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ABSTRACT
While  static examination of computer  systems  is  an  important 
part  of  many  digital  forensics  investigations,  there  are  often 
important system properties present only in volatile memory that 
cannot be effectively recovered using static analysis techniques, 
such as offline hard disk acquisition and analysis.  An alternative 
approach, involving the live analysis of target systems to uncover 
this  volatile  data,  presents  significant  risks  and  challenges  to 
forensic  investigators  as  observation  techniques  are  generally 
intrusive and can affect the system being observed.  This paper 
provides  a  discussion of live  digital  forensics  analysis  through 
virtual introspection and presents a suite of virtual introspection 
tools developed for Xen (VIX tools).  The VIX tools suite can be 
used  for  unobtrusive  digital  forensic  examination  of  volatile 
system data  in  virtual  machines,  and addresses  a  key research 
area identified in the virtualization in digital forensics research 
agenda [22].   

Categories and Subject Descriptors
D.4.8  [Operating  Systems]:  Performance  –  Monitor;  D.4.6. 
[Operating Systems]: Security and Protection

General Terms
Management, Experimentation, Security, Verification.

Keywords
Virtual  Machine  Monitor,  VIX,  Digital  Forensics,  Virtual 
Introspection.

1. INTRODUCTION
As  computer  systems  become  increasingly  ubiquitous  and 
complex,  digital  forensic techniques  must  necessarily evolve to 
address  the  associated  new  challenges  being  faced  by digital 
forensics  examiners  during  incident  response.   The  ability  to 
determine how defenses failed,  and to what  extent  the affected 
systems have been compromised is critical to recovering from an 
incident, and ensuring that systems are more resilient to attack in 
the  future.   This  can  be  accomplished  through  live  forensic 
analysis of volatile system data using virtual introspection.

2. BACKGROUND
Traditional  static  analysis  techniques,  where  images  of storage 
media are examined using tools such as Encase [9] or FTK [1], 
have the ability to unearth tremendous volumes of data including 

electronic documents,  browsing history, email  records, installed 
programs,  and  even files  that  users  believe  they have  deleted. 
This  approach  typically  involves  powering  the  target  system 
down and creating a forensically valid copy of the digital media, 
using write blocking devices where necessary to ensure that the 
image  acquisition  process  does  not  modify the  original  media. 
While  a  wealth  of  information  can  be  gathered  using  this 
approach, there are many system properties, such as the process 
list,  open network ports,  installed  kernel  modules,  and volatile 
memory contents, which cannot be retained and examined as part 
of  a  forensics  analysis  using  these  techniques.   As  systems 
become  increasingly  reliant  on  network  connectivity,  other 
system characteristics,  such  as  the  list  of open  ports,  may be 
more  relevant  to  an  investigation  than  the  email  or  browsing 
history.   Unfortunately,  the  traditional  static  digital  forensics 
analysis techniques fail to provide that information.

One solution to address this issue is to perform live analysis on a 
target  system,  whereby  an  investigator  performs  a  forensic 
examination of a system while it is in a running state.  In such 
cases the examiner has the ability to gather information which is 
not typically available through the static analysis approach.  Live 
analysis  of volatile  system data  presents  significant  challenges 
and  risks.   In  the  digital  forensics  equivalent  of the  observer 
effect, the examiner simply cannot examine a live system without 
making some change to it, however minor.  From the moment the 
investigator  logs  on  to  the  target  system,  logs  are  recorded, 
temporary files are created and deleted, network connections can 
be  opened  and  closed,  history files  are  updated,  and  registry 
entries are queried, added, and modified.  All of these activities 
change the state of the system, and as such may contaminate the 
evidence  that  the  investigator  hopes  to  collect.   Any evidence 
discovered  cannot  be  recorded  on  the  target  system  without 
further  system modification,  so a  network  connection  is  often 
used  to  pipe  data  to  another  system  under  the  investigator’s 
control, where the results of the live analysis can be recorded.  It 
is  also unlikely that a target system contains all  of the utilities 
required  to  perform  a  forensics  analysis,  so  some  additional 
media  loaded  with  analysis  tools  may be  attached  to  system, 
resulting in more system activity that potentially contaminates or 
overwrites essential digital evidence.  

