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Abstract

Locating public services for nomadic population groups is a difficult challenge as the locations of the targeted populations
seasonally change. In this paper, the population groups are assumed to occupy different locations according to the time of the year,
i.e., winter and summer. A binary integer programming model is formulated to determine the optimal number and locations of
primary health units for satisfying a seasonally varying demand. This model is successfully applied to the actual locations of 17
seasonally varying nomadic groups in the Middle East. Computational tests are performed on different versions of the model in
order analyze the tradeoffs among different performance measures.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Facility location studies are generally devoted to the location of a set of resource or service facilities to optimally
serve a given set of existing customer or demand facilities. Hale [1] provides an overview and a historical perspective
of location science. It has been mostly assumed that the existing facilities or demand nodes (consumers, population
sites, etc.) have unique and predefined locations. Thus, most of the work carried out so far assumes static locations
where the demand over time is fixed as well as the physical locations of the facilities to be opened. In the area of
health care facility location, this static approach has recently been exemplified by Rahman and Smith [2] and Verter and
Lapierre [3].

In the field of dynamic location, traditional assumptions of fixed demands and locations are challenged by considering
continuously or periodically changing demand volumes or locations. Wesolowsky [4] considers a single-facility location
problem where demands vary in a fixed number of epochs. Wesolowsky and Truscott [5] introduce a dynamic multi-
facility, multi-period location–allocation model to solve a problem where demand volumes change over time. Drezner
and Wesolowsky [6] consider the problem where the demands are allowed to change a finite number of times. Abdel-
Malek [7] determines the dynamic location of a moving service facility among a set of moving existing demand
facilities, in order to minimize the total squared travel distance. Puerto and Rodriguez-Chia [8] develop an extension
of the Weiszfeld algorithm to solve the dynamic Weber problem, in which the fixed demand nodes are replaced by
trajectories (functions of time).
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In several countries it is not unusual for nomadic populations to periodically move and change their residence
locations according to weather conditions or cultural and local traditions. As populations are not present in all sites
during all seasons, decisions on whether or not to operate certain facilities during a given season should be taken.
This situation describes the difficulty that local governments face when they try to provide public services to nomadic
populations. Cleary these populations are entitled to all kinds of public services, such as primary health care, veterinary
services and schooling for children. Providing good primary health care services for nomadic populations is a key step
towards constructing a global welfare system integrating all levels of healthcare support. However, the key question is
where to locate such facilities to best serve seasonally moving nomadic groups.

The remainder of this paper is organized as follows. Bedouin seasonal movement is described in Section 2. The prob-
lem’s assumptions and formulation are respectively provided in Sections 3 and 4. A case application and computational
results are presented in Section 5. Finally some conclusions are presented in Section 6.

2. Bedouin seasonal movement

In this work we discus the possibility of opening fixed public facilities while the populations to be served occupy
different location sites in specific periods (seasons) of the year, for instance winter or summer seasons. We assume
that the predetermined number of facilities to be operated is known prior to finding the locations. Thus, we focus on
finding the optimal location for primary health units that will minimize the total cost of serving all population groups
during the different seasonal periods. Looking first at the characteristics of movements throughout the year should help
in designing efficient healthcare systems for nomadic populations.

Bedouin is a term that refers to the nomadic desert dwellers in Saudi Arabia and neighboring countries. Although
many of these Bedouin have now settled down, a large number still pursues a nomadic or semi-nomadic lifestyle. The
Bedouin are pastoralists, whose survival depends on the animals they keep such as camels, goats and sheep. In order to
feed their livestock, they have to move to different locations in the desert in search of water and fresh pasture. However,
contrary to popular belief, their movement is not continuous or random, but rather follows a seasonal pattern to areas
of higher rainfall [9]. During summer, they have to be close to permanent water sources because the animals need to
drink more often.

During the annual migration cycle, the Bedouin usually move between two main locations for the summer and winter
seasons. Cordes and Scholz [10] found that the Bedouin of the United Arab Emirates (UAE) and the Sultanate of Oman
used seasonal or periodic movements between summer and winter pasture areas (SPA and WPA) to exploit the slight
variations in climatic and physical characteristics of the territory. Usually SPA are located near oases to guarantee
water and pasture supplies and suitable climatic conditions. On the other hand, WPA are located in wadis (depressions
surrounded by sand dunes) where there are water holes, wells, or dams. The SPA are occupied during the date harvest
period (May to October), while the WPA are occupied for the rest of the year.

3. General assumptions for the problem

In our study we assume that the physical locations of the population groups to be served are known for all periods
(seasons) and are distributed on the plane. We consider opening a given number of fixed facilities (health care units) but
only a predetermined subset of them will be operated during each season k. Trade-offs should be made between the total
number of open facilities p and the number to operate during each period pk depending on the opening costs and the
seasonal running costs. Some more specific assumptions are made to describe the approach that we consider in this work.

