

Senior Design Project

Handicapped Parking

Final Report

Coordinator: Dr. Ahmad Khayyat

Supervisor: Dr. Kamal Chenaoua

By:

Yazan Hlayel 200991670

Rami Rustom 200928490

Mohammad Makkawi 200924510

13 May 2014

2

Table of Contents
Table of Contents .. 2

List of Tables .. 3

Table of Figures ... 3

Glossary ... 4

Introduction ... 5

Problem Statement ... 5

Project Specifications .. 5

User Requirements .. 5

Technical Requirements .. 5

Teamwork .. 5

Engineering Design .. 6

Architecture ... 6

Sub-function identification .. 6

Functions of each component ... 7

Interfaces between components .. 7

Design Decisions .. 7

Examined design options and Tradeoffs ... 7

Component Design and Implementation .. 9

Off-the-shelf hardware and software components .. 9

Custom hardware and software components ... 11

Design and implementation .. 12

System integration .. 20

Issues ... 20

Problems and challenges ... 20

Limitations and constraints of the design. .. 21

Limitations and constraints of the implementation. ... 21

Engineering Tools and Standards .. 21

Conclusion ... 22

APPENDIX .. 22

RFID reader Java Code ... 22

RSA Code ... 29

Arduino Code ... 34

3

List of Tables

Table 1: Analysis Phase: 1 Week (Leader: Rami) ... 5

Table 2: Design Phase: 3 Weeks (Leader: Mohammad) .. 6

Table 3: Implementation Phase: 5 Weeks (Leader: Yazan) ... 6

Table 4: Identification Designing Options ... 8

Table 5: Blocking Designing Options ... 9

Table 6: Controller Designing Options... 9

Table 7: Arduino Mega specs .. 10

Table 8: Identification system components .. 13

Table 9: Tag storage block ... 17

Table 10: Digital pins description .. 18

Table 11: List of issues ... 21

Table of Figures

Figure 1: Arduino Mega ... 10

Figure 2: TFT Screen .. 10

Figure 3: Relay ... 11

Figure 4: Architicture of RFID system .. 12

Figure 5: System architecture.. 13

Figure 6: UHF RFID antenna .. 13

Figure 7: UHF RFID reader ... 13

Figure 8: Some of the tested tags.. 14

Figure 9: A medium level RSSI tag ... 15

Figure 10: Low level RSSI tag ... 15

Figure 11: A high level RSSI tag ... 15

Figure 13: Values of RSSI on Different Orientations ... 16

Figure 14: Values of RSSI on Different Orientations ... 16

Figure 14: Tag A ... 17

Figure 15: Tag B ... 17

Figure 16: Controlling connections.. 19

4

Glossary

 RFID: Radio Frequency Identification.

 UHF: Ultra High Frequency

 RAPID: RFID Application Programming Interface for Developers.

 TFT: Thin Film Transistor

 RSSI: Received Signal Strength Indicator

5

Introduction
Handicapped parking abuse is a major issue affecting the lives of

approximately 72% of those who rely on private automobile for their transportation.

Researches have shown that inappropriate use of handicapped parking spots occur

frequently, with consistent reports indicating that most of these parked cars in the

reserved spaces are parked there illegally (Tierney, 2002).

Problem Statement

The purpose of this project is to prevent the abuse of handicapped parking by

checking the eligibility of the vehicle and allowing those who only deserve this parking

to use the reserved spots. Also, the system is also expected to inform users at the

parking entrance of the availability of handicapped parking lots.

Project Specifications

User Requirements
 Allow only eligible people to use the parking spot.

 Show the number of empty handicapped spots at the entrance of the parking.

 Ability to issue temporary permits to use handicapped spots.

Technical Requirements
 MAX 1KB Passive RFID tags issued for handicapped people.

 The tag contains information about the user and expiration date.

 RFID antenna with a range of 4-6 meters.

 Blocking arm to secure the spot.

Teamwork

Task ID Task Name Owner Status Duration\ Week

1.1 Collect information about the current methods. Mohammad Done

1

1.2 Study all possible blocking techniques. Rami Done

1.3 Study all possible identification/ authorization

techniques.

Yazan Done

1.4 Choosing the suitable parts. Order required

parts.

