
J Sched
DOI 10.1007/s10951-007-0040-x

A dynamic programming algorithm for days-off scheduling
with sequence dependent labor costs

Moustafa Elshafei · Hesham K. Alfares

Received: 10 October 2006 / Accepted: 23 August 2007
© Springer Science+Business Media, LLC 2007

Abstract This paper presents a dynamic programming
(DP) algorithm for solving a labor scheduling problem with
several realistic days-off scheduling constraints and a cost
structure that depends on the work sequence for each em-
ployee. The days-off scheduling constraints include the fol-
lowing: (1) each employee is assigned no more than three
workdays per week, (2) each employee is assigned at least
two consecutive off days per week, and (3) any work stretch
cannot exceed four consecutive workdays. The sequence-
dependent cost structure assumes that the daily wage of each
employee depends on two factors: (1) whether the given
workday is weekend or a regular workday, and (2) the se-
quence of work patterns assigned in previous days. A DP
algorithm suited to instances of moderate size is used to de-
termine the optimum work assignments that minimize the
total labor cost, while satisfying the work demand under the
stated constraints.

Keywords Labor scheduling · Optimization · Dynamic
programming · Compressed workweek

1 Introduction and overview

Employee scheduling is both an important and a challeng-
ing practical problem, especially for organizations that op-
erate seven days a week or 24 hours a day. The problem

M. Elshafei (�) · H.K. Alfares
Systems Engineering Department, King Fahd University of
Petroleum & Minerals, PO Box 5067, Dhahran 31261, Saudi
Arabia
e-mail: elshafei@kfupm.edu.sa

H.K. Alfares
e-mail: alfares@kfupm.edu.sa

is important because of its significant impact on labor cost,
level of service, and employee productivity and morale. The
problem is challenging because of the complexity associ-
ated with factors such as: varying customer demands, lim-
ited employee availability, strict labor rules and agreements,
numerous scheduling alternatives, different employee skill
levels, conflicting employee preferences, and employee se-
niority and fairness considerations.

Narasimhan (2000) classifies employee scheduling prob-
lems in terms of six factors: (1) number of shifts, (2) num-
ber of employee skills or categories, (3) pattern of labor de-
mand, (4) limits on the length of work stretches, (5) lim-
its on weekend work frequency, and (6) number of work-
days per week. Accordingly, the days-off scheduling prob-
lem considered in this paper can be classified as follows:
(1) single shift, (2) homogeneous workforce, (3) variable
daily demands, (4) work stretch length limit of four days,
(5) no weekend work frequency limits, and (6) three work-
days per week. However, although there are no explicit lim-
its on weekend work frequency, excessive weekend work is
avoided by the sequence-dependent cost structure that pe-
nalizes such occurrences.

Azmat and Widmer (2004) classify the days-off schedul-
ing problem as either single-shift or multiple-shift. For each
type, they define four sub-categories: (1) regular 5 work-
days a week work schedules, (2) compressed 3 or 4 work-
days a week work schedules, (3) hierarchical schedules for
a workforce with varying skill levels, and (4) annualized
hours schedules. Following this classification, this days-off
scheduling paper falls within the single-shift, compressed
workweek category. The following survey of literature fo-
cuses on compressed workweek and dynamic programming
approaches to employee days-off scheduling.

The interest in flexible and compressed work sched-
ules has been steadily growing. According to McCamp-

J Sched

bell (1996), the US Office of Personnel Management sug-
gests three compressed schedule modules: 3-day workweek,
4-day workweek, and the 5-4/9 plan. Management Ser-
vices Journal (2003) reports that UK firms are required
since April 2003 to provide their staff with flexible work-
ing options. This real-life interest in compressed schedules
is reflected in many recent papers. For example, these in-
clude Browne and Nanda (1987), Gould (1988), Nanda and
Browne (1992, pp. 245–249), Hung and Emmons (1993),
Burns et al. (1998), Billionnet (1999), Alfares (2003, 2006),
and Costa et al. (2006). Hung (1996) gives a literature re-
view focused on compressed workweek scheduling. Ernst et
al. (2004) provide the most recent and comprehensive sur-
vey of employee scheduling literature.

