current combination and go to the next partition, otherwise, go to Step 2. 

2. Fixing v1, find the next permutation of the m – 1 remaining parts (v2, … , vm). 

Cyclically compare the resulting (current) combination (including v1) with all stored 
combinations of the current partition. 

(a) If there is no match, store the current combination and go to the next permutation,  
(b) otherwise, ignore the current combination and go to next permutation. 
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The above description of the algorithm is purposely kept brief in order to avoid clouding the 
overall view of the algorithm with details. In order for the description to be complete, 
however, more detailed verbal description of steps 1 (partition) and 2 (permutation) will be 
given. In step 1, any monotonic partition procedure can be used. In our implementation of the 
algorithm, we used the procedure described by Lehmer (1964) to generate non-decreasing 
partitions (1 ≤ v1 ≤ v2 ≤ … ≤ vm). In step 2, we used Johnson’s (1963) adjacent-mark 
procedure in our implementation of the algorithm. The algorithm represents each combination 
as a sequence of m partitions of n. Actually, these partitions are distances (differences) 
between successive numbers. The algorithm’s representation can be converted to specific 
choices from the set (1, …, n). For example, the sequence of partitions (v1, v2, v3) = (2, 5, 3) 
for n = 10 and m = 3 corresponds to selecting the numbers (2, 2 + 5, 2 + 5 + 3) = (2, 7, 10).  

3. NUMBER OF CYCLICALLY DISTINCT SELECTIONS  

The algorithm determines the number of cyclically distinct combinations of m objects that can 
be selected out of n cyclically arranged distinct objects. As stated earlier, the number of 
permutations of n distinct objects is equal to are n!. When one object is fixed to indicate cyclic 
permutation (e.g. arranging n people around a table), the number of permutations becomes 
(n–1)!. When clockwise or counterclockwise directions are considered equivalent, the number 
of permutations reduces to (n – 1)!/2. As discussed above, for the linear (non-cyclic) case, the 
number of ways m elements can be selected out of n objects is given by the well-known 
formula ( )m

n . Unfortunately, there is no general formula for the cyclic case, i.e., the number of 

cyclically distinct combinations of m objects that can be selected out of n cyclic objects.  

Even though a general expression for the number of cyclic selections is not available, such an 
expression can be determined for three special cases. The first case is when m ≤ 3, and the 
second case is when n – m ≤ 1. In both cases, no permutations are required, and the number of 
cyclic selections is simply the number of partitions Pm(n). The third special case applies to the 
remaining (unselected) n – m objects. For the linear (non-cyclic) case, the number of 
combinations of the selected n items is equal to the number of combinations of the remaining 
n – m items, or ( )m

n  = ( )
mn

n
−

. Obviously, this is also true for the cyclic case. Denoting the 

number of cyclically distinct combinations of m objects selected from n cyclic objects by 
Cm(n), the three cases are summarized as follows: 

  Cm(n)     = Pm(n), m ≤ 3, or n – m ≤ 1     (2) 

  Cn – m (n) = Cm(n)          (3) 

For the remaining ranges of n and m, the values of Cm(n) must be calculated by applying the 
steps of the cyclic selection algorithm. In order to calculate these values, and to facilitate the 
implementation of these steps, the algorithm was coded as a Microsoft PowerStation 
FORTRAN program named CYCLE. The program generates all cyclic combinations Cm(n) of 
m objects selected out of n cyclic objects.  
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4. AN APPLICATION EXAMPLE: THE (5, 7) CYCLIC LABOR SCHEDULING 
PROBLEM 

 
The (5, 7) days-off scheduling problem is a practical and well-studied cyclic labor scheduling 
problem, which applies to organizations that operate seven days a week. The (5, 7) problem 
has a weekly schedule, in which each employee works five consecutive days and takes two 
consecutive days off. Allowing only consecutive pairs of off days, there are seven days-off 
patterns in each week. Given varying labor demands for each day of the week, the objective is 
to determine how many workers to assign to each days-off pattern in order to satisfy labor 
demands with the minimum workforce size. Vohra (1987) develops a formula for the 
minimum workforce size W. Mathematically, the problem is represented by the following 
integer programming model: 
 

