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ABSTRACT

While static examination of computer systems is an important
part of many digital forensics investigations, there are often
important system properties present only in volatile memory that
cannot be effectively recovered using static analysis techniques,
such as offline hard disk acquisition and analysis. An alternative
approach, involving the live analysis of target systems to uncover
this volatile data, presents significant risks and challenges to
forensic investigators as observation techniques are generally
intrusive and can affect the system being observed. This paper
provides a discussion of live digital forensics analysis through
virtual introspection and presents a suite of virtual introspection
tools developed for Xen (VIX tools). The VIX tools suite can be
used for unobtrusive digital forensic examination of volatile
system data in virtual machines, and addresses a key research
area identified in the virtualization in digital forensics research
agenda [22].

Categories and Subject Descriptors
D.4.8 [Operating Systems]: Performance — Monitor; D.4.6.
[Operating Systems]: Security and Protection

General Terms
Management, Experimentation, Security, Verification.

Keywords
Virtual Machine Monitor, VIX, Digital Forensics, Virtual
Introspection.

1. INTRODUCTION

As computer systems become increasingly ubiquitous and
complex, digital forensic techniques must necessarily evolve to
address the associated new challenges being faced by digital
forensics examiners during incident response. The ability to
determine how defenses failed, and to what extent the affected
systems have been compromised is critical to recovering from an
incident, and ensuring that systems are more resilient to attack in
the future. This can be accomplished through live forensic
analysis of volatile system data using virtual introspection.

2. BACKGROUND

Traditional static analysis techniques, where images of storage
media are examined using tools such as Encase [9] or FTK [1],
have the ability to unearth tremendous volumes of data including
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electronic documents, browsing history, email records, installed
programs, and even files that users believe they have deleted.
This approach typically involves powering the target system
down and creating a forensically valid copy of the digital media,
using write blocking devices where necessary to ensure that the
image acquisition process does not modify the original media.
While a wealth of information can be gathered using this
approach, there are many system properties, such as the process
list, open network ports, installed kernel modules, and volatile
memory contents, which cannot be retained and examined as part
of a forensics analysis using these techniques. As systems
become increasingly reliant on network connectivity, other
system characteristics, such as the list of open ports, may be
more relevant to an investigation than the email or browsing
history. Unfortunately, the traditional static digital forensics
analysis techniques fail to provide that information.

One solution to address this issue is to perform live analysis on a
target system, whereby an investigator performs a forensic
examination of a system while it is in a running state. In such
cases the examiner has the ability to gather information which is
not typically available through the static analysis approach. Live
analysis of volatile system data presents significant challenges
and risks. In the digital forensics equivalent of the observer
effect, the examiner simply cannot examine a live system without
making some change to it, however minor. From the moment the
investigator logs on to the target system, logs are recorded,
temporary files are created and deleted, network connections can
be opened and closed, history files are updated, and registry
entries are queried, added, and modified. All of these activities
change the state of the system, and as such may contaminate the
evidence that the investigator hopes to collect. Any evidence
discovered cannot be recorded on the target system without
further system modification, so a network connection is often
used to pipe data to another system under the investigator’s
control, where the results of the live analysis can be recorded. It
is also unlikely that a target system contains all of the utilities
required to perform a forensics analysis, so some additional
media loaded with analysis tools may be attached to system,
resulting in more system activity that potentially contaminates or
overwrites essential digital evidence.

In addition, it is possible that a compromised host may have a
rootkit installed which will deliberately attempt to hide evidence,
such as open network ports, user accounts, or the presence of
files and folders in a file system. Under such circumstances
some or all of the evidence obtained during live analysis may be
incorrect or misleading. In the worst case a system could be



configured to detect a live analysis attempt (e.g., suppose that a
suspect installed a service that requires a user to hit the escape
key within 5 seconds of login to maintain system configurations)
and to delete incriminating data if such an attempt was detected.
Even without such “movie plot” issues live analysis is
substantially more challenging than the more traditional static
analysis approaches.

