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Abstract. An efficient method is presented for the optimum solution of the cyclic
manpower days-off scheduling problem. This method, which is based on linear
programming, allows unequal costs to be considered for different days-off patterns.
First, the solution of the dual linear programming model is used to determine the
minimumworkforcesize.Then, aprocedurebasedon thedual solution is introduced
to assign theworkforce to days-off patterns in order tominimize the total labor cost.
The new method offers an alternative to specialized linear or integer programming
software, since it requires only few and simple calculations.

Zusammenfassung.Vorgestellt wird ein effizientes Optimierungsverfahren zur
zyklischen Personaleinsatzplanung unter Beachtung freier Arbeitstage. Das auf der
linearen Programmierung aufbauende Verfahren berücksichtigt unterschiedliche
Kosten f̈ur die verschiedenen Wochenarbeitspläne. Zun̈achst wird auf der Grund-
lage des dualen LP-Modells die minimale Personalstärke bestimmt. Darauf auf-
bauend wird ein L̈osungsverfahren vorgeschlagen, um die Arbeitskräfte auf die
verschiedenen Wochenarbeitspläne aufzuteilen bzw. ihnen unterschiedliche freie
Tage zuzuordnen. Die Zielsetzung besteht darin, die gesamten Lohnkosten zu mi-
nimieren. Das neue L̈osungsverfahren stellt eine Alternative zumEinsatz spezieller
linearer bzw. ganzzahliger Optimierungssoftware dar, da es nur wenige und ein-
fache Rechenschritte benötigt.

� Theauthorwishes toexpressgratitude toKingFahduniversityofPetroleumandMinerals
for supporting this research effort, and to two anonymous referees for their constructive
comments on an earlier version of this paper.
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Introduction

Manpower days-off scheduling is a practical problem that arises in organizations
that operate seven days aweek, such as airlines, hospitals, and police stations. Since
workers must be given weekly breaks, they must be assigned to specific days-off
patterns. The objective is to determine the number of workers assigned to each
pattern, in order to satisfy daily labor demands at the minimum cost or with the
minimum workforce size.

Themost commonly useddays-off patterns include two consecutive daysoff per
week. There are 7 such patterns for any given week; because of the cyclic nature of
the problem, Sunday and Monday are considered as a pair of consecutive off days.
Since each pattern includes 5 workdays per week, the problem is usually referred
to as the (5, 7) days-off scheduling problem. The (5, 7) problem is relatively small,
with 7 constraints (daily labor demands) and 7 variables (days-off assignments).

In this age of advanced computing technology, the (5, 7) problem can be solved
very quickly on the personal computer, using any integer programming (IP) soft-
ware. To justify the need for a new solution method, two reasons are given. First, in
the case of solving the (5, 7) problemas a subproblemwithin a larger program, there
would be no need for specialized IP subroutines, which are not generally available.
Second, there might be a need to solve a large number of these problems. For ex-
ample, to simultaneously schedule tasks and labor for a small project, Alfares and
Bailey [2] had to solve thousands of days-off scheduling problems. In such cases,
the computational efficiency of the new method will be a significant advantage.

This paper is organized as follows. First, a review of relevant literature is given.
Then, the integer programming models of the (5, 7) problem and its dual are pre-
sented. Subsequently, the procedure for determining the minimum workforce size
is described. This is followed by a detailed development of the proposedmethod of
assigning workers to days-off patterns. Next, an example is solved, and then con-
clusions and recommendations are given. Finally, a description of the algorithm
steps is given in the Appendix.

