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Abstract

Inventory models in which the demand rate depends on the inventory level are based on the common real-life

observation that greater product availability tends to stimulate more sales. Previous models incorporating inventory-level

dependent demand rate assume that the holding cost is constant for the entire inventory cycle. This paper considers the

inventory policy for an item with a stock-level dependent demand rate and a storage-time dependent holding cost. The

holding cost per unit of the item per unit time is assumed to be an increasing function of the time spent in storage. Two

time-dependent holding cost step functions are considered: Retroactive holding cost increase, and incremental holding cost

increase. Procedures are developed for determining the optimal order quantity and the optimal cycle time for both cost

structures.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In traditional inventory models, the demand rate
is assumed to be a given constant. Various inventory
models have been developed for dealing with
varying and stochastic demand. All these models
implicitly assume that the demand rate is indepen-
dent, i.e. an external parameter not influenced by
the internal inventory policy. In real life, however, it
is frequently observed that demand for a particular
product can indeed be influenced by internal factors
such as price and availability. The change in the
demand in response to inventory or marketing
decisions is commonly referred to as demand
elasticity.

Most models that consider demand variation in
response to item availability (i.e. inventory level)
assume that the holding cost is constant for the
entire inventory cycle. This paper presents an
inventory model with a stock-level dependent
demand rate and a variable holding cost. In this
model, the holding cost is an increasing step
function of the time spent in storage. Two types of
time-dependent holding cost increase functions are
considered: Retroactive increase, and incremental
increase. For each type, a simple algorithm that
minimizes the total inventory cost (TIC) is devel-
oped for calculating the optimal order quantity and
associated cycle time.

As far as the author knows, the step structure of
the holding cost function is unique to this paper.
This structure is representative of many real-life
situations in which the storage times can be
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classified into different ranges, each with its
distinctive unit holding cost. This is particularly
true in the storage of deteriorating and perishable
items such as food products. The longer these food
products are kept in storage, the more sophisticated
the storage facilities and services needed, and
therefore, the higher the holding cost. For example,
three different holding cost rates may apply to
short-term, medium-term, and long-term food
storage.

The remainder of this paper is organized as
follows. Relevant literature is reviewed in the next
section. This is followed by defining the problem
and scope and developing the inventory model.
Subsequently, the model is analyzed and a solution
algorithm is presented for Case 1, retroactive
holding cost increase. A similar analysis is followed
for Case 2, incremental holding cost increase.
Finally, suggestions and concluding remarks are
given.

2. Literature review

Various models have been proposed for stock-
level dependent inventory systems. Baker and
Urban (1988a) investigated a deterministic inven-
tory system in which the demand rate dependence
on the inventory level is described by a polynomial
function. A non-linear programming algorithm is
utilized to determine the optimal order size and the
reorder point. Urban (1995) investigated an inven-
tory system in which the demand rate during stock-
out periods differs from the in-stock period demand
by a given amount. The demand rate depends on
both the initial stock and the instantaneous stock.
Urban formulates a profit-maximizing model and
develops a closed-form solution.

A number of authors investigated inventory
systems with a two-stage demand rate. Baker and
Urban (1988b) considered an inventory system with
an initial period of level-dependent demand fol-
lowed by a period of constant demand. The analysis
conducted on this model imposes a terminal
condition of zero inventories at the end of the order
cycle. Datta and Pal (1990) analyzed an infinite time
horizon deterministic inventory system without
shortage, which has a level-dependent demand rate
up to a certain stock level and a constant demand
for the rest of the cycle. Paul et al. (1996)
investigated a deterministic inventory system in
which shortages are allowed and are fully back-
logged. The demand is stock dependent to a certain

level and then constant for the remaining periods. A
flow chart is provided to solve the general system.

Pal et al. (1993) developed a deterministic
inventory model assuming that the demand rate is
stock dependent and that the items deteriorate at a
constant rate y. The net profit over one production
run is maximized by numerically solving two
nonlinear equations, and the optimal solution is
compared with the no deterioration (y ¼ 0) case.
Hwang and Hahn (2000) constructed an inventory
model for an item with an inventory-level dependent
demand rate and a fixed expiry date. All units that
are not sold by their expiry date are regarded as
useless and therefore discarded. Separable program-
ming is utilized to determine the optimal order level
and order cycle length.