Some hardware based devices are available that aim to address
the danger inherent in live analysis by using the DMA controller
to acquire the contents of system memory without operating
system or CPU interaction [4, 8, 10]. However, some research
has raised the possibility that such devices could actually be
presented with a different view of memory than that seen by the
CPU (and therefore the operating system and applications), and
as such that memory areas may be masked from the analysis. If
the target system was carefully configured this may allow data
vital to a forensic investigation, such as malware, to be hidden
from the examiner [3].

Although live analysis is fraught with difficulties, it does offer
the opportunity to gather valuable information that static analysis
cannot provide, although the process of static analysis is
substantially less complex. However, the recent resurgence of
system virtualization and its application to commodity processors
may provide a method by which live analysis of a system is
possible, without the associated risk of contamination of the
target system evidence.

3. VIRTUALIZATION

Virtualization is not a new concept, with origins stemming back
to IBM’s release of VM for the System/360 in 1972 [26], but the
recent growth of x86 virtualization products such as Virtual
PC/Server [16], VMware [30], QEMU [23], KVM [13], Xen
[33], and Parallels [18] have provided new opportunities and
challenges for digital forensics investigators as virtualization
becomes increasingly mainstream. Virtualization provides the
ability to host multiple guest operating systems on a single
physical host system in paravirtualized or fully virtualized modes
and represents a natural evolution from the need to host multiple
isolated users on a single mainframe. Each guest operating
system operates in a virtual environment in which it is unaware
of other guest operating systems that may be running on the same
physical host. As a result, virtualization facilitates the sharing
of pools of computing resources while maintaining isolation
between virtual machines [26].

Virtualization also facilitates replication, mobility, rollbacks,
restarts, and reduces the hardware and time requirements
associated with performing the same actions on multiple physical
hosts. The recent rapid growth of virtualization technologies
demonstrates the widespread utilization and increased
acceptance of virtualization in both research and production
environments. Virtualization provides a method to harness the
power of the continually increasing multi-core and multi-socket
systems and takes advantage of the foreseeable continuation of
growth in this area. Crosby and Brown [5] predict that
virtualization is “poised to deliver profound changes to the way
that both enterprises and consumers use computer systems.” In
addition to the potential benefits for enterprise users and data
centers, the computer-using public is also likely to benefit from
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advances in virtualization. For example, the United States
National Security Agency’s NetTop project involves the use of
virtualization on common computing hardware to “[remove]
security functionality from the control of the end-user OS and
applications.  Important  security  functions such as
communications encryption can be placed in a separate protected
environment that cannot be influenced by user software.” [17]

Along with the many advantages brought about by virtualization,
there are additional technological challenges that virtualization
presents, which include an increase in the complexity of digital
forensics investigations as well interesting questions regarding
the forensics boundaries of a system. One of the nine research
areas identified in the virtualization and digital forensics
research agenda [22] is virtual introspection. Advances in virtual
introspection research will greatly empower the digital forensics
investigator, but present significant open challenges to the virtual
introspection researcher.

4. VIRTUAL INTROSPECTION

4.1 Background

Virtual Introspection (VI) is the process by which the state of a
virtual machine (VM) is observed from either the Virtual
Machine Monitor (VMM), or from some virtual machine other
than the one being examined. While virtual introspection is not
yet available as a production tool, there have been some recent
efforts that demonstrate the potential uses for this technique
including the following:

e  Virtual introspection for IDS/IPS [2, 7, 14, 21]

e  VM-Based Malware Detection System [12, 15, 24, 27,
35]

e  Virtual Access Control [20]

The XenAccess project, led by a PhD student at the Georgia
Tech Information Security Center, is currently attempting to
produce an open source virtual introspection library that will
allow “researchers to experiment with the many uses of memory
introspection without needing to focus on the low-level details of
introspection.” [32]

4.2 Application to Digital Forensics

Assuming the continued growth of applications of virtualization,
digital forensics investigators are likely to encounter many cases
where the target of an investigation is a virtual machine, or set of
virtual machines. In such cases virtual introspection is likely to
allow an investigator to perform live system analysis in such a
manner that the state of the target system remains unchanged as
a result of the analysis, which is not the case with traditional live
analysis of physical systems. In addition, it may be possible to
perform the analysis in such a way that the target system would
be unable to detect the monitoring.