Literature review

Labor scheduling problems are traditionally classified into three types: (1) shift, or
working time of the day, scheduling, (2) days-off, or working days of the week,
scheduling, and (3) tour scheduling, which combines the first two types. Tien and
Kamiyama [20], Bedworth and Bailey [9], and Nanda and Browne [17] provide
comprehensive surveys of literature on all these types. The scope of this review is
limited to the days-off scheduling problem.
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Dantzig’s [14] set covering integer programmingmodel is adapted by Baker [4]
to represent the days-off scheduling problem. Monroe [15] uses a simple trial-and-
error algorithm to maximize consecutive pairs of days off. Rothstein [18] utilizes
mathematical programming to formulate and solve the same problem. Chen [13]
uses a three-stage manual procedure to obtain the solution. Burns [11] develops
techniques to minimize the workforce size, giving each worker four off days in a
two-week period. Burns and Carter [12] determine the schedule with the minimum
workforce size to satisfy three conditions for each employee: (1) five workdays per
week, (2)A out of everyB weekends off, and (3) no more than six consecutive
workdays.

Several approaches have been developed for the (5, 7) problem, in which each
worker must work five days per week, but only consecutive pairs of off days are
allowed. Tiberwala et al. [19] presents a three-step procedure in which the number
of iterations equals the number of workers required. Browne and Tiberwala [10]
simplify the three steps involved, but do not reduce the number of iterations. Baker
[3] develops a two-phase algorithm, which starts by calculating the lower bound
on a workforce size, and then uses trial and error on a special tableau to determine
days-off assignments.

Several techniques based on continuous linear programming (LP) relaxation of
the integer-valued (5, 7) problem have been developed [5, 6, 7]. Bartholdi III and
Ratliff [7] solve the problem as a finite set of network flowmatching problems. For
row-circular constraint matrices, Bartholdi III et al. [6] use a simple rounding tech-
nique to obtain the optimum integer solution from the solution of the LP relaxation.
For problems in which the matrix is not row circular, an LP round-off heuristic is
developed by Bartholdi III [5].

Morris and Showalter [16] describe an iterative, three-step cutting plane proce-
dure for optimally solving the (5, 7) problem. Another iterative, manual procedure
utilizing three simple rules is presented by Bechtold and Showalter [8]. The ob-
jective of both procedures is to minimize the workforce size. Vohra [21] develops
an expression for the minimum workforce size of the (5, 7) problem in terms of
daily labor demands. Alfares [1] relates Vohra’s [21] expression to Baker’s [3]
lower bound, and performs a computational comparison of integer programming
and LP-based methods.

Integer programming model

The (5, 7) problem assignsworkers to the 7 days-off patterns with 2 successive days
off per week, so that daily labor demands are satisfied with theminimumnumber or
cost of workers. With the objective of minimizing the number of workers, the (5, 7)
days-off scheduling problem can be represented as an integer linear programming
model, as follows:

MinimizeW =
7∑

j=1

xj (1)
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subject to
 7∑

j=1

xj


− xi−1mod7 − xi ≥ ri, i = 1, 2, ..., 7 (2)

xj ≥ 0 and integer, j = 1, 2, ..., 7 (3)

where

W = workforce size, i.e., total number of workers assigned
ri = number of workers required on dayi, i = 1, 2, ..., 7
xj = number of workers assigned to weekly days-off patternj, i.e., off on daysj

andj + 1mod 7, where day 1=Monday and day 7= Sunday

Bartholdi III and Ratliff [7] modify the above formulation to obtain a ”comple-

mentary model” with a sparser matrix. Since
7∑

j=1
xj is equal toW , (2) is written as

follows:

xi−1mod7 + xi ≤ bi , i = 1, 2, ..., 7 (4)

where

bi = W − ri , i = 1, 2, ..., 7 (5)

The dual of the LP relaxation of the days-off scheduling model, with dual variables
yi, i = 1, 2, ..., 7, is given by:

maximizeW =
7∑

i=1

riyi (6)

subject to(
7∑

i=1

yi

)
− yj − yj+1mod7 ≤ 1 , j = 1, 2, ..., 7 (7)

yi ≥ 0 , i = 1, 2, ..., 7

Determining minimum workforce size

Givensevendaily labor demands, theminimumworkforceW canbeeasily obtained
without using integer programming. Vohra [21] uses the dual formulation above to
show that the minimumW is given by:

W =
7∑

j=1

xj = max

{
rmax,

⌈
1
5

7∑
i=1

ri

⌉
,

⌈
Rmax

3

⌉}
(8)

where

rmax = max {r1, r2, . . . , r7}
Rmax = max {R1, R2, . . . , R7}

�a� = smallest integer≥ a
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Table 1.Sets of subscripts defined by (10) and their complements

i Si Si

1 1,2,4,6 3,5,7
2 2,3,5,7 1,4,6
3 3,4,6,1 2,5,7
4 4,5,7,2 1,3,6
5 5,6,1,3 2,4,7
6 6,7,2,4 1,3,5
7 7,1,3,5 2,4,6

and

Ri =
∑
j∈Si

rj , i = 1, 2, . . . , 7 (9)

Si = set of 4 subscripts⊂ {1, 2, 3, 4, 5, 6, 7} , i = 1, 2, . . . , 7 (10)

SetsS1 to S7 are shown in Table 1.
After determining the value ofW by Equation (8), the values ofxj can be

found by using linear programming. Bartholdi III et al. [6] proposes replacing the
integrality constraint (3) by the following workforce size constraint:
7∑

j=1

xj = W (11)

The resulting continuous linear program is then solved to obtain the integer values
of xj . According to Bartholdi III et al. [6], the solution is guaranteed to be integer.
A simple yet optimum solution technique which does not involve either linear or
integer programming will be developed next, using linear programming duality
concepts.

Assigning workers to days-off patterns

In the first stage of the algorithm, the minimum workforce sizeW is determined
by (8). The objective now is to determine the number of workers assigned to each
pattern:x1, . . . , x7. Basic primal-dual relationships will be used to exploit infor-
mation from the dual solution for obtaining the solution of the primal (original)
days-off scheduling problem. The solution will depend on which argument of the
right-hand side of (8) is maximum. Thus excluding ties, there are three possible
cases.

Case 1.rmax is maximum

If ri = rmax is the maximum argument in (8), thenW = ri. Substituting into (6)
we have:
7∑

i=1

riyi = ri. Thereforeyi = 1, ∪yj /=i = 0, and
7∑

i=1

yi = 1 .
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Substituting into (7) we get:

1 − yj − yj+1mod7 ≤ 1 , j = 1, 2, . . . , 7

Sinceallyj /=i areequal to zeroexceptyiwhich isequal to1, theaboveconstraintsare
satisfied as equations excepts ifj = i−1 orj = i. Therefore, only one dual variable
(yi = 1) is basic and only two dual constraints (i − 1 andi) are inequalities. Thus
the primal problem has one equationi and two variables equal to zero:xi−1 andxi.
Including this information in system (4), we have many alternatives for assigning
workers to days off patterns to ensure feasibility. For example, the following rules
assign as many workers as possible tox6 then tox5 andx7, keeping in mind that
the total assignment cannot exceedW . These rules are also applicable in the case
of ties for the maximum demand valueri = rmax.

x6 = min {b6, b7}
x5 = min {b5, b6 − x6, W − x6}
x7 = min {b1, b7 − x6, W − x5 − x6}
x4 = min {b4, b5 − x5, W − x5 − x6 − x7}
x3 = min {b3, b4 − x4, W − x4 − x5 − x6 − x7}
x2 = min {b2, b3 − x3, W − x3 − x4 − x5 − x6 − x7}
x1 = min {b1 − x7, b2 − x2, W − x2 − x3 − x4 − x5 − x6 − x7} (12)

Case 2.
⌈

1
5

∑7
i=1 ri

⌉
is maximum

If �Σri/5� is the maximum argument in (8), thenW = �Σri/5�. Substituting into
(6) we have:

7∑
i=1

riyi = �Σri/5� . Therefore, yi = 1/5 , i = 1, 2, . . . , 7 ,

and
7∑

i=1

yi = 7/5 .