Group Done

Table 1: Analysis Phase: 1 Week (Leader: Rami)

6

Task ID Task Name Owner Status Duration\ Week

2.1 Design identification sub-system.

Yazan

Done

2

2.1.A User-related parts. Done

2.1.B Parking-related parts. Done

2.2 Design the blocking sub-system. Rami Done

2.3 Design empty-spots-counting sub-system. Mohammad Done

2.4 Testing compatibility. Group Done 1
Table 2: Design Phase: 3 Weeks (Leader: Mohammad)

Task ID Task Name Owner Status Duration\ Week

3.1 Implement identification sub-system. Yazan Done

2 3.2 Implement blocking sub-system. Rami Done

3.3 Implement counting sub-system. Mohammad Done

3.4 Integration and testing. Group Done
3

3.5 Fixing issues and retesting. Group Done
Table 3: Implementation Phase: 5 Weeks (Leader: Yazan)

Engineering Design
Completely document the project design. Use graphical illustrations as much as you

can.

Architecture

Sub-function identification

The project was divided into three sub-functions:

Identification

 This function is the heart of the project, it’s the one responsible for detecting tags and

then identifying and authenticating the detected tags.

Blocking

 It is a device that open or close the gate by a coming signal form a controller. The main

function of the blocking sub-system is to prevent any unauthorized individual from parking in

the handicapped parking spots unless he is authorized. It uses the coming signal from the

identification sub system to know when to open and close the gate.

Counting

 The main function of the counting sub-system is to count the number of empty

handicapped parking spots and present them at entrance of the parking area.

7

Functions of each component

 UHF RFID Reader: The reader has two functionalities; the first is analyzing the received

signals from the antenna and transforming them to clear data. The other function is

to run the main application. The selected reader has a dedicated Java Virtual machine

(JVM) that allows us to develop java applications and run them on the reader.

 UHF RFID Antenna: Sending the RF signals to energize the tags and receive data from

the tags again.

 UHF RFID Tag

 Arduino Mega 2560: a programmable microcontroller that read a coming signal from

the reader and based on that signal decide whether to open the gate or not and

whether to increment or decrement the counter on the screen.

 TFT Display Screen: represent the number of empty handicapped parking spots at the

parking entrance.

 Grove Relay: a mechanical switch controls high voltage (up to 250v) using a digital

signal (5v).

 The car radio antenna: represent an open or closed gate.

Interfaces between components

 The system has four interfaces:

 Reader to tag: This application utilizes Ultra High Frequency (UHF) RFID tags using RF

signals with frequencies ranging from (865-868) MHz and (902-928) MHz –depending

on the geographical location- which are defined in ISO18000-6.

 Reader to Arduino: High or low 5v signal represent the existing of a car in front of the

gate or not where high represent an existing of a car and low showing that the parking

spot is not occupied.

 Arduino to TFT Display: 8 digital signals connected on the standards of TFT Display

Arduino libraries.

 Arduino to Relay: 1 digital signal to switch it on or off to control the car antenna (the

gate).

Design Decisions

Examined design options and Tradeoffs

Identification sub-system

The study of all identification/ authorization techniques was done by researching for

all the available identification techniques in the market. The research resulted in finding four

different types of identification techniques that differ in security, range, complexity,

implementation, compatibility and cost. Based on a comparison between the four available

possible solutions, one solution was decided to be used due to its cheapness, proper range

and decent security. The comparison process is shown in Table4.

The candidate for the identification system is the passive RFID due to its compatibility

with the system requirements.

8

Identification System Pros Cons

License Plate Recognition
(LPR)

 Hard to forge (secure).  Hard to implement.

 Line of sight is needed.

 One sensor per parking
spot.

Passive RFID  Cheap.

 Easy to use.

 Has security (challenge
and response).

 Detection problems.

 Range and interference
issues.

Active RFID  Better detection than
passive RFID

 Longer range

 Higher security

 Long range (not used,
and can cause
interference).

 Costly

 Battery dependent.

QR code  Extremely cheap.

 Easy to forge.

 No security

 Line of sight is needed.

Table 4: Identification Designing Options

Blocking method

The study of all possible blocking design options was done by researching for all the

available blocking techniques in the market. The research resulted in finding four different

types of blocking techniques that differ in method, cost, implementation and compatibility.

Based on a comparison between the four available possible solutions, one solution was

decided to be used due to its compatibility with the system and its ease of use. The

comparison process is shown in Table 5.

The chosen for the blocking method is the Parking space guard due to its ease of

implantation from marketing perspective.

Blocking Method Pros Cons

Parking space
guard

 Integrated radio receiver

 Handheld radio transmitter

 solar technology (outdoor)

 one way blocking (with

sensors)

 solar technology
(indoor)

 ii. Easy to break.

