
Experience with Engineering a Network

Forensics System

Ahmad Almulhem and Issa Traore

ISOT Research Lab
University of Victoria, Canada

{almulhem, itraore}@ece.uvic.ca

Abstract. Network Forensics is an important extension to the model of
network security where emphasis is traditionally put on prevention and
to a lesser extent on detection. It focuses on the capture, recording, and
analysis of network packets and events for investigative purposes. It is a
young field for which very limited resources are available. In this paper,
we briefly survey the state of the art in network forensics and report our
experience with building and testing a network forensics system.

1 Introduction

Most organizations fight computer attacks using a mixture of various technolo-
gies such as firewalls and intrusion detection systems [1]. Conceptually, those
technologies address security from three perspectives; namely prevention, detec-
tion, and reaction. We, however, believe that a very important piece is missing
from this model. Specifically, current technologies lack any investigative features.
In the event of attacks, it is extremely hard to tie the ends and come up with a
thorough analysis of how the attack happened and what the steps were. Serious
attackers are skillful at covering their tracks. Firewall logs and intrusion detec-
tion alerts are unlikely to be adequate for a serious investigation. We believe
the solution is in the realm of Network Forensics [2]; a dedicated investigation
technology that allows for the capture, recording and analysis of network pack-
ets and events for investigative purposes. It is the network equivalent of a video
camera in a local convenience store.

In this paper, we report our experience with designing, implementing and
deploying a network forensics system. First, we review the topic of network
forensics in section 2. In section 3, we review some related work. In section
4, a network forensics system will be proposed. In section 5, we will discuss
our implementation of the proposed architecture and some interesting results.
Finally, we conclude and discuss our future work in section 6.

2 Network Forensics

In 1997, security expert Marcus Ranum coined the term network forensics [2].
He also introduced a network forensic system called Network Flight Recorder [3].

Marcus, however, did not provide a definition for the new term. Therefore, we
adopt the following one from [4]:

Network forensics is the capture, recording, and analysis of network
packets and events for investigative purposes.

When designing such a system, there are several challenges which include:

1. Data Capture:
(a) Where should the data be captured?
(b) How much data should be captured?
(c) How do we insure the integrity of the collected data?

2. Detection Efficiency: The system should detect attacks efficiently in order to
trigger the forensics process. Therefore, it should accommodate for different
detection approaches.

3. Data Analysis: After collecting the data, the system has to correlate them
in order to reconstruct an attacker’s actions.

4. Attacker Profiling: The system has to maintain information about the at-
tacker himself. For instance, it can identify the attacker’s operating system
through passive OS fingerprinting.

5. Privacy: Depending on the application domain, privacy issues can be a major
concern.

6. Data as Legal Evidences: For the collected data to qualify as evidences in a
court of law, they have to be correctly collected and preserved in order to
pass admissibility tests [5, 6].

3 Related Work

Unlike the traditional computer forensics field, network forensics emerged in re-
sponse to network hacking activities [7]. Typically, it is conducted by experienced
system administrators rather than by law enforcement agencies [8].

The current practice in investigating such incidents is generally a manual
brute-force approach. Typically, an investigation proceeds by examining various
types of logs which are located in a number of places. For instance, a unix
network is usually equipped with a dedicated auditing facility, such as Syslogd.
Also, applications like web servers and network devices like routers, maintain
their own logs. Various tools and homemade scripts are typically used to process
these logs.

Brute force investigation, however, is a time consuming and error-prone
process. It can also be challenging because the mentioned logs are usually scat-
tered everywhere over the network. Also, these logs are not meant for thorough
investigation. They may lack enough details or contrarily have lots of unrelated
details. They also come in different incompatible formats and levels of abstrac-
tions.

On the high-end, there are commercial tools known as network forensic analy-
sis tools which can be used for investigations in addition to varieties of tasks like

network performance analysis [3, 9]. Generally, these tools are combined hard-
ware/software solutions which continuously record network traffic. They also
provide convenient GUI front-ends to analyse the recorded data.

The main problem with these commercial tools is dealing with encrypted traf-
fic. Currently, the general approach is to install modified (trojaned) encrypted
services like ssh. So if an attacker uses these services, his sessions can be de-
crypted. This, however, can be defeated, if the attacker installs his own encrypted
service.

4 A Network Forensics System

In this section, we propose an architecture of a network forensics system that
records data at the host-level and network-level. It also manages to circumvent
encryption if an attacker chooses to use it. At first, we will provide an overview
of the system, then discuss its main components in more details. Implementation
and results will be postponed to the next section.

