9

| Introduction to Verilog |

Table of Contents

1
2.

3.

9.

10

11.

12.
13.

14.

15.

16.

17.

INErOdUCEIONot e e e e
LeXiCal TOKENS . . .ottt e e e e e e

White Space, Comments, Numbers, |dentifiers, Operators, Verilog Keywords

Gate-Level Modellingt e

Basic Gates, buf, not Gates, Three-State Gates; bufifl, bufifO, notif1, notifO

Dala TYPBS . .ttt e e e

Value Set, Wire, Reg, Input, Output, Inout
Integer, Supply0, Supplyl
Time, Parameter

(@ o= = 1 0] =

Arithmetic Operators, Relational Operators, Bit-wise Operators, Logical Operators
Reduction Operators, Shift Operators, Concatenation Operator,
Conditional Operator: “?" Operator Precedence

O ANAS .ot e

Literals, Wires, Regs, and Parameters, Bit-Selects “x[3]” and Part-Selects “x[5:3]"
Function Calls

Module Declaration, Continuous Assignment, Module I nstantiations,
Parameterized Modules

Behavioral Modeling

Procedural Assignments, Delay in Assignment, Blocking and Nonblocking Assignments
begin ... end, for Loops, while Loops, forever Loops, repeat,

disable, if ... elseif ... else

case, casex, casez

TIMING CoNtrols. .. o e e e

Delay Control, Event Control, @, Wait Statement, Intra-Assignment Delay

. Procedures: Alwaysand Initial Blocks i i,

Always Block, Initial Block

Function Declaration, Function Return Vaue, Function Call, Function Rules, Example

Registers, Flip-flops, Counters, Multiplexers, Adders/Subtracters, Tri-State Buffers
Other Component Inferences

Counters, Shift Registers
Time Scale, Macro Definitions, Include Directive

$display, $strobe, $monitor $time, $stime, Srealtime,
Preset, $stop, $finish $deposit, $scope, $showscope, $list

Synchronous Test Bench

FUNCLIONS . .ot e e e e e

TASKS o
Component Inference

FiniteState Machines e e
Compiler DireCtiVES. .. oo e

System Tasksand FUNCLIONS i e

Test BENChES

Introduction to Verilog Friday, January 05, 2001 9:34 pm

Peter M. Nyasulu

Introduction to Verilog

|1. | ntr oduction |

Verilog HDL isone of the two most common Hardware Description Languages (HDL) used by integrated circuit
(IC) designers. The other oneis VHDL.
HDL’s alows the design to be simulated earlier in the design cycle in order to correct errors or experiment with
different architectures. Designs described in HDL are technol ogy-independent, easy to design and debug, and are
usually more readable than schematics, particularly for large circuits.

Verilog can be used to describe designs at four levels of abstraction:
(i) Algorithmic level (much like ¢ code with if, case and loop statements).
(il) Register transfer level (RTL uses registers connected by Boolean equations).
(iii) Gate level (interconnected AND, NOR etc.).
(iv) Switch level (the switches are MOS transistors inside gates).
The language also defines constructs that can be used to control the input and output of simulation.

More recently Verilog is used as an input for synthesis programs which will generate a gate-level description (a
netlist) for the circuit. Some Verilog constructs are not synthesizable. Also the way the code is written will greatly
effect the size and speed of the synthesized circuit. Most readers will want to synthesize their circuits, so nonsynthe-
sizable constructs should be used only for test benches. These are program modules used to generate 1/0 needed to
simulate the rest of the design. The words “ ot synthesizable” will be used for examples and constructs as needed that
do not synthesize.

There are two types of codein most HDLs:

Sructural, which isaverbal wiring diagram without storage.

assigna=b & c|d; /*“|"isaOR*/

assignd=e & (~c);

Here the order of the statements does not matter. Changing e will change a
Procedural which is used for circuits with storage, or as a convenient way to write conditional logic.

always @(posedge clk) // Execute the next statement on every rising clock edge.

count <= count+1,
Procedural code iswritten like ¢ code and assumes every assignment is stored in memory until over written. For syn-
thesis, with flip-flop storage, this type of thinking generates too much storage. However people prefer procedural
code because it is usually much easier to write, for example, if and case statements are only allowed in procedural
code. As aresult, the synthesizers have been constructed which can recognize certain styles of procedural code as
actually combinational. They generate a flip-flop only for left-hand variables which truly need to be stored. However
if you stray from this style, beware. Y our synthesis will start to fill with superfluous latches.

This manual introduces the basic and most common Verilog behavioral and gate-level modelling constructs, as
well as Verilog compiler directives and system functions. Full description of the language can be found in Cadence
Verilog-XL Reference Manual and Synopsys HDL Compiler for Verilog Reference Manual. The latter emphasizes
only those Verilog constructs that are supported for synthesis by the Synopsys Design Compiler synthesis tool.

In all examples, Verilog keyword are shown in boldface. Comments are shown in italics.

Friday, January 05, 2001 9:34 pm 1 Peter M. Nyasulu

Introduction to Verilog

|2. Lexical Tokens |

Verilog source text files consists of the following lexical tokens:

2.1. White Space

White spaces separate words and can contain spaces, tabs, new-lines and form feeds. Thus a statement can extend
over multiple lines without special continuation characters.

2.2. Comments
Comments can be specified in two ways (exactly the same way asin C/C++):

- Begin the comment with double slashes (//). All text between these characters and the end of the line will be
ignored by the Verilog compiler.

- Enclose comments between the characters/* and */. Using this method allows you to continue comments on
more than one line. Thisis good for “commenting out” many lines code, or for very brief in-line comments.

Example2 .1

a=c+d; [thisis a simple comment
/* however, this comment continues on more
than one line */
assign y = temp_reg;
assign x=ABC /* plusitscompliment*/ + ABC_

2.3. Numbers

Number storage is defined as a number of bits, but values can be specified in binary, octal, decimal or hexadecimal
(See Sect. 6.1. for details on number notation).

Examples are 3'b001, a 3-bit number, 5'd30, (=5'b11110), and 16' h5ED4, (=16’ d24276)

2.4. |dentifiers

Identifiers are user-defined words for variables, function names, module names, block names and instance names.
Identifiers begin with aletter or underscore (Not with anumber or $) and can include any number of letters, digitsand
underscores. Identifiersin Verilog are case-sensitive.

Syntax Example 2 .2

allowed symbols adder /1 use under scores to make your
ABCDE. .. abcdgf. i 123456_7890 $ by 8 shifter /I identifiers more meaningful

not allowed: anything else especially ABC /* isnotthesameas*/ abc
-&H@ B - cad

Read /I is often used for NOT Read

2.5. Operators
Operators are one, two and sometimes three characters used to perform operations on variables.
Examplesinclude >, +, ~, &, !=. Operators are described in detail in “ Operators’ on p. 6.

2.6. Verilog Keywords

These are words that have special meaning in Verilog. Some examples are assign, case, while, wire, reg, and, or,
nand, and module. They should not be used as identifiers. Refer to Cadence Verilog-XL Reference Manual for a
complete listing of Verilog keywords. A humber of them will be introduced in this manual. Verilog keywords also
includes Compiler Directives (Sect. 15.) and System Tasks and Functions (Sect. 16.).

Friday, January 05, 2001 9:34 pm 2 Peter M. Nyasulu

Introduction to Verilog

|3. Gate-Level Modelling I

Primitive logic gates are part of the Verilog language. Two properties can be specified, drive_strength and delay.
Drive_strength specifies the strength at the gate outputs. The strongest output is a direct connection to a source, next
comes a connection through a conducting transistor, then aresistive pull-up/down. The drive strength is usually not
specified, in which case the strengths defaults to strongl and strong0. Refer to Cadence Verilog-XL Reference Man-
ual for more details on strengths.

Delays: If no delay is specified, then the gate has no propagation delay; if two delays are specified, the first represent
the rise delay, the second the fall delay; if only one delay is specified, then rise and fall are equal. Delays are ignored
in synthesis. This method of specifying delay is a special case of “Parameterized Modules” on page 11. The parame-
ters for the primitive gates have been predefined as delays.

3.1. Basic Gates

These implement the basic logic gates. They have one output and one or more inputs. In the gate instantiation syntax
shown below, GATE stands for one of the keywords and, nand, or, nor, xor, xnor.