While it may seem that the mere fact that the state of the target
system is not modified during the analysis makes the analysis
undetectable, it remains to be determined whether some
approach could allow the target system to detect the virtual
introspection monitoring, either conclusively or with some
elevated probability. Some possible avenues through which this



may be possible, and which therefore warrant further

investigation, include:

e Timing analysis. For example, the target VM may be
able to detect unusual patterns in the frequency at
which it is scheduled for execution, caused by the need
for the VI application to pause the VM while
performing analysis.

e  Page fault analysis. For example, the target VM may
be able to detect unusual patterns in the distribution of
page faults, caused by the VI application accessing
pages that have been swapped out, or causing pages
that were previously swapped out to be swapped back
into RAM.

While there is no indication that detection of the VI monitoring is
possible, it is important to consider whether such a determination
could be made if VI is to be applied to digital forensics,
particularly if the results of a VI-based investigation are to be
used as evidence in a legal setting.

Simply being able to detect that a system is running as a VM is
not considered significant for this application, as the intent of the
tools is specifically to allow for live analysis of VMs. In all
major virtualization products available today it is possible for a
user to reliably determine that the operating system is running on
a VM rather than directly on physical hardware. ~While there
have been some claims of undetectable VM “rootkits” [11] it
does not appear that such virtualized rootkits can be reliably
disguised at this time. In fact, there seem to be many advantages
of cooperative virtualization, in which the VM not only knows it
is running in a virtualized environment, but cooperates to some
extent with the VMM to improve overall performance [19, 31],
although these benefits may require tradeoffs, such as reduced
system portability. The ability to detect virtualization has been
problematic for some applications in the past, in that VMs were
used more commonly as honeypots than production systems, so
that attackers who detect virtualization may assume that they
found a honeypot system rather than a production host.
However, with the increased use of virtualization for production
systems [6], simply detecting a virtual environment no longer
signals that the system is a non-production host. It may,
however, lead the attacker to attempt to break out of the virtual
environment through vulnerabilities in the VMM, thus
compromising the physical host, although it is hoped that VMM
designers strive to make the VMM as simple as possible, and
therefore easier to provide security assurances for than the
typical highly complex operating system.

The concept of the semantic gap is often raised in relation to
virtual introspection. The semantic gap refers to the difference
between the presentation of data from volatile memory by the
operating system (e.g., to userspace processes in the target VM),
and the raw format in which we can access memory using virtual
introspection techniques. However, this is an inconvenience
rather than a fundamental limitation, and all that is required is
that virtual introspection applications perform the same
translation of the raw volatile memory data to information that
the operating system already performs. Depending on the depth
to which the digital forensics investigator intends to examine the
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system, writing such tools may be time consuming, but at any
given moment there is no data available to the virtual machine
operating system that is not also available to the virtual
introspection application, although accessing it is likely to
require that the VI application perform a complex navigation
through multiple levels of indirection.

5. Virtual Introspection for Xen (VIX)

The Virtual Introspection for Xen (VIX) suite of tools has been
developed as part of an ongoing virtual introspection research
effort, which is focused on digital forensics. Although Xen does
not feature some of the more advanced management tools offered
by other commercial vendors, it was selected in large part
because it was open-source software, allowing the researchers to
modify the VMM should that become necessary (although to date
this has not been required, as the necessary functionality is
exposed by the Xen Control library, which is available as part of
the Xen distribution). In addition, Xen is under current
development, supports multiple guest operating systems,
including Linux and Windows, and has been integrated into
several mainstream Linux distributions [25, 28]. Furthermore,
several active mail lists are dedicated to Xen development and
usage issues [34].

