
Proceedings of the Fifth Asia Pacific Industrial Engineering and Management Systems Conference 2004

 21.5.1

COMPRESSED WORKWEEK SCHEDULING WITH CONSECUTIVITY,
FREQUENCY AND STRETCH CONSTRAINTS

Hesham K. Alfares

King Fahd University of Petroleum & Minerals

PO Box 5067, Dhahran 31261, Saudi Arabia

hesham@ccse.kfupm.edu.sa

ABSTRACT
In this paper we consider a three-day workweek scheduling problem with three realistic days-
off scheduling constraints: (1) at least two off days per week must be consecutive, (2),
employees must get a given proportion of weekends off, and (3) the number of consecutive
workdays in any work stretch cannot exceed four. An integer programming model is
formulated and efficiently solved by an algorithm that involves three stages: (1) determining
the minimum workforce size by primal-dual relations, (2) adding a workforce-size constraint
to the integer programming model to expedite its solution, and (3) constructing fair and
feasible multiple-week rotation schedules.

Key Words: Scheduling, Mathematical programming, Optimisation

1. INTRODUCTION
Workforce scheduling is especially significant for facilities that operate continuously, such as
hospitals, restaurants, and train stations. If the organization operates seven days a week, then
different employees must be assigned different days-off, some of which do not necessarily
correspond to the weekend. The problem in this case is called the days-off scheduling, and its
objective is to find the minimum size or cost of the workforce to satisfy the daily labour
demand for every day of the week.

Most of the earlier days-off scheduling literature was directed towards the (5,7) problem,
or the traditional 5 workdays per week. Recently, there has been much emphasis on
compressed and flexible work schedules. McCampbell (1996) describes the phenomenal
growth of alternative work schedules in the U.S. and lists alternative work schedules
suggested by the U.S. Office of Personnel Management. This list includes three compressed-
schedule modules: the 3-day workweek, the 4-day workweek, and the 5-4/9 plan.

The days-off scheduling problem considered in this paper involves a three-day workweek.
Three types of days-off constraints are imposed: (1) the maximum length of any work stretch
cannot exceed four days, (2) at least two of the four off days per week must be consecutive,
and (3) each employee must get a minimum proportion of full weekends off. An integer
programming (IP) model will be formulated to represent the three types of constraints, and a
three-stage algorithm will be developed to minimize the number or cost of the workforce.

In the first stage of the algorithm, the primal-dual relationships are used to determine the
minimum workforce size. In the second stage, a workforce-size constraint is appended to the
IP model to efficiently obtain optimum integer solutions. Finally, multiple-week rotation
schedules will be constructed to guarantee that work patterns assigned to each employee in

Proceedings of the Fifth Asia Pacific Industrial Engineering and Management Systems Conference 2004

 21.5.2

successive weeks satisfy all the constraints. The computational efficiency of the new method
will be compared to existing integer programming models.

The rest of this paper is organized as follows. First, a review of relevant literature is given.
Then, the integer programming model of the problem is presented. Next, the solution algorithm
is described. Finally, computational comparisons are presented and conclusions are given.

2. LITERATURE SURVEY
This literature survey is concerned with recent compressed workweek scheduling, especially
the three-day workweek problem. Ernst et al. (2004) provide the most comprehensive and
recent survey of personnel scheduling algorithms. Hung (1991) analyses two compressed
workweek scheduling models assuming that each employee must receive at least A out of B
weekends off. Hung (1993) develops similar multiple-shift models for 3-day workweeks,
whose objective is to minimize the workforce size. Under the same assumptions, Narasimhan
(1997) considers days-off scheduling for a hierarchical workforce, where each employee
cannot be assigned more than 5 consecutive working days.

Hung (1994) develops an algorithm for hierarchical workforce scheduling under variable
labour demand and employee substitution, assuming the number of workdays per week can be
3, 4, or 5 days. Billionnet (1999) uses integer programming to formulate and efficiently solve
the same problem. Burns and Narasimhan (1999) present a multiple-shift algorithm for 3-day
and 4-day workweek scheduling of a homogeneous workforce. Constraints are imposed on
weekend work frequency, work stretch length, and transition time when changing shifts.
Narasimhan (2000) considers the same problem but for a hierarchical workforce consisting of
several employee categories.

