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a chain of connections; commonly known as connection chains. They
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forensic process. Investigating connection chains can be further compli-
cated when several ip addresses are used in the attack. In this paper, we
highlight this challenging problem. We then propose a solution through
hacker profiling. Our solution includes a novel hacker model that in-
tegrates information about a hacker’s linguistic, operating system and
time of activity. It also includes an algorithm to operate on the proposed
model. We establish the effectiveness of the proposed approach through
several simulations and an evaluation with a real attack data.
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Figure 1 Using a connection-chain to hide an attacker’s origin.
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1 Introduction

Computer networks give attackers the opportunity to attack their victims indi-
rectly. In particular, it is common for a computer attack to originate from an at-
tacker’s computer, propagate through other intermediary computer(s), then attack
a victim computer. This leads to what is called connection chains [1]. Attackers
resort to connection chains to hide the origin of their attacks and/or to confuse the
network forensic process.

A connection chain is created when someone recursively logs into a host, then
from there logs into another host, and so on as shown in Figure 1. Due to the design
of tcp/ip suite, the origin of the chain is effectively concealed as we move down the
chain. As such, a connection chain actually provides an interactive channel to
remotely manipulate a host without revealing someone’s origin.

Connection chains can be further complicated to confuse the network forensics
process. In Figure 2, two variations of connection chains are shown. In the first
scenario, two independent attackers use the same intermediary host to attack a vic-
tim machine. In this case, a forensic process would mistakenly aggregate/correlate
data from two different attackers and hence two different attacks.

In the second scenario, an attacker uses two different intermediary hosts for his
attack. The victim will see two different ip addresses and has no way to tell that
they are originating from the same hacker. Consequently, data and alerts from the
two ip addresses would pass uncorrelated.

To address this problem, we need a way to profile hackers in order to differentiate
one from another. Specifically, we need to look for invariant features that may
distinguish one hacker from another, instead of only relying on his ip address. By
examining received packets, we believe that it is possible to extract such features.

One of these features is a hacker’s operating system (OS). OS passive finger-
printing is a well established technique that can be used for OS identification by
examining the headers of certain packets (especially SYN packets) [2].
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Figure 2 Two scenarios which confuse a network forensic process. (a) Two indepen-
dent hackers use same intermediary node to attack a victim. (b) One hacker use two
intermediary nodes to attack the same victim.

We propose a solution that enhances the OS passive fingerprinting [2] by us-
ing two additional features; namely a hacker’s linguistics and activity time. For
linguistics, the content of a packet is examined to look for clues about a hacker’s
language. For instance, a user/password combination may reveal a name that is
known to belong to a certain language.

For time of activity, a hacker may have a preferred time to carry out his actions.
By measuring his activities during a day, we may obtain a consistent pattern that
further enhances the profiling process. We use arrival time of packets to determine
this feature as we will show later.

The rest of this paper is organized as follows. In section 2, we present a hacker
model that integrates information about a hacker’s linguistic, operating system and
time of activity. We then discuss our approach in applying the proposed model in
section 3. We establish the effectiveness of the proposed approach through several
simulations and an evaluation with real attack data in sections 4 and 5. Finally,
we conclude in section 6.
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2 Model Formulation

2.1 A Hacker Model

Our model for a hacker is defined as a 3-tuple H over the Cartesian product
{O × L × T } where:

• O = {x : x is the name of a known operating system}
• L = {x : x is the name of a known natural language}
• T = {Morning,Evening,Night}

O is basically a set of nominal values corresponding to different operating sys-
tems; such as {Windows98, Linux, . . . }. Similarly, L is a set of nominal values cor-
responding to different natural languages, such as {English, French, . . . }. Lastly,
T is a tri-valued variable that indicates when a hacker is most active. Instead of
recording detailed time information, we use this variable to classify a hacker as
either a morning, evening, or night hacker. This provides an enormous reduction
in data and a reasonable granularity for our purpose.

2.2 Model Application

Applying our model to a stream of incoming packets is essentially an abstraction
process by which we intend to map every ip address into a hacker instance. Given
a list of ip addresses P , this is formally stated as follows.

P → H : {O × L × T }

In order to execute this mapping, we need the following three mapping functions:




ψ ≡ header(p) → O
λ ≡ content(p) → L
φ ≡ arrivalT ime(p) → T

where, header(p), content(p) and arrivalT ime(p) are, respectively, the headers,
contents and arrival times of packets originating from an ip address p.