In addition,  it  is  possible  that  a compromised host may have a 
rootkit installed which will deliberately attempt to hide evidence, 
such as  open network  ports,  user  accounts,  or the  presence  of 
files  and  folders  in  a  file  system.   Under  such  circumstances 
some or all of the evidence obtained during live analysis may be 
incorrect  or  misleading.   In  the  worst  case  a  system could  be 
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configured to detect a live analysis attempt (e.g., suppose that a 
suspect installed a service that requires a user to hit the escape 
key within 5 seconds of login to maintain system configurations) 
and to delete incriminating data if such an attempt was detected. 
Even  without  such  “movie  plot”  issues  live  analysis  is 
substantially  more  challenging  than  the  more  traditional  static 
analysis approaches.

Some hardware based devices are available  that aim to address 
the danger inherent in live analysis by using the DMA controller 
to  acquire  the  contents  of  system  memory  without  operating 
system or CPU interaction [4, 8, 10].  However,  some research 
has  raised  the  possibility  that  such  devices  could  actually  be 
presented with a different view of memory than that seen by the 
CPU (and therefore the operating system and applications),  and 
as such that memory areas may be masked from the analysis.  If 
the  target  system was carefully configured this  may allow data 
vital  to a forensic investigation, such as malware,  to be hidden 
from the examiner [3].

Although live analysis  is  fraught  with  difficulties,  it  does offer 
the opportunity to gather valuable information that static analysis 
cannot  provide,  although  the  process  of  static  analysis  is 
substantially less  complex.   However,  the recent  resurgence of 
system virtualization and its application to commodity processors 
may provide  a  method  by which  live  analysis  of a  system  is 
possible,  without  the  associated  risk  of  contamination  of  the 
target system evidence.

3. VIRTUALIZATION
Virtualization is not a new concept, with origins stemming back 
to IBM’s release of VM for the System/360 in 1972 [26], but the 
recent  growth  of  x86  virtualization  products  such  as  Virtual 
PC/Server  [16],  VMware  [30],  QEMU  [23],  KVM  [13],  Xen 
[33],    and Parallels  [18] have provided new opportunities  and 
challenges  for  digital  forensics  investigators  as  virtualization 
becomes  increasingly mainstream.   Virtualization  provides  the 
ability  to  host  multiple  guest  operating  systems  on  a  single 
physical host system in paravirtualized or fully virtualized modes 
and represents a natural evolution from the need to host multiple 
isolated  users  on  a  single  mainframe.   Each  guest  operating 
system operates in a virtual environment in which it is unaware 
of other guest operating systems that may be running on the same 
physical host.    As a result,  virtualization facilitates the sharing 
of  pools  of  computing  resources  while  maintaining  isolation 
between virtual machines [26].   

Virtualization  also  facilitates  replication,  mobility,  rollbacks, 
restarts,  and  reduces  the  hardware  and  time  requirements 
associated with performing the same actions on multiple physical 
hosts.   The  recent  rapid  growth  of virtualization  technologies 
demonstrates  the  widespread  utilization  and  increased 
acceptance  of  virtualization  in  both  research  and  production 
environments.   Virtualization provides a method to harness  the 
power of the continually increasing multi-core and multi-socket 
systems and takes  advantage of the foreseeable  continuation of 
growth  in  this  area.  Crosby  and  Brown  [5]  predict  that 
virtualization is “poised to deliver profound changes to the way 
that both enterprises and consumers use computer systems.”   In 
addition to the  potential  benefits  for enterprise  users  and data 
centers,  the computer-using public is also likely to benefit from 

advances  in  virtualization.   For  example,  the  United  States 
National  Security Agency’s NetTop project  involves  the  use  of 
virtualization  on  common  computing  hardware  to  “[remove] 
security functionality from the  control  of the  end-user  OS and 
applications.  Important  security  functions  such  as 
communications encryption can be placed in a separate protected 
environment that cannot be influenced by user software.” [17]

Along with the many advantages brought about by virtualization, 
there  are  additional  technological  challenges  that  virtualization 
presents,  which include an increase in the complexity of digital 
forensics  investigations  as  well  interesting  questions  regarding 
the forensics boundaries of a system.  One of the nine research 
areas  identified  in  the  virtualization  and  digital  forensics 
research agenda [22] is virtual introspection.  Advances in virtual 
introspection research will greatly empower the digital forensics 
investigator, but present significant open challenges to the virtual 
introspection researcher.

