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Abstract

A connection-chain refers to a mechanism in which some-
one recursively logs into a host, then from there logs into
another host, and so on. Connection-chains represent an
important vector in many security attacks, so it is essen-
tial to be able to detect them. In this paper, we pro-
pose a host-based algorithm to detect them. We adopt
a black-box approach by passively monitoring inbound
and outbound packets at a host, and analyzing the ob-
served packets using association rule mining. We first
explain the proposed algorithm in greater details, then
evaluations are presented to demonstrate its efficiency and
detection capabilities. We conduct the evaluation using
public network traces, and show that by appropriately
setting underlying parameters we can achieve perfect de-
tection, meaning a true positive rate (TPR) of 100% and
a false positive rate (FPR) of 0%.

Keywords: Connection chains, network forensics, net-
work security, stepping stones

1 Introduction

The term connection chain refers to a mechanism in which
someone recursively logs into a host, then from there logs
into another host, and so on [6]. Due to the design of
tcp/ip suite, the origin of the chain is effectively concealed
as we move down the chain. As such, a connection chain
provides an effective interactive channel to remotely ma-
nipulate a host without revealing someone’s origin. From
a network security perspective, connection chains are then
a security risk, because they can be used by attackers to
stay anonymous.

Detecting and tracing connection-chains is a challeng-
ing yet important task for a number of applications. The
following is a sample:

• Network Forensics: Tracing connection-chains plays
a crucial role in network forensics applications. Par-
ticularly, it has the potential of revealing an attack’s

path as well as the involved hosts. Investigation then
typically proceeds by isolating affected hosts and col-
lecting data from them. Ideally, such tracing also
may lead to the origin of an attacker especially insid-
ers. Coupled with collected evidences, the attacker
may also be prosecuted in a court of law.

• Liability: If a host owned by an organization were
exploited as part of a connection chain, the attack
would appear to be originating from this organiza-
tion. As a result, they may be held liable for such
attack. Detecting connection-chains can help to en-
force policies of transit traffic.

• Deterrence: Anonymity is a main concern of serious
attackers. In fact, it is the whole purpose of estab-
lishing a connection-chain in the first place. An ef-
fective tracing tool will deter some attackers in fear
of exposing their true origin.

In the literature, different approaches have been pro-
posed to detect and trace connection chains. These ap-
proaches can be broadly classified into host-based [4, 5,
12], network-based [3, 6, 9, 17, 26, 27, 28, 29, 30, 31, 32],
and system-based [5, 11, 21, 25]. Network-based ap-
proaches operate on packets at the network level; host-
based approaches function inside hosts; system-based ap-
proaches employ both host-based and network-based com-
ponents. We refer the interested reader to our review pa-
per [2] for a taxonomy and a detailed discussion of these
approaches. In this paper, we are specifically interested
in host-based approaches.

In general, the main disadvantage of the host-based ap-
proaches proposed so far in the literature is that they are
operating system specific. Specifically, they are expected
to be re-designed and re-implemented differently for dif-
ferent operating system. Also, it is not obvious if they
can be applied to proprietary operating systems such as
MS Windows.

In this paper, we propose a technique to detect
connection-chains at a host. The technique avoids being
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operating system specific, by employing a black-box ap-
proach. In essence, inbound and outbound packets are
passively monitored to detect if there is a connection-
chain. The technique is inspired by concepts from
association-rule mining in the data mining literature. It
also has the following features:

• Portable: The approach is independent of any oper-
ating system.

• Real-time: The algorithm is efficient for real-time
processing.

• Preserve Privacy: For a packet, the algorithm only
uses its arrival time and its header to operate. It
neither stores nor uses its payload.

• Robust: The algorithm resists encoding (encryp-
tion/compression), because neither packets’ payloads
nor their lengths are used in the analysis.

• Relative Interpretation: Instead of a crisp yes/no an-
swer, a confidence measure is attached to possible
connection-chains. This particular feature enables
the setting of a user-defined threshold (minconf) in
order to reduce false positives.

The rest of the paper is organized as follows. In Sec-
tion 2, we survey and discuss related work. In Section 3,
we present background materials that are related to this
work. We then provide an overview of our approach in
Section 4. In Section 5, the details of the algorithm and
used data structures are explained. In Sections 6 and 7,
we present our evaluations and experimentations of the
algorithm. In Section 8, we discuss how the proposed
framework can handle various forms of evasions. Finally,
we conclude in Section 9.

2 Related Work

In this section, we summarize and discuss related works
on connection-chains detection. As indicated earlier, the
proposed approaches can broadly be classified into host-
based, network-based, and system-based. But since our
work is a host-based approach, we will limit our discussion
to only host-based approaches. We refer the interested
reader to [2] for a detailed coverage of related works on
network-based and system-based approaches.

At a host, a connection chain appears as a pair of con-
nections through which some traffic pass back and forth.
To identify a pair of connections among a set of connec-
tions, two categories of approaches have been proposed in
the literature. In the first category, the link between two
connections is found by searching the running processes
at the concerned host [5, 12]. The idea is that if an out-
bound connection co is created by an inbound connection
ci, then the processes pi attached to ci and po attached
to co are somehow linked. Depending on the operating
system, the processes’ tree is searched to discover if such
link does exist. This approach is quite simple and gives

accurate results. It, however, may fail if the concerned
processes are created in an unusual way. For instance, in
Unix, the search can be broken if the processes are created
using deep nested pipes and local sockets [5].

