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Abstract. A four-day workweek days-off scheduling problem is considered. Out of the three days
off per week for each employee, either two or three days must be consecutive. An optimization
algorithm is presented which starts by utilizing the problem’s special structure to determine the
minimum workforce size. Subsequently, workers are assigned to different days-off work patterns
in order to minimize either the total number or the total cost of the workforce. Different procedures
must be followed in assigning days-off patterns, depending on the characteristics of labor demands.
In some cases, optimum days-off assignments are determined without requiring mathematical pro-
gramming. In other cases, a workforce size constraint is added to the integer programming model,
greatly improving computational performance.
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1. Introduction

Workforce scheduling is important to both employees and their organizations. Work
schedules directly affect the employees’ pay, quality of life, and structure of work,
family, and leisure activities. On the other hand, employee work schedules affect
the labor cost of organizations and their ability to meet time varying demands for
goods and services. Labor cost constitutes a significant portion of the total expen-
ditures in most organizations. Effective scheduling of employees can reduce both
the size and the cost of the workforce. Moreover, employee scheduling is a difficult
problem to solve due to several factors that include: (1) humans’ need for rest, i.e.,
daily and weekly breaks, (2) impossibility of storing human service, (3) strict labor
laws and union agreements, and (4) seniority and preferences.

Days-off scheduling is a significant problem for organizations that operate on a
seven-days-per-week basis, such as police stations, restaurants, and airlines. Usu-
ally, labor demands are assumed to vary from day to day during the week, but the
weekly demand pattern is assumed to be constant from week to week. The solution
of the days-off scheduling problem specifies the number of employees and the work
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and off days of each employee. The objective is to satisfy the daily labor demands
with the minimum size or minimum cost of the workforce.

The traditional Monday-to-Friday workweek is not applicable to organizations
that operate seven days a week. In order to meet weekend labor demand, some
employees must be assigned to work on weekends and hence must be given non-
weekend off days. Usually, the (5, 7) schedule is used, in which employees are
given two consecutive days off per week. According to McCampbell [10], how-
ever, alternative work schedules (AWS) have grown steadily in the U.S. since
1972. The U.S. Office of Personnel Management suggests seven types of flexible
schedule models and 3 types of compressed-schedule models. AWS, which include
compressed week schedules, provide higher management flexibility and greater
employee satisfaction.

The 4-day compressed workweek is considered in this paper, but additional
flexibility is assumed with respect to the three days off per week. Out of the three
days off, either two or three off days must be consecutive. An optimum algorithm
that utilizes LP primal-dual relations is developed for minimizing either the total
number or the total cost of employees. In some cases, a workforce size constraint
is added to integer programming (IP) model of the problem to efficiently obtain
optimum solutions. In other cases, the optimum integer solution is obtained without
mathematical programming at all. The proposed algorithm provides computational
performance that is significantly superior to the traditional integer programming
solution.

This paper is organized as follows. First, relevant literature is surveyed and dis-
cussed. Subsequently, integer programming models are presented. Next, a descrip-
tion is given of the procedure for determining the minimum number of employees,
followed by a development of methods for assigning employees to days-off pat-
terns. Afterwards, the new algorithm is computationally compared to conventional
integer programming. Finally, a numerical example is solved, and then conclusions
are given.

2. Literature Survey

Nanda and Browne [11] classify employee scheduling into 10 categories that ad-
dress the scheduling of: (1) days on and days off, (2) shifts and work rosters,
(3) work tours, (4) integrated workweeks, (5) meal breaks and rest periods, (6) part-
time employees, (7) vacations and training assignments, (8) overtime, (9) compen-
sation, i.e. premiums/wages, and (10) alternate work patterns. Nanda and Browne
[11] present a comprehensive survey of literature on all these types of employee
scheduling problems. In this paper, we are primarily concerned with days-off
scheduling and alternate work patterns, especially shorter workweeks.

Several algorithms have been developed for the days-off scheduling problem,
assuming different combinations of the following characteristics: number of em-
ployee categories, pattern of labor demands, limit on work-stretch length, con-
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straints on weekend work frequency, number of work days per week, and whether
off days are consecutive. Narasimhan [13] compares several days-off scheduling
approaches. Although nonconsecutive days off provide greater scheduling flex-
ibility and efficiency, Nanda and Browne [11] note that they are less desirable.
However, nonconsecutive days off can be made more acceptable if combined with
some desirable features such as compressed workweeks.