1. Existing demands for services Ak (set of population sites) are located according to the given season k of the year.
2. There is a minimum service threshold Lj , i.e., total population to be served per season, below which a health unit

will not be operated.
3. This is a discrete location problem, which can be defined on a graph. Population areas are aggregated to form a

subset of the nodes of the network.
4. Potential sites for the location of the health care units are pre-specified and are all located at the vertices of the

network. Euclidean distance measures are used between all locations.
5. The opening costs for health units depend on the location.
6. The operating costs for health units depend among other factors on the location and the season of the year.
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In this problem the populations are assumed to occupy different locations in different seasons of the year. These seasonal
residences are known and stably located and used over the years. However, small parts of each population group may
choose an alternative summer or winter location different from the rest of the group. Therefore, the population size of
each group may slightly vary with the seasons. Moreover, the operating cost at an open site may vary with the seasons
due to changes in the weather conditions (e.g., air conditioning costs).

4. Problem formulation

The model introduced below represents the problem of opening a maximum number of p facilities from which we
choose to serve the different population locations depending on seasonal demand. From the total set of opened sites,
only a subset of facilities with a specified number, pk �p, will be operated during a given seasonal period k. The
necessary parameters to formulate the model are listed below.

Input parameters:

i, I set of existing demand (population) groups, all assumed to be located at specific vertices of the graph
j, J set of potential locations for the health care units
k, K number of seasonal periods per year
pk number of units to be actively operated during a given season k
p maximum number of health care units (from J ) to open
wik population size at demand node i during season k
tijk transportation cost resulting from allocating demand node i to health care unit at j during season k
Lj minimum workload required to open a health care unit at location j
fj cost of opening a health care unit at location j
ojk cost of operating a health care unit at location j during season k

Decisions variables:

xijk 1, if demand node i is assigned to unit at node j during season k; 0 otherwise
yj 1, if a facility is opened at location j; 0 otherwise
ujk 1, if an open facility at j is operated during season k; 0 otherwise

Integer programming model:

Min Z =
∑

i∈I

∑

j∈J

K∑

k=1

wiktijkxijk +
∑

j∈J

fjyj +
K∑

k=1

∑

j∈J

ojkujk (1)

Subject to
∑

j∈J

xijk = 1, ∀i ∈ I, ∀k ∈ K , (2)

xijk �ujk, ∀i ∈ I, ∀j ∈ J, ∀k ∈ K , (3)

ujk �yj , ∀j ∈ J, ∀k ∈ K , (4)
∑

j∈J

yj �p, (5)

∑

j∈J

ujk �pk, ∀k ∈ K , (6)

∑

i∈I

wikxijk �Ljujk, ∀j ∈ J, ∀k ∈ K , (7)

xijk, yj , ujk ∈ {0, 1}. (8)



M. Ndiaye, H. Alfares / Computers & Operations Research 35 (2008) 2154–2161 2157

The objective (1) is to minimize the total cost, which includes three components: (i) the traveling cost of all the members
of the population groups in all seasons, (ii) the fixed cost of opening all health care units, and (iii) the costs of operating
a given number of the open facilities during each season. Of course, the opening costs may sometimes not be taken into
consideration. The first constraint (2) shows that each population center must be assigned to a facility at each season
(summer or winter for instance). In constraint (3), population groups are only assigned to open facilities, and constraint
(4) shows that a facility can only operate if it is opened. The two constraints (5) and (6) specify the total number of
health care units to open and to operate during each period. Constraint (7) describes the workload threshold that is
required to consider operating any facility during season k.

The model as introduced allows decision makers to pre-specify a number of operated facilities during the different
seasons while finding their best locations. If k= 1 and pk = p for all period k then the description of the problem can
be reduced to the uncapacitated facility location (UFL) problem. Since Cornuejols et al. [11] have shown that UFL
is an NP-hard problem, we deduce that our problem as described is also NP-hard. The present formulation may also
be viewed as a multi-period version of the UFL. As described, it is a static formulation tackling a dynamic problem
because of the presence of the different seasonal demands. Since the location of the demand over time is known in
advance, we do not deal with the dynamic facility location problem considered by Van Roy and Erlenkotter [12], in
which the location in the next period depends on the previous location.

5. Actual application and computational results

The above model was applied to the populations of 17 nomadic groups in the UAE and Oman as shown in Fig. 1,
adapted from Cordes and Scholz [10]. Each group alternates between a summer and a winter location as specified in the
map. Therefore, our application of the model involves two seasons, summer and winter (K =2), where k=1 designates
summer, and k = 2 designates winter. We had to estimate the population sizes of the groups as current census data are
not available. Table 1 shows the different data used for our application’s model, including the population sizes and their
location coordinates.