Burns et al. (1998) present an algorithm for 3-day and 4-day workweeks, with variable
daily demand and limits on work stretch lengths. Lankford (1998) describes an actual pilot
implementation of 4-day workweek schedule at the he Analytical Central Call Management
(CCM) group at Hewlett Packard. Bard et al. (2003) present a model for employee tour
scheduling at the US Postal Service, which can handle different days off policies, variable
start times, and the use of part-time flexible workers. Alfares (2003a) presents an optimal
algorithm for four-day workweek scheduling with weekend work frequency constraints.
Alfares (2003b) provides manual optimal solutions for the 3-day and the 4-day workweek
scheduling problems, assuming two levels of labour demands and consecutive workdays.

The algorithm presented in this paper produces an optimal solution to single-shift three-
day workweek scheduling problem under the following assumptions:
(i) the demand for employees may vary from day to day for the given week,
(ii) each employee is assigned 3 workdays and 4 off-days per week,
(iii) at least 2 of the 4 weekly off-days must be consecutive,
(iv) the maximum work stretch is 4 consecutive workdays, and
(v) each employee takes on average a proportion P of full
weekends off.

3. INTEGER PROGRAMMING FORMULATION
The three-day workweek scheduling problem described above can be represented by the
following integer linear programming model:

 Minimize W = ∑ =

35

1j jx (1)

 subject to

Proceedings of the Fifth Asia Pacific Industrial Engineering and Management Systems Conference 2004

 21.5.3

∑ =

35

1j jij xa ≥ ri, i = 1, 2, ..., 7 (2)

∑
∑

=

∈

35

1

2

j j

Jj j

x

x
 ≥ P, or ∑ ∑∑ ∈ ∈∈

−+−−
1 20

)1(
Jj Jj jjJj j xPxPxP ≥ 0 (3)

x1 ≤ MQ1 (4)

∑ ∈Ej jx ≤ MQ2 (5)

Q3 ≤)(
2
1

21 QQ + (6)

Q3 ≥ Q1 + Q2 – 1 (7)

∑ =

35

1j jx – ∑ ∈Ej jx – x1 ≥ Q3 (8)

x4 ≤ MQ4 (9)

∑ ∈ 0Jj jx ≤ MQ5 (10)

Q6 ≤)(
2
1

54 QQ + (11)

Q6 ≥ Q4 + Q5 – 1 (12)

∑ =

35

1j jx – ∑ ∈ 0Jj jx – x4 ≥ Q6 (13)

xj ≥ 0 and integer, j = 1, 2, ..., 35 (14)
Qj = 0 or 1, j = 1, 2, ..., 6 (15)

where
 W = workforce size, i.e., total number of employees assigned to all patterns
 xj = number of employees assigned to weekly days-off work pattern j
 aij = 1 if day i is a work day for pattern j,
 aij = 0 otherwise (i = 1, 2, ..., 7)
 a8j = – P if j∈J0 or j∈J1,
 a8j = 1 – P if j∈J2,

Table 1 shows matrix A = { aij, i = 1, ..., 8, j = 1, ..., 35}
 ri = minimum number of employees required on day i, i = 1, 2, ..., 7, r8 = 0
 P = average proportion of full weekends off, 0 ≤ P ≤ 1
 M = any large number, M ≥ W
 E = set of days-off patterns in which both days 1 and 2 are workdays,
 E = {3, 4, 9, 18, 23, 33}
 Jk = set of days-off patterns with k weekend days off per week, k = 0, 1, 2
 J0 = {1, 2, 14, 16, 28, 31}
 J1 = {3, 7, 8, 9, 10, 13, 15, 17, 20, 21, 22, 24, 25, 27, 30, 32, 34, 35}
 J2 = {4, 5, 6, 11, 12, 18, 19, 23, 26, 29, 33}

The objective (1) is to minimize the workforce size. Constraints (2) ensure that the number
of employees assigned for the given day i are at least equal to the total number of employees
required for that day. The denominator on the left-hand side of (3) represents the total number
of employees assigned for the given weekly schedule, while the numerator represents the
number of employees with full weekends off.