4.1 System Overview

In a typical network with multiple hosts, the proposed system consists of three
main modules which are arranged as shown in Fig. 1.

��������

������	
�
��
�

		��	
�
��
�

�������
�
��
�

�
��

����	�

Fig. 1. The overall architecture of the system

The modules are

1. a marking module; a network-based module for identifying and marking sus-
picious packets as they enter the network,

2. capture modules ; host-based modules which are installed in all the hosts in
order to gather marked packets and post them to a logging facility, and

3. a logging module; a network-based logging facility for archiving data.

Together, these modules form a kind of closed circuit. An incoming packet
first passes through the marking module which marks “suspicious” packets. Sub-
sequently, when a host receives a marked packet, it posts the packet to the logging
module. Each module will now be explained in further details.

4.2 Marking Module

This module is the entry point to our system. It is in charge of deciding whether
a passing-by packet should be considered friendly or malicious. Then, it marks
the packet accordingly. In nutshell, this module relies on a group of sensors to
maintain a list of suspicious IP addresses. Then, it marks a passing-by packet if
it’s source IP address is in the list.

�
���

���������� ���	��
� �	
�

���� �	��

����	�

����	�

�
�������

��������
	�
�������

�������
�����
��
����
��
��
����

���������
���

�
�������

������

�
���������

Fig. 2. The marking module

Figure 2 depicts the architecture of this module, which consists of the fol-
lowing three components:

1. Sensors : One or more sensor(s) to report suspicious IP addresses to a watch
list (wlist). It is important to note that a sensor is not limited to a network-
based IDS. It can be any process that can report suspicious IP addresses.
This is essential to increase the system’s detection efficiency.

2. A Watch List (wlist): A list of suspicious IP addresses. We will explain it in
more details shortly.

3. A Marker : A process to mark packets. Before sending a packet to its way,
it queries the watch list to check whether the packet’s source IP address is
in the list. It accordingly modifies the type of service field (TOS) in the IP
header.

The watch list (wlist) is basically a data structure which maintains a list
of the current system’s offenders. One may think of it as a cache memory of
suspicious IP addresses. Each row corresponds to a unique IP address that has
been reported by at least one of the sensors. For every suspicious IP address,
the list also maintains the following information:

1. priority: A measure which indicates the current offence level of the corre-
sponding IP address. Three levels are defined; namely HIGH, MEDIUM and
LOW. A sensor must be able to classify an attack into one of these three
levels. When different priorities are reported for a given IP address, the list
only keeps the highest.

2. count : A counter which is incremented every time the corresponding IP
address is reported.

3. timer : A count-down timer which is automatically decremented every second.
If it reaches zero, the corresponding row is removed from the list. This field
is set to a certain value when an IP address is first added to the list. It is also
reset to that value every time the IP address is reported. One may think of
this field as a sliding time window. If an IP address was not seen for a long
time (say 1 week), we may remove it from the list.

4. lock : This field is to synchronize accesses. It is needed because the list is
asynchronically accessed by a number of processes.

To interact with wlist, two methods are provided:

1. wlist add(ip, priority): A method to add an attacker’s IP address to the list.
2. wlist query(ip): A method which returns the priority of a given IP address.

Finally, since the list is limited in size, one may wonder what happens if the
list becomes full and a newcomer needs to be accommodated. Obviously, we need
to decide which row should be replaced. Specifically, we should replace the least
important row. A row with a low timer value indicates that the corresponding
IP address was not seen for a long time. On the other hand, a high count value
suggests that the corresponding IP address is suspicious. Thus, finding the least
important row is a function of the three fields; namely priority, count and timer.
Formally, let the priority, count, and timer be pi, ci and ti respectively for a
given row i. Then, the least important row (l) is

l = f(pi, ci, ti)

The exact definition of this function is implementation specific. We will show an
example definition when we discuss our implementation.

4.3 Capture Module

The second major component in our architecture is a collection of lightweight
capture modules, which reside silently in the hosts waiting for marked pack-
ets. They, then, arrange to reliably transport them to the logging module for

safe archival. This transportation is necessary because we cannot store the data
locally. Once a system has been compromised, it cannot be trusted.

Installing capture modules in hosts is essential for two reasons. First, there
is no guarantee that a suspicious packet will actually compromise or damage
a host. In fact, the packet may be directed to a nonexistent service or even a
nonexistent host. Installing capture modules in the hosts insures logging only
relevant packets.