The second category of approaches recognizes that, by
default, operating systems do not have a function or a
data structure that tells whether an outbound connec-
tion has been created by an inbound connection. There-
fore, these approaches propose modifying an operating
system to support linking an outbound connection to an
inbound one. For instance, Buchholz and Shields pro-
posed the following modification [4]. For each process, a
new data structure, called origin, is stored in its pro-
cess table. For processes created by a remote connection,
origin holds information related to that connection. For
locally created processes, origin is undefined. Surely,
this approach would make identifying connection chains
a matter of checking a data structure. It is, however,
unattractive, because of the expected costs of modifying
an operating system. It may even break already running
software.

As indicated earlier, the main disadvantage of proposed
host-based approaches is that they are operating system
specific.

3 Background

In this section, we present background materials which
are related to this work. In particular, we first present
the terminology used throughout this paper. Then, we
present an attack model of connection-chains.

3.1 Terminology

In this paper, a connection refers to an established tcp

connection, which is uniquely identified by its two end
points [18]. It constitutes a bidirectional channel that
enables both ends to send and receive data. To distin-
guish between the two directions, we refer to each one as
a flow. The flow from the remote host to the local host
is referred to as an inbound flow, while the other flow is
referred to as an outbound flow. Packets flowing in each
flow are denoted as inbound packets and outbound packets
respectively.

In TCP/IP suite, applications like telnet [19],
rlogin [13] and ssh [14] are used to log into a host and
acquire a virtual terminal (or simply a terminal) on that
host. The terminal (also called console or shell) is useful
to execute commands and other programs interactively.
For convenience, we refer to such applications as termi-
nal applications. If a user runs a terminal application on
host h0 to log into another host h1, a terminal on host h1

is obtained and a connection c0 is established. The user
then may use the terminal at host h1 to log into another
host h2. This procedure may be repeated creating a series
of connections as follows:

|h0| ←− c0 −→ |h1| ←− · · · · · · −→ |hn−1| ←− cn−1 −→ |hn|
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Figure 1: Two views of a connection-chain at a host: (a)
A connection-view. (b) A flow view.

This series of connections is called a connection-chain [6],
and the intermediary hosts are called stepping-stones [32].

3.2 Attack Model

Consider the host shown as a rectangle in Figure 1. Sup-
pose that this host is exploited as a stepping-stone, and
the connections a and b are part of the corresponding
connection-chain. Let ain, aout, bin and bout be the cor-
responding inbound and outbound flows. Since a and b
are bidirectional connections, packets in one connection
should re-appear “later” in the other connection. Specif-
ically, an inbound packet coming on ain is expected to
reappear as an outbound packet on bout. Similarly, an
inbound packet coming on bin is expected to reappear as
an outbound packet on aout. The packets’ flow inside the
host is shown as dotted line. Figure 1 (a) depicts a con-
nection view of the connection-chain. Figure 1 (b) depicts
a flow view, where inbound and outbound flows are sorted
out.

An important question is how soon a packet in one
connection will re-appear in another connection if the two
connections are part of a connection-chain. Actually, it
is not possible to exactly determine this delay ahead of
time. However, we know that for a connection-chain to
work, this delay has to be bounded [7]. Otherwise, a
tcp connection will timeout and start retransmission or
even disconnect. In other words, we expect the delay
to be random, but not to exceed some constant value.
Throughout this paper, we refer to this constant as ∆.

In reference to the flow view shown in Figure 1 (b), our
algorithm tries to identify outbound packets that might
have been triggered by inbound ones. This is considered
the case when the difference between the timestamps of
an outbound packet and inbound one is ≤ ∆.

4 Approach Overview

In this section, we present an overview of our approach.
We begin with a brief review of association-rules mining,

which forms the basis of the proposed approach.

4.1 Mining for Association Rules

In data mining, association analysis is a methodology
used to discover interesting relationships in large data
sets [24]. The term association rules is used to denote the
discovered relationships, while the process itself is called
mining for association rules [1].

The following formulation is adopted from [24]. Let
I = {i1, i2, . . . , in} be a set of n items. Let T =
{t1, t2, . . . , tN} be a set of N transactions, where each
transaction ti contains a subset of items from I, i.e.
ti ⊆ I. An itemset is defined as a set of items. A k-
itemset is an itemset that contains k items. For instance,
{bread, milk, eggs} is a 3-itemset.

A transaction ti is said to contain an itemset X , if
X ⊆ ti. An important property of an itemset is its support
count, which refers to the number of transactions that
contain a particular itemset. Mathematically, the support
count σ(X) of an itemset X is given by the following
formula:

σ(X) = |{ti|X ⊆ ti, ti ∈ T }|,

where |.| denotes the number of elements in a set.
An association rule is an implication of the form X →

Y , where X and Y are disjoint itemsets, i.e. X
⋂

Y =
φ. The quality of an association rule is measured by its
support and confidence, which are defined as follows:

support ≡ s(X → Y ) =
σ(X ∪ Y )

N

confidence ≡ c(X → Y ) =
σ(X ∪ Y )

σ(X)
.