Syntax Example 3.1
GATE (drive_strength) # (delays)
instance_namel(output, input_1, andcl(o,a b, c,d); //4input AND called cl and
input_2,..., input_N), c2(p,fo); /[a 2-input AND called c2.

instance_name2(outp,inl, in2,..., inN); or #(4,3)ig (o, a b); /* or gate called ig (instance name);

Delaysis risetime = 4, fall time= 3 */
#(rise, fall) or xor #(5) xorl (a b, c); //a= b XOR c after 5 time units
#rise and fal or xor (pulll, strong0) #5 (a,b,c); /* Identical gate with pull-up
#(rise:and:fall) strength pull1 and pull-down strength strong0. */

3.2. buf, not Gates

These implement buffers and inverters, respectively. They have one input and one or more outputs. In the gate instan-
tiation syntax shown below, GATE stands for either the keyword buf or not

Syntax Example 3.2

not #(5) not_1(a,c); //a= NOT c after 5 time units
buf c1 (o, p, g, r,in); // 5-output and 2-output buffers

c2 (p, f g);

GATE (drive_strength) # (delays)
instance_namel(output_1, output_2,

..., output_n, input),
instance_name2(outl, out2, ..., outN, in);

3.3. Three-State Gates; bufifl, bufifO, notifl, notifO
These implement 3-state buffers and inverters. They propagate z (3-state or high-impedance) if their control signal is
deasserted. These can have three delay specifications: arisetime, afall time, and atime to go into 3-state.
bufifo notifo Example 3 .3
A BUS=2 bufifo #(5) not_1 (BUS, A, CTRL); /* BUS= A

5 time units after CTRL goes low. */
notifl #(3,4,6) c1 (bus, & b, cntr); /* bus goes tri-state
bufifl notifl 6 time units after ctrl goes low. */

CTRL=1

Friday, January 05, 2001 9:34 pm 3 Peter M. Nyasulu

Introduction to Verilog

|4. Data Types l

4.1. Value Set

Verilog consists of only four basic values. Almost all Verilog data types store all these values:
0 (logic zero, or false condition)
1 (logic one, or true condition)
x (unknown logic value) x and z have limited use for synthesis.
z (high impedance state)

4.2. Wire

A wire represents a physical wirein acircuit and is used to connect gates or modules. The value of awire can be
read, but not assigned to, in afunction or block. See “Functions’ on p. 19, and “Procedures: Always and Initial
Blocks” on p. 18. A wire does not store its value but must be driven by a continuous assignment statement or by con-
necting it to the output of a gate or module. Other specific types of wiresinclude:

wand (wired-AND);:the value of awand depend on logical AND of all the drivers connected to it.

wor (wired-OR);: the value of awor depend on logical OR of al the drivers connected to it.

tri (three-state;): all drivers connected to atri must be z, except one (which determines the value of the tri).

Syntax

Example4 .1
wire[msb:lsb] wire variable list; wa[:dcd' /I smple wire
xsr?rg;b%?sbﬁb\]/vgﬁiﬁyi;gb:iest_}ISt; assignd =g, [/l value of d isthe logical AND of
tri [msbrlsh] tri_variable list asignd=b; /faandb .
wire[9:0] A; /l a cable (vector) of 10 wires.
4.3. Reg

A reg (register) isadata object that holdsits value from one procedural assignment to the next. They are used only in
functions and procedural blocks. See “Wire” on p. 4 above. A regisaVerilog variable type and does not necessarily
imply a physical register. In multi-bit registers, datais stored as unsigned numbers and no sign extension is done for
what the user might have thought were two's complement numbers.

Syntax Example 4 .2

) . I rega; /I single 1-bit register variable
reg [msv:lso] reg_variable list reg [7:0] tom; // an 8-bit vector; a bank of 8 registers.
reg[5:0] b,c; //two 6-bit variables

4.4. Input, Output, I nout

These keywords declare input, output and bidirectional ports of amodule or task. Input and inout ports are of type
wire. An output port can be configured to be of type wire, reg, wand, wor or tri. The default iswire.

Syntax Example4 .3

module sample(b, €, ¢, @); //See“ Module Instantiations’” on p. 10
input & /I An input which defaults to wire.
output b, € /I Two outputs which default to wire
output [1:0] ¢; /* Atwo-it output. One must declare its
type in a separate statement. */
reg[1:0] c; /I The above c port is declared asreg.

input [msb:Isb] input_port_list;
output [msh:lsb] output_port_list;
inout [msh:lsb] inout_port_list;

Friday, January 05, 2001 9:34 pm 4 Peter M. Nyasulu

Introduction to Verilog

4.5. Integer

Integers are general -purpose variables. For synthesois they are used mainly loops-indicies, parameters, and con-
stants. See"Parameter” on p. 5. They are of implicitly of type reg. However they store data as signed numbers
whereas explicitly declared reg types store them as unsigned. If they hold numbers which are not defined at compile
time, their size will default to 32-bits. If they hold constants, the synthesizer adjusts them to the minimum width
needed at compilation.

Syntax Example4 .4

integer a; /Il single 32-bit integer
assign b=63; /l 63 defaultsto a 7-bit variable.

integer integer_variable list;
.. integer_constant ... ;

4.6. SupplyO, Supplyl
Supply0 and supply1 define wires tied to logic 0 (ground) and logic 1 (power), respectively.

Syntax Example 4 .5

supplyO logic_0_wires; supply0 my gnd; // equivalent to awire assigned 0
supplyllogic_1 wires; supplyl a, b;

47. Time

Timeis a 64-bit quantity that can be used in conjunction with the $time system task to hold simulation time. Timeis
not supported for synthesis and hence is used only for simulation purposes.

Syntax Example 4 .6

timetime variable list; timec;

c=$time /I ¢ = current simulation time

4.8. Parameter

A parameter defines a constant that can be set when you instantiate amodule. This allows customization of a mod-
ule during instantiation. See also “ Parameterized Modules’ on page 11.

Syntax Example 4 .7

parameter add = 2'b00, sub = 3'b111;
parameter n = 4;

parameter n=4;
parameter [3:0] param2 = 4'b1010;

parameter par_1=value,
par_2=value,;
parameter [range] parm_3 = value

reg [n-1:0] harry; /* A 4-bit register whose length is
set by parameter n above. */

always @(x)
y ={{(add - sub){x}}; // Thereplication operator Sect. 5.8.
if (x) begin
state = param?2[1]; else state = param?2[2];
end

Friday, January 05, 2001 9:34 pm 5 Peter M. Nyasulu

Introduction to Verilog

|5. Operators l

5.1. Arithmetic Operators

These perform arithmetic operations. The + and - can be used as either unary (-z) or binary (x-y) operators.

Operators

+ (addition)

- (subtraction)

* (multiplication)
[(division)

% (modulus)

5.2. Relational Operators

Example 5.1

parameter n = 4,
reg[3:.0] &, c, f, g, count;
f=a+c;

g=c-n;
count = (count +1)%16;

/ICan count O thru 15.

Relational operators compare two operands and return a single bit 1or 0. These operators synthesize into comparators.
Wire and reg variables are positive Thus (-3'b001) = = 3'b111 and (-3d001)>3d110. However for integers -1< 6.

Operators

< (lessthan)

<= (lessthan or egqual to)

> (greater than)

>= (greater than or equal to)
== (equal to)

I= (not equal to)

5.3. Bit-wise Operators

Example5 .2 quivalent Statement
if x==y) e=1,
else e=0; e=(x==y),
/I Comparein 2's compliment; a>b
reg[3:0] ab;
if (a[3]==D0[3]) &a2:0] >b[2:0];
else b[3];

Bit-wise operators do a bit-by-bit comparison between two operands. However see”Reduction Operators’ on p. 7.

Operators
~ (bitwise NOT)
& (bitwise AND)
| (bitwise OR)
A (bitwise XOR)

~" or M~(bitwise XNOR)

5.4. Logical Operators

Example 5.3

a a(0
5| b

module and2 (a, b, ¢);)
input [1:0] &, b;
output [1:0] c; a(l)
assignc=a& b; D il P >—
endmodule

Logical operatorsreturn asingle bit 1 or 0. They are the same as bit-wise operators only for single bit operands. They
can work on expressions, integers or groups of bits, and treat all valuesthat are nonzeroas“1”. Logical operatorsare
typically used in conditional (if ... else) statements since they work with expressions.

