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Abstract

A new integer programming model and a two-stage solution method are presented for the flexible 4-day

workweek days-off scheduling problem with weekend work frequency constraints. In this problem, employees are

given 3 days off per week, out of which either 2 or 3 must be consecutive. Two alternative constraints are imposed

to ensure that employees get a sufficient proportion of weekends off. In the first stage, the dual solution is utilized to

determine the minimum workforce size. In the second stage, a constraint specifying the minimum workforce size is

appended to the IP model, greatly improving computational efficiency. Moreover, multiple-week rotation

schedules are generated to ensure that all conditions are satisfied as employees switch from one work pattern to

another in successive weeks.
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1. Introduction

Labor scheduling problems are classified into three types: (i) shift, or time-of-day, scheduling, (ii)

days-off, or day-of-week, scheduling, and (iii) tour scheduling, which combines the first two types. For

organizations operating 7 days a week, such as utilities and hospitals, employee days-off scheduling is a

significant and relevant problem. Given a set of labor demands for each day of the week, the number of

employees assigned to each days-off pattern must be determined. The objective is to minimize the

number or cost of the employees, while satisfying daily labor demands and any other labor or financial

requirements.
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The most usual type of days-off schedules is referred to as the (5,7) problem, in which each work

pattern includes 5 workdays and 2 consecutive off-days per week. Several authors present various

approaches to the (5,7) problem, including Baker (1974), Baker and Magazine (1977), Bartholdi, Orlin,

and Ratliff (1980), Brownell and Lowerre (1976), Burns (1978), and Vohra (1987). Recently, there has

been a lot of interest in alternative work schedules, including 4-day workweeks. This research interest

was illustrated by Alfares (2000), Billionnet (1999), Burns, Narasimhan, and Smith (1998), Hung (1991,

1994), Lankford (1998), and Nanda and Browne (1992, pp. 245–249).

This paper combines compressed workweeks with flexible days-off schedules. Each employee is

given 3 days off per week, out of which either 2 or 3 days must be consecutive. Moreover, restrictions are

imposed to limit the frequency of weekend work assignments. New integer programming (IP) models

are developed to represent two alternative constraints on weekend work frequency. A two-stage method

utilizing the dual solution and primal–dual relations is presented to obtain either the minimum number

or cost of the workforce.

In general, the workforce size is first calculated, and then a workforce size constraint is added to IP

formulation of the problem to efficiently obtain optimum integer solutions. Moreover, rotation schedules

are constructed over several weeks to guarantee that work patterns in one week fit the work patterns in

the following week while satisfying all constraints. The new method is much more computationally

efficient than existing IP models. This advantage is significant in applications where many days-off

scheduling problems must be solved, such as labor scheduling for projects (Alfares & Bailey, 1997).

Subsequent sections are organized as follows. First, a review of related literature is given. Then,

starting with the first type of weekend work frequency constraints, the new IP model is presented.

Subsequently, the procedure for determining the minimum workforce size is described, methods for

assigning employees to days-off patterns are presented, and computational comparisons with IP are

discussed. Alternative weekend work frequency constraints are then analyzed. Finally, examples are

solved and conclusions are given.

2. Review of related research

Nanda and Browne (1992) provide the most recent and comprehensive survey of employee days-off

scheduling literature. In the past, a lot of attention has been focused on the (5,7) problem, in which two

consecutive days off are given per week. For example, Baker and Magazine (1977), Brownell and

Lowerre (1976), and Burns (1978) considered different variations of the (5,7) problem with cyclic

demands and alternative weekends off. More recently, the focus has shifted toward compressed

workweek scheduling, such as the (4,7) problem in which each employee works 4 consecutive days per

week. This scheduling alternative is becoming increasingly popular in practice. For example, Lankford

(1998) reports a recent implementation of a 4-day workweek schedule at the Analytical Central Call

Management Group at Hewlett Packard, noting that cross training is the key to its success.

