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Abstract

In the classical newsboy problem, no cost is assumed if the ordered quantity is less than the demand. However, in

reality failure to meet demand is always associated with a penalty. The aim of this work is to extend the analysis of the

distribution-free newsboy problem to the case when shortage cost is taken into consideration. The analysis is based on

the assumption that only the mean and variance of demand are known, but its particular probability distribution is not.

A model is presented for determining both an optimal order quantity and a lower bound on the profit under the worst

possible distribution of the demand. The following cases are considered: the single product case, the fixed ordering cost

case, the random yield case, and the resource-constrained multi-product case.
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1. Introduction

The classical newsboy problem aims to find the order quantity for a given product that maximizes the
expected profit in a single period, probabilistic demand framework. Gallego and Moon (1993) define the
newsboy problem as the tool to decide the stock quantity of an item when there is a single purchasing
opportunity before the start of the selling period, and the demand for the item is random. The classical
newsboy model assumes that if the order quantity is larger than the realized demand, a single discount is
used to sell excess inventory or that excess inventory is disposed off. On the other hand, if the order
quantity is less than demand, then profit is lost. The objective is to find the optimum tradeoff between the
risk of overstocking (incurring disposal cost) and the risk of under stocking (losing profit).

The newsboy problem is a classical inventory problem that is very significant in terms of both theoretical
and practical considerations. Items that can be classified under single-period inventory systems include
e front matter r 2004 Elsevier B.V. All rights reserved.
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Christmas trees, new-year greeting cards, and of course daily newspapers. The newsboy problem is often
used to aid decision-making in fashion, sporting industry, and apparel industry, both at the manufacturing
and retailer level (Gallego and Moon, 1993). According to Weatherford and Pfeifer (1994), newsboy models
are also used in capacity management and booking decisions in service industries such as hotels and
airlines.

Several models and extensions of the classical newsboy problem have been proposed and solved in the
literature. Khouja (1999) classifies solution approaches into two types; the first minimizes expected cost,
while the second maximizes expected profit. Khouja (1999) also classifies extensions to the basic newsboy
problem into 11 categories, including: random yields where orders received may include defective items,
different states of information about demand, and resource-constrained multiple products. This paper
addresses these three extensions, in addition to the fixed ordering cost case. However, the main focus of this
paper in on the extension based on limited information about demand, namely the distribution-free
newsboy problem.

Several authors have analyzed the distribution-free newsboy problem, in which the distribution of
demand is not known but only the mean m and variance s2 are specified. Usually, a minimax approach is
followed, which aims to minimize the maximum cost resulting from the worst possible demand distribution.
Scarf (1958), who pioneered this approach, uses it to develop a closed form expression for the order
quantity that maximizes expected profit. Kasugai and Kasegai (1960, 1961), respectively, apply dynamic
programming and the minimax regret ordering policy to the distribution-free multi-period newsboy
problem.

Gallego and Moon (1993) provide a simpler proof of optimality of Scarf’s ordering rule and extend the
analysis to the cases of random yields, fixed ordering cost, and constrained multiple products, in addition to
the recourse case where there is a second ordering opportunity. Moon and Choi (1995) extend the model of
Gallego and Moon (1993) to the case in which customers may balk if the inventory level is low. Moon and
Choi (1997) subsequently use a similar approach to analyze a newsboy problem with various degrees of
product processing, from raw materials to the finished product. The alternative policies in this case include
make-to-order, make-in-advance, and composite policies, with and without budget limitations.

Vairaktarakis (2000) develops several minimax regret models for the distribution-free multi-item
newsboy problem under a budget constraint and two types of demand uncertainty. The interval type
specifies a lower bound and an upper bound on demand, while the discrete type states a set of likely demand
values. Moon and Silver (2000) develop distribution-free models and heuristics for a multi-item newsboy
problem with a budget constraint and fixed ordering costs. Recent and comprehensive literature reviews
and suggestions for future research on the newsboy problem are complied by Khouja (1999), Petruzzi and
Dada (1999), and Silver et al. (1998).