Constraint sets (4)-(8) and (9)-(13) ensure that no more than 4 successive workdays are
assigned as work patterns are linked from one week to the next during the rotation cycle.
Constraints (4)-(8) ensure that work pattern 1, characterized by 3 consecutive workdays at the
end of a given week, is not immediately followed by any work pattern of the set E, in which

Proceedings of the Fifth Asia Pacific Industrial Engineering and Management Systems Conference 2004

 21.5.4

both days 1 and 2 are workdays. Similarly, constraints (9)-(13) ensure that any work pattern
of the set J0, in which both days 6 and 7 are workdays, is not immediately followed by work
pattern 4, which has 3 consecutive workdays at the start of a given week.

Table 1. Days-off matrix A = {aij} and cost vector C = {cj} for the 35 days-off work patterns

 j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
i
1 0 1 1 1 0 0 0 1 1 0 1 0 0 0 1 0 1 1
2 0 0 1 1 1 0 0 0 1 1 0 1 0 0 0 1 0 1
3 0 0 0 1 1 1 0 0 0 1 1 0 1 0 0 0 1 0
4 0 0 0 0 1 1 1 0 0 0 1 1 0 1 0 0 0 1
5 1 0 0 0 0 1 1 1 0 0 0 1 1 0 1 0 0 0
6 1 1 0 0 0 0 1 0 1 0 0 0 1 1 1 1 0 0
7 1 1 1 0 0 0 0 1 0 1 0 0 0 1 0 1 1 0
8 – P – P – P 1– P 1– P 1– P – P – P – P – P 1– P 1– P – P – P – P – P – P 1– P

cj 3
+
2β

3
+
2β

3
+
β

3 3 3 3
+
β

3
+
β

3
+
β

3
+
β

3 3 3
+
β

3
+
2β

3
+
β

3
+
2β

3
+
β

3

 j 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
i
1 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1 0 0
2 1 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1 0
3 1 1 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1
4 0 1 1 1 0 0 1 1 0 0 1 0 0 1 0 0 1
5 1 0 1 0 1 0 0 1 1 0 1 1 0 0 1 0 0
6 0 1 0 0 0 1 0 0 1 1 0 1 1 0 0 1 0
7 0 0 1 1 0 0 1 0 0 1 0 0 1 1 0 0 1
8 1 – P – P – P – P 1– P – P – P 1– P – P – P 1– P – P – P – P 1– P – P – P

cj 3 3
+
β

3
+
β

3
+
β

3 3
+
β

3
+
β

3 3
+
β

3
+
2β

3 3
+
β

3
+
2β

3
+
β

3 3
+
β

3
+
β

4. SOLUTION ALGORITHM
An efficient algorithm is developed to solve the problem optimally in three stages.

4.1. Determining the Minimum Workforce Size
Given a week’s daily labour demands, the minimum workforce size W can be determined
from cyclical enumeration of all dual solutions and using primal-dual relations, without
integer programming. Depending on the demands r1, ..., r7, there are four dominant dual
solutions which produce the following lower bounds on the workforce size:

W ≥ rmax
W ≥ (∑i=1,...,7 ri)/3

 W ≥ (ri + ri + 2 + ri + 4)/2, i = 1, 2, ..., 7
W ≥ max(r6, r7)/(1 – P)

To determine W, we choose the maximum value obtained from the four above bounds, and
round it up to the nearest integer. Therefore, we obtain the following expression for the
minimum workforce size W:

Proceedings of the Fifth Asia Pacific Industrial Engineering and Management Systems Conference 2004

 21.5.5

 W = max {rmax, ⎡ ∑ =

7

13
1

i ir ⎤, ⎡
2
maxR

⎤, ⎡
P

rr
−1

),max(76 ⎤} (16)

 where
 rmax = max { r1, r2, ..., r7 }
 Rmax = max { R1, R2, ..., R7 }
 ⎡a⎤ = smallest integer ≥ a,
 Ri = ∑ ∈ iSj ir , i = 1, 2, ..., 7
 si = { i, i + 2, i + 4 }, i = 1, 2, ..., 7

where si is circular set with a cycle = 7 (see Table 2)

Table 2. Sets of subscripts si

i si
1 1, 3, 5
2 2, 4, 6
3 3, 5, 7
4 1, 4, 6
5 2, 5, 7
6 1, 3, 6
7 2, 4, 7

4.2. Days-Off Assignments
After determining the workforce size W by (16), the objective at this stage is to assign the W
employees to different days-off patterns in order to minimize total cost. Assuming each
employee is paid 1 unit per regular workday and 1+β units (β ≥ 0) per weekend workday, the
weekly costs of the 35 days-off patterns {c1, c2,..., c35} are shown in Table 1. Changing the
objective to that of minimizing total cost, (1) is replaced by:

 Minimize Z = ∑ =

35

1j jj xc (17)

 where
 cj = weekly cost of days-off pattern j per employee, shown in Table 1.