There have been several applications of dynamic pro-
gramming (DP) to solve employee scheduling problems.
Davis and Reutzel (1981) use DP to minimize the cost of
scheduling full-time and part-time check processing opera-
tors at a commercial bank. This DP approach is similar to
a production system model with backordering, in which the
delivery of checks represents the demand. Vassilacopoulos
(1985) uses DP to determine the optimal allocation of an
emergency department doctors to each hour and each work
shift in the week. The objective is to minimize the maximum
absolute deviation from requirements for each hour. Jonsson
(1987) employs DP to determine the number of standby bus
drivers that minimizes the expected cost of unused drivers
and canceled bus tours. While the demand varies consider-
ably due to passengers commuting to and from work, the
supply of drivers is affected by sudden absences from work.

Easton and Rossin (1991) use DP within a working sub-
set tour scheduling heuristic, in which only a small subset
of feasible tours are used. DP is used to decide which feasi-
ble tours should be included in the working subset in order
to minimize the total labor cost. Alfares and Bailey (1997)
use DP with heuristic bounds on workforce size to deter-
mine days-off assignments of employees within an inte-
grated model for minimum-cost scheduling of project tasks
and manpower.

Caprara et al. (2003) combine DP with heuristic proce-
dures to schedule the minimum number of employees at an
emergency call center. The definition of working patterns
for each employee is formulated as a covering problem for
which alternative ILP models and DP algorithms based on
these models are presented. Mohamed et al. (2003) enhance
DP with knowledge-based techniques, genetic algorithms,
simulated annealing, and fuzzy logic to solve manpower
allocation problems. Koole and Pot (2005) apply the pol-
icy iteration method in the context of approximate DP for
scheduling multi-skilled call center agents. Considering a
waiting queue for each skill type, they avoid the DP curse
of dimensionality by using simulation to approximate value
functions.

In light of the above literature review, previous DP-based
employees scheduling approaches typically aim to minimize
the total cost or number of employees. In general, the stages
of these DP models are the different planning time periods,
while the states are usually the different scheduling options
(tours or days-off patterns). Evidently, all previous DP ap-
proaches to employee scheduling assume that the cost of any
workday depends only on the given workday, regardless of
the employee’s previous work assignments.

This paper presents a new DP approach for a single-shift
compressed workweek employee scheduling. In this DP ap-
proach, the objective is to minimize the total labor cost, the
stages are the days in the planning horizon, and the states
are the feasible days-off schedules. The novelty of this DP
approach comes from the unique cost structure, in which an
employee’s daily wage depends on the sequence of work as-
signments in previous days. The remainder of this paper is
organized as follows. Section 2 introduces the problem defi-
nition. In Sect. 3, the set of feasible days-off patterns is iden-
tified. Section 4 is devoted to problem formulation. The DP
algorithm is described in Sect. 5. A real-life application is
presented and computational results are reported in Sect. 6.
Finally, a number of conclusions and suggestions are offered
in Sect. 7.

2 Problem definition

Assume we have a vector of daily labor demands R:

R = {
r(1), r(2), . . . , r(T)

}
, (1)

where

r(t) = the number of employees needed in the t th day.

The schedule of the workforce is subject to the following
assumptions and restrictions:

1. Each employee works no more than 3 days per week.
2. At least 2 consecutive off days per week.
3. No more than 4 consecutive workdays per work stretch.
4. The number of employees working at any day t is = r(t).
5. The worker’s daily wage depends on the weekday, and

the previous working pattern of the worker.

As highlighted in the previous section, assumption 1 is rep-
resentative of the compressed workweek scheduling envi-
ronment. Assumption 2 is a very common requirement in
days-off scheduling, whose purpose is to give employees
at least one meaningful extended break during each week.
Assumption 3 is frequently encountered in multiple-week
three-day workweek scheduling models (e.g., Burns et al.
1998; Narasimhan 2000). Assumption 4 takes advantage
of the flexibility of work rules in order to eliminate over-
staffing and understaffing. The daily labor demands, and

J Sched

Table 1 Work sequence-dependent daily wage structure

consequently employee schedules, are not assumed to be
cyclic, thus they may change from one week to another.
Moreover, the number of weekly workdays per employee
is not fixed as three, but it could range from one to three.
This provides a lot of flexibility in the schedule that makes
it always feasible and economical to satisfy the daily labor
demands exactly.