Although Xen was used as the virtualization platform for this
project, the techniques developed could be applied to any of the
other  major  virtualization  platforms, although the
implementation details of the memory access would obviously
differ. In each of these alternate platforms the VMM enforces
the separation between virtual machines, and as such making
pages from one VM available to other parts of the system
requires at most a modification to the VMM, and, as is the case
with Xen, the VMM may already provide such functionality and
an API with which to invoke it.

While it does enable virtual introspection, the fact that the VMM
has full access to the resources of all VMs that it manages also
presents a significant risk, in that a compromised VMM can be
casily leveraged to compromise all of the VMs on that system.
The issue of whether VMs can ever be managed by a VMM,
while simultaneously being protected from a compromised VMM
remains an open research problem.

5.1 VIX Tool Suite

The VIX tools are designed to allow an investigator to perform
live analysis of an unprivileged Xen virtual machine, which are
known as DomU systems, from the privileged Dom0 virtual
machine. Using this approach, neither the virtual machines nor
the virtual machine manager require modification. VIX consists
of a library of common functions, and a suite of tools which
mimic the behavior of common Unix command line utilities,
such as ps, lsmod, netstat, lsof, who, and top.

The basic approach taken by these tools is to pause the target
virtual machine, acquire the data necessary to perform the
requested function using read-only operations, and then un-pause
the target VM. Using this approach we can ensure that the state
of the VM does not change during the data acquisition process,
and that the state of the VM is not modified while its execution
is suspended.



Dom0 application wants to

read kernel module struct

at address 0xC8932780 in
DomuU

Requested Address > 0xC0000000,
but also above directly mapped
memory, so use DomU Kernel Page
Global Directory (KPGD)

KPGD address = 0xC0712000 (from swapper_pg_dir) is
in range directly mapped by kernel,
[0xC0000000, 0xC0000000 + *(max_low_pfn << 12)], so
PFN = (0xC0712000 - 0xC0000000) >> 12 = 0x712

~
Call Xen VMM to convert Physical Frame
Number (DomU context) into Machine Frame
Number (Physical Machine context):
PFN 0x712 - MFN 0x133b3

v
Call Xen VMM to map MFN into Dom0

DomU KPGD now
mapped to Dom{ space

memory space: MFN 0x133b3 mapped to
address 0xB7F54000

E 0x07d90067 & OxFFFFFCO0
0x07d90067 = 0x07d90000

. (Address of Page Table)

0xC8932780 >> 22 = (x322

(Index into Page Directory)

PFN = 0x07d90000 >> 12 = 0x7d90

Call Xen VMM to convert Physical Frame
Number (DomU context) into Machine Frame
Number (Physical Machine context):
PFN 0x7d90 - MFN 0x20F78

Page Table address is in range
directly mapped by kernel, so

\J

DomU Page Table now
mapped to DomQ space

f Call Xen VMM to map MFN into Dom0 memory space:
k_ MFN 0x20F78 mapped to address 0xB7F54000

(0x08932780_& 0x003ff000) >> 12 : 040BB5F163 >5 12 = 0xBA5F
=0x132 ~—p|  0x0685F163 > -
(Index into Page Table) : (Physical Frame Number)

Call Xen VMM to convert Physical Frame
Number (DomU context) into Machine Frame
Number (Physical Machine context):
PFN Ox685F - MFN 0x224A9

Dom0 application now has access to requested DomU
kernel module struct

Call Xen VMM to map MFN into Dom0 memory space:
MFN 0x224A9 mapped to address 0xB7F53000

Figure 1: Example of mapping a page containing a DomU virtual memory address into Dom0.