Hung (1991) analyzes two homogeneous workforce scheduling models under two assumptions: (i) D

employees are required on weekdays and E employees on weekends, and (ii) each employee must

receive at least A out of B weekends off. In the first model, each employee works 4 days and rests 3 days

each week. In the second model, the scheduling cycle is 2 weeks, during which each employee works 4

days and rests 3 days in one week, and works 3 days and rests 4 days in the other week. Under the same
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assumptions, Narasimhan (1997) considers days-off scheduling for a hierarchical workforce, where each

employee cannot be assigned more than 5 consecutive working days.

Hung (1994) develops a heuristic algorithm for hierarchical workforce scheduling under variable

labor demand that allows employee substitution. The workweek length can be 3, 4, or 5 days, and the

objective is to minimize the workforce cost. To ensure optimality, the heuristic algorithm must be

followed by a lengthy branch-and-bound search method. Billionnet (1999) uses IP to formulate and

solve the same problem. Burns et al. (1998) present an algorithm for 3-day and 4-day workweeks, with

variable daily demand and limits on work stretch lengths.

The algorithm presented in this paper applies to single-shift 4-day workweek scheduling. The

algorithm provides optimal solution for the problem under the following assumptions:

(i) the demand for employees may vary from day to day for the given week,

(ii) at least 2 of the 3 weekly off-days are consecutive, and

(iii) two alternative weekend work frequency constraints:

(I) each employee takes on average a proportion P of full weekends off, or

(II) each employee takes on average a proportion P of weekend days off.

3. Integer programming models

As far as the author knows, the model formulated below is the first to represent restrictions on

weekend work frequency as integer linear programming constraints. Starting with alternative I weekend

work frequency constraints, the most common type found in practice, the flexible 4-day labor scheduling

problem can be represented as follows

Minimize W ¼
X28

j¼1

xj ð1Þ

subject to

X28

j¼1

aijxj $ ri; i ¼ 1; 2;…; 7 ð2Þ

X
j[J2

xj

X28

j¼1

xj

$ P; or 2 P
X
j[J0

xj 2 P
X
j[J1

xj þ ð1 2 PÞ
X
j[J2

xj $ 0 ð3Þ

x13 þ x20 þ x27 # MQ; ð4ÞX
j[E<F

xj $ Q; Q ¼ 0; 1 ð5Þ

xj $ 0 and integer; j ¼ 1; 2;…; 28 ð6Þ

where W is the workforce size, i.e. total number of employees assigned to all patterns, xj is the number of

employees assigned to weekly days-off work pattern j,
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aij ¼
1 if day i is a work day for pattern j;

0 otherwise

(
ði ¼ 1; 2;…; 7Þ:

For alternative I:

a8j ¼
2P if j [ J0 or j [ J1;

1 2 P if j [ J2:

(

Table 1 shows matrix A ¼ {aij; i ¼ 1;…; 8; j ¼ 1;…; 28}: ri is the minimum number of employees

required on day i, i ¼ 1; 2;…; 7; r8 ¼ 0; P is average proportion of full weekends off, 0 # P # 1; Q ¼ 1

if x13 þ x20 þ x27 $ 1; Q ¼ 0 otherwise; M is any number $3; E, set of days-off patterns with day 7

off ¼ {5,6,7,12,15,19,23,24,26}; F, set of days-off patterns with day 1 off ¼ {1,6,7,9,14,17,25,28}; Jk,

set of days-off patterns with k weekend days off per week, k ¼ 0; 1; 2; J0 ¼ {1; 2; 3; 8; 9; 10; 17; 21; 28};

J1 ¼ {4; 7; 11; 13; 14; 15; 16; 18; 20; 22; 23; 24; 25; 27}; and J2 ¼ {5; 6; 12; 19; 26}:
The objective (1) is to minimize the workforce size, i.e., the total number of employees assigned. The

right-hand side of expression (2) represents the number of employees required for the given day i, while

the left-hand side represents the total number of employees assigned for that day. The denominator on

the left-hand side of expression (3) represents the total number of employees assigned for the given

weekly schedule, while the numerator represents the number of employees with full weekends off.