To the best of our knowledge, the 5th condition above
is unique to this paper. Usually, higher (premium) pay is
given for work during certain time periods, such as overtime,
weekend, and evening. Therefore, the pay for each period
commonly depends only on the work period itself, regard-
less of the prior work/off sequence. According to the cost
structure introduced in this paper, the pay for each period de-
pends on the current work period and also the prior work/off
sequence. There are several possibilities to implement this
realistic condition in order to reflect the actual labor rules.
In this paper, we use the following types of work sequence-
dependent costs whose structure is illustrated in Table 1:

c0 = cost of a normal week day.

c1 = cost of a single weekend day.

c2 = cost of a second weekend day.

c3 = cost of first day in a week after working full weekend.

c4 = cost of the first day in a week following 3 workdays.

c5 = cost of the first day of a weekend after 2 consecutive

workdays.

c6 = cost of the second weekday following 3 consecutive

workdays.

c7 = cost of the third weekday following 3 consecutive

workdays.

It is desired to develop the work assignment that minimizes
the total labor cost, while satisfying the work demand under
the stated constraints. Due to the unique cost structure, ILP
models are generally not well suited to solve this problem, in

which the labor cost depends on the sequence of work/break
assignments. For example, the number of decision variables
in the explicit ILP formulation must be equal to the number
of work/off sequences, 2T , where T is the number of days
in the planning horizon. This exponentially growing prob-
lem size makes the problem NP-complete, whose optimum
ILP solution is very difficult. Although implicit, more com-
pact ILP models can be formulated, this kind of sequence-
dependent cost structure is naturally best handled by DP.

Let us define a weekly assignment pattern as:

A = {a1, a2, a3, a4, a5, a6, a7}, ai ∈ {0,1}. (2)

Clearly the number of binary patterns is 128. Since not all
patterns satisfy assumptions 1 to 3, a subset J is defined
as follows J = {all 7-bit binary numbers, whose bit patterns
satisfy the assumptions 1 to 3}. The size of set J is NJ = 62.
These binary numbers and their equivalent binary patterns
are given in Table 2. We refer to the feasible days-off as-
signments defined by the set J as the h-patterns (horizon-
tal patterns). The use of the set J and Table 2 is in fact a
general framework for representation of any restricted em-
ployee work patterns and can be applied to other restricted
work assignment problems. For example, Table 2 excludes
the all-zero pattern, which implies that “at least one shift per
week” is also imposed. Removing this condition can simply
be achieved by including the all-zero row in the table. The
simulation examples consider the cases of one or more shift
per week.

Next, we also need to define further subsets of J as fol-
lows:

Jl,t = {
set of pattern numbers in J such that their first t bits

(b1, b2, . . . , bt)2 = l
}

(3)

where l is a t-bit binary number.
We also define the size of such subsets to be NJ (l, t).
If the weekend is to be undivided, we may impose also

the condition

[
(a6 ⊕ a7) OR (ā6 ⊕ ā7)

] = 1. (4)

This case will not be considered in this paper. However, it is
clear that this case could also be covered by a minor adjust-
ment of the algorithm proposed in subsequent sections.

3 Problem formulation

Let rmax be the maximum number of employees needed in
any day:

rmax = max
{
r(1), r(2), . . . , r(T)

}
. (5)

J Sched

Table 2 Weekly patterns
satisfying conditions 1–3 No. 1 2 3 4 5 6 7 No. 1 2 3 4 5 6 7