The holding cost is explicitly assumed to be
varying over time in only few inventory models.
Giri et al. (1996) developed a generalized EOQ
model for deteriorating items with shortages, in
which both the demand rate and the holding cost
are continuous functions of time. The optimal
inventory policy is derived assuming a finite
planning horizon and constant replenishment
cycles. Ray and Chaudhuri (1997) take the time
value of money into account in analyzing an
inventory system with stock-dependent demand rate
and shortages. Two types of inflation rates are
considered: internal (company) inflation, and ex-
ternal (general economy) inflation.

Shao et al. (2000) determined the optimum
quality target for a manufacturing process where
several grades of customer specifications may be
sold. Since rejected goods could be stored and sold
later to another customer, variable holding costs are
considered in the model. Beltran and Krass (2002)
analyzed the dynamic lot sizing problem with
positive or negative demands and allowed disposal
of excess inventory. Assuming deterministic time-
varying demands and concave holding costs, an
efficient dynamic programming algorithm is devel-
oped for this finite time horizon problem.

Goh (1994) apparently provides the only existing
inventory model in which the demand is stock
dependent and the holding cost is time dependent.
Actually, Goh (1994) considers two types of holding
cost variation: (a) a nonlinear function of storage
time and (b) a nonlinear function of storage level. In
this paper, we present a different functional form of
the holding cost storage time dependence. While
Goh (1992) models holding cost variation over time
as a continuous nonlinear function, this paper
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introduces two types of discontinuous step func-
tions. The storage time is divided into a number of
distinct periods with successively increasing holding
costs. As the storage time extends to the next time
period, the new holding cost can be applied either
retroactively (to all storage periods), or incremen-
tally (to the new period only).

3. Problem definition and scope

The main objective of this paper is to determine
the optimum (i.e. minimum cost) inventory policy
for an inventory system with inventory-level depen-
dent demand rate and a time-dependent holding
cost. Assuming the demand rate to be inventory-
level dependent means the demand is higher for
greater inventory levels. Assuming the holding cost
per unit of the item per unit time to be time
dependent means the unit holding cost is higher for
longer storage periods. The model that will be
developed for the inventory system is based on
allowing unit holding cost values to vary across
different storage period. Variable unit holding costs
are considered in the model in determining the
optimal inventory policy.

The holding cost per unit is assumed to increase
only when the storage time exceeds specified discrete
values. In other words, the holding cost per unit per
unit time is an increasing step function of the
storage time. Two types of holding cost step
functions are considered: Retroactive increase, and
incremental increase. In retroactive increase, the
unit holding cost rate of the last storage period is
applied to all storage periods. In incremental
increase, the rate of each period, including the last
period, is applied only to units stored in that
particular period.

3.1. Notation

The following notation is adopted from Goh
(1992) for the model under consideration:

q(t) the quantity on-hand at time t

D constant (base) demand rate
n number of distinct time periods with different

holding cost rates
t time from the start of the cycle at t ¼ 0
ti end time of period i, where i ¼ 1, 2,y, n,

t0 ¼ 0, and tn ¼N

k ordering cost per order
hi holding cost of the item in period i

h(t) holding cost of the item at time t, h(t) ¼ hi if
ti�1ptpti

T cycle time
b demand parameter indicating elasticity in

relation to the inventory level

3.2. Assumption and limitations

1. The demand rate R is an increasing function of
the inventory level q.

2. The holding cost is varying as an increasing step
function of time in storage.

3. Replenishments are instantaneous.
4. Shortages are not allowed.
5. A single item is considered.
6. The demand rate R dependence on the inventory

level q is expressed as
RðqÞ ¼ Dqb; D40; 0obo1; qX0. (1)

3.3. The inventory model

The objective is to minimize the TIC per unit
time, which includes two components: The ordering
cost, and the holding cost. Since one order is made
per cycle, the ordering cost per unit time is simply
K/T. The total holding cost per cycle is obtained by
integrating the product of holding cost h(t) and
inventory level q(t) over the whole cycle.

TIC ¼
k

T
þ

1

T

Z T

0

hðtÞqðtÞdt. (2)

Since the demand rate is equal to the rate of
inventory level decrease, we can describe inventory
level q by the following differential equation:

dqðtÞ

dt
¼ �D½qðtÞ�b; D40; 0ptpT ; 0obo1.