Intuitively, the support implies that X and Y occur
together in s% of the total transactions. On the other
hand, the confidence implies that, of all the transactions
containing X , c% also contain Y . It should be noted that
there are alternative indices to measure the quality of as-
sociation rules besides the mentioned support-confidence
framework. For an account of various indices, the inter-
ested reader may refer to [24]. Also, it is important to note
that the implication in an association rule does not neces-
sarily mean causality. It simply indicates a co-occurrence
relationship between the items in the antecedent and con-
sequent of the rule. The problem of association rules min-
ing can be formally stated as follows:

Definition 1. Association Rule Mining: Given a set
of transactions T , find all the rules having support ≥ min-
sup and confidence ≥ minconf, where minsup and minconf
are user-defined support and confidence thresholds respec-
tively.

4.2 Mining For Connection-Chains

In our approach, we closely follow the classic formula-
tion of association rules mining that was presented in the
previous section. In this instance, the items of interest
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correspond to a set of connections, while the connection
chains correspond to the desired association rules. Ad-
ditionally, a confidence measure is used to denote the
strength of a particular connection chain. Formally, let
C = {c1, c2, . . . , cn} be the set of active connections at
a given host. Also, let T = 〈t1, t2, . . .〉 be a sequence of
transactions, where a transaction is restricted to one of
the following two classes of transaction types:

• A 1-tuple Transaction: A transaction of the form [ci],
where ci ∈ C.

• A 2-tuple Transaction: A transaction of the form
[ci, cj], where ci 6= cj and ci, cj ∈ C. In this
type of transaction, the order is not significant (i.e.
[ci, cj] = [cj , ci]).

Unlike the original formulation, the transactions here
are generated dynamically as packets flow in the connec-
tions. As such, we refer to the collection of transactions
as a sequence instead of a set. A 1-tuple transaction [ci]
is generated whenever an inbound packet is received on
the corresponding connection. On the other hand, a 2-
tuple transaction [ci, cj] is generated whenever an inbound
packet in one connection is followed by an outbound packet
in the other connection within a ∆ amount of time. We
will provide more details about the generation of these
transactions when we discuss the proposed algorithm in
the next section.

In theory, for a set of n connections, there are n 1-
tuple transaction types, and

(

n
2

)

2-tuple transaction types,

where the symbol
( )

denotes the combination (choose)
operator. For example, let the set of connections be
{a, b, c}. Then, there are 3 1-tuple transaction types:
[a], [b] and [c]. Also, there are 3 2-tuple transaction types:
i.e. [a, b], [a, c] and [b, c].

In our formulation, we make a distinction between a
transaction type ti and how many times ti actually oc-
curred. We use the support count σ(ti) to refer to how
many times a transaction of type ti has occurred. For
example, let the set of connections be {a, b, c}. Then,
we might have the following support counts: σ([a]) =
10, σ([b, c]) = 2, etc.

As mentioned earlier in the introduction, a connection
chain appears at a host as a pair of connections through
which traffic flows back and forth. As a result, in our
framework we view a connection-chain as an association
rule of the form {ci, cj}, where ci 6= cj and ci, cj ∈ C.
Note that a set notation is used to represent a connection
chain instead of an implication (→). This is to empha-
size the fact that a connection chain does not imply any
direction. For instance, given a connection chain {ci, cj},
packets are investigated in both directions (i.e. ci → cj

and cj → ci).

The confidence of a connection-chain {ci, cj} is defined
as follows:

confidence({ci, cj}) =
σ([ci, cj ])

σ([ci]) + σ([cj ])
, (1)

where ci 6= cj and ci, cj ∈ C. Intuitively, the numerator
represents those times when packets in both connections
occur within ∆ amount of time, while the denominator
represents the times they occur solely. Typically, a true
connection chain is expected to have a high confidence
close to 1.

5 Algorithm and Implementation

In this section, we explain how our approach is imple-
mented. In particular, we discuss the used data struc-
tures, algorithm details, and relevant implementation is-
sues.

5.1 Data Structures

In the proposed algorithm, we employ the following two
main data structures.

• A Connection-Chain Graph (ccGraph): An
undirected weighted graph G(N, E, W ), where

– a node n ∈ N represents an active connection ci.
For 1-tuple transactions of type [ci], the support
count σ([ci]) is stored here.

– an edge e ∈ E exists between two nodes v (rep-
resenting a connection ci) and u (representing
a connection cj), if there are packets suspected
to be flowing between the two connections. An
edge’s weight w ∈ W corresponds to the sup-
port count σ([ci, cj]) for the 2-tuple transactions
of type [ci, cj].

• Inbound Packets Set (inSet): A set of current
inbound packets. When a new inbound packet is re-
ceived, it is added to this set. For a particular con-
nection, inSet contains only the most recent inbound
packet on that connection. In some respects, this set
acts as a time-sliding window of the current inbound
packets. The size of the window is approximately ∆
time unit.

Figure 2 depicts an overall flow of the algorithm. It also
shows how these data structures fit in the whole picture.
In essence, the input to the algorithm is a stream of pack-
ets seen at a host’s network interface. Inbound packets
are buffered into inSet for later comparisons. Outbound
packets are not buffered. Instead, they are compared with
the already buffered inbound packets to determine if there
is a correlation. In addition, ccGraph maintains an up-to-
date status of active connections and possible correlations
between them. In particular, ccGraph holds the support
counts for the two types of transactions that was discussed
earlier.