1 0 0 0 0 0 0 1 32 0 1 0 0 1 1 0

2 0 0 0 0 0 1 0 33 0 1 0 1 0 0 0

3 0 0 0 0 0 1 1 34 0 1 0 1 0 0 1

4 0 0 0 0 1 0 0 35 0 1 0 1 1 0 0

5 0 0 0 0 1 0 1 36 0 1 1 0 0 0 0

6 0 0 0 0 1 1 0 37 0 1 1 0 0 0 1

7 0 0 0 0 1 1 1 38 0 1 1 0 0 1 0

8 0 0 0 1 0 0 0 39 0 1 1 0 1 0 0

9 0 0 0 1 0 0 1 40 0 1 1 1 0 0 0

10 0 0 0 1 0 1 0 41 1 0 0 0 0 0 0

11 0 0 0 1 0 1 1 42 1 0 0 0 0 0 1

12 0 0 0 1 1 0 0 43 1 0 0 0 0 1 0

13 0 0 0 1 1 0 1 44 1 0 0 0 0 1 1

14 0 0 0 1 1 1 0 45 1 0 0 0 1 0 0

15 0 0 1 0 0 0 0 46 1 0 0 0 1 0 1

16 0 0 1 0 0 0 1 47 1 0 0 0 1 1 0

17 0 0 1 0 0 1 0 48 1 0 0 1 0 0 0

18 0 0 1 0 0 1 1 49 1 0 0 1 0 0 1

19 0 0 1 0 1 0 0 50 1 0 0 1 0 1 0

20 0 0 1 0 1 0 1 51 1 0 0 1 1 0 0

21 0 0 1 0 1 1 0 52 1 0 1 0 0 0 0

22 0 0 1 1 0 0 0 53 1 0 1 0 0 0 1

23 0 0 1 1 0 0 1 54 1 0 1 0 0 1 0

24 0 0 1 1 0 1 0 55 1 0 1 0 1 0 0

25 0 0 1 1 1 0 0 56 1 0 1 1 0 0 0

26 0 1 0 0 0 0 0 57 1 1 0 0 0 0 0

27 0 1 0 0 0 0 1 58 1 1 0 0 0 0 1

28 0 1 0 0 0 1 0 59 1 1 0 0 0 1 0

29 0 1 0 0 0 1 1 60 1 1 0 0 1 0 0

30 0 1 0 0 1 0 0 61 1 1 0 1 0 0 0

31 0 1 0 0 1 0 1 62 1 1 1 0 0 0 0

Define rceil as follows

rceil = max
j

{⌈
1

3

min(7+7j,T)∑

m=1+7j

r(m)

⌉}

, (6)

where �z� is the ceiling function, j = week number =
0,1,2, . . . , �T/7�.

Thus, the minimum number of employees to satisfy the
daily labor demand is given by:

W = max{rceil, rmax}. (7)

Define xi,t for i = 1,2, . . . ,W and t = 1,2, . . . , T as fol-
lows

xi,t =
{

1, if day t is a workday for employee i,

0, otherwise.
(8)

The schedule of the ith employee may be expressed as:

Xi = {xi,1, xi,2, . . . , xi,T }. (9)

Assumption 1 may then be written as:

7∑

m=1

xi,m+7j ≤ 3,

m + 7j ≤ T , j = 0,1,2, . . . , �T/7�. (10)

Assumption 4 can now be written as:

W∑

i=1

xi,t = r(t), t = 1,2, . . . , T . (11)

J Sched

The work assignment of the W employees at day t is given
by:

vt = {x1,t , x2,t , . . . , xW,t }. (12)

The cost associated with an employee i working on a day t

is given by ci,t . Such cost is assumed to depend on the par-
ticular weekday as well as the employee’s previous working
patterns, i.e., the consecutive working days prior to t . The
objective of the scheduling problem is thus to minimize the
total labor cost:

C =
W∑

i

T∑

t=1

xi,t ci,t . (13)

4 The DP algorithm

We define Jv(t) to be the set of all vertical patterns at time t ,
and the size of this set is Nv(t). On any given day t , the num-
ber of possible ways of selecting r(t) employees from the to-
tal workforce of size W is equal to Nv(t). These Jv(t) selec-
tions are W -bit binary patterns, and we refer to these work
assignment patterns as the v-patterns (vertical patterns). The
kth vertical pattern at day t is represented by:

vk
t = {

xk
1,t , x

k
2,t , . . . , x

k
W,t

}
. (14)

Let us define

k = the current v-pattern number under consideration

in day t;
k1 = the v-pattern number under consideration in day t − 1;
K(t) = the optimum v-pattern schedule

(employee selection) in day t.