4. VIRTUAL INTROSPECTION
4.1 Background
Virtual Introspection (VI) is the process by which the state of a 
virtual  machine  (VM)  is  observed  from  either  the  Virtual 
Machine Monitor (VMM),  or from some virtual  machine other 
than the one being examined.  While virtual introspection is not 
yet available as a production tool, there have been some recent 
efforts  that  demonstrate  the  potential  uses  for  this  technique 
including the following:

• Virtual introspection for IDS/IPS [2, 7, 14, 21]
• VM-Based Malware Detection System [12, 15, 24, 27, 

35]
• Virtual Access Control [20]

The  XenAccess  project,  led  by a  PhD student  at  the  Georgia 
Tech  Information  Security  Center,  is  currently  attempting  to 
produce  an  open  source  virtual  introspection  library  that  will 
allow “researchers to experiment with the many uses of memory 
introspection without needing to focus on the low-level details of 
introspection.” [32]

4.2 Application to Digital Forensics
Assuming the continued growth of applications of virtualization, 
digital forensics investigators are likely to encounter many cases 
where the target of an investigation is a virtual machine, or set of 
virtual machines.  In such cases virtual introspection is likely to 
allow an investigator to perform live system analysis  in such a 
manner that the state of the target system remains unchanged as 
a result of the analysis, which is not the case with traditional live 
analysis of physical systems.  In addition, it may be possible to 
perform the analysis in such a way that the target system would 
be unable to detect the monitoring.  

While it may seem that the mere fact that the state of the target 
system is  not  modified  during the  analysis  makes  the  analysis 
undetectable,  it  remains  to  be  determined  whether  some 
approach  could  allow  the  target  system  to  detect  the  virtual 
introspection  monitoring,  either  conclusively  or  with  some 
elevated probability.  Some possible avenues through which this 
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may  be  possible,  and  which  therefore  warrant  further 
investigation, include:

• Timing analysis.  For example, the target VM may be 
able  to  detect  unusual  patterns  in  the  frequency  at 
which it is scheduled for execution, caused by the need 
for  the  VI  application  to  pause  the  VM  while 
performing analysis.

• Page fault analysis.   For example,  the target VM may 
be able to detect unusual patterns in the distribution of 
page  faults,  caused  by  the  VI  application  accessing 
pages  that  have  been  swapped  out,  or  causing  pages 
that were previously swapped out to be swapped back 
into RAM.

While there is no indication that detection of the VI monitoring is 
possible, it is important to consider whether such a determination 
could  be  made  if  VI  is  to  be  applied  to  digital  forensics, 
particularly if  the  results  of a VI-based  investigation are  to be 
used as evidence in a legal setting.

Simply being able to detect that a system is running as a VM is 
not considered significant for this application, as the intent of the 
tools  is  specifically to  allow for live  analysis  of VMs.   In all 
major virtualization products available today it is possible for a 
user to reliably determine that the operating system is running on 
a VM rather  than directly on physical  hardware.    While  there 
have  been  some  claims  of undetectable  VM “rootkits”  [11]  it 
does  not  appear  that  such  virtualized  rootkits  can  be  reliably 
disguised at this time.  In fact, there seem to be many advantages 
of cooperative virtualization, in which the VM not only knows it 
is running in a virtualized environment,  but cooperates to some 
extent  with the VMM to improve overall  performance [19, 31], 
although these  benefits  may require  tradeoffs,  such as  reduced 
system portability.  The ability to detect virtualization has been 
problematic for some applications in the past, in that VMs were 
used more commonly as honeypots than production systems,  so 
that  attackers  who  detect  virtualization  may assume  that  they 
found  a  honeypot  system  rather  than  a  production  host. 
However, with the increased use of virtualization for production 
systems  [6],  simply detecting  a  virtual  environment  no longer 
signals  that  the  system  is  a  non-production  host.   It  may, 
however, lead the attacker to attempt to break out of the virtual 
environment  through  vulnerabilities  in  the  VMM,  thus 
compromising the physical host, although it is hoped that VMM 
designers  strive  to make  the  VMM as simple  as  possible,  and 
therefore  easier  to  provide  security  assurances  for  than  the 
typical highly complex operating system.  

The  concept  of the  semantic  gap is  often  raised  in  relation  to 
virtual introspection.  The semantic gap refers to the difference 
between  the  presentation  of data  from volatile  memory by the 
operating system (e.g., to userspace processes in the target VM), 
and the raw format in which we can access memory using virtual 
introspection  techniques.   However,  this  is  an  inconvenience 
rather  than a fundamental  limitation,  and all  that  is  required is 
that  virtual  introspection  applications  perform  the  same 
translation of the raw volatile  memory data  to information that 
the operating system already performs.  Depending on the depth 
to which the digital forensics investigator intends to examine the 

system,  writing such tools  may be time  consuming,  but  at  any 
given moment there is no data available to the virtual machine 
operating  system  that  is  not  also  available  to  the  virtual 
introspection  application,  although  accessing  it  is  likely  to 
require  that  the  VI application  perform  a  complex  navigation 
through multiple levels of indirection.  