Substituting into (7) we get:

7/5 − 1/5 − 1/5 = 1 , j = 1, 2, . . . , 7

In this case, all dual variables are basic (yi = 0.2, i = 1, 2, . . . , 7), and all dual
constraints are equations. Therefore all primal variables are also basic and all primal
constraints are equations. Constraint system (4) is transformed into the following
set of equations:

xi−1 + xi = bi , i = 1, 2, . . . , 7 (13)

The solution of the 7×7 linear system of equations is given by:

xi = W −
∑
j∈Si

bj , i = 1, 2, . . . , 7 (14)
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where

Si = the complement ofSi , shown in Table 1

It is more convenient to use equation (14) only once to findx1. Using (13), the
remaining variables can then be calculated more easily as follows:

x1 = W − b3 − b5 − b7 (15)

xi = bi − xi−1 , i = 2, 3, . . . , 7 (16)

Case 3.
⌈

Rmax
3

⌉
is maximum

LetRi = Rmax. In this case,W = �Ri/3�, four dual variables (yj = 1/3, j ∈ Si)
are basic, and one dual constraint (i) is an inequality. Thus the primal problem has
4 equations (j ∈ Si) and one variable equal to zero:xi. Including this information
in system (4), and incorporating modularity conditions, we obtain:

xi−1 = bi

xi = 0
xi+1 = bi+1 (17)

and

xi+2 ≤ bi+2 − bi+1

xi+2 + xi+3 = bi+3

xi+3 + xi+4 ≤ bi+4

xi+4 + xi+5 = bi+5

xi+5 ≤ bi+6 − bi (18)

System (17) specifies the assignments for 3 patterns only. If all the patterns are
treated equally, a feasible assignment for the 4 remaining patterns can be easily
found by:

xi+2 = min {bi+2 − bi+1, bi+3}
xi+3 = bi+3 − xi+2

xi+4 = min {bi+4 − xi+3, bi+5}
xi+5 = bi+5 − xi+4 (19)

If ties exist for the maximum valueRi = Rmax, any of the systems corresponding
to the applicable values of the indexi can be chosen arbitrarily.

Minimizing total labor cost

The costs of different days-off patterns are related to the number of overtime-paid
weekend workdays. Days-off pattern 6 is the cheapest with no weekend workdays,
followed by patterns 5 and 7 with one weekend workday each. The remaining
patterns have the highest cost with two weekend workdays each. Let us assume
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that a regular-week workday costs $A per worker, and a weekend workday costs
$A(1 + B) per worker (A, B ≥ 0). In this case, therelativeweekly costs of the
seven days-off patterns are given by:

c1, . . . , c7 = {5 + 2B, 5 + 2B, 5 + 2B, 5 + 2B, 5 + B, 5, 5 + B} (20)

To incorporate thesedifferent costs, the right-handsidevector of thedual constraints
(7) changes to the transposed cost vector{c1, . . . , c7}T , modifying the 3 dual
solutions obtained with uniform costs. However, as long asB ≤ 5, the change
is slight and does not affect the values of workforce sizeW determined by (8).
This means that for this cost structure, the minimumcost in all 3 cases is always
obtained with the minimumnumberof workers. If the varying costs of different
days-off patterns were taken into consideration, the objective would be tominimize
the totalcostof workers, or,

minimizeZ =
7∑

j=1

cjxj (21)

This objective would be accomplished by assigning as many workers as possible,
out ofW , to the cheapest patterns:x6 then tox5 andx7. This has already been done
for Case 1, whenW = rmax. In Case 2, whenW = �Σri/5�, days-off assign-
ments (x1, . . . , x7) are unique values obtained by solving a set of linear equations,
and are not affected by pattern costs. In Case 3, whenW = �Rmax/3�, the above
general solution for anyRi = Rmax, given by (17) and (19), may not be appli-
cable. Therefore, individual cases for eachi, i = 1, 2, . . . , 7, must be considered

Table 2.Values of days-off assignments,x1, . . . , x7, for all possible values ofW