In dynamic programming (DP) terminology, the stages are
the T days, the states are the current schedules (v-patterns)
at day t , and the alternatives are the previous schedules at
day t −1. The algorithm uses a forward recursion procedure,
which proceeds from day 1 to day T . At any given day t , the
algorithm computes the minimum cost over all patterns k1

in Jv(t − 1), or path cost up to t − 1 and k1, plus the cost of
the v-pattern k at time t as depicted in Fig. 1.

For each v-pattern in Jv(t), the following DP recursive
relationships are used to calculate the minimum path cost
C(t, k):

C(0, k) = 0, (15)

C(t, k) = min
k1∈Jv(t−1)

{

C(t − 1, k1) +
W∑

i=1

xk
i,t ci,t

}

, (16)

Fig. 1 Finding the best path ending at t −1 for each possible v-pattern
k at time t

where {xk
1,t , x

k
2,t , . . . , x

k
W,t } is the work assignment at day t

using the kth vertical pattern. C(t, k) gives the optimal cost
of the path ending at time t , when the v-pattern k is selected.
C(t, k) is calculated sequentially as t progresses. Once we
reach t = T , the best path is the terminal path of minimum
cost among all terminal paths. The selected best path can
then be tracked backward to obtain the optimal v-pattern as-
signment for every t .

In order to track the optimal path backward, we need to
store the path history. A back tracking matrix P(k,W, t)

stores the best previous v-patterns k1 which minimizes (16).
At any time t , the first index k points to a binary matrix of
dimension W × t , which stores the previous t optimal v-
patterns.

The algorithm was coded in a MATLAB program. To im-
prove the efficiency of the algorithm, several refinements
can be considered. We notice in the minimization of (16),
that not all v-patterns in Jv(t) can precede a v-pattern k at
time t . The sequence k1–k of v-patterns must not violate the
h-patterns of any of the employees. This can be easily tested
with the help of the subsets Jl,t defined earlier. If the k1–k v-
pattern sequence is selected, the sequence k1–k is dismissed
or assigned an arbitrarily high cost if such a sequence leads
to an empty Jl,t set for any employee. Similarly, we check
if the sequence k1–k leads to no more than 4 consecutive
working days. The sequence is then assigned an arbitrarily
high cost if it does not meet this condition.

The algorithm proceeds according to the following steps:

1. Compute and store the weekly h-patterns (see Table 2).

J Sched

2. Compute the minimum number of workers W using (7).
3. Using the labor demand matrix R, compute the number

of vertical patterns Nv(t), at each time t . Compute and
store the vertical patterns.

4. At time t = 1, initialize the back tracking matrix P(k,

W, t), and set the cost C(t, k) = c0r(t).
5. For t ≥ 2

For k = 1 to Nv(t)

For k1 = 1 to Nv(t − 1)

(a) Check if the sequence k1–k does not violate any of
the workers’ h-patterns.

(b) Check if the sequence k1–k does not lead to assign-
ment of 4 or more workdays in sequence.

(c) Compute the cost of k1–k.
Find the optimal k1 which leads to the minimum cost of
k1–k sequence over all k1 patterns.

6. Update the back tracking matrix P(k,W, t).
7. At t = T , find the optimal terminal v-pattern k∗ =

arg[min{C(t, k)}].
8. Use the back tracking matrix P(k∗,W, t) to obtain the

optimal work assignment.

Let Nv(t) be the number of vertical patterns at time t , then
the number of operations NOP is given by

NOP ∼= O

(
T∑

t=2

Nv(t) · Nv(t − 1)

)

≈ O
(
T · N̄2

v

); (17)

where N̄v is the average number of v-patterns during the
schedule period T .

5 An application and computational experiments

5.1 Assignment of security personnel

The DP algorithm has been applied to the problem of night
shift assignment of security personnel in a university cam-
pus. The assignment includes the campus gate, a patrol car,
and a call desk for receiving emergency calls. The demand
for a typical three-week period is given below. During the
first week, which has a normal workload, 5 security officers
are needed on workday evenings and 3 security officers are
needed on weekend evenings. The second week gives the
manpower needed when night events are scheduled, while
the third week represents typical night shift load during an
exam week. Given the following labor demand and cost vec-
tors, we would like to find the optimal employee days-off
assignment subject to the conditions assumed in this paper.