The Xen Control library is used to allow the Dom0 system to
perform operations on the DomU systems, including pausing the
target VM prior to analysis, and un-pausing it afterwards.
Another important function provided by the library is mapping
memory pages assigned to the target VM into the address space
of the Dom0 system, allowing the analysis to be performed.

When attempting to access a memory address in the context of a
process in a Linux VM, there are several steps that must be
performed prior to the relevant page being available to the Dom0
system. As with any Linux system, a memory address is only
relevant in the context of a process, and in order to find the
appropriate physical frame in memory we must consult the page
tables to determine the corresponding physical frame number. In
the case of physical machines that would be sufficient, but there
is another layer of complexity added by virtualization because the
physical frame numbers from the perspective of the VM must be
translated into the physical frame numbers for the underlying
physical hardware before the appropriate page can finally be
made available to the Dom0 system. Figure 1 shows an example
of this operation, where a page containing the address of a
module struct, which contains information about a single kernel
module, is mapped into Dom0 space on a 32-bit x86 system with
PAE disabled.
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The task of converting the DomU Physical Frame Number (PFN)
to the frame number for the physical machine (MFN) is handled
via a call to the Xen Control library, as is the operation that maps
a given MFN into Dom0 memory space. However, the Dom0
application is responsible for correctly traversing the appropriate
DomU virtual memory structures, and as such any page directory
or page table needed during this traversal must also be similarly
mapped into DomO to allow the application to access them.
While this further complicates what would be a simple operation
were it to be performed either directly on the DomU system, or
on a physical system with no virtualization involved, it is a
necessary operation required for virtual introspection. Of course,
care must also be taken to unmap any mapped pages to prevent
memory leaks.

At this point the DomO application can examine the mapped
page. Many of the kernel structures examined by the VIX tools,
such as the process list, make extensive use of pointers, which of
course are also only valid in the context of the DomU process. As
such, a task as seemingly trivial as walking a linked list becomes
significantly more complex in a virtual introspection application.
Much of this activity is now abstracted away from the individual
VIX tools by the libvix API, but it is important to remember that
it does occur so that applications built on libvix minimize the
time for which execution of the target system is suspended.



[ N * *
task_struct j task_struct i+7
°
NEXT Offset &= 3
Pointer to next task_struct —— °
PID Offset P *
Process ID (PID) for this signal_struct
process
TTY Offset >
COMM Offset > Address of associated
Executable name, incl. tty_struct
path, for this process
UTIME Offset £
User time (ticks) for this
process
STIME Offset P
System time (ticks) for this tty_struct
process
NAME Offset g
SIGNAL Offset & . TTY Name
Address of signal_struct
associated with process [

Figure 2: Fields and data structures involved in decoding a task_struct for a single process for a basic invocation of vix-ps.

The ps utility [29] is used on Unix systems to list the current
processes, and when it is executed on a Linux host it makes use
of system calls and the /proc filesystem to gather the relevant
process data, which is then formatted and displayed to the user.
The vix-ps utility performs the same functionality for a given
DomU, using virtual introspection techniques, meaning that the
system calls and /proc filesystem are essentially not available.
The pseudo-code for the vix-ps utility is as follows:

Pause DomU
Adr <- Address of Task List Head
Do
Adr <- Adr.next task adr
Map page (s)
Decode task_ struct

for Adr into DomO

Display data

Unmap page(s) with Adr
While (Adr != Address of Task List Head)
UnPause DomU

Once a page containing a task struct has been mapped to Dom0O
in the vix-ps application, the relevant data must be extracted
for display to the user. The data acquired in the case of the most
basic version of the vix-ps command, equivalent to ps

on a Linux system, is shown in figure 2. Note that task struct
fields that contain addresses of other data structures must be
viewed in the context of the DomU system, and as such
additional pages may need to be mapped into Dom0 system in
order to access the signal_struct and tty struct data structures for
a given process.