No W x1 x2 x3 x4 x5 x6 x7

1 �R1/3� 0 b2 b4 − x4
min

{b4, b5 − x5} b6 − x6
min

{b6, b7 − b1} b1

2 �R2/3� b2 0 b3 b5 − x5
min

{b5, b6 − x6}
min

{b7, R2 − R6} b7 − x6

3 �R3/3� b1 − x7 b3 0 b4 b6 − x6
min

{b6, R3 − R6}
min

{b1, b7 − x6}

4 �R4/3� min {b1, b2} b2 − x1 b4 0 b5
min

{b7, b6 − b5} b7 − x6

5 �R5/3� b1 − x7 min {b2, b3} b3 − x2 b5 0 b6
min

{b1, b7 − b6}

6 �R6/3� b2 − x1
min

{b2, R6 − R2}
min

{b4, b3 − x2} b4 − x3 b6 0 b7

7 �R7/3� b1 b3 − x3
min

{b3, b4 − x4} b5 − x5
min

{b5, b6 − b7} b7 0

8 �Σri/5� W − b3−
b5 − b7

b2 − x1 b3 − x2 b4 − x3 b5 − x4 b6 − x5 b7 − x6

9 rmax

min{
b1 − x7,

b2 − x2,

W −
7∑

i=2
xi

}
min{

b2, b3 − x3,

W −
7∑

i=3
xi

}
min{

b3, b4 − x4,

W −
7∑

i=4
xi

}
min{

b4, b5 − x5,

W −
7∑

i=5
xi

}
min{

b5, b6 − x6,

W − x6
} min{

b6, b7
} min{

b1, b7 − x6,

W − x5 − x6
}
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separately. To illustrate the procedure, the case whereR2 is maximum is discussed
in detail below. Results for the remaining cases, using a similar methodology, are
summarized in Table 2.

Sample derivation:R2 is maximum

Based on the dual solution, variablex2 is equal to zero and constraintsS2 =
(2, 3, 5, 7) are equations. Usingi = 2, system (17) providesx1 = b2 andx3 = b3,
while system (18) gives:

x4 ≤ b4 − b3 (22.1)

x4 + x5 = b5 (22.2)

x5 + x6 ≤ b6 (22.3)

x6 + x7 = b7 (22.4)

x7 ≤ b1 − b2 (22.5)

To maximizex6, subject to (22.3) and (22.4), we set:

x6 = min {b6 − x5, b7}
However, from subtracting (22.1) from (22.2) we get:

x5 ≥ b5 − b4 + b3

thus

x6 ≤ b6 − x5 ≤ b6 + b4 − b5 − b3

= W − r6 + W − r4 − (W − r5) − (W − r3) = (r3 + r5) − (r4 + r6)
= (r2 + r3 + r5 + r7) − (r2 + r4 + r6 + r7) = R2 − R6

Finally, days-off assignments are given by:

x6 = min {R2 − R6, b7}
x7 = b7 − x6

x5 = min {b5, b6 − x6}
x4 = b5 − x5

It is important to note that the workforce size is still the minimum given by (8):

W = x1 + x3 + (x4 + x5) + (x6 + x7)
= b2 + b3 + b5 + b7

= (W − r2) + (W − r3) + (W − r5) + (W − r7)
= 4W − (r2 + r3 + r5 + r7) = 4W − R2

Thus

W = R2/3
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An example

Based on the preceding development, the algorithm steps are summarized in the
Appendix.Anexample is solvedbelow to illustrate thecalculations involved in these
steps. The resulting solution matches the one obtained by integer programming.