Constraint (3) can be expressed in the two alternative forms shown, or it can be written in the same form

as expression (2), but with i ¼ 8:
Constraints (4) and (5) ensure that 2 successive days-off per week are still taken as work patterns are

linked from one week to the next during the rotation cycle. Using any rotation scheme, 2 successive days

off each week are automatically guaranteed for all days-off patterns except patterns 13, 20, and 27. These

three patterns have 1 day off at the start of the week (day 1) and 1 day off at the end of the week (day 7).

To have two consecutive days off during rotation, patterns 13, 20, and 27 must be either preceded by a

pattern from the set E or followed by a pattern from the set F. Constraints (4) and (5) ensure that if these

three patterns are assigned, then at least one pattern from set E or F will be available to precede or follow

them.

3. Stage 1: determining the minimum workforce size

Because of the presence of the binary variable Q, it would be difficult to directly analyze the

consequence of constraints (4) and (5) on the workforce size W. Therefore, we will instead investigate

the effect of including the following stronger (yet simpler) constraint in the IP model:

X
j[E<F

xj $ x13 þ x20 þ x27: ð7Þ

Constraint (7) can be expressed in the same form as expression (2), but with i ¼ 9: For the flexible 4-day

workweek scheduling model defined by expressions (1)–(3) and (6) and (7), the dual model with dual
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Table 1

Days-off matrix A ¼ {aij} and cost vector C ¼ {cj} for the 28 days-off work patterns

i j

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

1 0 1 1 1 1 0 0 1 0 1 1 1 0 0 1 1 0 1 1 0 0 1 1 1 0 1 0 0

2 0 0 1 1 1 1 0 0 1 0 1 1 1 0 0 1 1 0 1 1 0 0 1 1 1 0 1 0

3 0 0 0 1 1 1 1 0 0 1 0 1 1 1 0 0 1 1 0 1 1 0 0 1 1 1 0 1

4 1 0 0 0 1 1 1 1 0 0 1 0 1 1 1 0 0 1 1 0 1 1 0 0 1 1 1 0

5 1 1 0 0 0 1 1 0 1 0 0 1 0 1 1 1 0 0 1 1 0 1 1 0 0 1 1 1

6 1 1 1 0 0 0 1 1 1 1 0 0 1 0 1 0 1 0 0 1 1 0 1 1 0 0 1 1

7 1 1 1 1 0 0 0 1 1 1 1 0 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 1

8 2P 2P 2P 2P 1 2 P 1 2 P 2P 2P 2P 2P 2P 1 2 P 2P 2P 2P 2P 2P 2P 1 2 P 2P 2P 2P 2P 2P 2P 1 2 P 2P 2P

cj 4 þ 2b 4 þ 2b 4 þ 2b 4 þ b 4 4 4 þ b 4 þ 2b 4 þ 2b 4 þ 2b 4 þ b 4 4 þ b 4 þ b 4 þ b 4 þ b 4 þ 2b 4 þ b 4 4 þ b 4 þ 2b 4 þ b 4 þ b 4 þ b 4 þ b 4 4 þ b 4 þ 2b
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variables {y1;…; y9} is given as:

Maximize W ¼
X9

i¼1

riyi ð8Þ

subject to

X9

i¼1

aijyi # 1; j ¼ 1;…; 28 ð9Þ

yi $ 0; i ¼ 1;…; 9: ð10Þ

Given a week’s seven daily labor demands r1;…; r7; the minimum workforce size W can be determined

from the above dual model using primal–dual relations, without IP. To solve the dual problem we

allocate the unit resource—right-hand side of expression (9)—among the dual variables in order to

maximize the dual objective W, which is a linear combination of labor demands. Depending on the

demands r1;…; r7; there are four possible solutions.

(1) The most obvious solution is to allocate the whole unit resource to the maximum demand, i.e. if

rk ¼ max{r1;…; r7}; set yk ¼ 1 and all other dual variables to zero. In this case W ¼ rk ¼ rmax: This

solution is better than or equal to the average that would result from assigning a value of 1/m to any m

dual variables, where m ¼ 2;…; 9: However, the structure of the problem makes it possible to assign a

value of 1/m to more than m dual variables. There are three cases where this is possible, which are

discussed next.

(2) Excluding y8 and y9, each constraint in expression (9) contains only four non-zero dual variables.