Introducing these costs in the IP model, the workforce size W does not change. This means
that for the cost structure defined by {c1, c2, ..., c35}, for all β ≥ 0, the minimum cost is always
obtained with the minimum number of employees. Given r1, ..., r7 , β, and P, the value of the
minimum workforce size W is first calculated by (16), and then the following constraint is
added to the primal integer programming model defined by (2)-(15) and (17).

 ∑ =

35

1j jx = W (18)

4.3. Rotation Schedules
A rotation scheme is now introduced to ensure that all constraints are satisfied as employees
switch from one pattern to another over a multiple-week rotation period. The solution of the
integer programming model specifies the number of employees assigned to each days-off
pattern (x1, ..., x35) and the total workforce W (x1 + ... + x35) for a single week.

First, we define a W-week rotation cycle, during which each employee is assigned to each
pattern j for a period of xj weeks (j = 1, ..., 35). All W employees must go through the same
sequence of assignments to patterns over this W-week rotation cycle, but employee i starts the
sequence at the ith week of the cycle. For feasibility, assignments to pattern 1 cannot be

Proceedings of the Fifth Asia Pacific Industrial Engineering and Management Systems Conference 2004

 21.5.6

followed by patterns belonging to set E, and assignments to J0 patterns cannot be followed by
pattern 4.

5. COMPUTATIONAL RESULTS
In order to evaluate the effect of adding constraint (18), computational experiments were
carried out using 252 test problems. In all these problems, the value of β was set at 0.5 to
indicate 50% higher pay for weekend work. Moreover, the value of P was set at 0.5 to
indicate a requirement of every other weekend off.

The 252 test problems, partially described by Alfares (1998), are divided into 12 sets with
different demand types, but all have an average demand of 50 employees per day. The first six
sets involve 17 problems each, while the last six sets involve 25 problems each. Sets 1-6 have
a demand range of 34 to 64, and different specific labour demand patterns: level, trend,
concave, convex, unimodal, and sinusoidal. Sets 7-10 have randomly distributed labour
demands over the intervals: [34, 66], [0, 100], [20, 80], and [45, 55], respectively. Sets 11-12
involve two constant levels of labour demand, workdays demand (r1 = r2 …= r5 = D) which is
fixed at 50, and weekends (r6 = r7 = E). Set 11 has E = 25, …, 49, or E < D, while set 12 has E
= 51, …, 75 or E > D.

Microsoft Excel integer programming Solver® with default options setting, was used on a
450-MHz Pentium III PC to solve the 252 test problems. The results of computational
experiments are summarized in Table 3. Without constraint (18), 135 problems could not
even be solved within the 100 second time limit. For these problems, the solution time was
simply assumed to be 100 seconds.

Overall, average solution time dropped by 120 times, from 55.02 seconds to 0.46 seconds.
Maximum solution time fell by 60 times, from 100 seconds to only 1.65 seconds. Similarly,
the standard deviation decreased from 49.43 seconds to only 0.22 seconds. Clearly, adding
constraint (18) leads to a remarkable reduction in both the mean and variation of solution times.
Table 3. Solution times in seconds with and without constraint (18)

Problem Number Without constraint (18)* With constraint (18)
set 0f

problems
Min Ave.* Max* Std

dev*
> 100 Min Ave. Max Std

dev
1 17 0.25 64.41 100 48.54 10 0.26 0.46 1.16 0.25
2 17 0.28 68.82 100 46.12 11 0.28 0.55 1.43 0.34
3 17 0.25 63.31 100 48.21 10 0.28 0.45 0.85 0.20
4 17 0.26 64.90 100 48.99 11 0.27 0.42 0.65 0.13
5 17 0.26 70.74 100 46.73 12 0.28 0.42 0.90 0.20
6 17 0.25 64.98 100 48.87 11 0.26 0.50 1.09 0.30
7 25 0.25 56.13 100 50.52 14 0.26 0.41 0.98 0.23
8 25 0.25 20.24 100 40.70 5 0.23 0.31 0.47 0.06
9 25 0.25 32.19 100 47.47 8 0.25 0.32 0.57 0.08