The ψ function applies OS passive fingerprinting techniques in order to infer the
OS of an ip address p [2]. Typically, the header portion of an ip packet is used for
such task. Formally, this function is a trained classifier that operates by comparing
certain header’s fields to a database of known OS signatures. For example, the 8-bit
time-to-live (TTL) field in the ip header is set with different values depending on
the operating system. By default, for instance, TTL is set to 128 in Windows and
64 in Linux. Such features can be used to distinguish between different operating
systems.

The λ function assigns an ip address p to one or more natural languages. This
task is known as language guessing in the field of text categorization [3]. A popu-
lar technique, that accomplishes this task with almost-perfect accuracy, is due to
Cavnar and Trenkle [4]. Briefly, the technique relies on analysing the n-gramsa of a

aAn N-gram is an N-character slice of a longer string [4].
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document. The frequencies of different n-grams provide distinctive signatures that
not only distinguish documents, but also discriminate between languages. There is
already an efficient implementation of the algorithm as well as signatures for more
than 70 different natural languages [5]. Formally, this function is also a trained
classifier.

Finally, the φ function uses packets’ arrival times to classify a hacker as either a
morning, evening, or night hacker. Essentially, it is a 3-category histogram function
of the packets’ arrival times. In reference to local time, the function divides a day
into three 8-hours time periods as shown below:

morning︷ ︸︸ ︷
4am . . . 12pm . . .

evening︷ ︸︸ ︷
12pm . . . 8pm . . .

night︷ ︸︸ ︷
8pm . . . 4am

Accordingly, it counts how many packets received in each period then yields the
matching period with the maximum count. Note that this day division is in refer-
ence to the local time zone, rather than hackers’ time zone.

2.3 Coherence

After performing the above mapping, an ip address falls into one of two cat-
egories: coherent ip addresses or incoherent ones. A coherent ip address is an ip
address that assumes a single value for each variable in the hacker model. On the
contrary, an incoherent ip address is an ip address which assumes multiple values
for one or more of the variables in the hacker model.

To illustrate this concept, assume two ip addresses p1 and p2 are mapped as
follows:

p1 → {{Windows98} × {English} × {Morning}}
p2 → {{WindowsXP, Linux2.4} × {Arabic} × {Night}}

In this example, p1 is a coherent ip address because it assumes single values for each
variable. However, p2 is an incoherent ip address because the OS variable assumed
two values; namely WindowsXP and Linux2.4.

3 Approach

3.1 Overview

Using our model and the defined functions, we obtain a mapping for every single
ip address into a hacker instance; i.e. P → H : {O × L × T }. With this in hand,
we can now address the two problems depicted in Figure 2.

For the first scenario (fig 2.a), the victim will receive packets from an incoherent
ip address. For instance, the packets may reveal multiple values for the OS variable.
Hence, the victim will be able to detect such ip addresses.

The second scenario (fig 2.b) is more challenging. In this case, we need a way
to group ip addresses that share the same attributes. This task can be done using
clustering analysis [6]. The details of this step is postponed to the next section.

A flowchart of the overall approach is shown in Figure 3. The algorithm iterates
over each ip address. An ip address is first tested for coherence. Incoherent ip
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Figure 3 Flowchart of overall approach.

addresses are reported as being possible intermediary node shared by multiple dif-
ferent hackers. On the other hand, coherent ip addresses are passed to a clustering
analysis algorithm. The algorithm determines groups of ip addresses that are likely
used by one hacker.

3.2 Clustering Analysis Algorithm

In order to carry the clustering analysis, a measure of dissimilarity between
observed objects is required. This measure is typically dependent on the type of
variables that describe an object. In our case, the objects are coherent ip addresses
which are described by the three variables of our hacker model. Additionally, the
variables are multistate nominal ones. We now summarize the derivation of the
measure following Gordon [6].