Therefore, it is possible to divide the unit right-hand side of each constraint among those four variables.

Thus it is feasible to assign a value of 1/4 to the first seven dual variables: y1; y2;…; y7 and a value of zero

to both y8 and y9. In this case the workforce size is equal to W ¼
P

ri=4:
(3) Another allocation applies to seven sets of four dual variables, whose subscripts, denoted by si, are

shown in Table 2. Each set si ¼ {i; i þ 1; i þ 3; i þ 5}; i ¼ 1;…; 7; is a circular set which has a cycle of

7. At least one of any two adjacent dual variables yk, ykþ1 (corresponding to 2 successive off days) with

zero coefficients in constraints (9) must belong to a set {yi; yiþ1; yiþ3; yiþ5}: Therefore, no more than

three variables from each set have non-zero coefficients in any constraint, and we can assign a value of 1/3 to

all four variables in a given set. Choosing the set with the maximum total demand, the workforce size is

equal to W ¼ max{
P

j[si
rj}=3 ¼ max{Si=3}; i ¼ 1; 2;…; 7:

To illustrate this point, let us consider for example the set s1 ¼ {1; 2; 4; 6}: If we assume only dual

variables y1, y2, y4, and y6 are basic (setting all other dual variables to zero), each dual constraint in

expression (9) will have no more than three variables on the left-hand side. For example, the first five

dual constraints in expression (9) become:

j ¼ 1 : y4 þ y6 # 1 j ¼ 2 : y1 þ y6 # 1 j ¼ 3 : y1 þ y2 þ y6 # 1 j ¼ 4 : y1 þ y2 # 1

j ¼ 5 : y1 þ y2 þ y4 # 1:

Since the objective is to maximize W ¼
P

riyi; the optimum dual solution is given by:

y1 ¼ y2 ¼ y4 ¼ y6 ¼ 1=3 W ¼ ðr1 þ r2 þ r4 þ r6Þ=3 ¼ S1=3:

H.K. Alfares / Computers & Industrial Engineering 44 (2003) 325–338330



(4) Finally, another dual solution is obtained if we set all first five dual variables to zero (yi ¼ 0;
i ¼ 1;…; 5). The first seven rows in dual constraints in expression (9) become:

j ¼ 1 : y6 þ y7 2 Py8 þ y9 # 1 j ¼ 2; 3 : y6 þ y7 2 Py8 # 1 j ¼ 4 : y7 2 Py8 # 1

j ¼ 5; 6 : ð1 2 PÞy8 þ y9 # 1 j ¼ 7 : y6 2 Py8 þ y9 # 1:

If we assume all above constraints are equations, the solution is given by:

ðy6 þ y7Þ ¼ y8 ¼ 1=ð1 2 PÞ; y9 ¼ 0 W ¼ maxðr6; r7Þ=ð1 2 PÞ:

It is also possible to assign a value of 1/4 to five or six dual variables. However, these allocations are

obviously dominated by case 2 above. To determine W, we choose the maximum value obtained from

the four above cases, and round it up to the nearest integer. Rounding up non-integer values of W to reach

feasible integer solutions is a technique used by several authors, such as Baker (1974), Bartholdi et al.

(1980), Burns (1978), and Vohra (1987). Moreover, this technique will be empirically shown to produce

feasible integer solutions for 202 test problems. Therefore, we obtain the following expression for the

minimum W

W ¼ max rmax;
1

4

X7

i¼1

ri

& ’
;

Smax

3

� �
;

maxðr6; r7Þ

1 2 P

� �( )
ð11Þ

where rmax ¼ max{r1; r2;…; r7}; Smax ¼ max{S1; S2;…; S7}; dae ¼ smallest integer $a, and

Si ¼
X
j[Si

ri; i ¼ 1; 2;…; 7 ð12Þ

si ¼ {i; i þ 1; i þ 3; i þ 5}; i ¼ 1; 2;…; 7 ð13Þ

where si is circular set with a cycle ¼ 7 (see Table 2).

3.1. Interpretation of the bounds on workforce size W

It seems appropriate at this point to interpret the economic meaning of the four bounds in Eq. (11).