Nanda and Browne [11] list several types of alternative work schedules, includ-
ing flexitime and compressed work weeks. According to McCampbell [10], the
U.S. Office of Personnel Management suggests three types of compressed work
schedules: the 3-day workweek, the 4-day workweek, and the 5-4/9 plan. In the
4-day compressed workweek, each employee works 4 days and takes 3 days off
per week. McCampbell [10] cites several advantages of alternative work schedules,
and in particular compressed workweeks, to both employees and organizations.
Employees gain greater freedom, more time for personal and family matters, and
improved morale. On the other hand, employers enhance productivity, facilitate
recruitment, and reduce absenteeism, overtime, and turnover.

The 4-day workweek is a popular real-life compressed workweek schedule.
Under this schedule, also known as the (4, 7) or the 4 × 10 schedule, each em-
ployee works 4 days per week, 10 hours per workday. Lankford [9] describes
a pilot application of a 4-day workweek schedule at the Analytical Central Call
Management at Hewlett Packard. Gould [6] describes another 4-day schedule (the
rolling four) in which two groups of employees alternate 4 consecutive workdays
and 4 consecutive off days over an 8-day cycle.

Hung [7] presents two models for scheduling a homogeneous workforce under
two assumptions: (i) D workers are required on weekdays, and E workers on
weekends, and (ii) each worker must receive at least A out of B weekends off.
Model 1 assumes each employee works 4 days and rests 3 days each week, while
Model 2 assumes each employee works 4 days and rests 3 days in one week, and
works 3 days and rests 4 days in the other week. Hung [8] develops a heuristic
procedure for scheduling a hierarchical workforce, where the workweek length can
vary between 3, 4, or 5 days. Billionnet [3] models and solves the same problem
by integer programming.

Burns and Narasimhan [4] extend the work of Hung [7] by restricting the length
of maximum work stretches and the transition time (number of days off) required
when changing shifts. Narasimhan [12] considers a similar days-off scheduling
problem for a hierarchical workforce, in which each employee cannot be assigned
more than 5 consecutive workdays. Narasimhan [13] also presents another solution
technique for multiple-shift 3-day or 4-day workweek scheduling of a hierarchical
workforce. Burns et al. [5] develop an algorithm for 3-day and 4-day workweeks,
assuming variable labor demand and limits on work stretch lengths. Alfares [2]
presents an algorithm for 4-day workweek scheduling assuming variable labor
demands and requiring the 3 off days per week to be consecutive.
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This paper presents an algorithm for single-shift 4-day workweek scheduling
of a homogeneous workforce under the following assumptions: (i) the demand for
employees may vary from day to day for the given week, and (ii) at least 2 of the
3 weekly off-days are consecutive. The algorithm can be used to obtain an optimal
solution for the problem, in some cases with enhanced integer programming and in
others without mathematical programming at all.

3. Integer Programming Model

The 4-day workweek scheduling problem with 2 or 3 consecutive days off can be
formulated as an integer linear programming (ILP) model, as follows:

Minimize W =
28∑

j=1

xj (1)

subject to

28∑
j=1

aij xj � rj , i = 1, 2, . . . , 7, (2)

xj � 0 and integer, j = 1, 2, . . . , 28, (3)

where W = total number of workers assigned to days-off patterns,

xj = number of workers assigned to weekly days-off work pattern j ,

aij = 1 if day i is a work day for pattern j , 0 otherwise (see Table I),

ri = minimum number of workers required on day i.

The objective (1) is to minimize the workforce size, i.e., the total number of work-
ers. Constraints (2) ensure that the number of workers assigned is at least equal to
the number required for each day of the week. Since

∑28
j=1 xj is equal to W , (2) can

be expressed in the following sparser matrix representation, which is easier to deal
with in making days-off assignments:

28∑
j=1

aC
ij xj � bi, i = 1, 2, . . . , 7, (4)

where

aC
ij = 1 − aij , (5)

bi = W − ri, (6)

= maximum number of workers off on day i.