Electro-Hydraulic
Spike Barrier
/Tire Killer

 One way blocking

 ii. Fast in blocking and
unblocking

 Cause crucial damage to
the car in case not
working

 ii. Not cheap.

Electro-
hydraulically
Blocking Bollards

 Durable

 ii. High impact resistance

 Cause crucial damage

to the car is the system

fails

9

 Costly

Parking Post  Cheap

 Automatic Remote Control

 Works on batteries

 Need to be charged in

(3-6) months

Table 5: Blocking Designing Options

Controller

 The study of all possible controllers design options was done by researching for all

the available controllers in the market. The research resulted in finding three different types

of controllers that differ in language, cost, implementation and complexity. Based on a

comparison between the three available possible solutions, one solution was decided to be

used due to its compatibility with the system and its ease of use. The comparison process is

shown in Table 6.

The selected controller for the project is the Arduino because its disadvantages the

project and the advantages are good enough for the project.

Controller Pros Cons

Arduino  Use C

 Developer friendly

 Plenty of digital pins

 Availability in the market

 Accessories

 Need of shields

 Low processing power

 Memory limitation

 Relatively expensive

Raspberry pi  Full OS

 Many types of ports

 High processing power

 Few number of pins

 OS drawbacks

 Need of system calls

Atmel  Cheap

 Small

 Reliable

 Many types and shapes with
different specification

 Need of bootloader

 Hard to test and debug

 No output voltage

Table 6: Controller Designing Options

Component Design and Implementation

Off-the-shelf hardware and software components

Reader

 The SIRIT INFINITY 610 is a UHF RFID reader that supports Java, Python and .Net

technologies with a built in JVM and 8 digital I/O ports.

Arduino Mega 2560

The Arduino Mega 2560 is a microcontroller board based on the ATmega2560. It has

54 digital input/output pins (of which 15 can be used as PWM outputs), 16 analog inputs, 4

UARTs (hardware serial ports), a 16 MHz crystal oscillator, a USB connection, a power jack, an

ICSP header, and a reset button.

10

Figure 1: Arduino Mega

Components Specifications

Microcontroller ATmega2560

Operating Voltage 5V

Input Voltage (recommended) 7-12V

Input Voltage (limits) 6-20V

Digital I/O Pins 54 (of which 15 provide PWM output)

Analog Input Pins 16

DC Current per I/O Pin 40 mA

DC Current for 3.3V Pin 50 mA

Flash Memory 256 KB of which 8 KB used by bootloader

SRAM 8 KB

EEPROM 4 KB

Clock Speed 16 MHz
Table 7: Arduino Mega specs

TFT Display Screen

 The Arduino TFT screen is a backlit LCD screen with headers. By using the TFT library

it is possible to draw text, images, and shapes to the screen. Also, on the back of the screen

there is an onboard micro-SD card slot that can store bitmap images for the screen to display

and among other things.

Figure 2: TFT Screen

11

TFT Library

 This library allows an Arduino board to communicate with the Arduino TFT LCD screen.

It simplifies the process for drawing shapes, lines, images, and text to the screen.

Grove - Relay

 The Grove - Relay is a digital, normally-open switch that controls a relay capable of

switching much higher voltages and currents than the normal Arduino boards can support.

When set to HIGH, the LED will light up and the relay will close allowing current to flow. The

peak voltage capability is 250V at 10 amps.

Figure 3: Relay

Parking Space Guard

 The parking space guard is a mechanical device that used in parking spaces to prevent

unauthorized individual from parking using a digital signal (remote control, RFID reader,

microcontroller, etc.). By using an arm that rise to achieve the purpose of the parking space

guard. It is powered using high voltage (battery, solar, direct AC connection). For the purpose

of this project we didn’t use any of the blocking devices instead we used a radio car antenna

as a symbol of blocking device.

Custom hardware and software components

Hardware components (the blocking device)

 Instead of using a big and costly blocking device that exist in the market, we used a

simple car antenna to represent the blocking and a relay to control it using a digital signal.

Software components

RSA encryption/decryption library.

Due to the need to a functioning and safe security method to ensure the eligibility and

validity of the tags, a secure method of encryption and decryption was needed, that’s why a

stand-alone RSA encryption tool was developed using java security library and an open-source

library with optimization and customization to meet the needs of this project. Full code of the

library is provided in the Appendix.