First, the workforce size must be greater than the number of employees required on any given day; thus

Table 2

Sets of subscripts si defined by Eq. (13)

i si

1 1,2,4,6

2 2,3,5,7

3 1,3,4,6

4 2,4,5,7

5 1,3,5,6

6 2,4,6,7

7 1,3,5,7
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W $ rmax: Second, since each employee is assigned 4 workdays per week, the total man-days assigned is

4
P

xj ¼ 4W : This has to be greater than the total man-days required, which is
P

ri: Thus, 4W $
P

ri; or

W $
P

ri=4:
For the third bound, let us take S1 ¼ ðr1 þ r2 þ r4 þ r6Þ as an example. If we sum rows 1, 2, 4, and 6 in

constraints (2) referring to matrix A in Table 1 and derive an upper bound for it, we obtain:

3
X

xj $ r1 þ r2 þ r4 þ r6: ð14Þ

Thus, in order to satisfy labor demands on days 1, 2, 4, and 6, W $ S1=3: A similar result will be

obtained for sets S2;…; S7; thus leading to the third bound ðW $ Smax=3Þ: It must be noted that this third

bound is the cost of insisting on having 2 consecutive days off. If non-consecutive days off where

allowed, it would be possible to assign employees to a days-off pattern that is, for example, off on days 3,

5, and 7 (working on days 1, 2, 4, and 6). In that case, labor demands on days 1, 2, 4, and 6 could be

satisfied by assigning employees to work on these 4 days, and the number of employees required would

be equal to maximum demand during the 4 days, i.e. W $ maxðr1; r2; r4; r6Þ; which is dominated by the

first bound ðW $ rmaxÞ:
For the fourth bound, we resort to the dual solution. Since either y6 and y8 or y7 and y8 are basic, then

either primal constraints 6 and 8 or 7 and 8 can be tight. Assuming constraints 6 and 8 are tight, let us

sum rows 6 and 8 in constraints (2), obtaining

ð1 2 PÞ
X
j[J0

xj 2 P
X

j[J1a

xj þ ð1 2 PÞ
X

j[J1b

xj þ ð1 2 PÞ
X
j[J2

xj $ r6 ð15Þ

where J1a is the subset of J1 patterns with only day 6 off ¼ {4,11,14,16,18,22,25}, J1b is the subset of J1

patterns with only day 7 off ¼ {7,13,15,20,23,24,27}.

However, if constraints 6 and 8 are tight, then xj ¼ 0 for all J [ J1a; and expression (15) reduces to:

ð1 2 PÞW $ r6; or W $ r6=ð1 2 PÞ: Using the same procedure, if we sum constraints 7 and 8 assuming

both are tight, then xj ¼ 0 for all J [ J1b; and we obtain: W $ r7=ð1 2 PÞ: Thus, in order to satisfy

demands on both days 6 and 7 (weekend), we must combine these two results together, obtaining:

W $ maxðr6; r7Þ=ð1 2 PÞ: This fourth bound corresponds to the cost of giving employees a proportion P

of weekends off.

4. Stage 2: assigning employees to days-off patterns

4.1. Minimum cost assignment

After determining the workforce size W by Eq. (11), the objective at this stage is to assign the W

employees to different days-off patterns in order to minimize total cost. Naturally, the cost of each days-

off pattern is related to the number of overtime-paid weekend workdays. The 28 columns of matrix A

represent days-off work patterns, while the first seven rows represent days of the week, with rows 6 and 7

corresponding to the weekend. Assuming each employee is paid 1 unit per regular workday and 1 þ b

units ðb $ 0Þ per weekend workday, the weekly costs of the 28 days-off patterns {c1; c2;…; c28} are
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shown in Table 1. Changing the objective to that of minimizing total cost, Eq. (1) is replaced by

Minimize Z ¼
X28

j¼1

cjxj ð16Þ

where cj is the weekly cost of days-off pattern j per employee, shown in Table 1.