In matrix notation, constraint system (2) can be written as

AX � R. (7)
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4. Minimum Workforce Size

Given seven daily labor demands, r1, r2, . . . , r7, the minimum workforce size, W ,
can be determined from the solution of above model without integer programming,
simply by utilizing the problem structure. Depending on the given labor demands,
there are three dominant solutions.

(1) The workforce size must be greater than the labor demand for any day, thus

W � rmax = max{r1, r2, . . . , r7}. (8)

(2) Since each employee is assigned 4 workdays per week, the total man-days
assigned is 4

∑28
j=1 xj = 4W , which has to be greater than the total man-days

required, which is
∑7

i=1 ri . Therefore, 4W �
∑7

i=1 ri , or

W �
7∑

i=1

ri/4. (9)

(3) Let us consider the seven sets of 3 nonconsecutive days off denoted by
t1, . . . , t7 and corresponding sets of 4 workdays denoted by s1, . . . , s7, shown
in Table II. For each set of 4 workdays, si , the sum of labor demands for days si

is denoted by Si . Taking S1 = (r1 + r2 + r4 + r6) as an example and summing
rows 1, 2, 4, and 6 in constraints (2) referring to matrix A in Table I, we obtain:
3
∑28

j=1 xj � r1 + r2 + r4 + r6, or 3W � S1. Thus, in order to satisfy labor
demands on days 1, 2, 4, and 6, W � S1/3. A similar result will be obtained
for sets S2, . . . , S7, thus leading to the following bound:

W � Smax/3. (10)

Table I. Days-off matrix A = {aij } and cost vector C = {cj } for the 28 days-off work patterns

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

i

1 0 1 1 1 1 0 0 1 0 1 1 1 0 0 1 1 0 1 1 0 0 1 1 1 0 1 0 0

2 0 0 1 1 1 1 0 0 1 0 1 1 1 0 0 1 1 0 1 1 0 0 1 1 1 0 1 0

3 0 0 0 1 1 1 1 0 0 1 0 1 1 1 0 0 1 1 0 1 1 0 0 1 1 1 0 1

4 1 0 0 0 1 1 1 1 0 0 1 0 1 1 1 0 0 1 1 0 1 1 0 0 1 1 1 0

5 1 1 0 0 0 1 1 0 1 0 0 1 0 1 1 1 0 0 1 1 0 1 1 0 0 1 1 1

6 1 1 1 0 0 0 1 1 1 1 0 0 1 0 1 0 1 0 0 1 1 0 1 1 0 0 1 1

7 1 1 1 1 0 0 0 1 1 1 1 0 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 1

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

cj + + + + 4 4 + + + + + 4 + + + + + + 4 + + + + + + 4 + +
2β 2β 2β β β 2β 2β 2β β β β β β 2β β β 2β β β β β β 2β
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Table II. Sets of 3 nonconsecutive off
days ti and corresponding 4 workdays si

i ti si

1 3, 5, 7 1, 2, 4, 6

2 1, 4, 6 2, 3, 5, 7

3 2, 5, 7 1, 3, 4, 6

4 1, 3, 6 2, 4, 5, 7

5 2, 4, 7 1, 3, 5, 6

6 1, 3, 5 2, 4, 6, 7

7 2, 4, 6 1, 3, 5, 7

The bound expressed by (10) can be considered as the cost of requiring at
least two off days per week to be consecutive. If nonconsecutive days off were
allowed, we could satisfy the demand on days 1, 2, 4, and 6 by assigning
employees to days-off pattern t1, i.e., off on days 3, 5, and 7. In that case,
the number of employees would be equal to the maximum demand on these
4 days, i.e., W � max{r1, r2, r4, r6}, which is dominated by the first bound
(W � rmax).

In order to determine the workforce size W , we choose the maximum value
obtained from the three above bounds, and round it up to the nearest integer.
Therefore, we obtain the following expression for the minimum W :

W = max

{
rmax,

⌈
1

4

7∑
i=1

ri

⌉
,

⌈
Smax

3

⌉}
, (11)

where Smax = max{S1, S2, . . . , S7},
�a� = smallest integer � a

and

Si =
∑
j∈si

rj , i = 1, 2, . . . , 7, (12)

si = {i, i + 1, i + 3, i + 5}, i = 1, 2, . . . , 7, (13)

where si is circular set with a cycle = 7 (see Table II).