The model of Gallego and Moon (1993), which constitutes the core background of this work, provides
the optimal order quantity that maximizes the expected profit against the worst possible distribution of the
demand with mean m and variance s2. It also presents a simple lower bound on the expected profit with
respect to all possible distributions of demand. The purpose of this work is to extend the optimal order
quantity formulas found by Gallego and Moon (1993) to the case where shortage cost (above and beyond
lost profit) is considered for the following cases: the single product case, the fixed ordering cost case, the
random yield case, and the multi-product case. Since the recourse case considered by Gallego and Moon
(1993) rules out shortages, it is not considered in this paper. Although the shortage (lost sales) cost is
generally not easy to estimate, it is nonetheless a real cost that should not be simply ignored. Including any
reasonable estimate of this cost significantly improves the accuracy and profitability of the newsboy model.
Numerical experiments are presented to demonstrate the profit increase obtained from the new models that
incorporate shortage cost.

This paper is organized as follows. In Section 2, the optimum order quantity and the lower bound on
expected profit are derived for the single product case. The fixed ordering cost case is analyzed in Section 3,
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while the random yield case is considered in Section 4. In Section 5, the multi-product case with a budget
constraint is investigated. Numerical experiments are presented in Section 6. Finally, conclusions and
suggestions for future research are given in Section 7.
2. Single product case

The aim of this work is to extend the distribution free models found in Gallego and Moon (1993) to the
case where a shortage penalty cost is considered. Therefore, we are going to adapt the notation used in
Gallego and Moon (1993). Let D denote the random demand, whose unknown distribution G belongs to
the class ! of cumulative distribution functions with mean m and variance s2. First, a basic model is
developed for the single product. The notation needed for the model is given as

c40 unit cost
p ¼ ð1 þ mÞc4c unit selling price
s ¼ ð1 � dÞcoc unit salvage value
m expected demand
s standard deviation of demand
Q order quantity
m mark-up, i.e., return per dollar on units sold
d discount, i.e., loss per dollar on unit unsold
D random demand
l lost sales (shortage) cost per unit, beyond lost profit p�c

k ¼ l
c
oc fractional unit shortage cost

xþ ¼ maxfx; 0g the positive part of x

2.1. Optimal order quantity

The expected profit expression is given in Gallego and Moon (1993) as

pGðQÞ ¼ pEðminfQ;DgÞ þ sEðQ � DÞ
þ
� cQ: ð1Þ

In (1), there is no cost when the ordered quantity is less than the demand. However in reality any failure to
meet demand is always associated with a penalty. Thus, we define a new profit expression, which takes this
penalty into consideration as follows:

pGðQÞ ¼ pEðminfQ;DgÞ þ sEðQ � DÞ
þ
� cQ � lEðD � QÞ

þ: ð2Þ

In this study the sale is considered to be of short duration, thus there is no opportunity to reorder, i.e., there
is no recourse. Substituting the definitions of l, p, and s, and using the following relationships:

minfQ;Dg ¼ D � ðD � QÞ
þ;

ðQ � DÞ
þ
¼ ðQ � DÞ þ ðD � QÞ

þ;

ðD � QÞ
þ
¼ ðD � QÞ þ ðQ � DÞ

þ:

Eq. (2) can be written as

pGðQÞ ¼ c½ðm þ d � kÞm� ðd � kÞQ � ðd þ mÞEðD � QÞ
þ
� kEðQ � DÞ

þ
	: ð3Þ
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In order to maximize (3) we need the following lemmas from Gallego and Moon (1993):

Lemma 1.

EðD � QÞ
þp

½s2 þ ðQ � uÞ2	1=2 � ðQ � mÞ
2

: ð4Þ

Lemma 2.

EðQ � DÞ
þp

½s2 þ ðm� QÞ
2
	1=2 � ðm� QÞ

2
: ð5Þ

Lemma 3. For every Q, there exist a distribution G
 2 ! where the bounds (4) and (5) are tight.