  Minimize W = ∑
=

7

1j
jx          (4) 

subject to ∑
=

7

1j
jij xa  ≥  ri,   i = 1, 2, ..., 7     (5) 

 
  xj  ≥ 0  and integer,   j = 1, 2, ..., 7     (6) 

where 

 W  =  workforce size, i.e., total number of workers assigned  
 aij  =   1 if day i is a workday for days-off pattern j, off on days j and  j+1 mod 7, 

otherwise aij =  0 
 ri  =   number of workers required on day i, i = 1, 2, ..., 7 
 xj  =  number of workers assigned to weekly days-off pattern j,  
 
The dual of the LP relaxation of the model, with dual variables yi, i = 1, 2, ..., 7, is given by: 

  maximize W = ∑
=

7

1i
ii yr          (7) 

subject to 

  ∑
=

7

1i
iij ya  ≤  1,   j = 1, 2, ..., 7     (8) 

 
  yi ≥ 0,    i = 1, 2, ..., 7     (9) 
 
Using matrix notation, (5) can be represented as AX ≥ R, while (8) can be represented as 
ATY ≤ 1, where AT is the 7×7 dual constraint matrix shown below.  
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0111110
0011111
1001111
1100111
1110011
1111001
1111100

   

 
To solve the dual problem we allocate the unit resource (right hand side of (8) which is equal 
to 1) among the dual variables (columns) in order to maximize the dual objective W. We may 
allocate the unit resource among any number m of selected columns, where m = 1, ..., 7. Since 
the seven columns (variables) of the dual constraint matrix AT are cyclic, the number of 
cyclically-distinct dual solutions corresponds to the number of cyclically-distinct combination 
of m columns (variables) selected out of the seven columns of the matrix. 
 
Running program CYCLE for n = 7 and m = 1, ..., 7, we obtain the 17 cyclic combinations 
shown in Table 1. The value of the workforce size W is obtained by multiplying the dual 
variables by the associated labor demands. The value of the dual variables corresponding to 
each combination is obtained by dividing the right-hand side of (8), equal to 1, over the 
maximum sum (among all rows) of variables in the selected m columns, which is given by 

  M = ∑
∈SCj

ija ),max(  i = 1, ..., 7       (10) 

 
The 17 dual solutions are shown in Table 1. The value in the last column (myi) gives the ratio 
of the objective W with respect to the average labor demand for m days. For example, 
solutions 1-11, 13, and 16 all have myi = 1, which means that the objective is equal to the 
average requirement for m days. Clearly, solution 1 dominates all these solutions, since if we 
choose rk = rmax, then W = rmax is is greater than or equal to the average labor requirement of 
any m days, where m = 2 ,..., 7. In solution 12, myi = 4/3, thus the objective W is obtained by 
multiplying the average labor requirement of 4 days by 4/3. In solution 17, W is obtained by 
multiplying the average requirement of 7 days by 7/5. Although both solutions 14 and 15 have 
myi = 5/4 > 1, they are both obviously dominated by solution 17.  
 
Therefore, three dual solutions (numbered 1, 12, and 17 in Table 1) dominate all other 
solutions in terms of maximizing the objective W. Solution number 1 involves choosing one 
dual column (one non-zero dual variable) k, giving a workforce size W equal to rk. Since the 
objective to maximize W, we choose the maximum rk, k = 1,..., 7, or rmax. Solution number 12 
corresponds to choosing four dual variables k, k + 1, k + 3, k + 5, yielding W equal to 
(rk + rk+1 + rk+3 + rk+5)/3, k = 1, ..., 7. To maximize W, we choose the maximum 
Rk = rk + rk+1 + rk+3 + rk+5, k = 1, 2, ..., 7, or Rmax. Solution number 17 involves choosing all 
seven dual variables, making W equal to ∑rk/5.  
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The minimum workforce size W is obtained by choosing the maximum value of the three 
solutions, and rounding up to integer values. The validity of rounding up dual continuous 
solutions to obtain optimum primal solutions has been established by several researchers such 
as Vohra (1987). The minimum workforce size W is given by:  
 