Fig. 1. Summer and winter locations of 17 Bedouin groups in the United Arab Emirates and the Sultanate of Oman.
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Table 1
Location coordinates and population sizes in summer and winter

Population group Summer location coordinates Winter location coordinates Summer population Winter population

i x y x y Size wi1 Size wi2

1 236 360 169 289 525 401
2 306 356 296 298 337 641
3 352 364 400 225 594 526
4 496 197 455 156 542 345
5 485 238 423 202 530 364
6 491 247 470 293 680 431
7 548 344 478 375 479 444
8 595 239 576 261 359 429
9 550 323 595 271 674 383

10 604 386 557 491 696 400
11 638 265 633 292 396 394
12 633 366 673 281 382 583
13 667 384 672 486 339 394
14 736 372 709 508 491 447
15 761 395 761 433 428 606
16 768 391 829 378 673 624
17 797 396 812 465 305 439

Table 2
Coordinates and operating conditions of the potential facility locations

Facility site j Coordinates Workload threshold Opening cost Operating costs

x y Lj fj Summer oj1 Winter oj2

1 169 289 3023 115700 110000 66000
2 306 356 3518 125000 56000 120000
3 400 225 1633 270000 130000 62000
4 496 197 3297 110000 65000 130000
5 557 491 3204 175000 100000 60500
6 550 323 2883 230000 46000 110000
7 633 292 1761 110000 120000 56000
8 667 384 4103 170000 46000 110000
9 829 378 1887 180000 120000 62000

10 768 391 2472 240000 62000 140000

Ten potential sites for locating the health care units were chosen from among the 34 existing summer and winter
locations of the nomadic groups. These potential sites, whose data are shown in Table 2, represent a mixture of summer
locations (even values of j) and winter locations (odd values of j). The traveling costs cijk were computed as the
straight-line distances between the existing locations of each population i and the potential site j for each season k. The
operating costs are estimated and assumed to be different for the two seasons. If for instance a winter site is operated
during a summer period, its operating costs will be greater as the populations have already moved away from the area.

To test the model, we did not focus on solving large instances of the problem. We rather tried to describe the properties
of the model, looking at the behavior of the optimal solution under different conditions. A C++ program was used to
generate the model in the format required by LINGO 6.0, which was used to solve different instances of the model.
Using a Pentium 4 PC with 2.00 GHz CPU, the run times ranged between 1 and 2.5 s. The program was run for different
values of the vector (p, p1, p2) in order to analyze the optimal solutions and their general behavior depending on the
considered parameters. The problem was solved both with and without considering the opening costs given in Table 2.
Without opening costs, the model consists of 350 variables and 1750 constraints. Including opening costs, the number
of variables becomes 370 with 1810 constraints. We also considered the possibility for the decision makers to state
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Table 3
Zero opening cost and limit on the maximum number of operated facilities

(p, p1, p2) (3, 3, 2) (4, 3, 2) (5, 3, 2)

Sites selected 3, 6, 10 3, 6, 8, 10 3, 6, 8, 10
Sites k = 1 3, 6, 10 3, 6, 10 3, 6, 10
operated k = 2 3, 10 3, 8 3, 8
Total cost 2,068,851 2,040,853 2,040,853

(p, p1, p2) (4, 3, 3) (5, 2, 3) (6, 4, 3)

Sites selected 3, 6, 7, 10 3, 6, 7, 9, 10 3, 6, 7, 9, 10
Sites k = 1 3, 6, 10 6, 10 3, 6, 10
operated k = 2 3, 7, 10 3, 7, 9 3, 7, 9
Total cost 1,880,812 1,851,694 1,834,587

Table 4
Zero opening cost results

(p, p1, p2) (5, 3, 2) (5, 2, 3) (6, 3, 3) (7, 4, 3) (7, 3, 4)

(a) With limits on maximum number of operated facilities
Sites selected 3, 6, 8, 10 3, 6, 7, 9, 10 3, 6, 7, 9, 10 3, 6, 7, 9, 10 3, 6, 7, 9, 10
Sites k = 1 3, 6, 10 6, 10 3, 6, 10 3, 6, 10 3, 6, 10
operated k = 2 3, 8 3, 7, 9 3, 7, 9 3, 7, 9 3, 7, 9
Total cost 2,040,853 1,851,694 1,834,587 1,834,587 1,834,587

(p, p1, p2) (5, 3, 2) (5, 3, 3) (6, 3, 3) (7, 4, 3) (7, 3, 4)

