Security Policies

Dr. Ahmad Almulhem

Computer Engineering Department, KFUPM

Spring 2008
Part I

Overview
A security policy defines “secure” for a system

A security policy partitions system states into:

1. Authorized (secure) states
 - The system should stay in these states

2. Unauthorized (nonsecure) states
 - If the system enters any of these states, its a security breach

Secure system
- Starts in authorized state
- Never enters unauthorized state
Definitions

Definition (security policy)
A security policy is a statement that partitions the states of the system into a set of authorized, or secure, states and a set of unauthorized, or nonsecure, states.

Definition (secure system)
A secure system is a system that starts in an authorized state and cannot enter an unauthorized state.

Definition (breach of security)
A breach of security occurs when a system enters an unauthorized state.
Confidentiality

- X set of entities, I some information
- I has confidentiality property with respect to X if no $x \in X$ can obtain information about I
- I can be disclosed to others

Example

- X set of students
- I final exam answer key
- I is confidential with respect to X if students cannot obtain final exam answer key
Integrity

- X set of entities, I some information
- I has integrity property with respect to X if all $x \in X$ trust information in I
- Types of integrity:
 1. trust I, its conveyance and protection (data integrity)
 2. I information about origin of something or an identity (origin integrity, authentication)
 3. I resource: means resource functions as it should (assurance)
Availability

- X set of entities, I resource
- I has availability property with respect to X if all $x \in X$ can access I
- Types of availability:
 1. Traditional: x gets access or not
 2. Quality of service: promised a level of access (for example, a specific level of bandwidth) and not meet it, even though some access is achieved (e.g. a server for a book-store vs medical center)
Security Policies

- A security policy considers all relevant aspects of confidentiality, integrity, and availability
 - Who can access information? (confidentiality policy)
 - What are the authorized ways to modify information? (integrity policy)
 - What services must be provided and its QoS? (availability policy)
- Statement of security policy can be formal (provable) or informal
- Implicit policies can be confusing (using mechanisms)
Policy Models

Definition (Policy Model)

- Policy Model is an abstract description of a policy or class of policies
- Focus on points of interest in policies
 - Security levels in multilevel security models (Bell-LaPadula Model)
 - Separation of duty in Clark-Wilson model
 - Conflict of interest in Chinese Wall model
Types of Security Policies

- Military (governmental) security policy
 - Policy primarily protecting confidentiality
 - Privacy issues

- Commercial security policy
 - Policy primarily protecting integrity (e.g., banks)

- Confidentiality policy
 - Policy protecting only confidentiality

- Integrity policy
 - Policy protecting only integrity
Integrity and Transactions

- Integrity policies using the notion of transactions (e.g. databases)

- Begin in consistent state
 - “Consistent” defined by specification

- Perform series of actions (transaction)
 - Actions cannot be interrupted
 - If actions complete, system in consistent state
 - If actions do not complete, system reverts to beginning (consistent) state
Trust

- Trust and assumptions underlies security policies and mechanisms
- Trust some assumptions will hold

Example (Administrator installs patch)

Question: Does the security improved?
Answer: Depends on the following assumptions:

- Trusts patch came from vendor, not tampered with in transit
- Trusts vendor tested patch thoroughly
- Trusts vendors test environment corresponds to local environment
- Trusts patch is installed correctly
Example: Trust in Formal Verification

- Gives formal mathematical proof that given input i, program P produces output o as specified.
- Suppose a security-related program S formally verified to work with operating system O.
- What are the assumptions?
 1. Proof has no errors (bugs in automated theorem provers).
 2. Preconditions hold in environment in which S is to be used.
 3. S transformed into executable S’ whose actions follow source code (Compiler bugs, linker/loader/library problems).
 4. Hardware executes S’ as intended (Hardware bugs).
Types of Access Control

- **Discretionary Access Control/Identity-Based Access Control (DAC, IBAC)**
 - individual user sets access control mechanism to allow or deny access to an object

- **Mandatory Access Control/Rule-Based Access Control (MAC, RBAC)**
 - system mechanism controls access to object, and individual cannot alter that access

- **Originator Controlled Access Control (ORCON)**
 - originator (creator) of information controls who can access information (owner does not)
Key Points

- Policies describe what is allowed
- Mechanisms control how policies are enforced
- Trust underlies everything
Part II

Confidentiality Policies
Confidentiality Policies

- Goal: prevent the unauthorized disclosure of information
 - Deals with information flow
 - Integrity and availability are secondary goals