Operators

I (logical NOT)
& & (logical AND)
[(logical OR)

Example 5 .4
wirg[7:0] x, Yy, z;
rega

/I'x, y and z are multibit variables.

if (x==y)&& (2))a=1; //a= lifxequalsy, and zis nonzero.
/I a=0if x is anything but zero.

else a=1x;

Friday, January 05, 2001 9:34 pm

6 Peter M. Nyasulu

Introduction to Verilog

5.5. Reduction Operators
Reduction operators operate on all the bits of an operand vector and return asingle-bit value. These are the unary (one
argument) form of the bit-wise operators above.

Operators Example 5.5
. module chk_zero (a, 2);
& (reduction AND) input [2'0]_a; (@2 z
| (reduction OR) output 5 o
~& (reduction NAND) . ' .
. assign z = ~| & // Reduction NOR
~| (reduction NOR) endm%dule |

A (reduction XOR)
~ or *~(reduction XNOR)

5.6. Shift Operators

Shift operators shift the first operand by the number of bits specified by the second operand. Vacated positions are
filled with zeros for both left and right shifts (There is no sign extension).

Operators Example5 .6

assign c=a<<2; [* c= ashifted left 2 bits;
vacant positions are filled with 0's */

<< (shift left)
>> (shift right)

5.7. Concatenation Oper ator
The concatenation operator combines two or more operands to form alarger vector.

Operators Example 5.7
) wire[1:0] a, b; wire[2:0] x; wire[3;0]y, Z;
{' }(concatenation) assign x ={1'b0, & // [2]=0, X[1]=a[1], X[0]=a[0]

assgny={a b}; /*y[3]=a[1], y[2]=a[0], y[1]=Db[1],
y[0]=b[0] */

assign {cout, y} =x + Z; // Concatenation of a result

5.8. Replication Operator

The replication operator makes multiple copies of an item.

Operators Example5 .8

, o , wire[1:0] a, b; wire[4:0] x;

{n{item}} (nfold replication of an item) assign x = {2{1'b0}, a}; // Equivalentto x= {0,0,a}
assigny ={2{a}, 3{b}}; //Equivalentto y= {a,ab,b}

For synthesis, Synopsis did not like a zero replication. For example:-
parameter n=5, m=5;
assign x= {(n-m){a}}

Friday, January 05, 2001 9:34 pm 7 Peter M. Nyasulu

Introduction to Verilog

5.9. Conditional Operator: “?”

Conditional operator islike thosein C/C++. They evaluate one of the two expressions based on a condition. It will
synthesize to a multiplexer (MUX).

Operators

(cond) ? (result if cond true):
(result if cond false)

Example 5.9
assign a=(g) ?x:vy; 9
assign a=(inc==2)?atl:al,;
[*if (inc),a= a+1, elsea=a1*/

Xy Y,

5.10. Operator Precedence

Table 6.1 shows the precedence of operators from highest to lowest. Operators on the same level evaluate from left to
right. It is strongly recommended to use parentheses to define order of precedence and improve the readability of

your code.
Operator Name
[1] bit-select or part-select
() parenthesis
I~ logical and bit-wise NOT
&, |, ~&, ~|,*, ~",*~ | reduction AND, OR, NAND, NOR, XOR, XNOR;
If X=3'B101 and Y=3'B110, then X& Y=3'B100, X"\Y=3'B011;
+, - unary (sign) plus, minus;, +17, -7
{1} concatenation; {3'B101, 3'B110} = 6'B101110;
N replication; { 3{3'B110}} = 9'B110110110
* 1, % multiply, divide, modulus; [and % not be supported for synthesis
+, - binary add, subtract.
<<, >> shift left, shift right; X<<2ismultiply by 4
<, <=, >, >= comparisons. Reg and wire variables are taken as positive numbers.
== 1= logical equality, logical inequality
=== l1== case equality, case inequality; not synthesizable
& bit-wise AND; AND together all the bitsin aword
AN N~ bit-wise XOR, bit-wise XNOR
| bit-wise OR; AND together all the bitsin aword
&&, logical AND. Treat all variables as False (zero) or True (honzero).
I logical OR. (7]|0) is(T||F) =1, (2|]-3) is(T||T) =1,
(3&&0) is(T&&F) =0.
?: conditional. x=(cond)?T : F;

Table5.1: Verilog Operators Precedence

Friday, January 05, 2001 9:34 pm

8 Peter M. Nyasulu

Introduction to Verilog

|6. Operands l

6.1. Literals

Literals are constant-valued operands that can be used in Verilog expressions. The two common Verilog literals are:
() String: A string literal is aone-dimensional array of characters enclosed in double quotes (“ “).
(b) Numeric: constant numbers specified in binary, octal, decimal or hexadecimal.

Number Syntax Example 6.1
n F_ddd..., where _ . “timeig’// string literal
n - integer representing number of bits 267 /I 32-bit decimal number

F - one of four possible base formats:
b (binary), o (octal), d (decimal),
h (hexadecimal). Default isd.

2'b01 // 2-bit binary
20'hB36F// 20-bit hexadecimal number
‘062 /[32-bit octal number

dddd - legal digits for the base format

6.2. Wires, Regs, and Parameters
Wires, regs and parameters can also be used as operandsin Verilog expressions. These data objects are described in
more detail in Sect. 4. .

6.3. Bit-Selects “x[3]” and Part-Selects“ x[5:3]”

Bit-selects and part-selects are a selection of asingle bit and a group of bits, respectively, from awire, reg or parame-
ter vector using square brackets “[]”. Bit-selects and part-selects can be used as operands in expressions in much the
same way that their parent data objects are used.

Syntax Example 6 .2
variable_name[index] reg [;jg] Ia,.b,
variable_name[msb:Ish] reg[3.0Is
regc;
c=4a7] & b[7]; /I bit-selects
Is=a[7:4] +b[3:0]; // part-selects

6.4. Function Calls

The return value of afunction can be used directly in an expression without first assigning it to aregister or wire var-
iable. Simply place the function call as one of the operands. Make sure you know the bit width of the return value of
the function call. Construction of functionsis described in “ Functions’ on page 19

Syntax Example 6.3

assign a=b & ¢ & chk_bc(c, b);// chk_bc isa function

function_name (argument_list) ...I* Déefinition of the function */

function chk_bc;// function definition
input c,b;
chk_bc = b”c;
endfunction

Friday, January 05, 2001 9:34 pm 9 Peter M. Nyasulu

Introduction to Verilog

7. Modules

7.1. Module Declaration

A moduleisthe principal design entity in Verilog. The first line of a module declaration specifies the name and port
list (arguments). The next few lines specifiesthei/o type (input, output or inout, see Sect. 4.4.) and width of each
port. The default port width is 1 bit.

Then the port variables must be declared wire, wand,. . ., reg (See Sect. 4.). The default iswire. Typically inputs are
wiresince their datais latched outside the module. Outputs are typereg if their signals were stored inside an always
or initial block (See Sect. 10.).

Syntax Example7 .1 add
mpdule module_ngme (port_list); module add_sub(add, in1, in2, oot); in1
input [msb:Isb] InputJaort_HSt;. input add; /I defaultsto wire 8 |add supl v OOt
output [msb:ISb] outputJaorF_Ilst; input [7:0] inl, in2; wireinl, in2; in2 - Wéh
inout [msb:lsb] inout_port_list; output [7:0] oot; reg oot;
... Statements Statements ... 8
endmodule endmodule

7.2. Continuous Assignment

The continuous assignment is used to assign a value onto awire in amodule. It isthe normal assignment outside of
always or initial blocks (See Sect. 10.). Continuous assignment is done with an explicit assign statement or by
assigning avalue to awire during its declaration. Note that continuous assignment statements are concurrent and are
continuously executed during simulation. The order of assign statements does not matter. Any change in any of the
right-hand-side inputs will immediately change a left-hand-side output.

Syntax Example 7 .2

. . . wire[1:0] a=2'b01; // assigned on declaration
wirewire variable = value;
assign wire_variable = expression;

assignb=cé& d; [/l using assign statement

assignd=x1y; C b
/* The order of the assign statements ;D‘L)

does not matter. */

7.3. Module I nstantiations

Module declarations are templates from which one creates actual objects (instantiations). Modules are instantiated
inside other modules, and each instantiation creates a unique object from the template. The exception is the top-level
module which isits own instantiation.