  W = max { rmax,  3
maxR

,  ∑
=

7

15
1

i
ir  }      (11) 

 where 

  a   = smallest integer ≥ a 

  Rk = rk + r(k+1)mod 7 + r(k+3)mod 7 + r(k+5)mod 7,  i = 1, 2, ..., 7   (12) 
 
 
Table 1. Cyclically distinct combinations of m columns selected out of the seven dual matrix columns, 

and corresponding dual solutions for the (5, 7) problem 

No. m SC M yi W myi 

1* 1 K 1 1 rk 1 

2 2 k, k + 1 2 1/2 (rk + rk+1)/2 1 

3 2 k, k + 2 2 1/2 (rk + rk+2)/2 1 

4 2 k, k + 3 2 1/2 (rk + rk+3)/2 1 

5 3 k, k + 1, k + 2 3 1/3 (rk + rk+1 + rk+2)/3 1 

6 3 k, k + 2, k + 3 3 1/3 (rk + rk+2 + rk+3)/3 1 

7 3 k, k + 3, k + 4 3 1/3 (rk + rk+3 + rk+4)/3 1 

8 3 k, k + 2, k + 4 3 1/3 (rk + rk+2 + rk+4)/3 1 

9 4 k, k + 1, k + 2, k + 3 4 1/4 (rk + rk+1 + rk+2 + rk+3)/4 1 

10 4 k, k + 1, k + 2, k + 4 4 1/4 (rk + rk+1 + rk+2 + rk+4)/4 1 

11 4 k, k + 1, k + 3, k + 4 4 1/4 (rk + rk+1 + rk+3 + rk+4)/4 1 

12* 4 k, k + 1, k + 3, k + 5 3 1/3 (rk + rk+1 + rk+3 + rk+5)/3 4/3 

13 5 k, k + 1, k + 2, k + 3, k + 4 5 1/5 (rk + rk+1 + rk+2 + rk+3 + rk+4)/5 1 

14 5 k, k + 1, k + 2, k + 3, k + 5 4 1/4 (rk + rk+1 + rk+2 + rk+3 + rk+5)/4 5/4 

15 5 k, k + 1, k + 2, k + 4, k + 5 4 1/4 (rk + rk+1 + rk+2 + rk+4 + rk+5)/4 5/4 

16 5 k, k + 1, k + 2, k + 3, k + 4, k + 5 5 1/5 (rk + rk+1 + rk+2 + rk+3 + rk+4 + rk+5)/5 1 

17* 7 All 7 columns 5 1/5 ∑k=1,..,7 rk/5 7/5 

* = dominant solutions 
m = number of selected columns 
SC = selected columns, k = 1, ...,7, all values are mod 7 
M = maximum number of non-zero coefficients in selected columns, defined by (19) 
yi = value of each selected (basic) dual variable: yi = 1/M if i ∈ SC, = 0 if i ∉ SC 
W = workforce size 
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Using complete enumeration, Vohra (1987) obtains exactly the same formula specified by 
Equation (11) for the minimum workforce size W. Alfares (2000) also uses complete 
enumeration to determine the optimum solution of the (3, 7) cyclic days-off scheduling 
problem. The above example shows the effectiveness of the cyclic selection algorithm in 
exploiting the cyclic nature of constraint matrices to dramatically reduce computational effort. 
Instead of going through 7! = 5,040 linear combinations of the 7 dual variables, the optimum 
dual solution is determined by enumerating only 17 cyclic combinations. 

5. CONCLUSIONS 

A combinatorial cyclic selection algorithm, with applications in solving cyclic scheduling 
problems, has been presented. The process of cyclic selection determines all cyclically distinct 
combinations of m objects that can be selected out of n cyclic objects. The algorithm 
combines the two basic combinatorial tools of partition and permutation. A procedure for 
cyclic permutation is developed in order to enumerate all cyclically distinct combinations of 
the partitions of n. A FORTRAN program was coded and run in order to implement the 
algorithm and calculate the number of cyclic selections. A labor scheduling example is used to 
demonstrate the algorithm’s applicability and effectiveness in reducing computational effort.   
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