- Multi-level security models are best-known examples
 - Bell-LaPadula Model basis for many, or most, of these
Bell-LaPadula Model (BLP)

- Introduced by Elliot Bell and Leonard LaPadula in early 1970s.
- Security levels arranged in linear ordering
 - Top Secret: highest
 - Secret
 - Confidential
 - Unclassified: lowest
- Security levels correspond to information sensitivity
- Subjects have security clearance $L(s)$
- Objects have security classification $L(o)$
Level Diagrams (Amoroso 94)

- Circles are subjects
- Squares are objects
Read and Write

- Arrows represent read and write operations
- An arrow originates from a subject to an object
Read and Write (Information flow)

- Read and write operations cause information to flow between subjects and objects
- In write operations, information flows from subject to object
- In read operations, information flows from object to subject
Information flows up, not down
- “Reads up” disallowed, “reads down” allowed

Simple Security Property
- Subject s can read object o iff $L(o) \leq L(s)$ and s has permission to read o

Combines mandatory control (relationship of security levels) and discretionary control (the required permission)

Sometimes called “no reads up” rule (NRU)
Writing (BLP)

- Information flows up, not down
 - “Writes up” allowed, “writes down” disallowed
- *-Property
 - Subject s can write object o iff $L(s) \leq L(o)$ and s has permission to write o
- Combines mandatory control (relationship of security levels) and discretionary control (the required permission)
- Sometimes called “no writes down” rule (NWD)
Example

<table>
<thead>
<tr>
<th>security level</th>
<th>subject</th>
<th>object</th>
</tr>
</thead>
<tbody>
<tr>
<td>top secret</td>
<td>Bell</td>
<td>personal files</td>
</tr>
<tr>
<td>secret</td>
<td>James</td>
<td>email files</td>
</tr>
<tr>
<td>confidential</td>
<td>Frank</td>
<td>activity logs</td>
</tr>
<tr>
<td>unclassified</td>
<td>Tom</td>
<td>telephone lists</td>
</tr>
</tbody>
</table>

- Bell can read all files
- Frank cannot read personnel or email files
- Tom can only read telephone lists
Basic Security Theorem

Theorem

If a system is initially in a secure state, and every transition of the system satisfies the simple security property, and the *-property, then every state of the system is secure.
BLP Model Induction

1. Show NRU and NWD are satisfied in all initial states
2. Show all actions can not change a state satisfying NRU/NWD into one which does not
Key Points

- Confidentiality models restrict flow of information
- Bell-LaPadula model multilevel security
 - Cornerstone of much work in computer security
 - NRU and NWD rules
Part III

Integrity Policies
Integrity Policies

- Very different from confidentiality policies
- Concerned more with accuracy of data than their disclosure
 - e.g. banks
- Mostly used in commercial and industrial environments
Integrity Policies

Biba Integrity Model

Clark-Wilson Integrity Model

Biba Integrity Model

Read and Write

Biba Integrity Model

- Introduced by Ken Biba in the mid 1970s
- Use integrity levels (similar to security levels in BLP model)
 - The higher the level, the more confidence
 - that a program will execute correctly
 - that data is accurate and/or reliable
- Note relationship between integrity and trustworthiness
- Important point: integrity levels are not security levels
Read and Write

- BLP upside-down!
 - “no read down” rule (NRD)
 - “no write up” rule (NWU)
- Integrity levels (not disclosure levels)
Biba Rules

- Set of subjects S, objects O, integrity levels I:
 1. $s \in S$ can read $o \in O$ iff $i(s) \leq i(o)$
 2. $s \in S$ can write to $o \in O$ iff $i(o) \leq i(s)$
 3. $s_1 \in S$ can execute $s_2 \in S$ iff $i(s_2) \leq i(s_1)$
Clark-Wilson Integrity Model

- Introduced by David Clark and David Wilson in 1987
- Integrity model specifically targeting commercial applications
- Built on several well-known accounting practices in traditional businesses
- No security levels (unlike BLP and Biba)
Clark-Wilson Integrity Model

“Integrity” is defined by a set of constraints
- Data in a consistent or valid state when it satisfies these constraints

Example: deposits and withdrawals in a bank
- \(D \) todays deposits, \(W \) withdrawals, \(YB \) yesterdays balance, \(TB \) todays balance
- Integrity constraint: \(D + YB - W = TB \)

“Well-formed transactions” move system from one consistent state to another

Issue: who examines, certifies transactions done correctly?
- e.g. invoice paying in a purchasing department
- separation of duty: transactions implementer and certifier must be different people
Model Components