Theinstantiated module's ports must be matched to those defined in the template. Thisis specified:
(i) by name, using adot(.) “ .template_port_name (name_of wire_connected to_port)”.
or(ii) by position, placing the ports in exactly the same positions in the port lists of both the template and the instance.

Friday, January 05, 2001 9:34 pm 10 Peter M. Nyasulu

Introduction to Verilog

Syntax for Instantiation Example 7 .3 // MODULE INSTANTIATIONS
module_name wire[3:0] inl, in2;
instance_name_1 (port_connection_list), |// MODULE DEFINITION wire[3:0] o1, 02;
instance_name_2 (port_connection_list), /* Clisan instance of module and4
...... module and4(a, b, c); C1 ports referenced by position */
instance_name_n (port_connection_list); input [3:0] a, b; and4 C1(inl,in2, 0l);
output [3:0] c; [* C2isanother instance of and4.
assignc=aé& b; C2 ports are referenced to the
endmodule declaration by name. */
and4 C2(.c(02), .a(inl), .b(in2));

Modules may not be instantiated inside procedural blocks. See “Procedures: Always and Initial Blocks” on page 18.

7.4. Parameterized Modules

Y ou can build modules that are parameterized and specify the value of the parameter at each instantiation of the mod-
ule. See “Parameter” on page 5 for the use of parameters inside a module. Primitive gates have parameters which
have been predefined as delays. See “Basic Gates’ on page 3.

Syntax Example 7 .4
// MODULE DEFINITION
module_name #(parameter_values) module shift_n (it, ot); // used in module test_shift.
instance_name(port_connection_list); input [7:0] it;” output [7:0] ot;

/I default value of nis2
/l'it shifted left n times

parameter n = 2;'
assign ot = (it << n);
endmodule

PARAMETERIZED INSTANTIATIONS
wire[7:0] inl, otl, ot2, ot3;

shft2(inl, otl), /I shift by 2; default
#(3) shft3(inl, ot2); // shift by 3; override parameter 2.
#(5) shft5(inl, ot3); // shift by 5; override parameter 2.

Synthesis does not support the defparam keyword which is an alternate way of changing parameters.

Friday, January 05, 2001 9:34 pm 11 Peter M. Nyasulu

Introduction to Verilog

c

|8. Behavioral Modeling I

Verilog has four levels of modelling:

1) The switch level which includes MOS transistors modelled as switches. Thisis not discussed here.

2) The gate level. See “ Gate-Level Modelling” on p. 3

3) The Data-Flow level. See Example 7 .4 on page 11

4) The Behavioral or procedural level described below.

Verilog procedural statements are used to model a design at a higher level of abstraction than the other levels. They
provide powerful ways of doing complex designs. However small changes n coding methods can cause large changes
in the hardware generated. Procedural statements can only be used in procedures. Verilog procedures are described
later in “ Procedures: Always and Initial Blocks” on page 18, Functions’ on page 19, and “ Tasks Not Synthesizable”
on page 21.

8.1. Procedural Assignments

Procedural assignments are assignment statements used within Verilog procedures (always and initial blocks). Only
reg variables and integer s (and their bit/part-selects and concatenations) can be placed left of the “=" in procedures.
Theright hand side of the assignment is an expression which may use any of the operator types described in Sect. 5.

8.2. Delay in Assignment (not for synthesis)

In a delayed assignment Dt time units pass before the statement is executed and the |eft-hand assignment is made.
With intra-assignment delay, the right side is evaluated immediately but there is a delay of Dt before theresult is
place in the left hand assignment. If another procedure changes a right-hand side signal during Dt, it does not effect
the output. Delays are not supported by synthesis tools.

Syntax for Procedural Assignment Example 8 .1
variable = expression)
Delayed assignment reg [6:0] sum; ~ regh, ziltch;

sum[7] = b[7] ~ c[7]; /] execute now.

ziltch = #15 ckz& h; /* ckz& a evaluated now; zltch changed
after 15 time units. */

#10 hat = b&c; /* 10 units after zltch changes, b&cis

evaluated and hat changes. */

#Dt variable = expression;
I ntra-assignment delay
variable = #Dt expression;

8.3. Blocking Assignments
Procedural (blocking) assignments (=) are done sequentially in the order the statements are written. A second
assignment is not started until the preceding one is complete. See also Sect. 9.4.

Syntax Example 8 .2. For simulation
Blocking initial
variable = expression; begin
variable = #Dt expression; a=1; b=2; c=3;
grab inputs now, deliver ans. #5 a=b+c; [/l wait for 5 units, and execute a= b + ¢ =5.
later. d=g /l Time continues from last line, d=5 = b+c at t=>5.

#Dt variable = expression;
Igt;|rabinputsl.5\ter,deliverans;. Example 0 .1. For synthesis X =Y o z
ater —
alway.s@(posedge clk) _ Lol —Ler
begin
Z=Y; Y=X; /I shift register
y=x; z=y; /lparallel ff. Xihp K Yo =

Friday, January 05, 2001 9:34 pm 12 Peter M. Nyasulu

Introduction to Verilog

8.4. Nonblocking (RTL) Assignments (see below for synthesis)

RTL (nonblocking) assignments (<=), which follow each other in the code, are done in parallel. The right hand
side of nonblocking assignmentsis evaluated starting from the completion of the last blocking assignment or if none,
the start of the procedure. The transfer to the left hand side is made according to the delays. A delay in anon-blocking
statement will not delay the start of any subsequent statement blocking or non-blocking.
A good habit isto use “<=" if the same variable appears on both sides of the equal sign (Example 0 .1 on page 13).

For synthesis

¢ One must not mix “<="

or“=
e “<=" pest mimics what physical flip-flops do; useit for “always @ (posedge clk ..) type procedures.
best corresponds to what ¢/c++ code would do; use it for combinational procedures.

in the same procedure.

Syntax

Non-Blocking
variable <= expression;
variable <= #Dt expression;
#Dt variable <= expression;

Example 0 .1. For simulation

initial
begin
#3 b<=7q /* grabaat t=0 Deliver b at t=3.
#6 Xx<=b+c; //grabb+c att=0, waitandassignx at t=6.

X is unaffected by b’s change. */

Example 0 .2. For synthesis X v z
always @(posedge clk) —1b 1D
begin —pCL| —p¢t
Z<=Y; Y<=X; /I shift register X oY fp 1
y<=X; z<=y; //also a shift register. _ Lol —Ler

Example 8 .3. Use <= to transform a variable into itself.
reg G[7:0];
always @(posedge clk)

G <={ G[6:0], G[7]}; // End around rotate 8-bit register.

The following example shows interactions between blocking and non-blocking for simulation. Do not mix the two
typesin one procedure for synthesis.

Syntax

Non-Blocking
variable <= expression;
variable <= #Dt expression;
?#Dt variable <=expression;

Blocking
variable = expression;
variable = #Dt expression;
#Dt variable = expression;

8.5. begin ... end

Example 8 .4 for simulation only

initial begin
a=1; b=2; c=3; x=4;
#5 a=b+c; /I wait for 5 units, then grab b,c and execute a=2+3.
d=g /I Time continues fromlast line, d=5 = b+c at t=>5.

X <=#6 b+ c;// grabb+c nowat t=5, don't stop, make x=5 at t=11.
b<=#2 a /* grabaat t=5 (end of last blocking statement).

Deliver b=5at t=7. previous x is unaffected by b change. */
y<=#1 b+c;// grab b+c att=5, don’t stop, make x=5 at t=6.
/I grab b+c at t=8 (#5+#3), make z=5 att=8.
/ make w=4 at t=8. Sarting at last blocking assignm.

#3 z=Db+c
W <= X

begin ... end block statements are used to group several statements for use where one statement is syntactically
allowed. Such places include functions, always and initial blocks, if, case and for statements. Blocks can optionally
be named. See “disable” on page 15) and can include register, integer and parameter declarations.