10 25 0.27 76.12 100 43.37 19 0.26 0.43 0.90 0.19
11 25 0.27 68.10 100 47.47 17 0.28 0.41 0.94 0.18
12 25 0.27 31.80 100 46.93 7 0.28 0.45 1.65 0.29

Overall 252 0.25 55.02 100 49.43 135 0.23 0.46 1.65 0.22
* Some solution could not be obtained in 100 seconds

6. CONCLUSIONS

An optimization algorithm for a compressed workweek days-off scheduling problem with
weekend work frequency constraints has been developed. In this problem, employees are
given four off days per week, out of which at least two days must be consecutive. Moreover,

Proceedings of the Fifth Asia Pacific Industrial Engineering and Management Systems Conference 2004

 21.5.7

employees must be given a certain proportion of weekends off, and cannot be assigned to a
work stretch of more than four consecutive workdays. An integer programming model has
been formulated, and an efficient solution algorithm has been developed. The three-stage
algorithm involves determining the minimum workforce size, assigning employees to days-
off, and developing cyclic multiple-week rotation schedules.

Based on computational experiments with 252 test problems, the addition of a workforce-
size constraint to the IP model has been found essential for efficient solution. Without this
constraint, more than 54% of the problems could not be to be solved. The addition of this
constraint has remarkably reduced solution times and has made it possible to solve all test
problems. On average, the appended model has been found to be at least 150 times faster than
the traditional IP model.

ACKNOWLEDGEMENTS
The author is indebted to King Fahd University of Petroleum & Minerals for supporting this
research effort.

REFERENCES
Alfares, H.K. (1998), An efficient two-phase algorithm for cyclic days-off scheduling,

Computers & Operations Research 25, 913-923.
Alfares, H.K. (2003a), Flexible four-day workweek scheduling with weekend work frequency

constraints, Computers & Industrial Engineering 44, 325-338.
Alfares, H.K. (2003b), Compressed workweek scheduling with differing weekdays and

weekends labour demands, Asia-Pacific Journal of Operational Research 20, 1-20.
Bard, J.F., Binici, C., deSilva, A.H. (2003), Staff scheduling at the United States Postal

Service, Computers and Operations Research 30, 745-771.
Billionnet, A. (1999), Integer programming to schedule a hierarchical workforce with variable

demands, European Journal of Operational Research 114, 105-114.
Burns, R.N. and Narasimhan, R. (1999), Multiple shift scheduling of workforce on four-day

workweeks, Journal of the Operational Research Society 50, 979-981.
Burns, R.N., Narasimhan, R. and Smith, L.D. (1998), A set processing algorithm for

scheduling staff on 4-day or 3-day work weeks, Naval Research Logistics 45, 839-853.
Cezik, T., Gunluk, O. and Luss, H. (2001), An integer programming model for the weekly

tour scheduling problem, Naval Research Logistics 48, 607-624.
Ernst, A.T., Jiang, H., Krishnamoorthy, M., Owens, B and Sier, D. (2004). An annotated

bibliography of personnel scheduling and rostering, Annals of Operations Research 127, 3-27.
Hung, R. (1991), Single-shift scheduling under a compressed workweek, Omega 19, 494-497.
Hung, R. (1993), A three-day workweek multiple-shift scheduling model, Journal of the

Operational Research Society 44, 141-146.
Hung, R. (1994), Single-shift off-day scheduling of a hierarchical workforce with variable

demands, European Journal of Operational Research, 78, 49-57.
Lankford, W.M. (1998), Changing schedules: a case for alternative work schedules, Career

Development International 3, 161-163.
Lin, C.K.Y., Lai, K.F. and Hung, S.L. (2000), Development of a workforce management

system for a customer hotline service, Computers & Operations Research 27, 987-1004.
Narasimhan, R. (1997), Algorithm for a single shift scheduling of hierarchical workforce,

European Journal of Operational Research 96, 113-121.
Narasimhan R. (2000), An algorithm for multiple shift scheduling of hierarchical workforce

on four-day or three-day workweeks, INFOR 38, 14-32.
McCampbell, S.A. (1996), Benefits achieved through alternative work schedules, Human

Resources Planning 19, 30-37.