e

Decoding the task struct provided in the mapped page in the
case of vix-ps is a manual process, and while it would be
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tempting to use the task struct defined for the kernel of the
DomU system, we cannot assume that data structures present in
the Dom0 system match the structures used by the DomU kernel
to which the page, and the task struct data, belongs. This issue
is addressed by using flexible offset values into the various
structures used by the VIX tools, which are initialized based on
the kernel version of the DomU system being examined. A
kernel module, named getOffsets, has been developed as part of
this work, and has been used to determine the appropriate offsets
for a variety of example Linux kernels. Work is also currently
underway on a more flexible approach, in which the correct
offsets are determined by probing the target VM for known or
likely values.

5.2 VIX Example

To demonstrate the functionality of the VIX tools, a Xen system
was configured to run two VMs, including the privileged Dom0
system, and an unprivileged DomU system called testhvmli.
Figure 3 shows the output of the xm list command, which
displays the current VMs on the system. Each of the current VIX
tools takes a parameter that identifies the ID of the VM on which
the tool will execute.

E11192.168.1.11 - default - 55H Secure Shell
File Edit ‘iew ‘Window Help

[rootfcprg-xen ~]# xn list

Name I Mem(MiE) VCPUs 3tate
Donain-0 il a30 2 r-—--—-
testhvml 1 140 1 -h----

[rootfcprg-xen ~]# I

Figure 3: Xen system running with two virtual machines.



Hl 192.168.1.28 - default - 55H Secure Shell

” File Edit Wiew ‘Window Help

El 192.168.1.11 - default - S5H Secure Shell

” File Edit Wiew ‘Window Help

[rootRtesthvnl ~]1# ps —e
PID TTV TIME CHMD
1 = O0:00:00 init
=2 7 0O:00: 00 migrationso
oC O0:00: 00 ksofcirgd/s0
4 7 00:00: 00 watchdogs0
5 7 O0:00:00 ewents/A0
5 2 00:00: 00 Ehelper
7oz 00:00:00 kEthread
1la =2 00:00:00 kblockdso
11 = OoO:00: 00 kacpid
57 2 0O0:00: 00 coueues 0
50 2 00:00: 00 kEhubd
o= 7 00:00:00 kseriod
1z5 = 00:00: 00 pdflush
lza = 00:00: 00 pdflush
1=7 = 00:00: 00 kEswapdO
1zs = 00:00: 00 aios0
279 = NO:00: 00 kpsmoused
303 = O0:00:00 kEmirrord
308 = 00:00: 00 ksnapd
311 = 00O:00:02 kEjournald
338 = 00:00: 00 kauditd
37E 00:00: 00 udewd
Qo5 = O0:00: 00 kjournald
1428 2 Oo:00:00 dhcolient
1541 = oo:00:00 auditd
1543 = Od:00: 00 python
1561 = oo:00: 00 swyslogd
1564 = oo:00:00 klogd
1525 = 00:00: 00 dbus-daemon
1613 2 oo:00:00 =shd
16z = O0:00: 00 gpm
1643 = 00:00: 00 crond
la58 = oo:00:00 hald
1659 = O0:00: 00 hald-runner
1aas = 00:00: 00 hald-addon-acpi
1659 =2 O0:00: 00 hald-addon-kevh
1701 = oo:00: 00 login
1702 troyz 00:00: 00 mihgetoy
1703 coys O0:00: 00 mingetty
17048 iyl 0O:00: 00 mingetity
1705 trws O0:00: 00 mitgetty
17068 ttys 00:00: 00 mingetty
4537 oyl ogo:00:00 bash
5294 2 00:00: 00 sshd
5296 ptss0 oo:00:00 bash
EE01 pts/s0 00:00:00 =i
L5508 2 o0:00: 00 sshd
5510 pt=ssl ogo:00:00 bash
55539 pt=ss1 ad:00: 00 ps
[rootEtesthwvm]l ~]#