5.2 Algorithm

In Figure 3, we summarize the whole algorithm as a pseu-
docode. For each packet p ∈ P , the following operators
are defined:
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Figure 2: Overall flow of the algorithm and used data structures

1: procedure PROCESSPACKET p
2: if d(p) = in then
3: increment σ([c(p)]) in ccGraph
4: add p to inSet
5: else if d(p) = out then
6: for all q ∈ inSet do
7: if t(p)− t(q) ≤ ∆ then
8: if c(p) 6= c(q) then
9: increment w(c(p), c(q)) in ccGraph

10: end if
11: else
12: remove q from inSet
13: end if
14: end for
15: end if
16: end procedure

Figure 3: The overall algorithm as a pseudocode

• t(p): the time-stamp of p.

• c(p): the connection to which p belongs.

• d(p): the direction of p; either inbound (in) or out-
bound (out).

The received packets are processed on a first-come-
first-served basis according to their timestamps. Each
packet generates a transaction that depends on its direc-
tion. An inbound packet p generates a 1-tuple transac-
tion of the type [c(p)]. The support count for this type of
transaction σ([c(p)]) is stored into the corresponding node
in ccGraph. Additionally, the packet itself is buffered into
inSet as mentioned earlier. Intuitively, an inbound packet
either results in incrementing the count of that connec-
tion, or creating a new node (connection) if it does not
exist. Additionally, it is buffered in inSet for later com-
parison with outbound packets.

On the other hand, an outbound packet p generates
a 2-tuple transaction of type [c(p), c(q)], if q ∈ inSet,
c(p) 6= c(q), and t(p) − t(q) ≤ ∆. The support count for
this type of transaction σ([c(p), c(q)]) is stored as a weight

w(c(p), c(q)) of the edge between c(p) and c(q) in ccGraph.
Intuitively, we keep counts of every pair of outbound and
inbound packets, if the outbound packet comes after the
inbound one by at most ∆.

At any time, connection-chains are edges in ccGraph
that have a confidence exceeding some user-defined
threshold (minconf ). The confidence is computed accord-
ing to Equation (1).

5.3 Implementation

The proposed algorithm operates by silently analyzing in-
bound and outbound packets at a host. Therefore, the al-
gorithm requires a way to capture the packets. The packet
capture library (libpcap) provides a simple and portable
API for packet capturing [10]. It is available on most
operating systems, and can be used within many high-
level languages. Technically, the packet capture part is
the only part that interface with the operating system.
Otherwise, the inner details of an operating system (such
as processes) are irrelevant.

In order to evaluate our approach, we implemented the
algorithm in Java 1.5 [23]. Java was chosen for its porta-
bility, as the Java Virtual Machine (JVM) is already avail-
able on many platforms including PCs, mobile phones,
etc. For the capture part, we used a Java binding of
the libpcap library, called Jpcap [8]. For the data struc-
tures, ccGraph was implemented using two hash tables;
one for the nodes (connections), and one for the edges
(connection-chains). inSet was also implemented using a
hash table.

6 Evaluation

In this section, we present an extensive evaluation of our
approach. We first discuss the used dataset and our exper-
imentation settings. Then, we provide detailed analysis
of the proposed algorithm in terms of false positives, true
positives and processing time.
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6.1 Data and Settings

In general, choosing an appropriate dataset to evaluate
a detection algorithm is a nontrivial task. Firstly, the
data has to be a faithful representation of the real sit-
uation. Secondly, the data has to be labeled (i.e. true
and false positives have to be correctly marked at first).
Unfortunately, there is no public dataset (or even sim-
ulation tools) specifically designed for connection chains
detection algorithms. As such, we had to be creative in
evaluating our approach.

We used a public network trace to assess the algo-
rithm in terms of processing time and detection capabil-
ity. The trace is called LBNL-FTP-PKT, and is available
from [15]. The trace contains all incoming anonymous
FTP connections (i.e. to port 21) to public FTP servers
at the Lawrence Berkeley National Laboratory during a
ten-day period in Jan 10-19, 2003. It contains 3.2 million
packets flowing in 22 thousand connections. The connec-
tions are between 320 distinct servers and 5832 distinct
clients.

We believe the selected trace fits our needs very well.
First, it is reasonably large to assess the algorithm. Sec-
ondly, it only contains the interactive part of ftp sessions.
This type of traffic is similar to interactive traffic gener-
ated by applications like telnet/ssh, and hence similar to
traffic seen in connection-chains. Finally, the trace does
not contain any connection chains. As such, it is already
labeled (i.e. any detected connection chain is false posi-
tive). We did, however, simulate some connection chains
to evaluate the true positive detection rate as we show
later.

Initially, we sliced the trace into 320 subtraces by server
ip address. Each subtrace contains the packets exchanged
with the corresponding server. Then, we run the algo-
rithm on those subtraces, as if the algorithm was running
on the corresponding server.

In order to fully test the algorithm, we set minconf to
0 in our test suite. This allowed us to study all connec-
tion chains detected by the algorithm regardless of their
confidences. In some respects, minconf = 0 actually
corresponds to the worst case scenario. Additionally, by
analysing inbound and outbound packets of those servers,
we estimated the response time of the servers to be be-
tween 10-90 msec. We used this value as a guidance to
set ∆ in our test suite. In particular, ∆ is varied as 1,
10, 50, 100, 200, and 500 msec. The selected values are
intended to investigate the effect of varying ∆, when ∆ is
set below, around, and above the estimated true ∆ value.

Finally, the tests were run on a laptop with the follow-
ing specifications: a 1.3Ghz Intel Pentium m-processor, 2
GB RAM, and 80 GB 7200 RPM Hard drive.
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Figure 4: The false positive rates of the 320 subtraces
sorted in increasing order of the number of packets. No-
tice that the false positive rate is less than 0.1% in most
of the cases. Also notice that, in general, increasing ∆
increases the false positive rate.