1. CDIs: constrained data items
 - Data subject to integrity controls
2. UDIs: unconstrained data items
 - Data not subject to integrity controls
3. IVPs: integrity verification procedures
 - Procedures that test the CDIs conform to the integrity constraints
4. TPs: transformation procedures
 - Procedures that take the system from one valid state to another
5. Subjects
 - Entities that initiate TPs

Example (Bank)
Balances in the accounts are (CDI), Checking the accounts are balanced (IVP), depositing, withdrawing money (TPs)
Data

- D is all the data in a computing system (e.g. files in OS)
- Two types of data: CDI and UDI
 - $D = CDI \cup UDI$
 - $CDI \cap UDI = \phi$
Rules

- The model consists of 9 rules
- The rules are expressed with respect to a given computing system
- The rules are adopted collectively
Rule 1: Integrity Validation Procedure (IVP)

IVPs must be available on the system for validating the integrity of any CDI
- e.g. checksums
Rule 2: Integrity Closure

Applications of a TP to any CDI must maintain the integrity of that CDI
Rules 3,4,5

Rule 3
A CDI can only be changed by a TP

Rule 4
Subjects can only initiate certain TPs on certain CDIs
- CW-triple: (subject,tp,d)

Rule 5
CW-Triples must enforce separation of duty principle
- A subject must not be able to change CDIs without appropriate involvement of other subjects
Rule 6: Integrity Upgrade

Certain special TPs on UDI can produce CDI as output.
Rules 7,8,9

Rule 7
Each TP application cause information sufficient to reconstruct the operation to an append-only CDI
- Auditing/logging

Rule 8
The system must authenticate each user attempting to initiate a TP

Rule 9
The system must only permit special subjects (i.e. security officers) to make changes to any authorization-related lists
- Protect against intruders/attackers
Key Points

- Integrity policies deal with trust
 - As trust is hard to quantify, these policies are hard to evaluate completely
 - Look for assumptions and trusted users to find possible weak points in their implementation
- Biba based on multilevel integrity
- Clark-Wilson focuses on separation of duty and transactions
Part IV

Hybrid Policies
Hybrid Policies

- Most organizations need a composition of confidentiality and integrity policies
- Hybrid policies address specific environments
 - Chinese Wall Model: Conflict of Interest
Chinese Wall Model

Problem:
- Tony advises American Bank about investments
- He is asked to advise Toyland Bank about investments

Conflict of interest to accept, because his advice for either bank would affect his advice to the other bank
Organization

- Organize entities into “conflict of interest” classes
- Control subject accesses to each class
- Control writing to all classes to ensure information is not passed along in violation of rules
- Allow sanitized data to be viewed by everyone
Definitions

- **Objects**: items of information related to a company
- **Company dataset (CD)**: contains objects related to a single company
 - Written CD(O)
- **Conflict of interest class (COI)**: contains datasets of companies in competition
 - Written COI(O)
 - Assume: each object belongs to exactly one COI class

![Bank COI Class](image1)

- **Bank of America**
- **Citibank**
- **Bank of West**

![Gas Company COI Class](image2)

- **Shell Co.**
- **ARCO**
- **Union**
- **Standard Oil**
Chinese Wall model considers a user’s history

If Anthony reads any CD in a COI, he can never read another CD in that COI
- Possible that information learned earlier may allow him to make decisions later

CW-Simple Security Condition

Let $PR(S)$ be set of objects that s has already read
s can read o iff either condition holds:
1. There is an o' such that s has accessed o' and $CD(o') = CD(o)$
 (Meaning s has read something in os dataset)
2. For all $o' \in PR(s)$, $COI(o') \neq COI(o)$
 (Meaning s has not read any objects in os conflict of interest class)
Writing

- Anthony, Susan work in same trading house
- Anthony can read Bank 1s CD, Gas CD
- Susan can read Bank 2s CD, Gas CD
- If Anthony could write to Gas CD, Susan can read it
 - Hence, indirectly, she can read information from Bank 1s CD, a clear conflict of interest

CW-*-Property

- s can write to o iff both of the following hold:
 1. The CW-simple security condition permits s to read o; and
 2. For all objects o', if s can read o', then $CD(o') = CD(o)$

Says that s can write to an object if all the objects it can read are in the same dataset
Key Points

- Hybrid policies deal with both confidentiality and integrity
- Use different combinations of basic policies