Arduino code

 Our system has very specific task and finding a software code that satisfy the

requirements of this system is almost impossible. Because of that we had to write our own

code to fulfil the requirements.

12

Design and implementation

Identification system

In order to understand the next part, you must have a basic understanding of the RFID

technology, the next part explains briefly the RFID technology. If you are comfortable with this

technology you can skip the coming part.

RFID (Radio Frequency Identification) is a wireless technology that utilizes the radio

frequency for data transmission. The data is stored on tags, these tags can be either passive,

active or battery-assisted-passive (BAP). The active and BAP tags both contain batteries that

allows them to communicate in a wider range that can go up to 1 km for enterprise uses and

over 2 km in military applications. Unlike battery powered tags, passive tags uses the RF signal

provided by the reader to generate power and transmit/receive data. Shown in Figure 4 a

schematic of a passive RFID tag that is powered by the reader’s RF signal using a coil. This

property of passive tags allows it to be very cheap and gives it a long life time, but it also

introduces a bigger issue which is the orientation dependence. Based on the architecture of

the passive tags, the positioning of the coil/s that power the tag is crucial and can cause it

work in limited range of angles.

Figure 4: Architicture of RFID system

This part of the system is composed of three hardware parts and two other software

parts. Table 8 and Figure 5, 6 and 7 show the components of this subsystem and a flowchart

that describes how it works.

13

Figure 5: System architecture

Figure 6: UHF RFID antenna

Figure 7: UHF RFID reader

Component Function

Antenna Transceiving the RF signal

RFID reader Signals modulation.
Code execution (JVM)
Control signals (digital I/O)

Encryption Tool Validation of the tag
Table 8: Identification system components

14

As shown in Figure 5 above, the reader initiates the sequence by sending an UHF RF

signal through the antenna that provides the tag with power to respond with the content of

its memory. Then the received data from the tags gets processed by the RFID reader

transforming analog signals to readable data, after that the uploaded software will use the

provided data to authenticate the car and thus allows or denies its access to the parking spot.

Tags:

Choosing the proper tags process was a one of the most important steps to insure the

efficiency and correctness of the identification. Listed below in Figure 8 are some of the tags

that were tested to be chosen for this application knowing that the selected tag must satisfy

the following specifications:

 UHF tag (865-928) MHz.

 64 Bytes memory.

 Works in high temperature.

 Orientation-independent.

 Works with/around metal.

Figure 8: Some of the tested tags

Note: the battery is placed there to give a perspective of size

Based on the needed specs listed above, the shown tags were selected based on their

specs in their respective data-sheets and thus satisfying the first three requirements. To cover

15

the other required specifications multiple test were conducted on the tags shown below to

choose the appropriate tag for this application.

The first test was the Orientation-Dependence test, this test was conducted to verify

how every tag reacts to different angles and orientations with respect to the antenna. That’s

why three RFID readers were used to measure the power received from the tag (RSSI) in

various orientations. Shown in the figures 9, 10 and 11 below some of the results acquired for

RSSI using a handheld RFID reader, and the following graphs show the RSSI received by the

tags using the stationary RFID reader. These graphs were generated by recording 300 RSSI

values of a tag while moving it in different directions and orientations, then these values

where averaged (every 10 values averaged to a single value) and thus reducing the domain to

30 values instead of 300 to overcome the normal RSSI misreads.

Figure 9: A medium level RSSI tag

Figure 10: Low level RSSI tag

Figure 11: A high level RSSI tag

16

Figure 12: Values of RSSI on Different Orientations

Figure 13: Values of RSSI on Different Orientations (The selected Tag)

Since the system will be placed inside a car parking lot, then it’s expected to have a

metal-rich environment and thus it can cause inaccurate readings or even destroy the signals

causing it to be blocked completely. That’s why this issue must be considered in the early

stages of the implementation. This test was conducted to validate the accuracy and validity of

the readings in an environment with a lot of metallic objects. The test is very similar to the

previous one except it only consider the metallic environment and concentrates on receiving

the best readings around metallic objects.

As a result of the previous tests, two types of tags that are shown in the figures 14

and 15 below have shown to be to be most appropriate and suitable for this application, the

tag on the right (Tag B) was selected due to its smaller size and cheaper price. A comparison

between the two tags by the manufacturer and a full specifications of the selected tag are

provided in the Appendix.