For each variable, a disagreement indices can be defined between each pair of
states of the variable. Let δklm(≥ 0) be the disagreement between the lth and mth
states of the kth variable. Accordingly, let δklm = 1 if l 6= m and δkll = 0. The
contribution to the dissimilarity dij between the ith and jth object that is made
by the kth variable is defined by dijk = δklm if the kth variable is in state l for
the ith object and state m for the jth object. The overall measure of dissimilarity
between the ith and jth objects is then defined as

dis(i, j) ≡
K∑

k=1

dijk

where K is the total number of variables.
After defining a dissimilarity measure, we need an algorithm to perform the

clustering analysis [7, 6]. For our purposes, we devised an incremental algorithm



Profiling Distributed Connection Chains 7

Algorithm: DOCLUSTERING(C0, P )

Input: a list of initial clusters C0.
Input: a list of ip addresses P .
Output: a list of resulting clusters C.

C ← C0 ;
foreach p ∈ P do

clustered ← false ;
i ← 1 ;
while (not clustered) and (i ≤ |C|) do

if dis(p, C(i)) == 0 then
C(i) ← C(i) + {p} ;
clustered ← true ;

end
i ← i + 1 ;

end
if (not clustered) then

|C| ← |C|+ 1 ;
C(|C|) ← {p};

end
end
return C ;
Figure 4 A pseudocode of the clustering algorithm. Note that |C| stands for
the size of C, and C(i) stands for the ith element in C.

shown in fig 4. The algorithm incrementally classify every coherent ip address.
Based on the dissimilarity measure, an ip address is either combined into an existing
cluster or put in a new cluster. By the end, each cluster will contain one or more
coherent ip addresses that share the same attributes; i.e. likely coming from the
same hacker.

It should be noted that the number of clusters is dynamically updated as new
clusters are formed. This departs from algorithms (k-means for instance) that
require specifying the ultimate number of clusters for effective analysis.

3.3 Example

We conclude this section with an example to illustrate our approach. Suppose
that a victim PC was attacked by 4 different ip addresses P = {p1, p2, p3, p4}. Also,
suppose they are mapped as follows:

p1 → {{Windows98} × {English} × {Evening}}
p2 → {{WindowsXP} × {Arabic, Chinese} × {Night}}
p3 → {{FreeBSD} × {French} × {Morning}}
p4 → {{Windows98} × {English} × {Evening}}

The algorithm first identifies p2 as an incoherent ip address because more than
one language were detected. This means that p2 is probably a node used by several
hackers similar to the scenario depicted in fig 2.a.
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Figure 5 Empirical probability distributions of operating systems and lan-
guages on the Internet. (OS source: www.w3schools.com, Language source:
www.internetworldstats.com.)

The other three ip addresses are coherent. Therefore, they are advanced for the
clustering analysis algorithm. At the end of the analysis, we will have 2 clusters;
i.e. {p1, p4} and {p3}. The {p1, p4} cluster probably represents a situation similar
to the scenario at fig 2.b. While, the {p3} cluster contains only one ip address,
which means that it is probably a single hacker using a single ip address.

4 Simulations

We conducted various simulations to assess the proposed model and the clus-
tering algorithm. For this purpose, we employed empirical probability distributions
of operating systems and languages that reflect typical usage on the Internet. In
particular, we used the freely available distributions shown in Figure 5. For the
time variable T , we used a discrete uniform distribution. We then generated many
random samples of ip addresses that have characteristics following these distribu-
tions. All simulations were run using Matlab version 6.5 on a 1.3GHz laptop with
512MB.
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Figure 6 Execution time of the clustering algorithm as a function of the number of
ip addresses.

4.1 Time Complexity

To start with, we evaluated the time complexity of the clustering algorithm.
Specifically, we evaluated the running time of the algorithm in batch mode and in
incremental mode. In batch mode, the algorithm is passed a set of ip addresses
with no prior clusters. The algorithm then builds clusters starting from scratch.
In contrast, in incremental mode, the algorithm is passed one ip address at a time
along with a set of initial clusters.

In practice, the batch mode is intended for offline analysis, while the incremental
mode is intended for realtime analysis. The distinction between the two modes
depends on the parameters that are passed to the algorithm. In batch mode, the
call is DOCLUSTERING({}, P ), where the parameters are an empty set of initial
clusters and a set of ip addresses P . In incremental mode, however, the call is
DOCLUSTERING(C0, {p}), where the parameters are an initial set of clusters C0

and a set of only one ip address {p}. Typically, the algorithm is first run in batch
mode to form an initial set of clusters C0, then it is run in incremental mode to
process new ip addresses as they arrive.