5. Days-Off Assignments

After applying (11) to determine the workforce size, W , we need to assign each
of the W workers to a specific days-off pattern in order to minimize total cost. We
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assume that the cost of each days-off pattern depends on the number of premium-
paid weekend workdays. Assuming that each worker is paid 1 unit per regular
workday and 1 + β units (β � 0) per weekend workday, the weekly costs of
the 28 days-off patterns C = {c1, c2, . . . , c28} are shown in Table I. Changing the
objective to the minimization of total cost, (1) is replaced by

Minimize Z =
28∑

j=1

cjxj , (14)

where cj = weekly cost of days-off pattern j per worker, shown in Table I.
Introducing these costs in the IP model, the optimum solution with (14) nat-

urally changes from that with (1). However, although the solution may slightly
differ, the workforce size W does not change in all cases of Equation (11). This
means that for the cost structure defined by C, for all β � 0, the minimum cost is
always obtained with the minimum number of workers.

To illustrate the above point, we will use the dual solution under differential
costs (β � 0) and complementary slackness primal-dual relationships. Let us
consider for example the case when the maximum argument of (11) is �S1/3�.
In the optimum dual solution, the basic variables are: y1, y2, y4, y6, and y7, and
the equations are dual constraints: 3, 5, 8, 11, 13, 15, 19, 23, 24, and 27. Since
basic dual variables correspond to primal equations and dual equation corresponds
to primal basic variables, the corresponding primal constraints (4) can be written
as

x13 + x27 = b1

x8 + x15 = b2

x3 + x8 + x11 + x15 + x19 + x23 + x27 � b3

x3 + x23 + x24 = b4

x3 + x5 + x8 + x11 + x13 + x24 + x27 � b5

x5 + x11 + x19 = b6

x5 + x13 + x15 + x19 + x23 + x24 + x27 = b7

(15)

The workforce size is obtained by summing the first, second, fourth, and sixth
constraints in (15) as follows:

W = (x13 + x27) + (x8 + x15) + (x3 + x23 + x24) + (x5 + x11 + x19)

= b1 + b2 + b4 + b6

= (W − r1) + (W − r2) + (W − r4) + (W − r6)

= 4W − S1.

Therefore

W = �S1/3�.
This example shows that introducing the varying costs for different days-off pat-
terns defined by C does not affect the workforce size. Similar results are obtained
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for all other cases. The assignment of workers to days-off work patterns will de-
pend on which argument of (11) is maximum. There are three possible cases, which
are discussed next.

Case 1. rmax or �∑ ri/4� is maximum
In this case, the value of the minimum workforce size W is calculated first us-
ing (11), then the following constraint is added to the primal integer programming
model defined by (14), (2), and (3):

28∑
j=1

xj = W. (16)

The addition of this constraint has been found to drastically reduce integer pro-
gramming computation times. In order to evaluate the effect of adding constraint
(16), computational experiments have been carried out using 202 test problems.
In all these problems, the value of β was set at 0.5 to indicate 50% higher pay
for weekend work. The 202 problems, described by Alfares [1], are divided into
10 sets with different demand types, but all have an average demand of 50 workers
per day. The first six sets: level, trend, concave, convex, unimodal, and sinusoidal,
involve 17 problems each, with a demand range of 34 to 66. The last four sets
involve 25 problems each, randomly distributed on the intervals: [34, 66], [0, 100],
[20, 80], and [45, 55].

Microsoft Excel Solver®, run on an 866-MHz Pentium III PC with a 128 MB
RAM, was used to solve the test problems by integer programming. The results of
computational experiments are summarized in Table III. For all 10 sets of prob-
lems, adding constraint (16) has decreased the average, maximum, and variation of
solution times. Overall, average solution time dropped by 98%, from 7.67 seconds
to 0.16 seconds. Maximum solution time fell by 99.9%, from 310.17 seconds to
only 0.28 seconds. Similarly, the standard deviation decreased from 32.84 seconds
to only 0.02 seconds.