Given seven daily labor requirements for a given week,

r1, . . . , r7 = 20, 1, 10, 19, 7, 19, 13

Calculations are carried out using the following table.

i 1 2 3 4 5 6 7 Sum

ri 20 1 10 19 7 19 13 89

R1 20 1 – 19 – 19 – 59
R2 – 1 10 – 7 – 13 31
R3 20 – 10 19 – 19 – 68
R4 – 1 – 19 7 – 13 40
R5 20 – 10 – 7 19 – 56
R6 – 1 – 19 – 19 13 52
R7 20 – 10 – 7 – 13 50

rmax = r1 = 20
�Σri/5� = �89/5� = �17.8� = 18
�Rmax/3� = �R3/3� = �68/3� = �22.67� = 23

Using (8),

W = max {20, 18, 23} = 23 = �R3/3�
SinceR3/3 = 22.67 is not an integer, we must make it integer by incrementing
one of labor requirements corresponding to setS3 (r1, r3, r4, orr6) by 1. Based on
the criteria specified in step 2(a) of the algorithm, we choose to increaser3, thus
r′
3 = 11.
Using Equation (5), we obtain:

b1, . . . , b7 = 3, 22, 12, 4, 16, 4, 10

By incrementingr3 by1,R2,R3,R5, andR7 arealso increasedby the sameamount.
SinceW = �R3/3�, we use system (3) in Table 2 to find days-off assignments as
follows:

x2 = 12
x3 = 0
x4 = 4
x6 = min {4, 69 − 52} = min {4, 17} = 4
x5 = 4 − 4 = 0
x7 = min {3, 10 − 4} = min {3, 6} = 3
x1 = 3 − 3 = 0
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Conclusions

This paper has presented a new, efficient optimization algorithm for the cyclic (5,
7) days-off scheduling problem. This LP-based algorithm can be used to minimize
either the total number or the total cost of workers assigned. A solved example
has been provided to illustrate the simple calculation steps. Avoiding the need to
use mathematical programming provides computational efficiency and ease of use.
Moreover, the algorithm is easy to program, removing the need for specialized inte-
ger programming software. This advantage is especially significant if the algorithm
is coded as a module within a larger program.

The algorithmpresented in this paper applies only to the (5, 7) days-off schedul-
ing problem because of the special structure of the constraint matrix. However, a
similar methodology could possibly be used for solving some other labor schedul-
ing problems in which the dual solution is easily obtained. In particular, a similar
approach could be generalized to solve the general (k, n) cyclic staffing problem.

Appendix. Algorithm steps

1. Determine the minimum workforce sizeW using equation (8)
W = max {rmax, �Σri/5�, �Rmax/3�}. In the case of ties go to step 3

2. (a) Ifmax {rmax, �Σri/5�, �Rmax/3�} = �Rmax/3�, then:
• if Rmax/3 is not integer, incrementRi = Rmax by (3W − Rmax) to make it
a multiple of 3; among the four daily labor demandsrj , j ∈ Si, that can be
increased, avoid whenever possible: (1) weekend, i.e.,r6 andr7; and (2) the
maximum labor demandrmax.

• calculateb1, b2, . . . , b7 using equation (5), then apply system No.i, i =
1, . . . , 7, in Table 2 to findx1,x2, . . . ,x7. If there are ties formaximumvalue
Ri = Rmax, use any of the systems No.i corresponding to the applicable
values of the indexi arbitrarily.

(b) If max {rmax, �Σri/5�, �Rmax/3�} = �Σri/5�, then:
• if Σri/5 is not integer, incrementΣri by (5W − Σri) in order to make it a
multiple of 5; among all seven daily labor demandsr1, . . . , r7, choose the
ones to be increased according to the criteria given above in step 2(a).

• calculateb1, b2, . . . , b7 using equation (5), then apply system No. 8 in Table
2 to findx1, x2, . . . , x7.

(c) If max {rmax, �Σri/5�, �Rmax/3�} = rmax, then:
• calculateb1, b2, . . . , b7 using equation (5), then apply system No. 9 in Table
2 to findx1, x2, . . . , x7.

3. In the case of ties formax {rmax, �Σri/5�, �Rmax/3�}, choose the argument
that needs the minimum total increment and go to the corresponding step: 2.(a)
for �Rmax/3�, 2.(b) for�Σri/5�, and 2.(c) forrmax. Whilermax does not need
incrementing, the increment for�Σri/5� is (5W −Σri), and the increment for
�Rmax/3� is (3W − Rmax).
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