5. Virtual Introspection for Xen (VIX)
The Virtual Introspection for Xen (VIX) suite of tools has been 
developed  as  part  of an  ongoing virtual  introspection  research 
effort, which is focused on digital forensics.  Although Xen does 
not feature some of the more advanced management tools offered 
by  other  commercial  vendors,  it  was  selected  in  large  part 
because it was open-source software, allowing the researchers to 
modify the VMM should that become necessary (although to date 
this  has  not  been  required,  as  the  necessary  functionality  is 
exposed by the Xen Control library, which is available as part of 
the  Xen  distribution).   In  addition,  Xen  is  under  current 
development,  supports  multiple  guest  operating  systems, 
including  Linux  and  Windows,  and  has  been  integrated  into 
several  mainstream Linux distributions [25,  28].   Furthermore, 
several  active mail  lists  are dedicated to Xen development and 
usage issues [34].

Although Xen was  used  as  the  virtualization  platform for this 
project, the techniques developed could be applied to any of the 
other  major  virtualization  platforms,  although  the 
implementation  details  of the  memory access  would  obviously 
differ.   In each of these alternate  platforms the VMM enforces 
the  separation  between  virtual  machines,  and  as  such  making 
pages  from  one  VM  available  to  other  parts  of  the  system 
requires at most a modification to the VMM, and, as is the case 
with Xen, the VMM may already provide such functionality and 
an API with which to invoke it.

While it does enable virtual introspection, the fact that the VMM 
has full access to the resources of all VMs that it manages also 
presents a significant risk,  in that a compromised VMM can be 
easily leveraged to compromise all  of the VMs on that  system. 
The  issue  of whether  VMs can ever  be managed  by a  VMM, 
while simultaneously being protected from a compromised VMM 
remains an open research problem.

5.1 VIX Tool Suite
The VIX tools are designed to allow an investigator to perform 
live analysis of an unprivileged Xen virtual machine, which are 
known  as  DomU  systems,  from  the  privileged  Dom0  virtual 
machine.  Using this approach, neither the virtual machines nor 
the virtual machine manager require modification.  VIX consists 
of a  library of common functions,  and  a  suite  of tools  which 
mimic  the  behavior  of  common  Unix  command  line  utilities, 
such as ps, lsmod, netstat, lsof, who, and top.

The basic  approach taken  by these  tools  is  to pause the target 
virtual  machine,  acquire  the  data  necessary  to  perform  the 
requested function using read-only operations, and then un-pause 
the target VM.  Using this approach we can ensure that the state 
of the VM does not change during the data acquisition process, 
and that the state of the VM is not modified while its execution 
is suspended.
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Figure 1: Example of mapping a page containing a DomU virtual memory address into Dom0.

The Xen Control  library is  used to allow the Dom0 system to 
perform operations on the DomU systems, including pausing the 
target  VM  prior  to  analysis,  and  un-pausing  it  afterwards. 
Another important  function provided by the library is  mapping 
memory pages assigned to the target VM into the address space 
of the Dom0 system, allowing the analysis to be performed.

When attempting to access a memory address in the context of a 
process  in  a  Linux  VM,  there  are  several  steps  that  must  be 
performed prior to the relevant page being available to the Dom0 
system.   As with  any Linux system,  a memory address  is  only 
relevant  in  the  context  of a  process,  and  in  order  to  find  the 
appropriate physical frame in memory we must consult the page 
tables to determine the corresponding physical frame number.  In 
the case of physical machines that would be sufficient, but there 
is another layer of complexity added by virtualization because the 
physical frame numbers from the perspective of the VM must be 
translated  into  the  physical  frame  numbers  for  the  underlying 
physical  hardware  before  the  appropriate  page  can  finally  be 
made available to the Dom0 system.  Figure 1 shows an example 
of  this  operation,  where  a  page  containing  the  address  of  a 
module struct,  which contains information about a single kernel 
module, is mapped into Dom0 space on a 32-bit x86 system with 
PAE disabled.