It is interesting to note that similar relative savings in computation times have
been obtained by running Microsoft Excel Solver® on a 120-MHz Pentium; aver-
age solution also time dropped by 98%, from 56.52 seconds to 1.14 seconds. On
both computers, the addition of constraint (12) has made the solution on average
50 times faster. Clearly, adding constraint (16) leads to a remarkable reduction in
both the mean and variation of solution times.

Case 2. �Smax/3� is maximum
If �Smax/3� is maximum, the dual variables yj , j ∈ si ∪ {6, 7} will be basic. In ad-
dition, 10 dual constraints will be equations. The corresponding primal constraints
will have 10 basic variables and four or five equations. Optimum variable values
satisfying these primal constraints can be found without integer programming. To
minimize total cost, as many workers as possible are assigned to days-off patterns
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Table III. Integer programming solution times in seconds (minimum, average, maximum, and
standard deviations) with and without constraint (16)

Problem No. of Without constraint With constraint

set problems min ave max std dev min ave max std dev

1 17 0.16 17.53 250.13 60.33 0.11 0.16 0.28 0.04

2 17 0.16 2.54 17.41 4.69 0.16 0.17 0.17 0.01

3 17 0.16 3.59 29.33 7.53 0.11 0.16 0.21 0.02

4 17 0.16 8.57 110.01 26.67 0.16 0.16 0.17 0.01

5 17 0.16 21.55 310.17 74.81 0.16 0.17 0.22 0.01

6 17 0.16 9.71 154.12 37.22 0.11 0.16 0.17 0.02

7 25 0.16 0.58 5.00 1.07 0.11 0.17 0.22 0.02

8 25 0.16 4.20 44.55 12.20 0.11 0.17 0.22 0.02

9 25 0.16 5.86 89.86 18.10 0.11 0.17 0.22 0.02

10 25 0.16 8.14 124.46 25.33 0.11 0.16 0.22 0.02

Overall
202 0.16 7.67 310.17 32.84 0.11 0.16 0.28 0.02

(866 MHz)

Overall
202 0.93 56.52 1500∗ 223.1 0.98 1.14 1.87 0.139

(120 MHz)

∗Some problems could not be solved within the 1500-second time limit.

with the lowest cost. For example, the primal constraints (15) corresponding to the
case when �S1/3� is maximum can be optimally satisfied by the following values:

x5 = min(b5, b6, b7 − b1),

x19 = min(b3 − b2, b6 − x5, b7 − b1 − x5),

x11 = b6 − x5 − x19,

x13 = min(b1, b5 − x5 − x11),

x27 = b1 − x13,

x15 = min(b2, b7 − b1 − x5 − x19),

x8 = b2 − x15,

x3 = b1 + b4 − b7 + x5 + x15 + x19,

x23 = min(b3 − b2 − x3 − x11 − x19 − x27, b4 − x3),

x24 = b4 − x3 − x23.

(17)

Similar optimum solutions have been derived for cases when �Si/3� is maximum,
i = 2, . . . , 7, as shown in Table IV. Moreover, expressions for the values of days-
off work assignments {x1, x2, . . . , x28] can also be derived without mathematical
programming for the following special case.
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Table IV. Values of nonzero days-off assignments, x1, . . . , x28, for the case when Si/3 is the
maximum argument of (11)

i 10 nonzero days-off assignments corresponding to Si/3 being maximum

x5 = min(b5, b6, b7 − b1), xi9 = min(b3 − b2, b6 − x5, b7 − b1 − x5), x11 = b6 − x5 − x19,

x13 = min(b1, b5 − x5 − x11), x27 = b1 − x13, x15 = min(b2, b7 − b1 − x5 − x19),
1

x8 = b2 − x15, x3 = b1 + b4 − b7 + x5 + x15 + x19,

x23 = min(b3 − b2 − x3 − x11 − x19 − x27, b4 − x3), x24 = b4 − x3 − x23

x6 = min(b1 − b2, b6, b7), x12 = min(b4 − b3, b6 − x6, b7 − x6), x20 = b7 − x6 − x12,