[rootlcprg—-=en binl#

Awid-ps 1

FID TTY TIME CIMD
1 =z O0:00:00 init
2 2 O0:00:00 migrations0
3 7 O0:00:00 ksoftirgdsO
a2 O0: 00: 00 watchdog/0
5 = O0:00: 00 ewvents/ A0
5 2 O0:00: 00 khelper
vz O0:00: 00 kthread
lo =2 go:00:00 kblockdso
11 = Od:00: 00 kacpid
(o ) O0:00: 00 cogueus/ 0
&0 2 go:00:00 kEhubd
62 7 O0:00:00 kseriod
lz5 = go:00: 00 pdflush
lzg = 00:00: 00 pdflush
127 = O0: 00: 00 kswapdO
lzg = go:00:00 aios0
279 =z Od: 00: 00 kpsmoused
303 F O0:00:00 kEmirrord
308 = O0: 00: 00 ksnhapd
311 = O0:00: 02 kjournald
338 = oo:00: 00 kauditd
372 7 Oo0:00: 00 udewd
Qo5 = O0:00: 00 kjournald
14z8 2 00:00: 00 dhclient
1541 = O0:00:00 auditd
1543 =7 O0:00: 00 python
1561 = O0:00: 00 =vwslogd
1554 7 Ooo0:00:00 klogd
1595 = O0:00: 00 dbus-dacemorn
1613 2 go:00:00 sshd
1ezs = a0:00: 00 gpn
1643 = Oo0:00:00 crond
1658 = Ogo0:00:00 hald
las9 =2 O0:00:00 hald-runner
1665 = O0:00: 00 hald-addon-acpi
leas = O0:00: 00 hald-addon-kevh
17ol = go0:00: 00 login
1702 toy2 O0: 00: 00 mingetity
1703 troyld O0:00: 00 mihgetty
1704 croyd O0:00: 00 mingetty
1705 tys O0:00: 00 mingetity
17068 tCws O0:00: 00 minhgetty
4537 ttyl g0:00: 00 bash
5294 ¢ go:00:00 sshd
5298 pt=0 ad:00: 00 bash
5501 pt=0 O0:00: 00 =i
5508 2 00:00: 00 =shd
5510 pt=l O0: 00: 00 bash

[root@lcocprg-xen bin]l# l

Figure 4: Comparison of process listings taken from within a VM using the traditional ps command on the DomU (left), and

from the Dom0 system using virtual introspection (right).

Figure 4 shows the output of the ps ecommand on the
testhvml DomU VM on the left, followed by the corresponding
output from the vix-ps command run against testhvml (ID 1)
from the Dom0 system on the right. The listings are identical,
other than the addition of the last entry on the left, which is the
ps command itself that was obviously running at that time, and
which had completed execution before the vix-ps command
was invoked.

As shown in figure 5, a second DomU system, called testhvm-
rkl, has been added to the demonstration system. This VM is a
Linux system onto which a basic rootkit has been installed for
the purposes of this exercise. This rootkit is capable of hiding
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modules and process, and as a result the true state of the system
may not be apparent to a user of that system, including a forensic
investigator.

192.168.1.11 - default - S5H Secure Shell
“ File Edit Yiew ‘Window Help

[tootlcprg-xen bhin]l# xu list

Hame ID Mew(MiBE) WCPUs State
Domain-0 o 6588 ot o
testhvm-rkl 1z 140 Lizhe===
testhvml 1 140 1l -bh---—-

[tootlcpryg-xen binl# I

Figure 5: Xen system running with three virtual machines.
The testhvim-rkl VM has a rootkit installed.



& 192.168.1.25 - default - S5H Secure Shell .