-600

-550

-500

-450

-400

-350

-300

0 5 10 15 20 25 30 35

Values of RSSI on Different Orientations

-600

-550

-500

-450

-400

-350

-300

0 5 10 15 20 25 30 35

Values of RSSI on Different Orientations

17

Figure 14: Tag A

Figure 15: Tag B

Tag Storage

The used tag has a 64 Byte of storage. This space is used to authenticate the tag by

the reader. Table 9 below shows how this 64 Bytes are divided and used. The use of the second

and third fields (Owner ID, Owner Mobile Number) are used for checking the tag manually.

For example, it can be used by the security guards. The use of the other fields will be explained

in the next section.

 1 2 3 4 5 6 7 8

1 Tag Signature (0x0000FFFF) Tag is Local or Public (0000FFFF OR
FFFF0000)

2 Owner ID Owner mobile number

3

4

5 Long Value (Issue Time)

6 Expiration Time (Signed)

7

8 Long Value for (Expiration Time)
Table 9: Tag storage block

RFID Reader

The RFID reader is the main component of this project. It’s the one responsible for

identifying and authenticating cars (Tags). That’s why choosing the right reader is an

important part of the design and implementation. In our case there were only two available

options to be used that were provided by the RFID Lab at KFUPM which are Motorola and

SIRIT readers. These two readers could work perfectly with this application, but each one of

them would have a slightly different implementation than the other and that’s due the extra

features in the SIRIT reader.

The SIRIT reader which is the one chosen for this project has a feature that

extinguished it from the other readers which is the JVM. SIRIT reader has a built in Java Virtual

Machine that can run java applications using the RAPID (RFID Application Programming

Interface for Developers) library, which is the standard libraries for developing RFID

18

applications. This extra feature allows us to use the SIRIT reader as a stand-alone system since

it’s the one doing the processing and due to using the RAPID library, we can re-use the code

on another reader that supports RAPID.

In addition to the local JVM, SIRIT reader has an extra feature that makes it a perfect

choice for our solution which is the digital I/O ports. The SIRIT reader is equipped with a

general purpose DIO ports that provides four optically isolated 5-24 Vdc input signals and four

open-collector output signals. The inputs can be used as general purpose inputs or to trigger

the reader for tag reading. These inputs can be configured for external read trigger from

proximity sensors, switches, or other devices. The outputs can be used as general purpose

outputs, to indicate tag reading activity, or to indicate the reader is transmitting (RF On). The

outputs can also be configured to trigger any other digitally controlled device. The table 9

below shows the specifications of the digital I/O ports as provided by the manufacturer.

Connector Phoenix Contact PN 1881422

Input 5 to 24 Vdc, 1 to 5 mA, Optically Isolated

Output Open Collector (3 to 40 V, 100 mA Max)

Signals Pin 1 Digital Common Voltage Reference for DIN1/DIN2

Pin 2 DIN1 (Digital Input 1)

Pin 3 DIN2 (Digital Input 2)

Pin 4 Digital Common Voltage Reference for DIN2/DIN4

Pin 5 DIN3 (Digital Input 3)

Pin 6 DIN4 (Digital Input 4)

Pin 7 Digital Common Ground

Pin 8 DOUT1 (Digital Output 1)

Pin 9 DOUT2 (Digital Output 2)

Pin 10 DOUT3 (Digital Output 3)

Pin 11 DOUT4 (Digital Output 4)

Pin 12 Digital Common Ground

Note Pins 7 and 12 can be used for both inputs and outputs.

Pin 1 is on the left when facing the end of the reader

Table 10: Digital pins description

Developing Software for the Reader

As mentioned earlier, the RAPID libraries were used to develop the Java program for the

reader. Shown below the algorithm used to detect/authenticate and process the detected

tags.

1. Detect newly arriving tags.

2. Check if the tags are valid (official and non-expired tag) and add them to a list to be

monitored.

a. The validation occurs on three stages

i. Validate the tag signature, which indicates that this tag is one of the

issued tags for the handicapped.

ii. Validate the expiration time, which are represented in the last 8

bytes in the memory as a Long number (milliseconds since

1/1/1970).

19

iii. 16 Bytes represent an encrypted version of the expiration time,

which will verify that this tag isn’t forged.

3. If one of the monitored tags is close to the gate, wait for 3 seconds and then open

the gate and decrease the number of empty spaces by 1.

a. Opening the gate is done by sending a signal to the gate controller.

4. If the tag leaves the perimeter of the antenna, remove it from the monitoring list.

5. If the tag that occupies the parking space leaves the range of antenna, then it adds 1

to the number of empty spaces.