x16 = min(b3, b6 − x6 − x12), x9 = b3 − x16, x14 = min(b2, b6 − x6 − x12 − x16),
2

x28 = b2 − x14, x17 = b5 − b6 + x6 + x12 + x14 + x16,

x4 = min(b4 − b3 − x12 − x17 − x20 − x28, b5 − x17), x25 = b5 − x4 − x17

x5 = min(b5 − b4, b6, b7), x26 = min(b2 − b3, b6 − x5, b7 − x5), x18 = b6 − x5 − x26,

x15 = min(b3, b7 − x5 − x18 − x26), x8 = b3 − x15, x24 = min(b4, b7 − x5 − x15 − x26),
3

x10 = b4 − x24, x21 = b1 − b7 + x5 + x15 + x24 + x26,

x7 = min(b1 − x21, b2 − b3 − x10 − x18 − x21 − x26), x13 = b1 − x7 − x21

x6 = min(b − 1, b6 − b5, b7), x19 = min(b3 − b4, b6 − b5 − x6, b7 − x6),

x27 = b7 − x6 − x19, x16 = min(b4, b6 − b5 − x6 − x19), x9 = b4 − x16,
4

x11 = min(b3 − b4 − x19 − x27, b5), x25 = b5 − x11, x1 = b2 − b6 + b5 + x6 + x16 + x19,

x14 = min(b1 − x1 − x6 − x9 − x25 − x27, b2 − x1), x22 = b2 − x1 − x14

x12 = min(b4 − b5, b6), x26 = b6 − x12, x24 = min(b5, b7 − b6), x10 = b5 − x24,

x15 = min(b2 − x10 − x26, b3, b7 − b6 − x24),

5 x23 = min(b3 − x15, b4 − b5 − x12, b7 − b6 − x15 − x24), x2 = b3 − x15 − x23,

x28 = b1 − b7 + b6 + x15 + x23 + x24,

x7 = min(b1 − x28, b2 − x2 − x10 − x15 − x26 − x28), x20 = b1 − x7 − x28

x11 = min(b3, b6), x25 = b6 − x11, x13 = min(b5 − b6, b7), x27 = b7 − x13,

x1 = min(b1 − b7 − x25, b2, b3 − x11 − x27),

6 x8 = min(b2 − x1, b3 − x1 − x11 − x27, b5 − b6 − x13 − x25), x21 = b2 − x1 − x8,

x9 = min(b1 − b7 − x1 − x21 − x25, b3 − x1 − x8 − x11 − x27, b4),

x17 = min(b1 − b7 − x1 − x9 − x21 − x25, b4 − x9), x3 = b4 − x9 − x17

x12 = min(b4, b7), x26 = b7 − x12, x14 = min(b1, b6 − b7), x28 = b1 − x14,

x4 = min(b4 − x12 − x28, b5, b6 − b7 − x14),

7 x18 = min(b2 − b1 − x26, b5 − x4, b6 − b7 − x4 − x14), x10 = b5 − x4 − x18,

x2 = b3 − b6 + b7 + x4 + x14 + x18, x16 = min(b3 − x2, b4 − x2 − x4 − x10 − x12 − x28),

x22 = b3 − x2 − x16
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Case 3. Weekday and Weekend Demands D & E (E � 2.5D)

If weekday labor demands are uniform and denoted by D, and weekend labor
demands are uniform and denoted by E, Equation (11) becomes

W = max{D,E, �(5D + 2E)/4�, �(3D + E)/3�, �2(D + E)/3�}. (18)

Defining

α = E/D (19)

then

W = max{1, α, �1.25 + 0.5α�, �1 + α/3�, �2/3 + 2α/3�} ∗ D. (20)

Since all arguments of (20) are linear functions of a, the optimum solution can be
easily found as

W = �1.25 + 0.5α�D, for 0 � α � 2.5, corresponding to W =
⌈

7∑
i=1

ri/4

⌉
,

and

W = αD = E, for α � 2.5, corresponding to W = rmax = E.