Proof of Lemma 1 is given in Gallego and Moon (1993) and Gallego (1992), but a similar proof can be
easily developed for Lemma 2. Similarly, proof of Lemma 3, which is given in Gallego and Moon (1993)
and Gallego (1992) for the bound (4), can be easily adapted for the bound (5). Using the three lemmas, the
lower bound on expected profit pGðQÞ can be written as

pGðQÞXc ðm þ d � kÞm� ðd � kÞQ � ðd þ mÞ
½s2 þ ðQ � uÞ2	1=2 � ðQ � uÞ

2

"

�k
½s2 þ ðm� QÞ

2
	1=2 � ðm� QÞ

2

#
: (6)

Obviously maximizing the lower bound on expected profit (6) is equivalent to minimizing the following
function:

rpðQÞ ¼ ðd � kÞQ þ ðd þ mÞ
½s2 þ ðQ � uÞ2	1=2 � ðQ � mÞ

2
þ k

½s2 þ ðm� QÞ
2
	1=2 � ðm� QÞ

2
;

rpðQÞ ¼ 1
2
fðd � m � kÞQ þ ðd þ m þ kÞ½s2 þ ðQ � mÞ2	1=2 þ ðd þ m � kÞmg: (7)

Our problem now is to minimize rp(Q). As will be shown later, (7) is convex in Q. Thus in order to
minimize the right-hand side of (7), we compute its first derivative with respect to Q and set the derivative
equal to zero. Solving for Q, we obtain

Q
 ¼ mþ
sb

½1 � b2
	1=2

; where b ¼
k þ m � d

k þ m þ d

or

Q
 ¼ mþ
s
2

k þ m

d

� �1=2

�
d

k þ m

� �1=2
" #

: ð8Þ

To verify that (7) is strictly convex in Q, we only need to compute the second derivative of (7) with respect
to Q:

ðd þ m þ kÞs2

2½s2 þ ðQ � mÞ2	1=2
40:

Since the second derivative has the sign of (d þ m þ k)/2, which is strictly >0, (7) is strictly convex in Q.
Therefore, (8) minimizes (7), and consequently maximizes (2) against the worst possible distribution of
demand when a shortage penalty is applied.



ARTICLE IN PRESS

H.K. Alfares, H.H. Elmorra / Int. J. Production Economics 93–94 (2005) 465–477 469
It is worth observing that in this case, since k ¼ l=c, the order quantity Q is dependent on the unit cost c.
Also notice that:


 (8) calls for an order larger than the expected demand if and only if ðk þ mÞ=d41,



 (8) calls for an order smaller than the expected demand if and only if ðk þ mÞ=do1.
If k ¼ 0, i.e., no shortage penalty is considered, then the order size is equal to Q* computed by Gallego
and Moon (1993). Moreover, in the typical formulation where the salvage value is zero (d ¼ 1), the optimal
order size is


 larger than the expected demand if and only if the quantity (k+m) is larger than 1,



 smaller than the expected demand if and only if the quantity (k+m) is smaller than 1.
2.2. The lower bound on expected profit

In order to calculate the lower bound on expected profit, we substitute (7) and (8) into (6), obtaining

pGðQÞXmcm 1 �
s

mm
ðkd þ mdÞ1=2

� �
: ð9Þ

The following remarks can be made about the bound specified by (9):


 The lower bound is linearly increasing (decreasing) in mðsÞ and convexly increasing (decreasing) in m(d).



 If there is no shortage penalty, i.e., k ¼ 0, (9) reduces to the lower bound found by Gallego and Moon

(1993):

pGðQÞXmcm 1 �
s
m

d

m

� �1=2
" #

: ð10Þ


 The upper limit on pGðQÞ corresponds to the maximum expected profit, which is obtained when demand
is deterministic, that is, when s ¼ 0. This upper bound is given by

pGðQÞpmcm: ð11Þ


 When demand is probabilistic (s40), the associated profit loss can be considered as the fractional cost of
randomness, which is given by

s
mm

ðkd þ mdÞ1=2: ð12Þ

2.3. The ordering rule

An order of size Q* should be made only if the expected profit is not negative, i.e., the right-hand side of
(9) is positive.

mm
s

� �2

4ðkd þ mdÞ: ð13Þ

Thus, the optimal ordering rule is given as follows:


 order Q ¼ Q
 units if (13) holds, and



 order Q ¼ 0 units otherwise.
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Example 1. This example is adapted from Gallego and Moon (1993). The mean and the standard deviation

of the demand for a given product are: m ¼ 900 and s ¼ 122, respectively. Other relevant data are:

Unit cost: c ¼ $35:10,
Unit selling price: p ¼ $50:30,
Unit salvage value: s ¼ $25:00,
Unit shortage cost: l ¼ $14:00.