R = {
r(1), . . . , r(21)

}

= (5,5,5,5,5,3,3,5,5,5,5,8,7,3,6,6,7,7,5,3,3),

(c0, c1, . . . , c7) = (1,1.5,2,1.25,1.5,2,1.5,1.5).

Using (5–7):

rmax = max{5,5,5,5,5,3,3,5,5,5,5,8,7,3,6,6,7,7,5,

3,3} = 8,

rceil = max

{⌈
31

3

⌉
,

⌈
38

3

⌉
,

⌈
37

3

⌉}
= 13.

The minimum number of workers is W = max{8,13} = 13.

Running the MATLAB program to apply the DP algorithm,
we obtain the solution shown in Table 3, corresponding to

Table 3 Optimum days-off assignment for campus security personnel

Employee Days of week 1 Days of week 2 Days of week 3

i 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 1 1 0 0 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0 0

2 1 1 0 0 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0 0

3 1 1 0 0 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0 0

4 1 1 0 0 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0 0

5 1 1 0 0 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0 0

6 0 0 1 1 0 0 1 0 0 1 1 0 0 1 1 1 0 1 0 0 0

7 0 0 1 1 0 0 1 0 0 1 1 0 1 0 0 0 1 1 0 0 1

8 0 0 1 1 0 0 1 0 0 1 1 0 1 0 0 0 1 1 0 0 1

9 0 0 1 1 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 1

10 0 0 1 1 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 1 0

11 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 1 1 0 1 0

12 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 1 1 0 1 0

13 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0

J Sched

Table 4 Summary of
computational experiments with
the DP algorithm

Problem Demand Cost Workforce Additional Total cost CPU time

number vector size W conditions ($) (sec)

1 R1 S1 8 126.5 16.7

2 R1 S1 9 141.5 61.5

3 R1 S1 10 156.5 183.7

4 R1 S1 8 Q1 or Q2 126.5 19

5 R1 S1 9 Q1 141.5 60.7

6 R1 S1 9 Q2 141.5 60.2

7 R1 S1 10 Q1 156.5 174.5

8 R1 S2 8 116.75 16.8

9 R1 S3 8 139 15.5

10 R3 S1 9 67.5 48

11 R4 S1 9 68 29

12 R5 S1 9 71 34

13 R6 S1 9 67.5 36

14 R7 S1 9 70 29

15 R8 S1 9 69 70

a minimum total cost C = 311.5. Note that the rows in the
table represent the selected h-patterns, while the columns
represent the v-patterns. The program was set to impose a
minimum of one shift per week for every employee. The se-
curity department had a 15-employee workforce. An ad-hoc
schedule was used, especially for special night events and
exam weeks, causing conflicts and complaints by employ-
ees. The proposed schedule reduced the number of required
employees to 13, improved employee satisfaction, and min-
imized the labor cost.

5.2 Computational experiments

Fifteen test problems, divided into three sets, were used
to conduct extensive computational experiments. Using the
MATLAB program to solve each test problem by the new
DP algorithm, the results of these experiments are summa-
rized in Table 4. All the test problems were run using MAT-
LAB Version 6.5 on a notebook Pentium IV PC with 1.7
GHz CPU and 256 K memory. The first set, which contains
7 test problems (numbered 1–7), has the following demand
pattern over a 14-day period and cost vector:

R1 = {
r(1), . . . , r(14)

}

= (3,2,1,5,3,3,1,2,6,3,2,5,4,2),

S1 = (c0, c1, . . . , c7) = (1,1.5,2,1.25,1.5,2,1.5,1.5).