Friday, January 05, 2001 9:34 pm

13 Peter M. Nyasulu

Syntax

begin : block_name
reg [msb:lsh] reg_variable list;
integer [msb:lsb] integer_list;
parameter [msb:lsb] parameter_list;
... Statements....
end

8.6. for Loops

Introduction to Verilog

Example 8 .5

function trivial_one; // The block nameis*“ trivial_one.”
input &
begin: adder_blk; // block named adder, with
integer i; /l'local integer i
... Statements....

end

Similar to for loopsin C/C++, they are used to repeatedly execute a statement or block of statements. If the loop con-
tains only one statement, the begin ... end statements may be omitted.

Syntax

for (count = valuel;
count </<=/>/>=value2,
count = count +/- step)
begin
... Statements ...
end

8.7. while L oops

Example 8 .6
for =0;j<=7,j=j+1)
begin
clj] = alj] & bij];
d[j] =alj] | b[j];
end

The while loop repeatedly executes a statement or block of statements until the expression in the while statement
evaluates to false. To avoid combinational feedback during synthesis, a while loop must be broken with an
@(posedge/negedge clock) statement (Section 9.2). For simulation a delay inside the loop will suffice. If the loop
contains only one statement, the begin ... end statements may be omitted.

Syntax

while (expression)
begin
... Statements....
end

8.8. forever Loops

Example 8 .7

while ('overflow) begin
@(posedge clk);
a=a+1l;

end

The forever statement executes an infinite loop of a statement or block of statements. To avoid combinational feed-
back during synthesis, aforever loop must be broken with an @(posedge/negedge clock) statement (Section 9.2). For
simulation adelay inside the loop will suffice. If the loop contains only one statement, the begin ... end statements

may be omitted. It is
Syntax

forever
begin
... Statements ...
end

8.9. repeat Not Synthesizable

Example 8 .8
forever begin
@(posedgeclk); // oruse a=#9atl;
a=a+l;
end

The repeat statement executes a statement or block of statements a fixed number of times.

Friday, January 05, 2001 9:34 pm

14 Peter M. Nyasulu

Introduction to Verilog

Syntax Example 8.9
repeat (number_of_times) repeat (2) begin // after 50, a = 00,
begin #50 a= 2'b00; // after 100, a = 01,
... Statements ... #50 a= 2'b01; // after 150, a = 00,
end end// after 200, a= 01

8.10. disable

Execution of a disable statement terminates a block and passes control to the next statement after the block. It islike
the C break statement except it can terminate any loop, not just the onein which it appears.

Disable statements can only be used with named blocks.

Syntax Example 8 .10

disable block_name; begin: accumulate
forever
begin
@(posedge clk);
a=a+1;
if (a==2'b0111) disable accumulate;
end
end

8.11.if ... elseif ... else

Theif ... elseif ... else statements execute a statement or block of statements depending on the result of the expression
following theif. If the conditional expressionsin al theif’s evaluate to false, then the statements in the else block, if
present, are executed.

There can be as many elseiif statements as required, but only oneif block and one else block. If there is one statement
in ablock, then the begin .. end statements may be omitted.

Both the else if and else statements are optional. However if all possibilities are not specifically covered, synthesis
will generated extra latches.

Syntax Example 8 .11
if (expression) if (alu_func == 2'b00)
begin aluout = a+ b;
... statements ... elseif (alu_func == 2'b01)
end aluout = a- b;
elseif (expression) elseif (alu_func == 2'b10)
begin auout=a& b;
... Statements ... else// alu_func == 2'b11
end aluout =a| b;
... more elseif blocks ...
else . if (a==Db) /I Thisif with no else will generate
begin begin /I alatch for x and ot. Thisis so they
... Statements ... X=1; // will hold there old valueif (a!= b).
end ot =4'b1111,
end

Friday, January 05, 2001 9:34 pm 15 Peter M. Nyasulu

8.12. case

Introduction to Verilog

The case statement allows a multipath branch based on comparing the expression with alist of case choices.

Statements in the default block executes when none of the case choice comparisons are true (similar to the else block
intheif ... elseif ... else). If no comparisons, including delault, are true, synthesizers will generate unwanted latches.
Good practice says to make a habit of puting in a default whether you need it or not.

If the defaults are dont cares, definethem as ‘x’ and the logic minimizer will treat them as don't cares.

Case choices may be a simple constant or expression, or a comma-separated list of same.

Syntax

case (expression)
case_choicel:
begin
... Statements ...
end
case_choice2:
begin
... Statements ...
end
... more case choices blocks ...
default:
begin
... Statements ...
end
endcase

8.13. casex

Example 0.1
case (alu_ctr)
2'b00: aluout =a+b;
2'b01: aluout = a- b;
2'b10: aluout =aé& b;
default: aluout = 1'bx; // Treated as don’t cares for
endcase /I minimum logic generation.

Example 0 .2
case (X, Y, 2)
2'b00: aluout =a+ b; //caseif x or y or zis2'b00.
2'b01: aluout =a- b;
2'b10: aluout=a& b;
default: aluout = a| b;
endcase

In casex(a) the case choices constant “a’ may contain z, x or ? which are used as don't cares for comparison. With
case the corresponding simulation variable would have to match atri-state, unknown, or either signal. In short, case
uses x to compare with an unknown signal. Casex uses x asadon't care which can be used to minimize logic.

Syntax

same as for case statement
(Section 8.10)

8.14. casez

Example 8 .12
casex (@)
2blx:msb=1; // msb=1lifa=100ora=11
/I'1f this were case(a) then only a=1x would match.
default: msb = 0;
endcase

Casez isthe same as casex except only ?and z (not X) are used in the case choice constants asdon’t cares. Casezis
favored over casex sincein simulation, an inadvertent x signal, will not be matched by a0 or 1 in the case choice.

Syntax

same as for case statement
(Section 8.10)

Example 8 .13

casez (d)
3b1?> b=2'b11; // b=11ifd= 100 or greater
3'b01? b=2'b10; // b= 10ifd= 010o0r 011
default: b = 2'b00;

endcase

Friday, January 05, 2001 9:34 pm

16 Peter M. Nyasulu

Introduction to Verilog

|9. Timing Controls l

9.1. Delay Control Not Synthesizable
This specifies the delay time units before a statement is executed during simulation. A delay time of zero can also be
specified to force the statement to the end of the list of statements to be evaluated at the current simulation time.

Syntax Example 9.1
#delay statement; #5a=b+c; I/ evaluated and assigned after 5 time units
#0a=b+c; I very last statement to be evaluated

9.2. Event Control, @

This causes a statement or begin-end block to be executed only after specified events occur. An event isachangein
avariable. and the change may be: a positive edge, a negative edge, or either (alevel change), and is specified by the
keyword posedge, negedge, or no keyword respectively. Several events can be combined with theor keyword. Event
specification begins with the character @and are usually used in always statements. See page 18.

For synthesis one cannot combine level and edge changes in the same list.

For flip-flop and register synthesis the standard list contains only a clock and an optional reset.

For synthesis to give combinational logic, the list must specify only level changes and must contain all the variables
appearing in the right-hand-side of statements in the block.

Syntax Example 9 .2
@ (posedge variable or always
negedge variable) statement; @(posedge clk or negedgerst)

if (rst) Q=0; else Q=D; // Definition for a D flip-flop.
@ (variable or variable. . .) statement;

@(aorbore); /I re-evaluate if aor b or e changes.
sum=a+b+e; //Will synthesize to a combinational adder.

9.3. Wait Statement Not Synthesizable
The wait statement makes the simulator wait to execute the statement(s) following the wait until the specified condi-
tion evaluates to true. Not supported for synthesis.

Syntax Example9 .3
wait (condition_expression) statement; wait (Ic) a=b; // wait until c=0, then assignbto a

9.4. Intra-Assignment Delay Not Synthesizable

Thisdelay #D is placed after the equal sign. The left-hand assignment is delayed by the specified time units, but the
right-hand side of the assignment is evaluated before the delay instead of after the delay. Thisisimportant when a
variable may be changed in a concurrent procedure. See also “Delay in Assignment (not for synthesis)” on page 12.