The task of converting the DomU Physical Frame Number (PFN) 
to the frame number for the physical machine (MFN) is handled 
via a call to the Xen Control library, as is the operation that maps 
a given MFN into Dom0 memory space.   However,  the  Dom0 
application is responsible for correctly traversing the appropriate 
DomU virtual memory structures, and as such any page directory 
or page table needed during this traversal must also be similarly 
mapped  into  Dom0  to  allow  the  application  to  access  them. 
While this further complicates what would be a simple operation 
were it to be performed either directly on the DomU system, or 
on  a  physical  system  with  no  virtualization  involved,  it  is  a 
necessary operation required for virtual introspection.  Of course, 
care must also be taken to unmap any mapped pages to prevent 
memory leaks.

At  this  point  the  Dom0 application  can  examine  the  mapped 
page.  Many of the kernel structures examined by the VIX tools, 
such as the process list, make extensive use of pointers, which of 
course are also only valid in the context of the DomU process. As 
such, a task as seemingly trivial as walking a linked list becomes 
significantly more complex in a virtual introspection application. 
Much of this activity is now abstracted away from the individual 
VIX tools by the libvix API, but it is important to remember that 
it  does occur so that  applications  built  on libvix minimize the 
time for which execution of the target system is suspended.

77



Figure 2: Fields and data structures involved in decoding a task_struct for a single process for a basic invocation of vix-ps.

The  ps utility [29] is used on Unix systems to list  the current 
processes, and when it is executed on a Linux host it makes use 
of system calls and the /proc filesystem to gather the relevant 
process data, which is then formatted and displayed to the user. 
The vix-ps utility performs the same functionality for a given 
DomU, using virtual introspection techniques,  meaning that the 
system calls and /proc filesystem are essentially not available. 
The pseudo-code for the vix-ps utility is as follows:

Pause DomU
Adr <- Address of Task List Head
Do

Adr <- Adr.next_task_adr
Map page(s) for Adr into Dom0
Decode task_struct
Display data
Unmap page(s) with Adr

While (Adr != Address of Task List Head)
UnPause DomU

Once a page containing a task_struct has been mapped to Dom0 
in the  vix-ps application, the relevant data must be extracted 
for display to the user.  The data acquired in the case of the most 
basic  version of the  vix-ps command,  equivalent  to  ps � e 
on a Linux system, is shown in figure 2.  Note that  task_struct 
fields  that  contain  addresses  of other  data  structures  must  be 
viewed  in  the  context  of  the  DomU  system,  and  as  such 
additional  pages may need to be mapped into Dom0 system in 
order to access the signal_struct and tty_struct data structures for 
a given process.

Decoding the  task_struct  provided  in  the  mapped  page  in  the 
case  of  vix-ps is  a  manual  process,  and  while  it  would  be 

tempting  to  use  the  task_struct  defined  for  the  kernel  of  the 
DomU system, we cannot assume that data structures present in 
the Dom0 system match the structures used by the DomU kernel 
to which the page, and the task_struct data, belongs.  This issue 
is  addressed  by  using  flexible  offset  values  into  the  various 
structures used by the VIX tools, which are initialized based on 
the  kernel  version  of  the  DomU system  being  examined.   A 
kernel module, named getOffsets, has been developed as part of 
this work, and has been used to determine the appropriate offsets 
for a variety of example Linux kernels.   Work is also currently 
underway  on  a  more  flexible  approach,  in  which  the  correct 
offsets are  determined  by probing the target  VM for known or 
likely values.

5.2 VIX Example
To demonstrate the functionality of the VIX tools, a Xen system 
was configured to run two VMs, including the privileged Dom0 
system,  and  an  unprivileged  DomU  system  called  testhvm1. 
Figure  3 shows the output  of the  xm list command,  which 
displays the current VMs on the system.  Each of the current VIX 
tools takes a parameter that identifies the ID of the VM on which 
the tool will execute.  

Figure 3: Xen system running with two virtual machines.
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Figure 4: Comparison of process listings taken from within a VM using the traditional ps command on the DomU (left),  and 
from the Dom0 system using virtual introspection (right).
Figure  4  shows  the  output  of  the  ps � e command  on  the 
testhvm1 DomU VM on the left,  followed by the corresponding 
output from the  vix-ps command run against  testhvm1 (ID 1) 
from the Dom0 system on the right.   The listings are identical,  
other than the addition of the last entry on the left, which is the 
ps command itself that was obviously running at that time, and 
which  had  completed  execution  before  the  vix-ps command 
was invoked.