(b) With limits on minimum number of operated facilities
Sites selected 3, 6, 7, 9, 10 3, 6, 7, 9, 10 3, 6, 7, 9, 10 3, 6, 7, 9 3, 6, 7, 9, 10
Sites k = 1 3, 6, 10 3, 6, 10 3, 6, 10 3, 6, 7, 9 3, 6, 10
operated k = 2 3, 7, 9 3, 7, 9 3, 7, 9 3, 7, 9 3, 7, 9,10
Total cost 1,834,587 1,834,587 1,834,587 2,101,842 2,301,061

Table 5
Non-zero opening costs and maximum limit on the number of operated facilities

(p, p1, p2) (3, 3, 2) (3, 2, 3) (5, 3, 2)

Sites selected 4, 8 4, 8 4, 8
Sites k = 1 4, 8 4, 8 4, 8
operated k = 2 4, 8 4, 8 4, 8
Total cost 2,634,734 2,634,734 2,634,734

(p, p1, p2) (5, 2, 3) (6, 4, 3) (6, 4, 4)

Sites selected 4, 8 3, 7, 9, 3, 7, 9,
Sites k = 1 4, 8 3, 7, 9, 3, 7, 9
operated k = 2 4, 8 3, 7, 9 3, 7, 9
Total cost 2,634,734 2,624,203 2,624,203

either the maximum number (
∑

j∈J ujk �pk, ∀k ∈ K) or the minimum number (
∑

j∈J ujk �pk, ∀k ∈ K) of facilities
to be operated. The different computational results are summarized as in Tables 3–5.

Table 3 shows the computational results for the case without opening cost (fj =0 for all j ∈ J ) and a maximum limit
on the number of operated facilities (

∑
j∈J ujk �pk, ∀k ∈ K). From Table 3 it can be seen that increasing the number

of open facilities p will improve the solution if we keep the same number of operated units during the two seasons. This
result was expected as the pair of constraints (3) and (4) forces the model to open at most min{p, p1 + p2} facilities.
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Table 3 also shows that the solution to this problem is not equivalent to the solution of two separate single period UFL
problems. Indeed the UFL solutions would be consistently the best sets of pk sites irrespective of the value of p. This
is not the case for our model, as solutions (3, 3, 2) and (4, 3, 2) are showing different optimal solutions for the two
seasons.

Looking at the way population groups are allocated to the open units, we find that they are not necessarily allocated
to the same health care unit during both winter and summer seasons. That is the case, for example, for demand node
14, when (p, p1, p2 = (5, 3, 2); it is allocated to unit 6 for season 1 and to unit 8 for season 2. One can notice that it
is not unusual at the optimum solution to operate a unit located out of season. That is, to operate in summer a unit that
is a winter population site. The potential site 3 is always open and operates during both winter and summer except for
the case (p, p1, p2) = (5, 2, 3).

We have also tested the possibility for the decision makers to state the number of facilities to be operated either
as a minimum or a maximum requirement. Table 4 provides some comparisons on that respect. The two options are
not totally equivalent. Expressing a minimum requirement constraint (

∑
j∈J ujk �pk, ∀k ∈ K) tends to open more

facilities, which minimizes the total traveled distances. However, this approach does not always guarantee a best
solution.

Table 5 shows the results of the model solution with facility opening costs and a maximum limit on the number of
operated facilities. Adding opening costs to the model tends to increase the total cost although it reduces the number
of open facilities. This can be seen by comparing both the total cost and the number of open facilities for similar cases
in Tables 3 and 5.

6. Conclusions

A facility location model has been presented for seasonally moving populations, such as for nomadic or Bedouin
populations. The model allows decision makers to consider the trade off between opening costs and operating cost
of public service facilities when population are allowed to reside in different locations during different periods of the
year. All opened facilities must satisfy a minimum workload requirement during the season in which they are operated.
Computational tests have been performed on different versions of the problem in order analyze the main characteristics
of the model.

The model could be extended to allow budget planning constraints such as having a budget related limitation to
determine the number of operated facilities. Another possible extension is to consider mixing fixed health care units
with mobile, removable and relocatable units to match the populations’ living style. A maximum distance threshold
for the traveling distances could be considered to limit the costs of the population traveling to access the health care
services. These issues will be addressed in future research.

Another extension route would be to integrate the model in a planning support system that will assist on key strategic
decision planning processes. This model constitutes a first step towards the design of a complete healthcare solution for
moving populations. Commonly integrated healthcare services combine primary heath units to district and or regional
hospitals. The complete design of such systems is a challenge that will require the solution of multistage facility location
problems. The model presented here is intended to be one of these stages.
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