(3)

The on-hand inventory level at time t, q(t), can be
evaluated by solving (3):

q�b dq ¼ �Ddt,

by integrating both sides:

Z t

0

q�b dq ¼

Z t

0

�Ddt; where 0ptpT ,

q1�b

1� bð Þ

����
t

0

¼ �Dt,

q1�bðtÞ ¼ Dð1� bÞtþ q1�bð0Þ.
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However,

q1�bð0Þ ¼ Q1�b.

Thus,

q1�bðtÞ ¼ �Dð1� bÞtþQ1�b,

qðtÞ ¼ ½�Dð1� bÞtþQ1�b�1=ð1�bÞ. ð4Þ

The period T can be evaluated by substituting the
inventory function q(t) at T:

�q1�bðTÞ ¼ ½�Dð1� bÞT þQ1�b�1=ð1�bÞ ¼ 0.

Hence,

T ¼
Q1�b

Dð1� bÞ
, (5)

or

Q ¼ ½Dð1� bÞT �1=ð1�bÞ. (6)

4. Case 1: Retroactive holding cost increase

As stated earlier, the holding cost is assumed to
be an increasing step function of storage time, i.e.
h1oh2o?ohn. In Case 1, a uniform holding cost
that depends on the length of storage is used.
Specifically, the holding cost of the last storage
period applies retroactively to all previous periods.
Thus, if the cycle ends in period e, (te�1pTpte),
then the holding cost rate he is applied to all periods
1, 2,y, e. In this case, the TIC per unit time can be
expressed as

TIC ¼
k

T
þ

hi

T

Z T

0

qðtÞdt; ti�1pTpti. (7)

Substituting the value of q(t) from (4)

TIC ¼
k

T
þ

hi

T

Z T

0

�Dð1� bÞtþQ1�b� �1=ð1�bÞ
dtT ,

¼
k

T
�

hi

Dð2� bÞT
�Dð1� bÞ

��T
0
þQ1�b

h ið2�bÞ=ð1�bÞ
.

Thus,

TIC ¼
k

T
þ

hi

Dð2� bÞT

� Q1�b� �ð2�bÞ=ð1�bÞ
� �Dð1� bÞT þQ1�b� �ð2�bÞ=ð1�bÞh i

.

Substituting the value of T from (5)

TIC ¼
kDð1� bÞ

Q1�b þ
hið1� bÞQ
ð2� bÞ

; ti�1pTpti. (8)

Setting the derivative of TIC with respect to Q

equal to zero and solving for Q, we obtain:

Q� ¼
kDð1� bÞð2� bÞ

hi

� �1=ð2�bÞ
; Q� ¼ ti�1pTpti.

(9)

4.1. Solution algorithm

The optimum solution can be determined by
using the following steps:

1. Starting with the lowest holding cost h1, use (9) to
determine Q and (5) to determine T for each hi

until Q is realizable (i.e. ti�1pTpti). Call these
values TR and QR.

2. Use (6) to calculate all break-point values of Q,
Qi ¼ QðtiÞ, t1ptioTR; each Qi is obtained by
substituting ti into (6).

3. Use (8) to calculate the TIC for QR and each Qi.
4. Choose the value of Q that gives the lowest TIC.

4.2. Example 1

Given the following parameters.

D ¼ 400 units per year,
k ¼ $300 per order,
b ¼ 0.1,
h1 ¼ $5/unit/year, 0oTp0.2, t1 ¼ 0.2 year,
h2 ¼ $6/unit/year, 0.2oTp0.4, t2 ¼ 0.4 year,
h3 ¼ $7/unit/year, 0.4oTpN, t3 ¼N.

Step 1: Starting with h1 ¼ 5,

Q� ¼
300ð400Þð1� 0:1Þð2� 0:1Þ

5

� �1=1:9
¼ 268 units;

T ¼
2680:9

400ð1� 0:1Þ
¼ 0:426 year ðnot realizableÞ.

Substituting h2 ¼ 6,

Q� ¼
300ð400Þð1� 0:1Þð2� 0:1Þ

6

� �1=1:9
¼ 243 units,

T ¼
2430:9

400ð1� 0:1Þ
¼ 0:39 year ðrealizable; QR ¼ 243Þ.