Syntax Example 9 .4
assign a=1; assign b=0;
variable = #Dt expression; always @(posedge clk)
b=#54 /I a= b after 5time units.
always @(posedge clk)
c=#5b; /* b was grabbed in this parallel proce-
dure before the first procedure changed it. */

Friday, January 05, 2001 9:34 pm 17 Peter M. Nyasulu

Introduction to Verilog

|10. Procedures. Alwaysand I nitial Blocks I

10.1. Always Block

The always block is the primary construct in RTL modeling. Like the continuous assignment, it is a concurrent
statement that is continuously executed during simulation. Thisaso meansthat all always blocksin amodule execute
simultaneously. Thisis very unlike conventional programming languages, in which all statements execute sequen-
tially. The always block can be used to imply latches, flip-flops or combinational logic. If the statementsin the
always block are enclosed within begin ... end, the statements are executed sequentially. If enclosed within the fork
... join, they are executed concurrently (simulation only).

The always block istriggered to execute by the level, positive edge or negative edge of one or more signal s (sepa-
rate signals by the keyword or). A double-edgetrigger isimplied if you include asignal in the event list of the always
statement. The single edge-triggers are specified by posedge and negedge keywords.

Procedures can be named. In simulation one can disable named blocks. For synthesis it is mainly used as a com-
ment.

Syntax 1 Example 10 .1
alway.s @(event_1 or event_2or ...) always @(aor b) // level-triggered; if a or b changes levels
begin always @(posedge clk); // edge-triggered: on +ve edge of clk
... Statements....
end see previous sections for complete examples

Syntax 2

always @(event_1 or event 2 or ...)
begin: name_for_block
... Statements ...
end

10.2. Initial Block

Theinitial block islike the always block except that it is executed only once at the beginning of the simulation. It is
typically used to initialize variables and specify signal waveforms during simulation. Initial blocks are not supported
for synthesis.

Syntax Example 10 .2
initial inital
begin begin
.. Statements ... cr=0; I/ variables initialized at
end clk=1, // beginning of the simulation
end
inital /I specify simulation waveforms
begin
a= 2'b00; /lattime=0,a= 00
#50a=2'b01; //attime= 50, a= 01
#50a=2'b10; //attime= 100,a= 10
end

Friday, January 05, 2001 9:34 pm 18 Peter M. Nyasulu

Introduction to Verilog

|11. Functions |

Functions are declared within amodule, and can be called from continuous assignments, always blocks or other func-
tions. In a continuous assignment, they are evaluated when any of its declared inputs change. In a procedure, they are
evaluated when invoked.

Functions describe combinational logic, and by do not generate latches. Thus an if without an else will simulate as
though it had a latch but synthesize without one. Thisisaparticularly bad case of synthesis not following the simula-
tion. It isagood ideato code functions so they would not generate latches if the code were used in a procedure.
Functions are a good way to reuse procedural code, since modules cannot be invoked from a procedure.

11.1. Function Declaration
A function declaration specifies the name of the function, the width of the function return value, the function input
arguments, the variables (reg) used within the function, and the function local parameters and integers.

Syntax, Function Declaration Example11.1

function [msb:Isb] function_name; function [7:0] my_func; // function return 8-bit value
input [msb:Isb] input_arguments; input [7:0] i;
reg [msb:Ish] reg_variable_list; reg [4:0] temp;
parameter [msb:lsb] parameter_list; integer n;
integer [msh:lsb] integer_list; temp=i[7:4] | (i[3:0]);

... Statements ... my_func = {temp, i[[1:0]};
endfunction endfunction

11.2. Function Return Value

When you declare afunction, avariable is also implicitly declared with the same name as the function name, and with
the width specified for the function name (The default width is 1-bit). Thisvariableis“my_func” in Example 11 .1 on
page 19. At least one statement in the function must assign the function return value to this variable.

11.3. Function Call

Asmentioned in Sect. 6.4. , afunction call isan operand in an expression. A function call must specify in itsterminal
list all the input parameters.

11.4. Function Rules
The following are some of the general rules for functions:
- Functions must contain at least one input argument.
- Functions cannot contain an inout or output declaration.
- Functions cannot contain time controlled statements (#, @, wait).
- Functions cannot enable tasks.
- Functions must contain a statement that assigns the return value to the implicit function name register.

Friday, January 05, 2001 9:34 pm 19 Peter M. Nyasulu

Introduction to Verilog

11.5. Function Example

A Function has only one output. If more than one return value is required, the outputs should be concatenated into
one vector before assigning it to the function name. The calling module program can then extract (unbundle) the indi-
vidual outputs from the concatenated form. Example 11.2 shows how thisis done, and a'so illustrates the general use
and syntax of functionsin Verilog modeling.

Syntax Example 11 .2

module simple_processor (instruction, outp);
function_name = expression input [31:0] instruction;

output [7:0] outp;

reg [7:0] outp;; // soit can be assigned in always block
reg func;

reg [7:0] oprl, oprz;

function [16:0](instr) /l returns 1 1-bit plus 2 8-bits
input [31:0] instr;
reg add_func;
reg [7:0] opcode, oprl, opr2;
begin
opcode = instr[31:24];
oprl = instr[7:0];
case (opcode)
8'b10001000: begin /l 'add two operands
add func=1;
opr2 = instr[15:8];
end
8'b10001001: begin /I subtract two operands
add func =0;
opr2 = instr[15:8];
end
8'b10001010: begin /I increment operand
add func=1;
opr2 = 8'b00000001;
end
default: begin; /I decrement operand
add func =0;
opr2 = 8'b00000001;
end
endcase
decode_add = {add_func, opr2, oprl}; // concatenated into 17-bits
end
endfunction

always @(instruction) begin
{func, op2, opl} =\decode_add/(instruction); // outputs unbundled
if (func==1)

outp = opl + op2;
else

!/

outp = opl - op2;
end
endmodule

Friday, January 05, 2001 9:34 pm 20 Peter M. Nyasulu

Introduction to Verilog

|12. T asks Not Synthesizable I

A task is similar to afunction, but unlike a function it has both input and output ports. Therefore tasks do not return
values. Tasks are similar to procedures in most programming languages. The syntax and statements allowed in tasks

are those specified for functions (Sections 11).

Syntax

task task_name;
input [msh:Isb] input_port_list;
output [msb:Isb] output_port_list;
reg [msb:lsh] reg_variable list;
parameter [msb:lsb] parameter_list;
integer [msb:lsb] integer_list;

... Statements ...
endtask

Example 12 .1

module alu (func, &, b, ¢);
input [1:0] func;
input [3:0] a, b;
output [3:0] c;
reg[3:0] c; /l so it can be assigned in always block
task my_and;

input[3:0] a, b;

output [3:0] andout;

integer i;

begin

for (i=3;i>=0;i=i-1)
andout[i] = a[i] & b[il;

end

endtask

always @(func or aor b) begin
case (func)
2'b00: my_and (&, b, ¢);
2’b01: c=alb;
2b10:c=a-b;
default: c=a+b;
endcase
end
endmodule

Friday, January 05, 2001 9:34 pm

21 Peter M. Nyasulu

Introduction to Verilog

|13. Component Inference |

13.1. Latches

A latch isinferred (put into the synthesized circuit) if avariableis not assigned to in the else branch of aniif ... elseif
... else statement. A latch isalso inferred in a case statement if avariable is assigned to in only some of the possible
case choice branches. Assigning avariable in the default branch avoidsthe latch. In general, alatchisinferrediniif ...
elseif ... else and case statements if avariable, or one of its bits, is only assigned to in only some of the possible
branches.

To improve code readability, use the if statement to synthesize alatch because it is difficult to explicitly specify the
latch enable signal when using the case statement.

Syntax Example 13 .1
See Sections 8.9 and 8.10 for always @(c, i); i —1b
if ... elseif ... else and case statements begin; 0 o
if (c==1) c EN
0=i;
end

13.1. Edge-Triggered Registers, Flip-flops, Counters

A register (flip-flop) isinferred by using posedge or negedge clause for the clock in the event list of an always block.
To add an asynchronous reset, include a second posedge/negedge for the reset and use theif (reset) ... else statement.
Note that when you use the negedge for the reset (active low reset), the if condition is (!reset).

Syntax Example 0.1
always @(posedge clk or b LR
posedge reset_1 or always @(posedge clk); _3— D
negedge reset_2) begin; . Ql—a
begin a<=b&c; " oLk
Cl
if (reset_1) begin end p
... reset assignments
end
,) always @(posedge clk or ret
elseif (Ireset_2) begin _ negedge rst): E)
... reset assignments begin: CLR
egin, b D
end if (1 rst) a<=0;)
else begin _ dse a<=b; T
...register assignments end clk > cLK
end
end

Example 0 .2 An Enabled Counter
reg [7:0] count;
wire enable;

always @(posedge clk or posedge rst) // Do not include enable.
begin;

if (rst) count<=0;

elseif (enable) count <= count+1;
end; /1 8 flip-flops will be generated.

