
Data Structures in C
Ahmad Khayyat, Hazem Selmi, Saleh AlSaleh

Version 162, 13 February 2017

Table of Contents
1. Objectives . 1

2. Defining Data Structures Using struct . 1

3. Structure Aliases Using typedef . 1

4. Combining typedef and struct . 1

5. Accessing Fields . 2

6. Pointers to Structures . 2

7. Unions . 2

1. Objectives
Learn the basics of data structures and pointers in the C programming language.

2. Defining Data Structures Using struct
In the C programming language, the struct keyword is used to define a complex data type as a group of
variables. The resulting data type can then be used to declare variables, each of which would contain all of
the listed variables in the structure definition.

 A C structure variable references a contiguous block of physical memory.

Defining a Structure and Declaring a Variable

struct point {
 int x;
 int y;
};

struct point p;

In the example above, p is an instance of the struct point structure.

3. Structure Aliases Using typedef
It is possible to use a shorter name to identify the structure type using the typedef keyword. The following
example results in a variable p that is identical to the p variable declared in the previous example.

struct point {
 int x;
 int y;
};

typedef struct point Point;

Point p;

 C is case-sensitive. In the example above, point is different from Point.

4. Combining typedef and struct
The struct and typedef statements can be combined into a single statement.

typedef struct point {
 int x;
 int y;
} Point;

In fact, when combined, the name immediately following the struct keyword, also known as the structure
tag, can be removed.

1

typedef struct {
 int x;
 int y;
} Point;

5. Accessing Fields
In the examples above, the variable p is of type Point, and thus contains two integer fields, x and y. To access
the fields, the dot operator is used (.).

p.x = 5;
int z = p.y;

6. Pointers to Structures
It is common to refer to structure variables by their address, or pointer, instead of the variable itself. This is
especially useful when passing a structure instance as an argument to a function to avoid copying possibly-
large variables during the function call.

C passes arguments by value, not by reference. Pointers can be used to pass arguments by
reference.

Pointers to structure variables are also useful for declaring another structure instance as a field within the
structure.

Pointers to structures are used like any other pointers. The & operator retrieves the address of a variable,
which can be stored in a pointer variable. The * operator is used to declare a pointer variable, and to
dereference a pointer in order to access the variable it points to.

Point p; /* an instance variable */
Point *pointer = &p; /* a pointer to the same instance */
p.x = 5;
(*pointer).x = 5; /* Identical to the previous statement */

Because it is very common to refer to structures using pointers instead of structure variables, a special
operator, the arrow (→), is available to access a field of a structure using its pointer.

p.x = 6;
pointer->x = 6; /* Identical to the previous statement */

7. Unions
A union in C is a data type that stores different data types in the same memory location. There are two main
uses of unions:

1. Storing mutually-exclusive data. If you never need to store both variables a and b at the same time, you
can define them using a union so that they use the same memory space. This also applies if you want to
declare a generic variable that can have multiple types.

2. Accessing the same data in different ways, or as different data types. For example:

2

union {
 uint32_t x;
 struct {
 uint16_t xL;
 uint16_t xH;
 };
};

Here, x refers to a 32-bit integer, whereas xL and xH refer to the low and high 16 bits of that 32-bit integer,
respectively. Changing the value of x would also change the values of xL and xH, depending on which bits
have changed.

3

	Data Structures in C
	Table of Contents
	1. Objectives
	2. Defining Data Structures Using struct
	3. Structure Aliases Using typedef
	4. Combining typedef and struct
	5. Accessing Fields
	6. Pointers to Structures
	7. Unions