6.2 False Positives Analysis

It is important for a detection algorithm to have a low
false positive rate1 (i.e. generates fewer false positives).
In this part, we investigate this aspect of the proposed
algorithm. We also investigate the effect of varying ∆.

The experimentation was performed as follows. For ev-
ery subtrace (320 subtraces), we run the algorithm with
a ∆ of 1, 10, 50, 100, 200, and 500 msec (i.e. a total of
6 × 320 = 1920 cases). For every case, we observed the
number of connection chains detected by the algorithm.
Because the original subtraces do not contain connection
chains, any detected connection chain is a false one. Ac-
cordingly, we computed the false positive rate (FPR) as
follows:

FPR =
number of false positives

number of possible negative instances
× 100. (2)

For a particular subtrace Si, the number of possible false
instances equals

(

Ci

2

)

, where Ci is the number of connec-
tions in Si.

In Figure 4, we plot the FPR results as a function of
number of packets in each subtrace. In this figure, we
notice that the algorithm indeed has a very low FPR.
For most of the cases, the FPR does not exceed 0.1%.
For some cases with fewer packets, the FPR is slightly

1The false positive rate refers to the fraction of negative instances
that were falsely reported by the algorithm as being positive.
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Figure 5: The confidences of false connection chains are
shown as a set of histograms for different values of ∆.
They approximately follow a decaying exponential distri-
bution.

higher (< 0.7%). In the figure, we also notice that vary-
ing ∆ does affect the FPR. In general, increasing ∆ in-
creases FPR. This is actually expected because increasing
∆ would increase a connection’s buffering time in inSet.
Consequently, a connection would have greater chance to
be correlated with other connections. However, notice
that the FPR is still very low even when ∆ = 500 msec
(i.e. 5 times the ideal value).

Next, we studied the confidences of those false posi-
tives. For this purpose, we picked the largest subtrace
among the 320 subtraces. The subtrace contains 1.7 mil-
lion packets and 3391 connections, comprising traffic ex-
changed with server 131.243.2.12. We run the algorithm
with different values of ∆; namely 1, 10, 50, 100, 200, and
500 msec. We then recorded the detected false positives
and their confidences.

In Figure 5, the distribution of the confidences are plot-
ted as histograms. Here, we noticed that these confidences

exhibit a similar distribution. They approximately follow
a decaying exponential distribution. In other words, the
majority of them have confidences close to zero, while few
have larger confidences. In fact, this is a desirable feature
because the majority of false connection chains can be
eliminated using a low minconf threshold. Recall that
minconf is set to 0 in our experimentation. Therefore,
the algorithm actually detected connection chains regard-
less of their confidences.

6.3 True Positives Analysis

Another important aspect of a detection algorithm is to
have a high true positive rate2 (i.e. detects all (or most)
true instances). In this subsection, we investigate this as-
pect of the proposed algorithm. We also investigate the
effect of varying ∆. Here, we simulated some connec-
tion chains, because the original trace does not contain
true connection chains. In Section 7, we re-evaluate the
algorithm using another dataset, which contains real con-
nection chains (not simulated).

R L R’

t

t

Figure 6: The process of simulating a connection chain. L,
R and R’ respectively stand for the local host, a remote
host and a fictitious remote host. Original packets are
shown as solid arrows, while the simulated ones are shown
as dotted arrows.

The process used to simulate connection-chains is de-
picted in Figure 6. In this figure, L, R and R’ respectively
stand for the local host, a remote host and a fictitious re-
mote host. The steps to create a simulated connection
chain {R,R’} are as follows:

• For an inbound packet (R,L), create an outbound
packet (L,R’). The time-stamp of the new packet is
set to original time-stamp plus some random time t.

• For an outbound packet (L,R), create an inbound
packet (R’,L). The time-stamp of the new packet
is set to original time-stamp minus some random
time t.

• Merge those generated packets into the original trace.

Following the above steps, packets would seem to be
flowing between the two remote hosts R and R’ through

2The true positive rate refers to the fraction of true instances
detected by the algorithm vs. all possible true instances
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the local host L. In the figure, original packets are shown
as solid arrows, while the simulated ones are shown as
dotted arrows. Obviously, a table is maintained to keep
a consistent mapping between hosts R and R’.

The experimentation was performed as follows. We
first picked the largest subtrace3; i.e. the one we used ear-
lier in the previous subsection. We then randomly picked
88 connections from the subtrace and applied the above
simulation process. For the random time t, we used a uni-
form random variable between 10-90 msec (an estimate of
the server response time). Recall that the original sub-
trace contains 3391 connections. Accordingly, the modi-
fied subtrace contains 3391 + 88 = 3479 connections and
(

3479

2

)

= 6049981 possible connection chains. Only 88 out
of the 6049981 possible connection chains are true con-
nection chains ( ≈ 0.002% ). Those are the ones that we
actually simulated.

The modified subtrace is then used as an input to the
algorithm. As in the previous parts, different values of
∆ were considered; namely 1, 10, 50, 100, 200, and 500
msec. For each case, we then recorded the detected con-
nection chains and their confidences. We also computed
the FPR according to Equation (2), and the true positive
rate (TPR) as follows:

TPR =
number of true positives

number of possible true instances
× 100,

where the number of possible true instances equals 88 (i.e.
the number of simulated connection chains).