Using (5–7), the minimum number of workers to satisfy this
demand subject to the conditions in this paper is W = 8.
However, we investigate the solution under different com-
binations of the workforce size and the minimum number
of workdays per week. In practical situations, employers

tend to use some overstaffing, so that the work would not
be affected in case of casual absence, vacations, or sick
leaves of one or more of the employees. Therefore, for this
problem we investigate the effect of imposing the condition
W = 9 (one extra worker) or the condition W = 10 (two ex-
tra workers). Moreover, we also explore solutions obtained
when constraints are imposed on the minimum number of
workdays per week. Specifically, we investigate the effect
of adding one of the two following constraints:

Q1: Each employee works at least one workday

per week.

Q2: Each employee works more than one workday

per week.

The second problem set, which contains 2 test problems
(numbered 8–9), has the same labor demand pattern R1. We
impose the minimum number of workers, W = 8, subject to
two alternative cost vectors (compensation schedules):

S2 = (c0, c1, . . . , c7) = (1,1.25,1.5,1,2,1.5,2,2),

S3 = (c0, c1, . . . , c7) = (1,2,2,1,1,2,1.25,1.25).

The third set used to study the performance of the algorithm
contains 6 test problems (numbered 10–15), corresponding
to 6 different demand patterns. The total number of work-
ers needed during a week was taken to be

∑
r = 27 for all

cases. Using (5–7), the minimum number of workers to meet
the desired labor demand was also constant for all cases
(W = 9). For these six problems, the minimum number of

J Sched

workers, W = 9, is imposed subject to the cost vector S1.
The six labor demand patterns are specified as follows:

Trend pattern: R3 = {
r(1), . . . , r(7)

)

= (2,3,3,4,4,5,6);

Concave pattern: R4 = {
r(1), . . . , r(7)

)

= (2,3,5,7,5,3,2);

Convex pattern: R5 = {
r(1), . . . , r(7)

)

= (6,4,3,1,3,4,6);
Triangular pattern: R6 = {

r(1), . . . , r(7)
)

= (3,4,7,5,4,3,1);
Binomial pattern: R7 = {

r(1), . . . , r(7)
)

= (4,6,3,1,3,6,4);

Level pattern: R8 = {
r(1), . . . , r(7)

)

= (4,4,4,4,4,4,3).

From the computational results shown in Table 4, we fo-
cus on the solution quality in terms of the total cost and the
CPU execution time. Clearly, four factors affect the solu-
tion quality, namely: the demand pattern R, the cost vector
S, specified workforce size W , and additional conditions Q.
Obviously, the most important factor is specified workforce
size W , which significantly affects both the total labor cost
and the CPU time. The second most important factor is the
given cost vector S, which considerably influences the to-
tal labor cost but has almost no impact on the CPU time.
The next important factor is the particular demand pattern R,
which substantially affects the CPU time but has almost no
impact on the total labor cost. The least important factor is
the additional conditions imposed on the minimum number
of workdays per week Q, which seems to have no bearing
on either the total labor cost or the CPU time.

6 Conclusions

A dynamic programming algorithm has been presented
for solving a single-shift, compressed workweek employee
days-off scheduling problem. Constraints are imposed on
the maximum work stretch, maximum number of workdays
per week, and minimum number of consecutive off days
per week. The distinguishing feature of the problem is the
unique work-sequence-dependent cost structure, in which
the daily wage of each employee depends on the previous
work assignments in the preceding days. This realistic as-
sumption makes traditional integer programming models
impractical for this problem. Thus, an efficient DP algorithm
is developed to determine the optimum days-off assignments
that minimize the total labor cost. This algorithm has been
applied to a real-life scheduling employee problem, and has
been tested using a set of computational experiments.

Several future research extensions of this research could
be considered. Examples of these extensions include the
following considerations: multiple shifts, multiple skill lev-
els (i.e., hierarchical workforce), full weekends off or on,
and weekend off frequency requirements. The algorithm can
easily be modified to obtain the optimal schedule when the
work demand changes on a daily basis, assuming a fixed
pool of W employees is available. Another interesting ques-
tion is the inclusions of off-day patterns that do not pro-
vide two consecutive off days in a single calendar week, but
would provide two consecutive off days every seven days
with a multi-week planning horizon.

Acknowledgements The authors are grateful to King Fahd Univer-
sity of Petroleum and Minerals for supporting this research effort.

References

Alfares, H. K. (2003). Flexible four-day workweek scheduling with
weekend work frequency constraints. Computers & Industrial En-
gineering, 44(3), 325–338.