Introducing these costs in the dual model, the right-hand side of dual constraints (9) changes from 1 to

cj. Naturally, the dual solutions slightly differ from those discussed above with unit costs. However, in

all four cases, the workforce size W does not change. This means that for the cost structure defined by

{c1; c2;…; c28}; for all b $ 0, the minimum cost is always obtained with the minimum number of

employees. In other words, introducing the varying costs for different days-off patterns defined by

c1;…; c28 does not affect the workforce size.

4.2. Solution procedure

Given r1;…; r7; b, and P, the value of the minimum workforce size W is first calculated by Eq. (11),

then the following constraint is added to the primal IP model defined by expressions (2)–(6) and (16)

X28

j¼1

xj ¼ W: ð17Þ

4.3. Rotation scheme

Constraints included in the model specify that each employee must receive: (i) a proportion P of

weekends off, and (ii) 2 successive days off per week. A rotation scheme is now introduced to ensure that

both constraints are satisfied as employees switch from one pattern to another over a multiple-week

rotation period. The solution of the IP model specifies the number of employees assigned to each days-

off pattern ðx1;…; x28Þ and the total workforce W ðx1 þ · · · þ x28Þ for a single week. This solution

provides the basis for our rotation scheme presented below.

First, we define a W-week rotation cycle, during which each employee is assigned to each pattern j for

a period of xj weeks ðj ¼ 1;…; 28Þ: For feasibility and fairness, all W employees must go through the

same sequence of assignments to patterns over this W-week rotation cycle, but each employee starts the

sequence at a different week of the cycle. To guarantee a feasible sequence, assignments to patterns 13,

20, and 27 must be consecutive, and must be either immediately preceded by a pattern from the set E or

immediately followed by a pattern from the set F. Constraints (4) and (5) ensure that at least one pattern

from either set E or F is assigned if patterns 13, 20, and 27 are active.

4.4. Computational results

The addition of workforce size constraint (17) has been found to drastically reduce IP computation

times. In order to evaluate the effect of adding constraint (17), computational experiments were carried

out using 202 test problems. In all these problems, the value of b was set at 0.5 to indicate 50% higher
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pay for weekend work. Moreover, the value of P was set at 1/2 to indicate a requirement of every other

weekend off. This is a typical value of P used by many researchers such as Baker and Magazine (1977),

Brownell and Lowerre (1976), and Burns (1978).

The 202 test problems, described by Alfares (1998), are divided into 10 sets with different demand

types, but all have an average demand of 50 employees per day. The first six sets involve 17 problems

each, with a demand range of 34–64, and have specific labor demand patterns: level, trend, concave,

convex, unimodal, and sinusoidal. The last four sets involve 25 problems each, with labor demands

randomly distributed over the intervals: [34,66], [0,100], [20,80], and [45,55].

Microsoft Excel Solverw, on an 866-MHz Pentium III PC, was used to solve the test problems by IP.

The results of computational experiments are summarized in Table 3. For all 10 problem sets, adding

constraint (17) has decreased the average, maximum, and variation of solution times. Overall, average

solution time dropped by 92%, from 1.84 to 0.15 s. Maximum solution time fell by 99.8%, from 337.41

to only 0.77 s. Similarly, the standard deviation decreased from 23.73 to only 0.06 s. Clearly, adding

constraint (17) leads to a remarkable reduction in both the mean and variation of solution times.

5. Alternative weekend-off frequency constraints

In the foregoing presentation, weekend-off frequency constraints specified a minimum proportion P

of full weekends off for each employee. Suppose now that weekend frequency constraints are modified to

include half weekends off in addition to full weekends off in the proportion P. To incorporate this

modification, the following changes have to be made in the model.

First, constraint (3) must be replaced by the following constraint, which ensures that each employee

takes a proportion P of weekend days off

X
j[J1

xj þ 2
X
j[J2

xj

2
X28

j¼1

xj

$ P or 2 2P
X
j[J0

xj þ ð1 2 2PÞ
X
j[J1

xj þ ð2 2 2PÞ
X
j[J2

xj $ 0: ð18Þ

For weekend work frequency constraints alternative II, we must redefine the constraints coefficients as

follows:

a8j ¼

22 if j [ J0;

1 2 2P if j [ J1;

2 2 2P if j [ J2:

8>><
>>:

The numerator on the left-hand side of expression (18) represents the number of weekend man-days

assigned off in the given weekly schedule, while the denominator represents the maximum number of

weekend man-days (2 days off per employee). In order to determine the workforce size W, the dual of the

IP model corresponding to alternative II must be solved. The first three dual solutions, i.e., first three

bounds in Eq. (11), are the same as for alternative I. However, the fourth dual solution changes as
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follows. If we set yi ¼ 0; i ¼ 1;…; 5; the first seven rows in dual constraints (9) become:

j ¼ 1 : y6 þ y7 2 2Py8 þ y9 # 1 j ¼ 2; 3 : y6 þ y7 2 2Py8 # 1 j ¼ 4 : y7 þ ð1 2 2PÞy8 # 1

j ¼ 5; 6 : ð2 2 2PÞy8 þ y9 # 1 j ¼ 7 : y6 þ ð1 2 2PÞy8 þ y9 # 1:

If we assume all above constraints are equations, the solution is given by:

y6 ¼ y7 ¼ y8 ¼ 1=ð2 2 2PÞ; y9 ¼ 0 W ¼ ðr6 þ r7Þ=ð2 2 2PÞ:

To interpret this alternative fourth bound on W, we simply need to sum rows 6 and 7 (weekend labor

requirements) in constraints (2) plus new weekend off frequency constraints (18), obtaining:

ð2 2 2PÞ
X28

j¼1

xj $ r6 þ r7: ð19Þ

Thus in order to satisfy demands on days 6 and 7, W $ ðr6 þ r7Þ=ð2 2 2PÞ: Therefore, Eq. (11) is

replaced by the following expression for the minimum workforce size W

W ¼ max rmax;
1

4

X7

i¼1

ri

& ’
;

Smax

3

� �
;

r6 þ r7

2 2 2P

� �( )
: ð20Þ

The solution procedure now consists of calculating the workforce size W by Eq. (20), and then adding

expression (17) to the modified IP model defined by expressions (2), (4)–(6), and (16). The same

rotation scheme involving a cycle of W weeks must again be used for the W employees. Table 3

summarizes results of experiments to determine the effect of adding constraint (17) to the modified

model, using the 202 test problems previously described. Overall, average solution time dropped by

86%, from 1.19 to 0.17 s. Maximum solution time fell by 99.7%, from 80.30 to only 0.22 s. Similarly,

the standard deviation decreased from 7.59 to only 0.02 s.

6. Solved examples

The two following examples are used to illustrate the simple calculations required for applying the

proposed solution method. Example 1 corresponds to alternative I of weekend work frequency

constraints, while Example 2 corresponds to alternative II.

Table 3

Integer programming solution times in seconds (minimum, average, maximum, and standard deviations) with and without

constraint (17)

Weekend work frequency constraints Without constraint (17) With constraint (17)

Alternative Min Ave Max Std dev Min Ave Max Std dev

I 0.11 1.84 337.41 23.73 0.11 0.15 0.77 0.06

II 0.11 1.19 80.30 7.59 0.16 0.17 0.22 0.02
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6.1. Example 1

Assume that the required proportion of full weekends off P is given as 0.5, and that the daily labor

demands for a certain work week are given as:

r1; r2;…; r7 ¼ 8; 8; 2; 8; 2; 7; 5:

Using Eq. (12), the following values are calculated:

S1; S2;…; S7 ¼ 31; 17; 25; 23; 19; 28; 17:

Hence

rmax ¼ 8
X

ri=4 ¼ 40=4 ¼ 10 Smax=3 ¼ S1=3 ¼ 31=3 ¼ 10:33

maxðr6; r7Þ=ð1 2 PÞ ¼ 7=0:5 ¼ 14:

Using Eq. (11),

W ¼ max{8; 10; d10:33e; 14} ¼ 14:

Without requiring 2 days off to be consecutive and without requiring a proportion of weekends off, W

would be the maximum of rmax and
P

ri=4 (rounded up), or 10. Including only the requirement of

consecutive pairs of days off, the workforce size becomes: W ¼ dS1=3e ¼ 11: Thus the cost of

consecutivity is one extra employee. Adding also the requirement of 50% of weekends off increases W to