We will compute both Q* and pGðQÞ, with and without shortage cost.
First, we compute m, d, and k:

m ¼ p=c � 1 ¼ 0:433;

d ¼ 1 � s=c ¼ 0:288;

k ¼ l=c ¼ 0:399:

Without shortage cost, we assume k ¼ l=c ¼ 0, and use (8), (9), and (11) to obtain:

Q
 ¼ 925;

$12;168ppGðQÞp$13;680:

With shortage cost, (8), (9), and (11) yield

Q

s ¼ 968;

$11;585ppGðQÞp$13;680:

We observe that incorporating shortage penalty cost decreases the lower bound on expected profit, i.e., we
expect to lose profit. On the other hand, the order quantity increases in order provide higher protection
against shortages.
3. The fixed ordering cost case

Assume now that fixed ordering cost A is charged for each order of any size Q40. This is typically
referred to as the fixed charge problem. It is assumed that an (s, S) inventory replenishment policy will be
followed. Let us first define the following new notation needed for this model.

A constant cost for placing an order, regardless of the order size,
I initial inventory (prior to placing the order),
S ¼ I þ QXI end inventory (after receiving the order)
s reorder level, i.e., minimum inventory level, below which an order must be made

Now, the minimum of S and D units are sold, S�D units are salvaged, D�S units are short, but only Q

units are purchased. Thus, the expected profit expression (2) is now written as

pGðSÞ ¼ pEðminfS;DgÞ þ sEðS � DÞ
þ
� cðS � IÞ � lEðD � SÞþ � A1½S4I 	: ð14Þ

Thus, similar to expressing (7) in terms of S, maximizing (14) is equivalent to minimizing

rpðSÞ ¼ A1½S4I 	 þ cf�I þ ðd � kÞS þ ðd þ mÞEðD � SÞþ þ kEðS � DÞ
þ
g; ð15Þ
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where

1 ¼
1 if S4I ;

0 otherwise:

	

Applying Lemmas 1–3, our problem now is to minimize the upper bound on rpðSÞ:

rpðSÞpA1½S4I 	 þ JðSÞ; ð16Þ

where

JðsÞ ¼ c �I þ
d � m � k

2

� �
S

	
þ

ðd þ m þ kÞ

2
½s2 þ ðS � mÞ2	1=2þ

d þ m � k

2

� �
m


: ð17Þ

To minimize J(S), we set the derivative equal to zero and solve for S, obtaining

S
 ¼ mþ
sb

½1 � b2
	1=2

; b ¼
k þ m � d

k þ m þ d

or

S
 ¼ mþ
s
2

k þ m

d

� �1=2

�
d

k þ m

� �1=2
" #

: ð18Þ

Notice that the end inventory level S* for the fixed ordering cost model is equal to the optimum order
quantity Q* for the single-item model. Now, substituting (18) into (17) gives

JðS
Þ ¼ cf�I � mmþ sðmd þ kdÞ1=2g: ð19Þ

Considering (15), the worst case expected cost is equal to

rpðSÞ ¼ JðS
Þ þ A if an order is made;

¼ JðIÞ if an order is not made:

In order to determine the reorder level s, set JðsÞ ¼ A þ JðS
Þ and solve for s. Solving the equation, we
obtain

s ¼ mþ
ðm þ k � dÞY � ðm þ k þ dÞ½Y 2 � ðmd þ kdÞs2	1=2

2ðmd þ kdÞ
; ð20Þ

where

Y ¼ sðmd þ kdÞ1=2 þ
A

C
: ð21Þ

Example 2. Using the data of Example 1, we assume that the ordering cost is given by A ¼ $500. Using (20)
and (21), we obtain the reorder level

s
 ¼ 882:

The order-up-to level S* corresponds to Q*, which was determined in Example 1 using (8) as

S
 ¼ 968:
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4. The random yield case

Let us now assume that the quantity ordered or produced Q is not perfect. Thus out of Q units, only
G(Q) units are good, where G(Q) is a random variable. Let us also assume that each unit ordered or
produced has the same probability r, of being good. Thus, G(Q) is a binomial random variable with mean
Qr. We now need to define

G(Q) number of good units out of Q, binomial random variable
r probability for each unit of Q of being good
Qr mean of G(Q)
Qrq variance of G(Q), q ¼ 1 � r
ĉ ¼ c=r expected unit cost
p ¼ ð1 þ mÞĉ unit selling price=ð1 þ mÞc=r
s ¼ ð1 � dÞĉ unit salvage value=ð1 � dÞc=r
k ¼ l=ĉ fractional unit shortage cost=lr=c

The expected profit expression (2) becomes:

pGðQÞ ¼ pE½minfGðQÞ;Dg	 þ sE½GðQÞ � D	þ � cQ � lE½D � GðQÞ	þ: ð22Þ

Eq. (22) is simplified using the definitions of m and d. Next, instead of maximizing expected profit, we find it
easier to minimize the expected cost

rpðQÞ ¼ ðd � kÞQ þ ððd þ mÞ=rÞE½D � GðQÞ	þ þ ðk=rÞE½GðQÞ � D	þ: ð23Þ

Applying lemmas from Gallego and Moon (1993):

E½D � GðQÞ	þp
½s2 þ Qrq þ ðrQ � uÞ2	1=2 � ðrQ � mÞ

2
;

E½GðQÞ � D	þp
½s2 þ Qrq þ ðm� rQÞ

2
	1=2 � ðm� rQÞ

2
:

We substitute into (23) to obtain the upper bound on expected cost

rpðQÞpðd � kÞQ þ ½ðd þ mÞ=2r	f½s2 þ Qrq þ ðrQ � mÞ2	1=2 � ðrQ � mÞg

þ ðk=2rÞf½s2 þ Qrq þ ðm� rQÞ
2
	1=2 � ðm� rQÞg: (24)

In order to minimize the upper bound, we differentiate (24) and set the derivative equal to zero. Solving for
Q, we obtain

Q ¼
ð2m� qÞrþ ½ð2m� qÞ2r2 � 4r2X 	1=2

2r2
; ð25Þ

where

X ¼ m2 �
4s2ðk þ m � dÞ2 þ ð4qm� q2Þðk þ m þ dÞ2

16ðkd þ mdÞ
: ð26Þ

Example 3. Using the data of Example 1, we assume that for each unit of Q, the probability of being good
is r ¼ 0:9:
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Using (25) and (26), we obtain the order quantity

Q
 ¼ 1076:

The order quantity based on perfect quality, calculated in Example 1, is 968. Naturally, the order quantity
increases in order to provide protection against defective items.
5. The resource-constrained multi-product case

We now consider a multi-item newsboy problem with either a budget or a capacity constraint. For each
item, the order quantity Q must be either purchased or manufactured. In the case of purchasing, a limited
budget must be allocated among competing items. In the case of manufacturing, the constraint is imposed
due to limited production capacity. According to Johnson and Montgomery (1974), this problem is
sometimes called the stochastic product mix problem. The notation needed for this case is similar to the
notation used for the single item case, but a subscript i is used to indicate item i, i ¼ 1; . . . ;N. For example:

N number of items
i item i, i ¼ 1; . . . ;N
ci40 unit cost of item i

Suppose that the cost of purchasing all the items cannot exceed a predetermined budget B. We want to
find the order quantities (Q1 . . . ;QN ) that:


 maximize the expected profit against the worst possible distribution of the demand,



 do not exceed the budget constraint, and



 take in consideration the shortage cost.
The objective now becomes the minimization of the upper bound on the total cost of all items, which is
obtained by multiplying (7) by individual item cost ci, and then summing the costs of all items.