Step 2:

Q1 ¼ ½ð400ð1� 0:1Þ0:2�1=0:9 ¼ 116 units,

Q2 ¼ ½ð400ð1� 0:1Þ0:4�1=0:9 ¼ 250 units.
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Step 3:

TICð243Þ ¼
300ð400Þð1� 0:1Þ

2430:9
þ

6ð1� 0:1Þ243

ð2� 0:1Þ

¼ 1460:43,

TICð116Þ ¼
300ð400Þð1� 0:1Þ

1160:9
þ

5ð1� 0:1Þ116

ð2� 0:1Þ

¼ 1772:39.

Step 4: The optimum solution is:

Q� ¼ 243 units,

T� ¼ 0:39 year,

TIC� ¼ $1460:43=year.

5. Case 2: Incremental holding cost increase

The holding cost is now assumed to be an
incremental step function of storage time. Accord-
ing to this function, higher storage cost rates apply
to storage in later periods. Thus, if the cycle ends in
period e (te�1pTpte), then holding cost rate h1 is
applied to period 1, rate h2 is applied to period 2,
and so on; thus rate he is applied only to period e

from time te�1 up to time T. For this case, we first
reset the value of te as (te ¼ T), and then express the
TIC per unit time as

TIC ¼
k

T
þ

h1

T

Z t1

0

qðtÞdtþ
h2

T

Z t2

t1

qðtÞdt

þ � � � þ
he

T

Z te¼T

te�1

qðtÞdt. ð10Þ

Substituting the value of q(t) from (4), we obtain:

TIC ¼
k

T
þ
Xe

i¼1

hi

T

Z ti

ti�1

�Dð1� bÞtþQ1�b� �1=ð1�bÞ
dt,

¼
k

T
þ
Xe

i¼1

�hi

Dð2� bÞT

�Dð1� bÞt
��ti

ti�1
þQ1�b

h ið2�bÞ=ð1�bÞ
.

Substituting the value of T from (5), and
rearranging and simplifying terms gives:

TIC ¼
kDð1� bÞ

Q1�b þ
h1ð1� bÞQ
ð2� bÞ

þ
Xe�1
i¼1

ðhiþ1 � hiÞð1� bÞ

Q1�bð2� bÞ

� Q1�b �Dð1� bÞti

� �ð2�bÞ=ð1�bÞ
. ð11Þ

To find the optimal order size Q�, we set the
derivative of TIC with respect to Q equal to zero.
After simplification, we obtain:

�
kDð1� bÞ

Q1�b þ
h1Q

ð2� bÞ

þ
Xe�1
i¼1

ðhiþ1 � hiÞ Q1�b �Dð1� bÞti

� �1=ð1�bÞ

�
Xe�1
i¼1

ðhiþ1 � hiÞð1� bÞ

Q1�bð2� bÞ

� Q1�b �Dð1� bÞti

� �ð2�bÞ=ð1�bÞ
¼ 0. ð12Þ

If the entire inventory cycle happens to fall into
the first period (0pTpt1), then e ¼ 1, and the
summations over i in (12) are empty. In that case,
the optimum solution is simply obtained by
substituting h1 into (9) to calculate Q�, and then
substituting Q� into (5) to calculate T. Obviously, a
simple closed form solution for Q� and T� can be
determined only if Tpt1. In general, the optimum
solution must be determined by the following
algorithm.

5.1. Solution algorithm

1. Substitute h1 into (9) to determine Qmax, and then
substitute Qmax into (5) to determine Tmax. If
Tmaxpt1, stop; the solution (Qmax,Tmax) is
optimal.

2. Substitute hn into (9) to determine Qmin, and
then substitute Qmin into (5) to determine
Tmin.

3. Depending on the values of Tmin and Tmax,
determine the possible periods that T may fall
into (i.e., all feasible values of e).

4. For each feasible value of e, solve (12) numeri-
cally to determine the optimum value of Q. If Q

corresponds to the correct period, it is considered
realizable.