” File Edit Wiew ‘Window Help

3 192.168.1.11 - default - SSH Secure Shell

” File Edt Wiew Window Help

[rootftesthvn-rkl evilmodule]# insmod evilmodule.ko
[rootftesthvn-rkl ewvilmodule]# lswod

Module Size Used by

ipwe 250363 12
ip_conntrack_nethios_ns 6877 0

ipt REJECT 9537 1

xt_state 6208 2

ip_comntrack 53153 Z ip_conntrack _netbios_ns,xt state
nfnetlink 10713 1 ip_conntrack
®t_topudp 7105 4

iptable filter 7105 1

ip_tahles 17029 1 iptable filter
¥_tables 17349 4 ipt RPEJECT,xt state,xt_tcpudp,ip tables
wideo 19269 0

shs 15533 0O

iZec_ec 9025 1 sbs

button 10705 0

bhattery 13637 0

asus_acpi 19263 0

ac 9157 0O
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Figure 6: Comparison of module listings taken from within a VM with a hidden kernel module (evilmodule) installed using the
traditional Ismod command from DomU (left), and from the Dom0 system using virtual introspection (right).

For example, when executed on the DomU system, the 1smod
utility does not display the presence of the evilmodule module.
However, by using virtual introspection from Dom0 to directly
access memory, without relying on any of the DomU operating
system functionality, the vix-1smod tool correctly reports the
true state of the system, which includes the hidden kernel
module, as shown in figure 6.

6. DISCUSSION AND CONCLUSION

This paper presents a discussion of virtual introspection and
introduces the VIX suite of tools to advance the research agenda
for virtualization in digital forensics. Although progress has
been made in the application of virtual introspection to digital
forensics, much work remains to be done in this field.

6.1 Future Work

The following list includes some of the next steps that would
contribute to the state of virtual introspection both as applied to
digital forensics, and to the VI field in a more general sense:

e Support for multiple operating system types. While the
Linux 2.6 kernel is already relatively well supported by
VIX tools, support for other operating systems,
particularly Windows, is an important step to allowing
the VIX tools to have widespread practical
significance.

e  Analysis of the extent to which the virtual introspection
techniques can be detected by the target virtual
machine. For example, it is possible that timing
analysis or page fault monitoring may provide some
indication to the target VM that monitoring was taking
place, despite the fact that the VM is not active during
the VI process. If virtual introspection is to be applied
to digital forensics for legal investigations it is
important to understand this issue.

e Application of these VI techniques to other
virtualization platforms. In particular the VMware
suite of virtualization products is an important target,
as those products currently dominate the marketplace,
particularly in the enterprise environment. While the
mechanism by which pages from the VMs are made
available to the VI applications may change, it should
be possible to retain a common code base for decoding
the pages once they are made available.

e  Applications of these techniques to other domains. A
domain being actively investigated at this time is
honeypots, where the current monitoring techniques for
high interaction honeypots typically involve hidden
monitoring processes running on the honeypot systems
themselves, which are detectable by skilled intruders.
Honeypots often run as virtual machines, and the
ability to use virtual introspection may make the
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monitoring less visible to the intruder, allowing
honeypot researchers to gather more information about
the activities of attackers.

e Development of a framework to allow virtual
introspection across physical hosts. In large scale
virtualized environments VMs are typically not
restricted to a particular physical hosts, but are instead
dynamically load balanced across a pool of physical
hosts, even while running. In such cases it would be
valuable to allow the forensic investigator to monitor
the VM from a single physical host, no matter where in
the pool the VM was currently executing. Such
techniques would also be applicable to data centers,
allowing administrators to monitor VMs deployed
across a large number of physical hosts throughout the
data center from a central monitoring point.

6.2 Conclusions

Assuming that the current trend towards system virtualization
continues, Virtual Introspection techniques can be utilized by
forensics investigators to perform unobtrusive live analysis on
target virtual machines, with greatly reduced risk of
contaminating evidence on the target system, While there are
still many open problems in this area, including a quantification
of the extent to which Virtual Introspection is detectable from the
target system, the VIX suite of tools currently provides an
excellent proof of concept of the utility of VI in digital forensics.
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