min
Q1;...;QN

XN

i¼1

ci ðdi � kiÞQi þ
ðdi þ mi þ kiÞ

2
½s2

i þ ðQi � miÞ
2
	1=2

	
þ

ki � di � mi

2
ðQi � miÞ



: ð27Þ

This objective is optimized under the following budget constraint:

XN

i¼1

ciQipB: ð28Þ

A convenient way to solve this constrained optimization problem is to use the Lagrange multiplier
approach. In order to convert the problem into unconstrained optimization form, we construct the
Lagrangian function

LðQ1; . . . ;QN ; lÞ ¼
XN

i¼1

ci ðdi � kiÞQi þ
ðdi þ mi þ kiÞ

2

	
½s2

i þ ðQi � miÞ
2
	1=2

þ
ki � di � mi

2
ðQi � miÞ



þ l

XN

i¼1

ciQi � B

 !
; (29)

where l is the Lagrange multiplier associated with the budget constraint.
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In order to minimize L, we set the partial derivative of L with respect to each Qi equal to zero. Solving for
Q1; . . . ;QN , we obtain

Qi ¼ mi þ
sibi

ð1 � b2
i Þ

1=2
; where bi ¼

mi þ ki � di � 2l
di þ mi þ ki

; i ¼ 1; . . . ;N;

or

Qi ¼ mi þ
si

2

mi þ ki � l
di þ l

� �1=2

�
di þ l

mi þ ki � l

� �1=2
" #

; i ¼ 1; . . . ;N: ð30Þ

5.1. Lower bound on expected profit

In order to calculate the lower bound on expected profit, we substitute (30) into (27) to obtain the lower
bound for individual item i, and then sum the bounds for all items:

pGðQÞX
XN

i¼1

micimi 1 �
si

2mimi

ð2di þ lÞðki þ miÞ � dil

½ðki þ mi � lÞðdi þ lÞ	1=2

� �� �
: ð31Þ

Obviously, the upper bound on expected profit is obtained if the demand is deterministic, i.e., si ¼ 0 for
i ¼ 1; . . . ;N. This upper bound is given by

pGðQÞp
XN

i¼1

micimi: ð32Þ

5.2. Solution procedure

To make a positive order of item i, expected profit must be positive, i.e., pGðQiÞX0, or

½ð2di þ lÞðki þ miÞ � dil	2

ðki þ mi � lÞðdi þ lÞ
p

2mimi

si

� �2

: ð33Þ

For each item i, the ordering rule is as follows:


 Order Qi ¼ Q

i units specified by (30) if (33) is satisfied, otherwise


 Order Qi ¼ 0 units if (33) is not satisfied.
The problem now is to find the smallest non-negative l such that (33) is satisfied. Gallego and Moon
(1993) provide a simple line search algorithm to find the optimal value of l without shortage cost, i.e.,
ki ¼ 0. Unfortunately, that algorithm may not be valid for the case when shortage cost is considered, since
some individual item order quantities that satisfy the budget constraint can be associated with negative
expected profit. The following procedure is proposed to handle the case when shortage cost is considered.
This new procedure satisfies budget constraints, while eliminating the possibility of negative expected
profits for any individual item.

Step 0: Let T ¼ f1; . . . ;Ng.
Step 1: Let l ¼ 0 and solve for Q


i , i 2 T ; Q

i is obtained from (30) if (33) is satisfied, Q


i ¼ 0 if not.
(a) If (28) is satisfied, go to step 4.
(b) Otherwise continue to step 2.

Step 2: Starting from l ¼ 0, increase l continuously until the first occurrence of either of the following:
(a) Constraint (28) is satisfied; go to step 4.
(b) Condition (33) is violated for one item i, i 2 T ; go to step 3.
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Table 1

Data for Example 4

Item i ci pi si li mi si

1 35.1 50.3 25.0 14.0 900 122

2 25.0 40.0 12.5 8.0 800 200

3 28.0 32.0 15.1 10.0 1200 170

4 4.8 6.1 2.0 1.5 2300 200
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Step 3: Let Q

i ¼ 0, remove i from set T, and go back to step 1.