5. Using (11), calculate TIC for each QR and each
Qi ¼ Q(ti).

6. Choose the value of Q that gives the lowest
TIC.

5.2. Example 2

Use the same data given in Example 1 to
determine Q� and T�, assuming that the increase
in the holding cost is incremental.
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Step 1: From previous example:

Qmax ¼ 268 units,

Tmax ¼ 0:426 year,

Since Tmax4t1, we must continue.
Step 2: Using (9)

Qmin ¼
300ð400Þð1� 0:1Þð2� 0:1Þ

7

� �1=1:9
¼ 224 units.

Using (5)

Tmin ¼
2240:9

400ð1� 0:1Þ
¼ 0:362 year.

Step 3: Since Tmin is in period 2 and Tmax is in
period 3, we need to develop total cost expressions
TIC only for two possible end periods, e ¼ 2 and 3.

Step 4: (a). Assuming e ¼ 2
First, the cycle is assumed to end in the second

period (e ¼ 2). Thus, the cycle length T is assumed
to be between Tmin and t2, i.e. the range of T in years
is (0.362pTp0.4). Using (6), the corresponding Q

range in units is (224pQp250). Substituting the
given values in (12), we obtain the following
equation:

�
108000

Q0:9
þ

5Q

1:9
þ Q0:9 � 72
� �1=0:9

�
0:9

1:9Q0:9
Q0:9 � 72
� �1:9=0:9

¼ 0.

Solving the above equation numerically by the
secant method, using range limits Q ¼ 224 and 250
as initial values, we obtain:

Q ¼ 212 ðrealizable; since e

¼ 2 means 116oQo250; thus QR ¼ 212Þ.

(b) Assuming e ¼ 3: Now, the cycle is assumed to
end in the third period (e ¼ 3). Thus, the cycle
length T is assumed to be between t2 and Tmax

(0.4oTp0.426). The corresponding Q range is
(250oQp268). Eq. (12) becomes:

�
108 000

Q0:9
þ

5Q

1:9
þ Q0:9 � 72
� �1=0:9

�
0:9

1:9Q0:9
Q0:9 � 72
� �1:9=0:9

þ Q0:9 � 144
� �1=0:9

�
0:9

1:9Q0:9
Q0:9 � 144
� �1:9=0:9

¼ 0.

Solving by the secant method, with initial values
Q ¼ 251 and 268, we obtain:

Q ¼ 207 ðnot realizableÞ.

Step 5: The TIC should now be calculated for the
two values of Q corresponding to the break points
(Q1 ¼ 116, Q2 ¼ 250). Since Q1 corresponds to
e ¼ 1, TIC(116) is obtained by (8) as:

TICð116Þ ¼ 1772:39.

Now, we use (11) to calculate TIC for QR ¼ 212
and Q2 ¼ 250 (both corresponding to e ¼ 2):

TICðQÞ ¼
108 000

Q0:9
þ

4:5Q

1:9

þ
0:9

1:9Q0:9
�72þQ0:9
� �1:9=0:9

,

TICð212Þ ¼ 1388:58,

TICð250Þ ¼ 1369:86.

Step 6: The optimum solution is given by

Q� ¼ 250,

T� ¼ 0:4 year,

TIC� ¼ $1369:96=year.

The above minimum TIC is lower than the value
of 1460.43 obtained in Example 1. This is expected
as incremental increase in holding cost is less costly
than retroactive increase.

6. Conclusions and suggestions

A model has been presented of an inventory
system with stock-dependent demand, in which the
holding cost is a step function of storage time. Two
types of holding cost variation in terms of storage
time have been considered: retroactive increase, and
incremental increase. Simple optimization algo-
rithms have been developed, and numerical exam-
ples have been solved. Based on the formulas
developed, it can be concluded that both the
optimal order quantity and the cycle time decrease
when the holding cost increases. As the shape
parameter b increases, however, the optimal order
quantity increases while the cycle time decreases.
Moreover, the optimal order quantity and the EOQ
are equal when b ¼ 0.

The model presented in this study provides a basis
for several possible extensions. For future research,
this model can be extended to accommodate
planned shortages, variable ordering costs, and
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non-instantaneous receipt of orders. Another exten-
sion possibility would be to consider the holding
cost as a decreasing step function of storage time.
The case of the increasing holding cost considered in
this paper applies to company-owned storage
facilities, and particularly to perishable items that
require extra care if stored for longer periods. A
decreasing holding cost step function is applicable
to rented storage facilities, where lower rent rates
are normally obtained for longer-term leases.
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