The TPR and FPR results are depicted as a ROC
curve4 in Figure 7. In this figure, it is apparent that
∆ does affect both the FPR and TPR. As we noticed
in the previous subsection, FPR generally increases as ∆
increases. However, notice that the rate of this increase
slows down as ∆ gets larger than the ideal ∆ (100 msec).
For instance, increasing ∆ from 100 to 200 msec results
in less than 0.01% increase in FPR. Secondly, notice that
setting ∆ to a very low value can result in missing true
connection chains (i.e. reduces the TPR). For instance,
only 4.5% and 31.8% of true connection chains were de-
tected when ∆ is set to 1 and 10 msec respectively. Based
on these two points, we conclude that it is safe to set ∆ to
a higher value than the true one in order to detect all true
connection chains, especially that the increase in FPR is
not significant.

Next, we investigated the confidences of the detected
true and false connection chains. We summarized these
confidences in Table 1. For each value of ∆, we list sev-
eral statistics about the confidences of the true and false
connection chains.

In general, notice that true connection chains have
higher confidences. In Figure 8, the ranges (min-max)
of confidences are visualized. For each value of ∆, a band

3This subtrace was chosen because of its large size, although
other subtraces would give similar results.

4ROC curve stands for Receiver Operating Characteristic curve,
a plot of the fraction of true positives vs. the fraction of false posi-
tives
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and false connection chains for different values of ∆. For
each value of ∆, a grey region indicates the range for false
connection chains, while a black region indicates the range
for true ones.
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Table 1: A summary of the algorithm’s output showing confidence statistics for different values of ∆ under worst
case scenario: minconf = 0.

Confidence
Min 1st Quartile Median Mean 3rd Quartile Max

∆ = 1 ms
True 0.01429 0.01857 0.02389 0.02639 0.0317 0.04348
False 0.0002823 0.0007423 0.0009671 0.001242 0.00151 0.0122

∆ = 10 ms
True 0.02439 0.03584 0.06797 0.07214 0.08378 0.1923
False 0.0003401 0.001433 0.002322 0.002967 0.003913 0.02817

∆ = 50 ms
True 0.2581 0.4756 0.4093 0.4929 0.5595 0.8077
False 0.0003804 0.002959 0.006042 0.009131 0.01292 0.07726

∆ = 100 ms
True 1.0 1.0 1.0 1.0 1.0 1.0
False 0.0003623 0.004518 0.01006 0.01599 0.02237 0.1467

∆ = 200 ms
True 1.0 1.0 1.0 1.0 1.0 1.0
False 0.0003623 0.008181 0.01796 0.03009 0.04302 0.2653

∆ = 500 ms
True 1.0 1.0 1.0 1.0 1.0 1.0
False 0.0004968 0.01471 0.03562 0.05958 0.08803 0.4173

is shown that spans the range of all possible confidences.
Inside each band, the grey region indicates the range for
false connection chains, while the black region indicates
the range for true connection chains.

In Figure 8, notice how the confidences of true and
false connection chains overlap when ∆ is set to very low
values (1 and 10 msec). However, once ∆ is set around or
above the ideal value, true connection chains are clearly
separated. In this case by appropriately setting the con-
fidence threshold (minconf) in the separation area, we
achieve perfect detection rates. For instance, for ∆ = 100
msec, by setting minconf = 0.5 we obtain TPR = 100%
and FPR = 0%. Also, notice that increasing ∆ beyond
the ideal value decreases the separation between the con-
fidences of the true and false connection chains. In this
case, the maximum separation occurs at the ideal value
of ∆ (100 msec). However, notice that this separation is
reasonably large even when ∆ = 500 msec (i.e. 5 times
the ideal value). In essence, large separation is desirable
because it gives greater flexibility in setting the minconf
threshold. Such threshold is used to reduce (or eliminate)
false connection chains.

6.4 Processing Time Analysis

The proposed algorithm is intended for real-time process-
ing of a live stream of packets. Therefore, we are inter-
ested in investigating the processing time per packet, and
how does this time scales as a subtrace increases in size.
We are also interested in studying how the processing time
is affected by varying ∆.

The experimentation was performed as follows. For
every subtrace (320 subtraces), we run the algorithm with
a ∆ of 1, 10, 50, 100, 200, and 500 msec (i.e. a total of 6×
320 = 1920 cases). For a particular subtrace Si, we then
observed the processing time Ti. Although the original
subtraces do not contain connection chains, the algorithm
does detect false ones. This is because mincof is set to 0
as we mentioned earlier. As such, the observed processing

times actually account for all parts of the algorithm.
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Figure 9: The processing time of the 320 subtraces sorted
in increasing order of the number of packets. Note that
the processing time exhibits a linear trend as subtraces
increase in size, and also that varying ∆ does not signifi-
cantly impact on the processing time.

The observed processing times are plotted in Figure 9.
In this figure, we notice the following points:

• The processing time exhibits a linear trend as sub-
traces increase in size.

• The processing time per packet is constant. It basi-
cally corresponds to the slope of the lines. Mathe-
matically, it is given by Ti

|Si|
seconds/packet, where
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Table 2: The processing time of the largest subtrace with
and without simulated connection chains.

pkt cc time (sec) ∆ (sec) simulated

1719596 514 47.7 0.001 0

1719596 2164 51.9 0.010 0

1719596 3505 47.1 0.050 0

1719596 3953 48.2 0.100 0

1719596 4167 55.7 0.200 0

1719596 4373 53.3 0.500 0

1727775 526 47.2 0.001 1

1727775 2239 51.3 0.010 1

1727775 3698 53.1 0.050 1

1727775 4167 54.0 0.100 1

1727775 4398 55.3 0.200 1

1727775 4621 59.7 0.500 1

|Si| is the number of packets.