If α � 2.5, the solution is obtained by integer programming, after appending
constraint (16) which takes the form:

∑
x = �(5D + 2E)/4�. If α � 2.5, the

solution can be obtained without integer programming. Since W = E = r6 = r7,
both b6 = b7 = 0, and primal constraints (4) are reduced to

x1 + x9 + x17 + x21 + x28 � E − D

x1 + x2 + x8 + x10 + x21 + x28 � E − D

x1 + x2 + x3 + x8 + x9 � E − D

x2 + x3 + x9 + x10 + x17 + x28 � E − D

x3 + x8 + x10 + x17 + x21 � E − D

(21)

With E � 2.5D, the solution satisfying the above constraints is given by

x1 = D, x3 = �D/2�, x10 = E − 2D, x17 = �D/2�, (22)

where

�a� = largest integer � a.

6. Steps of the Algorithm

The preceding development is summarized by the following algorithm descrip-
tion:
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1. Determine the minimum workforce size W using Equation (11).
2. (a) If max{rmax,

∑
r/4, Smax/3} = rmax or

∑
r/4, then

• let W = rmax or W = �∑ r/4�, respectively, then add constraint (16) to
the integer programming model defined by (14), (2), and (3).

• use integer programming to find x1, x2, . . . , x28.

(b) If max{rmax,
∑

r/4, Smax/3} = Smax/3, then

• if Smax/3 is not integer, increment Si = Smax by 1 or 2 to make it a mul-
tiple of 3. Among the four daily labor demands that can be increased rj ,
j ∈ si , increase the minimum non-weekend demand(s), r1, . . . , r5.

• let W = �Smax/3�, then determine b1, . . . , b7 using Equation (6).
• apply row i in Table IV to find x1, x2, . . . , x28.

(c) If D = r1 = r2 = . . . = r5, E = r6 = r7, and E � 2.5D, then

• apply system (22) to find the solution

3. In the case of ties, apply any system arbitrarily.

7. A Solved Example

Assume that the daily labor demands for a certain workweek are given as

r1, r2, . . . , r7 = 12, 14, 5, 10, 4, 11, 3.

Using (12), the following values are calculated:

S1, S2, . . . , S7 = 47, 26, 38, 31, 32, 38, 24.

Hence

rmax = 14,

7∑
i=1

ri/4 = 59/4 = 14.75

and

Smax/3 = S1/3 = 47/3 = 15.67.

Using (11), the workforce size is

W = �S1/3� = �15.67� = 16.

Since S1/3 = 15.67 is not integer, we must increment S1 by 1 in order to make it
divisible by 3. The set S1 contains demands for days 1, 2, 4, and 6. Using the criteria
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specified in the algorithm, we add 1 to the demand for day 4 (thus r4 = 11), and
then use Equation (6): bi = 16 − ri , to obtain

b1, b2, . . . , b7 = 4, 2, 11, 5, 12, 5, 13.

Using row 1 in Table IV, corresponding to system (17), we obtain the following
days-off assignments:

x5 = min(12, 5, 13 − 4) = 5,

x19 = min(11 − 2, 5 − 5, 13 − 4 − 5) = 0,

x11 = 5 − 5 − 0 = 0,

x13 = min(4, 12 − 5 − 0) = 4,

x27 = 4 − 4 = 0,

x15 = min(2, 13 − 4 − 5 − 0) = 2,

x8 = 2 − 2 = 0,

x3 = 4 + 5 − 13 + 5 + 2 + 0 = 3,

x23 = min(11 − 2 − 3 − 0 − 0 − 0, 5 − 3) = 2,

x24 = 5 − 3 − 2 = 0.

8. Conclusions

An optimum days-off scheduling algorithm has been developed for the 4-day work-
week problem in which workers are given two or three consecutive off days per
week. A simple formula has been derived to determine the minimum workforce
size as a function of the given labor demands. Since the costs of different days-off
patterns are not assumed to be equal, the algorithm can be used to minimize either
the total number or the total cost of workers assigned.

For two cases, formulas have been developed to produce the optimum solution
without resorting to mathematical programming. For the remaining case, the ad-
dition of a workforce-size constraint to the integer programming model has been
shown to greatly improve the computational efficiency. Extensive computational
experiments have shown that the enhanced model is remarkably more efficient than
the conventional integer programming model.
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