At a first glance, the algorithm may suggest a quadratic running time in terms
of the total number of ip addresses because of the double loop. However, our
simulations consistently showed a linear running time in batch mode, and a small
running time in incremental mode.

For batch mode, we generated 100 samples with sizes that increase from 1 up
to 10000 at an increment of 100. Each sample was then passed to the clustering
algorithm. The time taken by the algorithm was then recorded. To ensure the
validity of the results, 5 reruns of the same procedure were performed. In Figure
6, we show a plot of a typical run. As shown, the execution time increases linearly
as the number of ip addresses increases. For reference, the linear fitting (dashed
line) is also shown in the figure. It should be noted that 10000 is relatively very
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Figure 7 The rate of incoherent ip addresses relative to the total population.

large, because this number is supposed to be the number of unique ”ip addresses”
attacking a victim at one time.

In incremental mode, the outer loop is invoked only once because there is only
one ip address to process. Therefore, the running time is basically the time taken
by the inner loop to scan the initial clusters, i.e. O(C0). In our experiments, we
found this time to be very small. For instance, the running time for clusters with
up to 10000 ip addresses never exceeded 0.01 seconds.

4.2 Effectiveness

To a great extent, the effectiveness of our approach relies on the underlying
distributions of the ip addresses. In this section, we present simulations related to
this aspect.

At first, we studied incoherent ip addresses and their expected rates relative to
the total population. We generated 100 samples with sizes that increase from 1 up
to 10000 at an increment of 100. Each sample was then analyzed for incoherent ip
addresses. An ip address is regarded incoherent when either the operating system
or the language is set to ”others”. We then used the following metric:

incoherence rate =
i

N

where i is the number of incoherent ip addresses in the population, and N is the
total number of ip addresses in the population.

A plot of the incoherence rate is shown in Figure 7. It is interesting to note
that the rate is almost constant as the size of the population increases. In this
simulation, the average rate is about 0.23. In other words, about 23% of the
population is expected to be incoherent and dropped from the clustering analysis.

We next considered the clustering of coherent ip addresses. It should be obvious
that the number of possible clusters depends on the resolution of each variable in
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Figure 8 The ratio of the number of unique clusters as the population of ip addresses
increases.

our model. We use the term ”resolution” here to denote the number of possible
states that a variable may assume. To show this graphically, we used the following
metric:

clusters rate =
nc

N

where nc is the number of clusters and N is the total number of ip addresses.
We generated 50 samples with sizes that increase from 1 up to 500 at an incre-

ment of 10. A plot of the clusters rate is shown in Figure 8. As shown, the ratio
decreases rapidly (almost exponentially) as the number of ip addresses increases.
Therefore, the algorithm will always deal with limited number of clusters. Also,
this confirms that the algorithm has a low overhead as was shown in the previous
section.

5 Evaluation using Real Attack

In this section, we evaluate the proposed framework using a real attack that
was posted as a forensic challenge by the Honeynet project [8]. The attack was
presented as challenge#19 in a series of 34 challenges called scan of the month
challenges. We carefully picked this particular attack, because it is the only one
that fits the attack scenarios addressed by our framework. In particular, it resembles
the scenario depicted in Figure 2 (b).

5.1 Attack Overview

For this attack, Honeynet project provided 2 files in pcap format [9]. One file
(newdat3.log) contains captured network traffic to/from a honeypot. The second
file (slog2.log) contains generated syslog traffic. In total, there were 24440 packets
communicated between the honeypot and 16 remote ip addresses. Among the
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Figure 9 A diagram showing the ip addresses involved in the attack, and the attack
steps.

16 ip addresses, four ip addresses were involved in the attack. Specifically, two
ip addresses were actually used to compromise the honeypot, one ip address was
accessed to download rootkits, and one was used to send an email.

The steps of the attack and the involved ip addresses are shown in Figure 9.
Briefly, the attack proceeded as follows:

1. 207.35.251.172 connected (ftp) to the honeypot, run a successful exploit, and
obtained a root shell. He then deleted the password of user “nobody”, and
added a new user (dns) with root privilege.

2. 217.156.93.166 connected (telnet) to the honeypot using user “nobody”, and
obtained a shell.

3. Via the obtained telenet shell, the attacker connected (ftp) to an ftp server
on 193.231.236.42, and downloaded/installed a rootkit. Among other things,
the rootkit started a modified ssh server on port 24 (backdoor).