Friday, January 05, 2001 9:34 pm 22 Peter M. Nyasulu

Introduction to Verilog

13.2. Multiplexers

A multiplexer isinferred by assigning a variable to different variables/values in each branch of an if or case state-
ment. Y ou can avoid specifying each and every possible branch by using the else and default branches. Note that a
latch will be inferred if avariable is not assigned to for all the possible branch conditions.

To improve readability of your code, use the case statement to model large multiplexers.

Syntax Example 13 .2
&
See Sections 8.9 and 8.10 for if (sel == 1)
if ... elseif ... else and case statements y=a a
else . Y
y=b;
case (sel) sel[1:0]
2'b00:y =& a
2'b01:y = b;
2blo:y=c c
default: y =d;
endcase

13.3. Adders/Subtracters

The +/- operators infer an adder/subtracter whose width depend on the width of the larger operand.

Syntax Example 13 .3
See Section 7 for operators if (sel == 1)
y=a+b;
else
y=c+ d

13.4. Tri-State Buffers

A tristate buffer isinferred if avariableis conditionally assigned avalue of z using an if, case or conditional operator.

Syntax Example 13.5

See Sections 8.9 and 8.10 for if (en==1)
if ... elseif ... else and case statements :

13.5. Other Component Inferences
Most logic gates are inferred by the use of their corresponding operators. Alternatively a gate or component may be
explicitly instantiated by using the primitive gates (and, or, nor, inv ...) provided in the Verilog language.

Friday, January 05, 2001 9:34 pm 23 Peter M. Nyasulu

Introduction to Verilog

|14. Finite State M achines. For synthesis l

When modeling finite state machines, it is recommended to separate the sequential current-state logic from the com-
binational next-state and output logic.

State Diagram Example 14 .1
for lack of space the outputs are not module my_fsm (clk, rst, start, skip3, wait3, Zot);
shown on the state diagram, but are: input clk, rst, start, skip3, wait3;
in state0: Zot = 000, output [2:0] Zot; // Zot is declared reg so that it can
in statel: Zot = 101, reg [2:0] Zot; // be assigned in an always block.
in state2: Zot = 111, parameter state0=0, statel=1, state?=2, state3=3;
in state3: Zot = 001. reg [1:0] state, nxt_st;

always @ (state or start or skip3 or wait3)
begin : next_state logic //Name of always procedure.

case (state)

state0: begin
if (start) nxt_st = statel;
else nxt_st = statel;
end

statel: begin
nxt_st = state?;
end

state2: begin
if (skip3) nxt_st = state0;
elsenxt_st = state3;
end

state3: begin

if (wait3) nxt_st = state3;
else nxt_st = statel;
end
default: nxt_st = state0;
endcase /I default is optional since all 4 cases are

Using Macrosfor state definition

As an alternative for- -~))

parameter state0=0, statel=1 end /I covered specifically. Good practice says usesiit.
state?2=2, state3=3;

one can use macros. For example after the

always @(posedge clk or posedge rst)
begin : register_generation

definition below 2'd0 will be textually if (rst) state = stateD;
substituted whenever “state0 is used. dsestate =nxt st:
define state0 2'd0 end -
“define statel 2'd1
“define state2 2'd always @(state) begin : output_logic
“define state3 2'd3; case (state)
state0: Zot = 3'b000;
When using macro definitions one must statel: Zot = 3'b101;
put a back quote in front. For example: state2: Zot = 3'b111;
case (state) state3: Zot = 3'b001;
“state0: Zot = 3'b000; default: Zot = 3'b000;// default avoids latches
“statel: Zot = 3'b101; endcase
‘state2: Zot = 3'b111; end
“state3: Zot = 3'b001; | endmodule

Friday, January 05, 2001 9:34 pm 24 Peter M. Nyasulu

14.1.

14.2. Counters

Introduction to Verilog

Counters are a simple type of finite-state machine where separation of the flip-flop generation code and the next-state
generation code is not worth the effort. In such code, use the nonblocking “<=" assignment operator.

Binary Counter
Using toggle flip-flops

TC T\

count[3] count[2] S

count[1] iount[O] CLK

14.3. Shift Registers

Example 14 .2
reg [3:0] count; wireTC; // Terminal count (Carry out)
always @(posedge clk or posedge rset)
begin
if (rset) count <=0;
€lse count <= count+1,
end

assign TC = & count;

/I See* Reduction Operators’ on page 7

Shift registers are also best done completely in the flip-flop generation code. Use the nonblocking “<=" assignment
operator so the operators “<< N" shiftsleft N bits. The operator “>>N" shiftsright N bits. See also Example 8 .3 on

page 13.
Shift Register
QB]E Q[Z]B Q[llﬁ Q[0] 5
1< C1< IC1<] 1-
CLK

Linear-Feedback Shift Register

ME P2 Qe QIO (JJ
14

1]
C14 14 1

CLK

Example 14 .3
reg [3:0] Q;
always @(posedge clk or posedge rset)
begin
if (rset) Q<=0;
else begin
Q <=Q << 1, /I Left shift 1 position
Q[0] <= Q[3]; /* Nonblocking means the old Q[3] is sent
to Q[0]. Not the revised Q[3] from the previous line.
end

Example 14 4
reg [3:0] Q;
always @(posedge clk or posedge rset)
begin
if (rset) Q<=0;
else begin
Q<={Q[2:1]: Q[3]"Q[2]; /* The concatenation operators
“{...}) formthe new Q from elements of the old Q. */
end

end

Friday, January 05, 2001 9:34 pm

25 Peter M. Nyasulu

Introduction to Verilog

|15. Compiler Directives I

Compiler directives are special commands, beginning with *, that affect the operation of the Verilog simulator. The
Synopsys Verilog HDL Compiler/Design Compiler and many other synthesis tools parse and ignore compiler direc-
tives, and hence can be included even in synthesizable models. Refer to Cadence Verilog-XL Reference Manual for a
complete listing of these directives. A few are briefly described here.

15.1. Time Scale

“timescal e specifies the time unit and time precision. A time unit of 10 ns means atime expressed as say #2.3 will
have adelay of 23.0 ns. Time precision specifies how delay values are to be rounded off during simulation. Valid
time unitsinclude s, ms, s, ns, ps, fs.

Only 1, 10 or 100 are valid integers for specifying time units or precision. It also determines the displayed time units
in display commands like $display

Syntax Example 15 .1
. . o . ‘timescale1 ng/1 ps // unit =1ns, precision=1/1000ns
timescale time_unit/ time_precision; “timescale 1 ns/100 ps //timeunit= 1ns; precision= 1/10ns;

15.2. Macro Definitions

A macroisanidentifier that represents a string of text. Macros are defined with the directive "define, and are invoked
with the quoted macro name as shown in the example.

Syntax Example 15 .2
“define macro_name text_string; “define add_lsb a[7:0] + b[7:0]
.. macro_name. . . assign 0="add Isb; //assigno= a[7:0] + b[7:0];

15.3. Include Directive
Include is used to include the contents of atext file at the point in the current file where the include directiveis. The
include directive is similar to the C/C++ include directive.

Syntax Example 15 .3

“includefile_name; module x;

‘include “dclr.v”; // contents of file “ dclr,v’ are put here

Friday, January 05, 2001 9:34 pm 26 Peter M. Nyasulu

Introduction to Verilog

|16. System Tasks and Functions l

These are tasks and functions that are used to generate input and output during simulation. Their names begin with a
dollar sign ($). The Synopsys Verilog HDL Compiler/Design Compiler and many other synthesis tools parse and
ignore system functions, and hence can be included even in synthesizable models. Refer to Cadence Verilog-XL Ref-
erence Manual for acomplete listing of system functions. A few are briefly described here.

System tasks that extract data, like $monitor need to be in aninitial or always block.