The second and more important reason is the fact that attackers increasingly
use encryption to hide their activities. As a result, sniffing their traffic or trying
to break-it is either useless or impractical. We may choose to install trojaned
encrypted services; say ssh. However, careful attackers usually avoid these ser-
vices and use their own encrypted channels. Therefore, only at the host, we can
circumvent encryption and fully record an attacker’s actions. This can be done
by intercepting certain system calls [10].

4.4 Logging Module

The logging module is our system’s repository where attack data are being
stored. Ideally, one would turn to this module for reliable answers and docu-
mentation about any attack.

�	�
�

�	����

����	��

�	����

���

�	����

�	��	���������
������

Fig. 3. The logging module

Figure 3 shows the architecture of a network-based logging module. We pro-
pose to use the following three loggers:

1. Hosts Logger: This logger is responsible for storing data sent by the cap-
ture modules. It is expected to log detailed data pertaining to real attacks.
Therefore, storage requirements should be low.

2. Sensors Logger: This logger stores the sensors’ alerts. Although, a typical
alert is only a one-line text message, it provides a quick diagnosis about an
attack. This logger is also expected to require low storage requirement.

3. Raw Logger: This is an optional logger which provides a last resort solution
when other loggers fail. It archives raw packets straight off the line. In busy
networks, however, this logger is expected to require an excessive amount of
storage.

The last part in this module’s architecture is a layer that should provide a
common user interface to access these loggers.

5 Implementation and Results

5.1 Implementation

To test our approach, we built a prototype of the proposed architecture using
two PCs; a host and a bridge configured as shown in Fig. 1. The host is a PC with
a 400MHz Pentium II processor, 132MB RAM and 6GB hard drive. To allow
break-in, we installed a relatively old Linux distribution; namely RedHat 7.1
Also, we enabled a vulnerable service; namely FTP (wu-ftpd 2.6.1-16). We also
installed a capture module called sebek [10] from the Honeynet project [11]. It
is a kernel-based data capture tool which circumvent encryption by intercepting
the read system call.

The bridge is a PC with a 1.7GHz Celeron processor, 512MB RAM, 40GB
hard drive and 2 NICs. We installed a custom Linux operating system and a
collection of tools and homemade programs which reflect the proposed architec-
ture. Figure 4 shows the internal architecture of this bridge. It hosts both the
marking and logging modules.

�����

		��

����
���

�������

�
���

��� !"�����

�
#���
�
��

		��	#�
��
�������	#�
��
�

"��$�

Fig. 4. The Bridge Internal

The marking module follows the architecture described earlier. Only one
sensor was used; namely SNORT [12]. Both the watch list (wlist) and the marker
were implemented in C language. When wlist becomes full, we used the following

function: l = min({ti | ti is the timer value of the ith row in wlist }) where min
is the minimum function.

The logging module also follows the proposed architecture. It consists of three
loggers and MySQL [13] as a backbone database. The first logger records packets
captured by the host. Since sebek was used to capture packets there, we used its
corresponding server-side tools. The second logger is for the sensor; i.e. SNORT.
We used SNORT’s barnyard tool to log alerts in MYSQL and ACID Lab [14]
for analysis. Finally, we chose tcpdump [15] as a raw logger just in case we miss
something.

5.2 Results

The prototype was connected to the Internet for 12 days from March 17th until
March 28th of 2004. Its IP address was not advertised. It was, however, given
to members of our research lab who were interested in participating in the ex-
periment. During the experiment, the host was compromised three times using
a known FTP exploit.

General Statistics: Once the prototype was connected to the Internet, the host
started receiving traffic. Table 1 lists the number of received packets grouped by
protocol type.

Table 1. Number of friendly and
strange packets directed to the host

friendly strange
packets packets

tcp 70130 133216

udp 8928 9581

icmp 5150 6986

total 84208 149783

36% 64%

Table 2. Storage requirement for each
logger

count size

SNORT 3482 alerts 111KB

sebek 336132 packets 38MB

tcpdump 734500 packets 69MB

The first column lists the number of friendly packets; i.e. packets generated by
participating members of our research lab. The second column lists the number
of strange packets; i.e. packets coming from uninvited strangers. Overall, 64%
of the traffic was not friendly. The table also shows that TCP is more frequent
than other protocols. For the strangers’ traffic, TCP packets are about 10 times
(20 times) more than UDP (ICMP).