4. 217.156.93.166 connected (ssh) to the honeypot, and obtained a shell.

5. Via the obtained ssh shell, the attacker again connected (ftp) to the ftp server
on 193.231.236.42, and downloaded/installed more rootkits.

6. An email is sent through the email server at 64.4.49.71.

To see how this attack fits the scenario in Figure 2 (b), notice that the at-
tack was concurrently carried from two ip addresses; namely 207.35.251.172 and
217.156.93.166. Apparently, the attacker controlled the computers at these ip ad-
dresses. The other two ip addresses (193.231.236.42 and 64.4.49.71), however, were
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mainly used to download rootkits and send an email. As such, their links are
indicated as doted lines.

5.2 Analysis

In order to apply our framework, each ip address has to be mapped into a hacker
instance; i.e. a 3-tuple {OS, Language, Activity Time }. The mapping was done
using an automated script as follows.

• For OS mapping, we used an open source tool called p0f [2]. P0f is a versatile
passive OS fingerprinting tool, which can identify the operating system using
a number of techniques.

• For the activity time, we built a small script that classifies each ip address
as either morning, evening or night. The script simply counts the packets
exchanged with each ip address and reports when they occur most.

• For Language mapping, we extracted readable text using a Unix tool called
strings. We, then, examined the text manually to determine the language.
We had to resort to manual examination, because we could not find a suitable
tool. In future, we intend to build such tool.

We show the resultant mapping in Table 1. The ip addresses involved in the
attack occupy the 4 bottom rows of the table, and are indicated with asterisks (*).
For each ip address, we also show the packet count, and explaining remarks. These
remarks are mainly to explain why the language was (was not) detected. Finally,
we indicate missing values (OS, Language) as “-”.

For some ip addresses, it was not possible to detect the OS fingerprints. The
reason is related to the techniques used by the tool p0f. In particular, p0f detects OS
by examining only TCP packets (SYN, SYN+ACK and RST/RST+ACK). Other
packets, for instance UDP and ICMP, are ignored. In our case, the undetected ip
addresses actually exchanged non-TCP traffic. To the best of our knowledge, there
is no tool that can OS fingerprint using non-TCP traffic. This could be due to
technical difficulty or due to the prevalence of TCP traffic. Creating such a tool,
however, is definitely a welcome contribution.

For language detection, Romanian language was associated with two of the ip
addresses involved in the attack (217.156.93.166 and 193.231.236.42). In particular,
a Romanian name (gunoierul) was used as a password in an ftp session. For other ip
addresses, it was not possible to detect the language because of the lack of payload,
or because of having a payload which contains only commands and their responses.

5.3 Discussion

In the proposed framework, clustering analysis is used to aggregate mapped ip
addresses into groups that share the same attributes. In reference to Table 1, we
can identify two groups that share 2 or more attributes:

• Group 1: {208.179.195.130, 210.114.220.46}.
• Group 2: {64.4.49.71, 193.231.236.42, 217.156.93.166, 207.35.251.172}.
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For group 1, the two ip addresses have the same OS and activity time; i.e Linux
and night respectively. However, this grouping can not be confirmed, because
only few packets are communicated (2 and 11 packets respectively). Also, the
communicated packets carry no payload! Therefore, the relationship in this group
is inconclusive and requires further investigation.

On the other hand, the ip addresses in group 2 are, indeed, related. They are
all involved in the attack as explained earlier. We also can be certain this time,
because many packets were communicated by ip addresses in this group.

On the downside, we notice that OS and Language fingerprinting generate many
missing values. In this case, the language was detected in two out of 16 ip addresses
(12.5%), and OS detected in 9 out 16 ip addresses (56.25%). Technically, this is
due to the used tools, rather than the proposed framework. However, we believe
that adding more attributes into the proposed hacker model can further enhance
the profiling process.

6 Conclusions

Investigating connection chains can be complicated when several ip addresses
are used in the attack. In this paper, we highlighted this challenging problem which
affects both alert correlation and network forensics approaches. We also proposed a
simple yet extensible hacker model to address this problem. The model integrates
information about a hacker’s linguistic, operating system and time of activity. The
mentioned model is then applied within a framework. We finally conducted several
simulations and an evaluation with real data to assess our approach.
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