• For this trace, the average processing time per packet
is about 35 µsec/packet.

• Finally, varying ∆ does not seem to have a significant
effect on the processing time.

Next, we investigated the processing time of the algo-
rithm when true connection chains exist. For this pur-
pose, we used the largest subtrace mentioned earlier. We
run the algorithm using this subtrace with (and without)
the simulated connection chains. As we did previously, ∆
was varied using the following values: 1, 10, 50, 100, 200,
and 500 msec. The results are shown in Table 2, where

• pkt: the number of packets processed.

• cc: the number of connection chains detected.

• time: the total processing time in seconds.

• delta: the value of delta used in seconds.

• simulated: 0 for original subtrace; 1 for original sub-
trace + simulated connection chains.

In this table, we notice that the processing time is not
affected by the existence of true connection chains. In-
stead, the factor that really affects the processing time
is the number of packets processed. Neither ∆ nor the
existence of true connection chains seems to play a big
factor. As such, we conclude that the processing time re-
sults, obtained earlier in Figure 9, are valid whether true
connection chains exist or not.

Based on the above observations, we conclude that
the algorithm is actually efficient for real-time operation.
This is because the average processing time per packet is
both constant and low.

7 Evaluation Using Real Attack

In this section, we evaluate the proposed framework using
a real attack that was posted as a forensic challenge by

211.185.125.124

Honeypot

172.16.1.108

FTP Server

193.231.236.41

(1) 

scan/exploit

(2) 

 download 

rootkit

Figure 10: A diagram showing the IP addresses involved
in the attack, and the attack steps.

the Honeynet project [22]. The attack was presented as
challenge#18 in a series of 34 challenges called scan of the
month challenges.

7.1 Attack Overview

For this attack, Honeynet project provided a file of cap-
tured traffic to/from a honeypot. The file is in the stan-
dard pcap format [10]. In total, there were 993 packets
communicated between the honeypot and 7 remote IP
addresses. Among the 7 IP addresses, two IP addresses
were involved in a successful attack against the honeypot.
Specifically, one IP address was used to scan and compro-
mise the honeypot, and one IP address was accessed to
download a rootkit.

The steps of the attack and the involved IP addresses
are shown in Figure 10. Briefly, the attack proceeded as
follows:

1) 211.185.125.124 scanned the honeypot for rpc service
(port 111), and confirms that statd is running. It
then executed a successful exploit(rpc.statd) which
bound a root shell at port (39168). It finally con-
nected to the honeypot (via port 39168), and ob-
tained a root shell.

2) Via the obtained shell, the attacker connected (ftp)
to an ftp server on 193.231.236.41, and down-
loaded/installed a rootkit.

7.2 Results

Since the captured traffic contains 7 IP addresses, there
are, technically,

(

7

2

)

= 21 possible connection chains.
Among these 21 possible connection chains, there is only
one true connection chain, which is depicted in Figure 10.

We run the algorithm on the original trace provided
by Honeynet project. As in the previous section, we also
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Table 3: The confidences of the true connection chain for
different values of ∆.

∆(ms) 1 10 50 100 200 500

Confidence - 0.3335 0.3666 0.406 0.4391 0.7644

vary ∆ here, and consider the same values of ∆; namely
1, 10, 50, 100, 200 and 500 msec. Also, minconf is set to
0 here in order to study all connection chains detected by
the algorithm regardless of their confidences. Then, for
every ∆, we record the detected connection chains and
their corresponding confidences.

In this attack, the algorithm successfully revealed the
true connection chain with a false positive rate (FPR) of
0%. Except for ∆ = 1 msec, the algorithm only detects
one connection chain which is the true connection chain
depicted in Figure 10. The confidences of this connection
chain for different values of ∆ are shown in Table 3. For
∆ = 1 msec, the algorithm does not detect any connection
chains.

8 Evasions

In this section, we discuss several evasion techniques that
might be used by an intelligent adversary to evade the
proposed algorithm.

8.1 Chaffing

Given a stream of packets, chaffing refers to mixing the
stream with fake packets which are then discarded by
the recipient. This technique was originally introduced
to achieve confidentiality without using encryption [20].
In particular, an eavesdropper will not be able to distin-
guish original packets from fake ones.

In the context of connection chains, an adversary may
employ chaffing as an evasion technique. In particular, the
added fake packets are designed to confuse a connection
chain detection algorithm.

Chaffing is expected to mostly affect pure timing-based
(network-based) approaches. For instance, consider the
IPD algorithm proposed by Wang et al. [26]. This al-
gorithm correlates connections based on the inter-packet
delays (IPD); i.e. packets’ inter-arrival times. It relies on
the fact that IPDs are unique for each user, and preserved
through a connection-chain. Clearly, injecting chaff pack-
ets will disturb the IPDs, and hence the algorithm would
deliver poor TPR/FPR.

Chaffing evasion, however, has a serious limitation.
In particular, interactive traffic has distinctive statistical
characteristics [16]. Specifically, the majority of packets’
inter-arrival times fits a Pareto distribution with shape
parameter β ≈ 0.9. Therefore, adding fake packets would
disturb this unique statistical model [7]. Accordingly, a
simple statistical monitor might be used to detect their
presence.