Table 2 sorts the storage requirement for the three used loggers in ascending
order. SNORT requires the least amount, while tcpdump requires the most.
Although, sebek is a powerful tool in honeypot settings, it actually did not fit
our need. It captures far more data than we need. In the future, we are planning
on developing our own capture module.

A Detailed Attack: We now discuss an attack by some stranger who success-
fully compromised the host and installed a rootkit. Overall, he generated about
1100 packets and caused a 158 SNORT alerts: 2 high priority, 154 medium pri-
ority and 2 low priority. Using the collected data, we were able to reconstruct
his attack. Figure 5 shows a time-line diagram of his attack’s steps.

Timeline of FTP Attack by 211.42.48.148

03:07:03 03:07:06

......

scan and found the
vulnerable ftp server

19:48:44 19:49:03

return and run the
wu-ftpd exploit

attacker gained root
shell

23:30:04 23:31:20

download and install
rootkit

attacker left the
system

23:33:38

....

(03/25/2004)

Fig. 5. Time Analysis of one of the attacks on our ftp server

At first, he scanned and found the vulnerable ftp server. After about 16 hours,
he returned back with an effective exploit. He run the exploit and immediately
gained a root shell. He then left the connection open for about 4 hours. When
returned, he typed a number of commands and then exited. The following is a
recreation of those commands.

[23:28:52] w

[23:29:54] wget

[23:30:04] wget 65.113.119.148/l1tere/l1tere.tgz

[23:30:19] ls

[23:30:24] tar xzvf l1tere.tgz

[23:31:20] ./setup

Those commands discloses the attacker’s steps to downloading and installing
a rootkit. Further analysis of this rootkit revealed the following main impacts:

1. creates directories and files under /lib/security/www/.
2. removes other known rootkits.
3. replace some binaries with trojaned ones; many to mention!
4. installed a sniffer and a fake SSHD backdoor.
5. disable the anonymous vulnerable ftp server.
6. send an email to l1tere@yahoo.com with detailed information about the host.
7. cleans up and delete downloaded files.

Assessing the Results: Assessing the results is informal at this stage. We,
however, can safely argue that we were able to detect and reconstruct all the
compromises of the host. The proof pertains to using sebek at the host which was
setup not to be accessed remotely. In particular, sebek can capture keystrokes.
Therefore, seeing any keystrokes means a compromise. Also, SNORT (our sen-
sor) is aware of the relatively old vulnerable ftp service. This gave us another
indication of an ongoing attack.

6 Concluding Remarks

A network forensics system can prove to be a valuable investigative tool to cope
with computer attacks. In this paper, we explored the topic of network forensics
and proposed an architecture of network forensics system. We then discussed our
implementation and obtained results. The proposed system manages to collect
attack data at hosts and network. It is also capable of circumventing encryption
if used by a hacker.

In the future, we plan to extend our system architecture with a fourth module
named it expert module. The expert module, to be implemented as an expert
system, will analyze the logged data, assess and reconstruct key steps of attacks.
There are several facts that can be used to systematically characterize ongoing
attacks and thereby may serve to construct the knowledge base of such expert
system. For instance, the fact that some keystrokes are detected while only
remote access is possible not only shows that a target has been compromised,
but can also be used to partially reconstruct the attack.

References

1. Richardson, R.: 2003 csi/fbi computer crime and security survey (2003)
2. Ranum, M.: Network forensics: Network traffic monitoring. NFR Inc. (1997)
3. Ranum, M., et al.: Implementing a generalized tool for network monitoring. Pro-

ceedings of the Eleventh Systems Administration Conference (LISA ’97) (1997)
4. searchSecurity.com: Definitions. (searchsecurity.techtarget.com)
5. Sommer, P.: Intrusion detection systems as evidence. Computer Net. 31 (1999)
6. Brezinski, D., Killalea, T.: Guidelines for evidence collection and archiving.

BCP 55, RFC 3227 (2002)
7. Fennelly, C.: Analysis: The forensics of internet security. SunWorld (2000)
8. Berghel, H.: The discipline of internet forensics. Comm. of the ACM (2003)
9. King, N., Weiss, E.: Analyze this! Information Security Magazine (2002)

10. Balas, E.: Know Your Enemy: Sebek. Honeynet Project. (2003)
11. Spitzner, L.: Honeynetproject. (www.honeynet.org)
12. Roesch, M., Green, C.: Snort Users Manual. (2003)
13. MySQL. (www.mysql.com)
14. Danyliw, R.: Analysis console for intrusion databases. (acidlab.sourceforge.net)
15. tcpdump/libpcap. (www.tcpdump.org)