Step 4: Stop, the solution is optimum.

Example 4. Three new items are added to the product introduced in Example 1. The total budget is $80,000
for the four items, whose data are given in Table 1.

Step 0: Let T ¼ f1; 2; 3; 4g.
Step 1: Assuming l ¼ 0, we find that (33) is satisfied for all 4 items. Thus, we solve for the 4 order

quantities.

Q1ð0Þ ¼ 968; Q2ð0Þ ¼ 862; Q3ð0Þ ¼ 1207; Q4ð0Þ ¼ 2300;

X
ciQi ¼ $100;3634$80;000:

Since (28) is not satisfied, we go to step 2
Step 2: Performing a simple line search, we increase the optimal value of the Lagrangian multiplier until:

l ¼ 0:438:

At that point, (33) is not satisfied for item 3, i.e., the expected profit for item 3 becomes negative. Thus, we
go to step 3.

Step 3: Let Q3 ¼ 0. Let T ¼ f1; 2; 4g. Go to step 1.
Step 1: At l ¼ 0, (33) is satisfied for the 3 items in T, and the 3 order quantities are:

Q1ð0Þ ¼ 968; Q2ð0Þ ¼ 862; Q4ð0Þ ¼ 2300;

X
ciQi ¼ $66;567o$80;000:

Since (28) is satisfied, we stop. The solution is optimal.
Lower bounds on expected profit:
Individual items 1; 2; 3; 4 ¼ ð11585; 8609; 0; 2430Þ,
Total=$22,624.
6. Numerical experiments

Extensive numerical experiments have been conducted in order to demonstrate the benefits of the
extensions presented in the paper. The aim of these experiments is to evaluate the performance of the new
models. Specifically, we compared the expected profit resulting from the new model incorporating shortage
cost to that obtained by traditional models. A total of 100 problems, whose randomly generated parameters
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Table 2

Summary of the results of computational experiments

Profit if shortage cost is

ignored in calculating Q*

Profit if shortage cost is

considered in calculating Q*

Percent increase in profit

Minimum 557.8 605.5 0.27

Average 2249.5 2286 1.98

Maximum 4724 4747.3 12.33
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are uniformly distributed on the intervals shown below, have been adapted from Moon and Silver (2000):

m � Uð50; 150Þ; s � Uð0:1; 0:3Þ � m;

c � Uð30; 50Þ; p � Uð1:5; 2:0Þ � c;

s � Uð0:2; 0:5Þ � c; l � Uð0:4; 0:8Þ � c:

The numerical experiments are specifically designed to evaluate the improvement in profit resulting from
using the new models. Therefore, since an explicit profit expression exists only for the single product case, test
problems have been constructed and solved only for this case only. For each problem, two values of Q* have
been calculated using (8), first using the randomly generated value of l, and then assuming l ¼ 0. Using (6),
the order quantities Q* resulting from the two methods were then used to determine the corresponding lower
bounds on expected profits. The effect of including the shortage cost in calculating Q* on the expected profit is
summarized in Table 2. The average and the maximum increase in expected profit is 2% and 12%,
respectively. We expect that a greater profit increase is possible if other cost structures are used.
7. Conclusions

In this work, the models given in Gallego and Moon (1993) have been extended to incorporate shortage
penalty cost beyond lost profit. New models and results have been developed for the following cases: the
single product case, the fixed ordering cost case, the random yield case, and the resource-constrained multi-
product case. Computational experiments have been used to evaluate the improvement in expected profit
resulting from the new models. Moreover, a new solution procedure has been developed for the multi-product
case with a budget constraint. The inclusion of shortage penalty cost is an important and realistic extension,
since in real life there is always a cost associated with failure to satisfy customer demands. Future research
ideas include extending the distribution-free newsboy problem to include the following considerations:


 Supplier discounting policies.



 Price-dependent demand, and demand-dependent pricing.



 Deterioration of perishable items.



 Multiple items with substitution.



 Multiple locations, multiple suppliers, and multiple periods.
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