16.1. $display, $strobe, $monitor

These commands have the same syntax, and display their values as text on the screen during simulation. They are
much less convenient than waveform display toolslike cwaves® or Sgnal scan®. $display and $strobe display once
every time they are executed, whereas $monitor displays every time one of its parameters changes. The difference
between $display and $strobe isthat $strobe displays the parameters at the very end of the current simulation time
unit. The format string is like that in C/C++, and may contain format characters. Format characters include %d (deci-
mal), %h (hexadecimal), %b (binary), %c (character), %s (string) and %t (time). Append b, h, o to the task name to
change default format to binary, octal or hexadecimal.

Syntax Example 16 .1
initial begin
$displayh (b, d); // displayed in hexadecimal
$monitor (“at time=%t, d=%h", $time, a);
end

$display (“format_string”,
par_1, par_2,...);

16.2. $time, $stime, $realtime
These return the current simulation time as a 64-bit integer, a 32-bit integer, and areal number, respectively. Their
useisillustrated in Examples 4.6 and 13.1.

16.3. $reset, $stop, $finish

$reset resets the simulation back to time O; $stop halts the simulator and puts it in the interactive mode where the
user can enter commands; $finish exits the simulator back to the operating system.

16.4. $deposit

$deposit sets anet to a particular value.

Syntax Example 16 .2

$deposit (net_name, value); $deposit (b, 1'b0);

$deposit (outp, 4'b001x);// outp is a 4-bit bus

16.5. $scope, $showscope

$scope(hierarchy _name) sets the current hierarchical scope to hierarchy _name. $showscopes(n) lists all modules,
tasks and block names in (and below, if nis set to 1) the current scope.

16.6. $list

$list (hierarchical_name) lists line-numbered source code of the named module, task, function or named-block.

Friday, January 05, 2001 9:34 pm 27 Peter M. Nyasulu

16.7. $random

Introduction to Verilog

$random generates arandom integer every timeitiscalled. If the sequenceisto be repeatable, the first time one
invokes random give it a numerical argument (a seed). Otherwise the seed is derived from the computer clock.

Syntax

xzz = $random|(integer)];

Example 16 .3
reg[3:0] xyz;
initial begin
xyz= $random (7); // Seed the generator so humber
I/ sequence will repeat if simulation is restarted.
forever xyz = #20 $random;
/I The 4 Isb bits of the random integers will transfer into the
/I xyz. Thus xyz will be arandominteger 0 £ xyz £ 15.

16.8. $dumpfile, $dumpvar, $dumpon, $dumpoff, $Sdumpall

O

These can dump variable changesto asimulation viewer like cwaves™. The dump files are capable of dumping all the
variablesin asimulation. Thisis convenient for debugging, but can be very slow.

Syntax

$dumpfile(filename.dmp”)
$dumpvar dumpsall variablesin the
design.

$dumpvar (1, top) dumpsall the varia-
blesin module top and below, but not
modul es instantiated in top.
$dumpvar (2, top) dumpsall the varia-
blesin module top and 1 level below.
$dumpvar (n, top) dumpsall the varia-
blesin module top and n-1 levels below.
$dumpvar (0, top) dumpsall the varia-
blesin module top and all level below.
$dumpon initiates the dump.
$dumpoff stop dumping.

16.9. $shm_probe, $shm_open

Example 16 .4

/I Test Bench
modul e testbench:
rega, b; wirec;
initial begin;
$dumpfile(* cwave_data.dmp”);
$dumpvar //Dump all the variables
/I Alternately instead of $dumpvar, one could use
$dumpvar (1, top) //Dump variablesin the top module.
/I Ready to turn on the dump.
$dumpon
a=1; b=0;
topmodule top(a, b, ¢);

end

These are special commands for the Smulation History Manager for Cadence cwaves® only. They will save variable

changes for later display.

Syntax

$shm_open (“cwave_dump.dm”)
$shm_probe (varl,var2, var3);

/* Dump all changesin the above 3 varia-
bles. */

$shm_probe(a, b, instl.varl, instl.var2);
/* Usethe qualifier inst1. to look inside
the hierarchy. Here inside module
instance “ instl” the variablesvarl and
var2 will be dumped.*/

Example 16 .5

/I Test Bench
modul e testbench:
rega, b; wirec;
initial begin;
$shm_open(“cwave_data.dmp”);
$shm_probe(a, b, c)

/* See also the testbench example in “ Test Benches” on p. 29

Friday, January 05, 2001 9:34 pm

28 Peter M. Nyasulu

Introduction to Verilog

|17. Test Benches l

A test bench supplies the signals and dumps the outputs to simulate a Verilog design (module(s)). It invokes the
design under test, generates the simulation input vectors, and implements the system tasks to view/format the results
of the simulation. It is never synthesized so it can use all Verilog commands.

To view the waveforms when using Cadence Verilog XL Simulator, use the Cadence-specific Simulation History
Manager (SHM) tasks of $shm_open to open the file to store the waveforms, and $shm_probe to specify the varia-
bles to be included in the waveforms list. Y ou can then use the Cadence cwaves waveform viewer by typing cwaves

& at the UNIX prompt.
Syntax

$shm_open(filename);
$shm_probe(varl, var2, ...)

Note also
var=$random
wait(condition) statement

Example17.1
‘timescale 1 ns/100 ps // time unit = 1ns; precision = 1/10 ns;

module my_fsm_tb; // Test Bench of FSM Design of Example 14.1

/* ports of the design under test are variablesin the test bench */
reg clk, rst, start, skip3, wait3;

wire Button;

[**** DESIGN TO SIMULATE (my_fsm) INSTANTIATION ****/
my_fsm dutl (clk, rst, start, skip3, wait3, Button);

[**** SECTION TO DISPLAY VARIABLES ****/
initial begin
$shm_open(“sim.db”); //Open the SHM database file
[* Specify the variablesto be included in the waveformsto be
viewed by Cadence cwaves */
$shm_probe(clk, reset, start);
/I Use the qualifier dutl. to look at variables inside the instance dut1.
$shm_probe(skip3, wait3, Button, dutl.state, dutl.nxt_st);
end

[**** RESET AND CLOCK SECTION ****/
initial begin
clk=0; rst=0;
#1 rst=1; /I Thedelay givesrst a posedge for sure.
#200 rst = O; // Deactivate reset after two clock cycles +1 ns*/
end
always #50 clk = ~clk; // 10 MHz clock (50* 1 ns*2) with 50% duty-cycle

[¥*** SPECIFY THE INPUT WAVEFORMS skip3 & wait3 ****/

initial begin
skip3=0; wait3=0; // attime0, wait3=0, skip3=0
#1; // Delay to keep inputs from changing on clock edge.

#600 skip3 = 1; // at time 601, wait3=0, skip3=1
#400 wait3 = 1; // at time 1001, wait3=1, skip3=0
skip3=0;
#400 skip3 = 1; // at time 1401, wait3=1, skip3=1
wait(Button) skip3 = 0; // Wait until Button=1, then make skip3 zero.
wait3 = $random; //Generate a random number, transfer Isb into wait3
$finish; /I stop simulation. Without thisit will not stop.
end

endmodule

Friday, January 05, 2001 9:34 pm

29 Peter M. Nyasulu

Introduction to Verilog

17.1. Synchronous Test Bench

In synchronous designs, one changes the data during certain clock cycles. In the previous test bench one had to keep
counting delays to be sure the data came in the right cycle. With a synchronous test bench the input datais stored in a
vector or array and one part injected in each clock cycle. The Verilog array is not defined in these notes.
Synchronous test benches are essential for cycle based simulators which do not use any delays smaller than a clock
cycle.

Thingsto note: Example 17 .2
data[8:1]=8'b1010_1101;
The underscore visually separates the /I Synchronous test bench
bits. It acts like a comment. module SynchTstBch:
reg[8:1] data;
if (I==9) $finish; reg x,clk;
When the data is used up, finish integer I;
x<=datd[l]; I<=1+1; initial begin
When synthesizing to flip-flopsasin an data[8:1]=8'b1010_1101; // Underscore spaces hits.
In an @(posedge... procedure, 1=1;
always use nonblocking. Without that x=0;
you will be racing with the flip-flopsin clk=0;
the other modules. forever #5 clk=~clk;
end
/*** Send in anew value of x every clock cycle***/
always @(posedge clk)
begin
if (1==9) $finish;
#1; I/l Keepsdatafrom changing on clock edge.
x<=data[l];
I<=l+1;
end
topmod topl(clk, x);
endmodule

Friday, January 05, 2001 9:34 pm 30 Peter M. Nyasulu