Concerning our approach, chaffing does not affect the
confidence measure (see Equation (1)). For illustration,
consider the following example. Let {a, b} be a connection
chain through a host h, as shown below:

[← a→ h ← b→]

Assume a stream of packets P = 〈p1, p2, p3〉 flows from
a to b. Recall that packets can not stay longer than ∆
inside h. Otherwise, the connection chain will break.
Specifically, a tcp connection will timeout and start re-
transmission or even disconnect. Accordingly, when the
algorithm processes P , the connection chain {a, b} will be
detected with a confidence given by

[confidence({a, b}) =
σ([a, b])

σ([a]) + σ([b])
=

3

3 + 0
= 1.0]

Now assume, the original stream is chaffed as follows:
P̂ = 〈p1, c1, p2, c2, p3〉, where c1 and c2 are chaff pack-
ets. Since a packet can not stay longer than ∆ inside h,
packets (original or chaffed) arriving at a must be relaid
to b within ∆. Therefore, when the algorithm processes
P̂ , the connection chain {a, b} will be detected with a
confidence given by

[confidence({a, b}) =
σ([a, b])

σ([a]) + σ([b])
=

5

5 + 0
= 1.0]

As shown in the above example, the confidence measure
is not affected whether chaff packets exist or not.

8.2 Adding Delay

Instead of adding fake packets, an adversary may employ
another evasion technique to confuse a connection chain
detection algorithm. In particular, he/she may add ran-
dom delay to packets’ arrival-times.

Similar to chaffing, this evasion technique is problem-
atic for pure timing-based (network-based) approaches,
which use absolute packets’ arrival-times. For instance,
consider the ON/OFF algorithm proposed by Zhang and
Paxson [32]. This algorithm uses packets’ arrival-times to
detect pairs of connections that exhibit coincident OFF
to ON transitions. Clearly, delaying packets will disturb
packets arrival-times, and the algorithm in turn.

Similar to chaffing, delaying packets also suffers from
the same limitation. Specifically, delaying packets will
disturb the unique statistical characteristics of interac-
tive traffic (i.e. its adherence to the Pareto statistical
distribution).

Concerning our approach, adding delay to packets’
arrival-times does not affect the detection algorithm. This
is because the algorithm does not use absolute arrival-
times. Instead, packets are matched within a ∆ time in-
terval. Given that packets can not be delayed more than
∆ inside a host as mentioned in the previous section. The
packets will be matched even though their arrival-times
have been changed. In some respects, the buffer (inSet)



International Journal of Network Security, Vol.10, No.1, PP.62–74, Jan. 2010 73

used by the algorithm, filters out any jitters or small de-
lays.

There is however a subtle issue here. Initially, we do
not know the value of ∆. Therefore, we will be using an
estimate of ∆ in the algorithm. Fortunately, the algo-
rithm is not very sensitive to ∆. We can set ∆ higher
(even 5 times) than the true ∆, and still get 100% TPR
and very low FPR. This was demonstrated by our exper-
imentations.

8.3 Payload Encoding

In addition to the mentioned evasion techniques, an ad-
versary may attempt to alter packets’ payloads using some
form of transformation. Possible transformations include
compression, encryption, re-packeting, etc. Collectively,
we refer to these transformations as payload encoding.

Payload encoding is effective against any detection
algorithm that depends on packets’ payloads. Exam-
ples of such algorithms include text matching of pack-
ets’ payloads [32] and characters frequency analysis
(thumbprints) [6]. For our algorithm, this evasion is not
applicable, because packets’ payloads are not used in the
analysis.

9 Conclusion

A connection chain refers to a mechanism in which some-
one recursively logs into a host, then from there logs into
another host, and so on. In this paper, we proposed a
host-based algorithm to detect connection chains by pas-
sively monitoring inbound and outbound packets. From a
host perspective, a connection chain appears as a pair of
connections through which packets pass back and forth.
We took advantage of the fact that the time taken by a
packet inside the host has to be bounded for a connection
chain to work. We refer to this time as ∆. As such, we em-
ployed concepts from association rule mining in the data
mining literature. In particular, we proposed efficient al-
gorithm and data structures to discover connection chains
among a set of connections. Also, a confidence measure
is used to attest the likelihood of a connection chain.

We used public network traces to assess the algorithm
in terms of processing time and detection capabilities.
For processing time, our experimentations suggest that
the algorithm is efficient for real-time operation. It has
a constant and low average processing time per packet.
In terms of detection capabilities, our experimentations
suggest that the algorithm is effective in detecting true
connection chains. In particular, the algorithm has a very
low false positive rate (FPR). In our experimentation, the
FPR does not exceed 0.1% for most of the cases. We also
found that the setting of ∆ seems to play an important
role. We found that it is always safe to set ∆ to a higher
value than the true value. This ensures the detection of all
true connection chains, while the increase in false connec-
tion chains is not significant. Also, our experimentations

showed some desirable features of the algorithm. In par-
ticular, the majority of false connection chains have con-
fidences close to zero, while few have larger confidences.
This means that the majority of false connection chains
can be eliminated using a low confidence threshold. Also,
we found that the confidences of true and false connec-
tion chains are clearly separated when ∆ is set around
or above (even 5 times) the true value. This also gives
greater flexibility in setting a confidence threshold to re-
duce (or eliminate) false connection chains.
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