Alfares, H. K. (2006). Compressed workweek scheduling with days-
off consecutivity, weekend-off frequency, and work stretch con-
straints. INFOR, 44(3), 175–189.

Alfares, H. K., & Bailey, J. E. (1997). Integrated project task and man-
power scheduling. IIE Transactions, 29(9), 711–718.

Anonymous (2003). UK business caught short on flexible working.
Management Services Journal, 47(3), 3.

Azmat, C. S., & Widmer, M. (2004). A case study of single shift plan-
ning and scheduling under annualized hours: A simple three-step
approach. European Journal of Operational Research, 153(1),
148–175.

Billionnet, A. (1999). Integer programming to schedule a hierarchical
workforce with variable demands. European Journal of Opera-
tional Research, 114(1), 105–114.

Browne, J., & Nanda, R. (1987). Scheduling efficiency of the four-day
week at transportation facilities. In Proceedings of the Institute of
Transportation Engineers 57th annual meeting (pp. 58–62), New
York, 16–20 August 1987.

Burns, R. N., Narasimhan, R., & Smith, L. D. (1998). A set process-
ing algorithm for scheduling staff on 4-day or 3-day work weeks.
Naval Research Logistics, 45(8), 839–853.

Caprara, A., Monaci, M., & Toth, P. (2003). Models and algorithms for
a staff scheduling problem. Mathematical Programming, 98(1–3),
445–476.

Costa, M.-C., Jarray, F., & Picouleau, C. (2006). An acyclic days-off
scheduling problem. 4OR, 4(1), 73–85.

Davis, S. G., & Reutzel, E. T. (1981). A dynamic programming ap-
proach to work force scheduling with time-dependent perfor-
mance measures. Journal of Operations Management, 1(3), 165–
171.

Easton, F. F., & Rossin, D. F. (1991). Sufficient working subsets for
the tour scheduling problem. Management Science, 37(11), 1441–
1451.

Ernst, A. T., Jiang, H., Krishnamoorthy, M., & Sier, D. (2004). Staff
scheduling and rostering: a review of applications, methods, and
models. European Journal of Operational Research, 153(1), 3–
27.

Gould, C. H. (1988). Rolling fours: novel work schedule. Journal of
Construction Engineering and Management, 114(4), 577–593.

Hung, R. (1996). An annotated bibliography of compressed work-
weeks. International Journal of Manpower, 17(6–7), 43–53.

J Sched

Hung, R., & Emmons, H. (1993). Multiple-shift workforce scheduling
under the 3–4 compressed workweek with a hierarchical work-
force. IIE Transactions, 25(2), 82–89.

Jonsson, H. (1987). Dimensioning of bus driver buffers subject to vari-
ations in the traffic load. Engineering Costs and Production Eco-
nomics, 12(1–4), 29–38.

Koole, G., & Pot, A. (2005). Approximate dynamic programming in
multi-skill call centers. In Proceedings of the 37th conference
on winter simulation (pp. 576–583), Orlando, FL, 4–7 December
2005.

McCampbell, A. S., (1996). Benefits achieved through alternative work
schedules. Human Resource Planning, 19(3), 30–37.

Mohamed, K. A., Datta, A., & Kozera, R. (2003). A knowledge-
based technique for constraints satisfaction in manpower alloca-
tion. Lecture Notes in Computer Science, 2659, 100–108.

Nanda, R., & Browne, J. (1992). Introduction to employee scheduling.
New York: Van Nostrand Reinhold.

Narasimhan, R. (2000). An algorithm for multiple-shift scheduling of
hierarchical workforce on four-day or three-day workweek. IN-
FOR, 38(1), 14–32.

Vassilacopoulos, G. (1985). Allocating doctors to shifts in an accident
and emergency department. Journal of the Operational Research
Society, 36(6), 517–523.

	A dynamic programming algorithm for days-off scheduling with sequence dependent labor costs
	Abstract
	Introduction and overview
	Problem definition
	Problem formulation
	The DP algorithm
	An application and computational experiments
	Assignment of security personnel
	Computational experiments

	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