14, hence the cost of this requirement is three extra employees. To the model defined by expressions

(2)–(6) and (16), we add the constraint defined by Eq. (17):
P28

j¼1 xj ¼ 14 and solve by IP to obtain the

days-off assignments x1;…; x28: The IP solution is given by:

J0 and J1 patterns: x8 ¼ 5; x13 ¼ 2

J2 (full weekend off) patterns: x5 ¼ 5; x6 ¼ 1; x26 ¼ 1:

A 14-week rotation cycle must be used, during which each employee is assigned 5 weeks to pattern 8,

2 weeks to pattern 13, 5 weeks to patterns 5, and so on. To maintain 2 successive days off per week,

pattern 13 assignments must be consecutive, and either immediately followed by pattern 6 or

immediately preceded by pattern 5, 6, or 26. A 14-week feasible rotation cycle is shown in Table 4, in

which pattern 13 assignments are directly followed by a pattern 6 assignment.

6.2. Example 2

Assume the same daily labor demands as given in Example 1, but now the specified value of P ¼ 0:5
pertains to the required proportion of weekend days off. Since the first three bounds on W are the same

for Eqs. (11) and (20), only the fourth bound needs to be calculated as follows:

ðr6 þ r7Þ=ð1 2 PÞ ¼ ð5 þ 7Þ=2ð0:5Þ ¼ 12:

Using Eq. (20),

W ¼ max{8; 10; d10:33e; 12} ¼ 12:
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To the model defined by expressions (2), (4)–(6), and (16), we add the constraint:
P28

j¼1 xj ¼ 12; and

solve by IP to obtain the days-off assignments x1;…; x28 :

J0 patterns: x1 ¼ 2; x3 ¼ 3

J1 patterns: x13 ¼ 1; x23 ¼ 1

J2 patterns: x6 ¼ 1; x19 ¼ 4:

Using a 12-week rotation cycle, pattern 13 assignments must be either preceded by pattern 6, 19, or

23, or followed by pattern 1 or 6.

7. Conclusions

A new optimization algorithm for the flexible (4,7) labor days-off scheduling problem with weekend

work frequency constraints has been presented. In this problem, employees are given 3 off days per

week, out of which either 2 or 3 days must be consecutive, and a certain proportion of weekends must be

off. New IP models have been developed to represent two alternative restrictions on weekend work

frequency. For each alternative, an expression has been derived from the dual solution to determine the

minimum workforce size. Cyclic multiple-week rotation schedules have been developed for assigning

employees to work patterns fairly while satisfying all constraints.

For the two alternative weekend work frequency constraints, the addition of a workforce-size

constraint to the IP model has been proposed to improve computational efficiency. Based on

computational experiments with 202 test problems, the appended model was found to be on average nine

Table 4

A cyclic 14-week rotation schedule for example 1, where bold cells represent an assignment to a J2 (full-weekend off pattern)

Employee Week

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 5 8 8 8 8 8 13 13 6 26 5 5 5 5

2 5 5 8 8 8 8 8 13 13 6 26 5 5 5

3 5 5 5 8 8 8 8 8 13 13 6 26 5 5

4 5 5 5 5 8 8 8 8 8 13 13 6 26 5

5 5 5 5 5 5 8 8 8 8 8 13 13 5 26

6 26 5 5 5 5 5 8 8 8 8 8 13 13 6

7 6 26 5 5 5 5 5 8 8 8 8 8 13 13

8 13 6 26 5 5 5 5 5 8 8 8 8 8 13

9 13 13 6 26 5 5 5 5 5 8 8 8 8 8

10 8 13 13 6 26 5 5 5 5 5 8 8 8 8

11 8 8 13 13 6 26 5 5 5 5 5 8 8 8

12 8 8 8 13 13 6 26 5 5 5 5 5 8 8

13 8 8 8 8 13 13 6 26 5 5 5 5 5 8

14 8 8 8 8 8 13 13 6 26 5 5 5 5 5
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times faster than the traditional IP model. This advantage is especially significant in applications where a

large number of these models must be solved.
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