As shown in figure 5, a second DomU system,  called  testhvm-
rk1, has been added to the demonstration system.  This VM is a 
Linux system onto which a basic rootkit  has been installed  for 
the purposes of this exercise.   This rootkit  is capable of hiding 

modules and process, and as a result the true state of the system 
may not be apparent to a user of that system, including a forensic 
investigator.  

Figure  5: Xen system running with three virtual  machines. 
The testhvm-rk1 VM has a rootkit installed.
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Figure 6: Comparison of module listings taken from within a VM with a hidden kernel module (evilmodule) installed using the 
traditional lsmod command from DomU (left), and from the Dom0 system using virtual introspection (right).
For example,  when executed on the DomU system,  the  lsmod 
utility does not display the presence of the  evilmodule module. 
However,  by using virtual  introspection from Dom0 to directly 
access memory, without  relying on any of the DomU operating 
system functionality, the  vix-lsmod tool correctly reports the 
true  state  of  the  system,  which  includes  the  hidden  kernel 
module, as shown in figure 6.

6. DISCUSSION AND CONCLUSION
This  paper  presents  a  discussion  of  virtual  introspection  and 
introduces the VIX suite of tools to advance the research agenda 
for  virtualization  in  digital  forensics.   Although  progress  has 
been made in  the  application of virtual  introspection to digital 
forensics, much work remains to be done in this field.

6.1 Future Work
The  following list  includes  some of the  next  steps  that  would 
contribute to the state of virtual introspection both as applied to 
digital forensics, and to the VI field in a more general sense:

• Support for multiple operating system types.  While the 
Linux 2.6 kernel is already relatively well supported by 
VIX  tools,  support  for  other  operating  systems, 
particularly Windows, is an important step to allowing 
the  VIX  tools  to  have  widespread  practical 
significance.

• Analysis of the extent to which the virtual introspection 
techniques  can  be  detected  by  the  target  virtual 
machine.   For  example,  it  is  possible  that  timing 
analysis  or  page  fault  monitoring  may provide  some 
indication to the target VM that monitoring was taking 
place, despite the fact that the VM is not active during 
the VI process.  If virtual introspection is to be applied 
to  digital  forensics  for  legal  investigations  it  is 
important to understand this issue.

• Application  of  these  VI  techniques  to  other 
virtualization  platforms.   In  particular  the  VMware 
suite  of virtualization products  is  an important  target, 
as those products currently dominate  the marketplace, 
particularly in the enterprise  environment.   While  the 
mechanism by which  pages  from the  VMs  are  made 
available to the VI applications may change, it should 
be possible to retain a common code base for decoding 
the pages once they are made available.

• Applications of these techniques to other domains.   A 
domain  being  actively  investigated  at  this  time  is 
honeypots, where the current monitoring techniques for 
high  interaction  honeypots  typically  involve  hidden 
monitoring processes running on the honeypot systems 
themselves,  which are detectable  by skilled intruders. 
Honeypots  often  run  as  virtual  machines,  and  the 
ability  to  use  virtual  introspection  may  make  the 
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monitoring  less  visible  to  the  intruder,  allowing 
honeypot researchers to gather more information about 
the activities of attackers.

• Development  of  a  framework  to  allow  virtual 
introspection  across  physical  hosts.   In  large  scale 
virtualized  environments  VMs  are  typically  not 
restricted to a particular physical hosts, but are instead 
dynamically  load  balanced  across  a  pool  of  physical 
hosts,  even while running.  In such cases it  would be 
valuable  to allow the forensic  investigator  to monitor 
the VM from a single physical host, no matter where in 
the  pool  the  VM  was  currently  executing.   Such 
techniques  would  also  be  applicable  to  data  centers, 
allowing  administrators  to  monitor  VMs  deployed 
across a large number of physical hosts throughout the 
data center from a central monitoring point.

6.2 Conclusions
Assuming  that  the  current  trend  towards  system virtualization 
continues,  Virtual  Introspection  techniques  can  be  utilized  by 
forensics  investigators  to  perform unobtrusive  live  analysis  on 
target  virtual  machines,  with  greatly  reduced  risk  of 
contaminating evidence on the target  system,   While  there  are 
still many open problems in this area, including a quantification 
of the extent to which Virtual Introspection is detectable from the 
target  system,  the  VIX  suite  of  tools  currently  provides  an 
excellent proof of concept of the utility of VI in digital forensics.
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