For more detailed explanation about the program, please refer to the Appendix for the code

and its explanation.

Blocking system

 The antenna that used as a barrier has three wires. One low wires (Black) connected

always to 12v ground. Two 12v high wires, one of them (Red) is always connected to 12v

power source so that the antenna get inside automatically. The other wire (White) is

connected to the relay and from the relay to 12v power source. When the relay pass the

current through the white wire the antenna go out.

Control system

 The Arduino used as a controller for the system. It is connected to the TFT Display

screen, the RFID Reader, and the relay. The connections are showing below.

Figure 16: Controlling connections

Control pseudo code

 The full code is provide in the Appendix.

– Include TFT display library

– Define the TFT display pins

– Define the TFT display

– Define all the needed variables

– Start the Arduino setup class {

– Define the pin modes for input and output

– Define the default value for each output pins

– current value (cv) = opposite the signal coming from the reader

20

– Write the initial value on the screen

– } Exit the setup class

– Start the Arduino loop class {

– Write the new value on the screen

– New value (nv) = signal coming from the reader

– If cv != nv (

– Check the coming signal twice with a 5s delay in between

– Close or open the gate based on the signal

– Refresh the counter

– Write the new value on the screen

– Cv = nv

–) exit if statement

– } exit the loop class

System integration
The first step was testing every sub-system individually and prove its functionality.

After that, the identification sub-system was connected to the blocking and counting sub-

systems. At this point the first issue appeared which was in the signal sent from the reader to

the controller (more on this issue is in the next section). After fixing the past issue and insuring

a correct signal transmission between the reader and the controller, another problem

appeared in the code of the controller which was due a mistake in the code of the controller

when the received signal goes from HIGH to LOW multiple times. After testing and debugging

for multiple times and ensuring functionality, some extra tests were conducted on the tags

with different antenna to test the extendibility of the system.

Issues

Problems and challenges
 All the project problems are listed in the following tables, including the unsuccessful

attempts and final solution:

The issue Unsuccessful
Attempts

Cause of failure Final resolution

Running the
code on the
reader.

Adding the
RAPID library in
the same
directory

Not specifying the
classpath on
execution

Define the class path of the
RAPID library on executing the
program.

Digital I/O not
working

Changing the
connections of
the ground
cable.

Unclear
understanding of
the open-collector
output.

Providing the voltage on the
digital output, which causes it
to work as a switch.

Buying the
blocking device

Buying online Too expensive and
too heavy to ship

Building our own blocking
device

Buying from a
local sellers

few number of
seller and high
price

21

Building the
blocking device

Building from
the scratch

To complex, need
a lot of equipment
and components

Buying a representative device

Choosing the
representative
device

An led light Doesn’t represent
the blocking in a
right way

Buying a car antenna and use
it as a blocking device with a
relay to control it

Refreshing the
text on the tft
screen

Filling the screen
and un fill it

text appear on top
pf each other

Over write the same text on
above the old text with the
same color as the background
and then write the new text
with a different color using the
stroke method

Resetting the
screen

Same problem as
before

Table 11: List of issues

Limitations and constraints of the design.
 The project is a standalone system with no interface to communicate with other

systems. So, any additional communication with this system need an extra effort to make it

work. For example, if the system need to store the data in a log file it will need an extra

storage, extra interface, and extra programming.

The design depends heavily on the RSSI where it differs from one manufacturer to

another. This might introduce an issues related to the distances estimations.

Limitations and constraints of the implementation.
 The TFT screen library designed for only this type of screens. So if we need to change

the screen for any other display, the Arduino code must be modified to take care of the new

display. For example, if the TFT screen changed to a monitor and connected through VGA or

HDMI its need an extra Arduino shield and modify the code. Even if it is changed to a seven

segment display the connection and the code will be changed.

 There are some limitations caused by the specifications of the RFID reader. For

example, the maximum length of the coaxial cable between the antenna and the reader is 15

meters. Also, this constrain apply to the length of the Ethernet cable.

 One extra limitation in the implementation is the number of digital I/O ports in the

RFID reader, where it only supports 4 digital output ports, and thus it covers only 4 parking

spaces.

Engineering Tools and Standards
1. IntelliJ idea (JAVA IDE)

2. Arduino IDE

3. Sketch Up Pro

4. RAPID Library

5. RSA Encryption library

6. TFT Library

22

Conclusion
1. We’ve learned how to develop applications that utilizes the RFID technology.

2. Using Arduino with enterprise devices and tools.

3. Controlling high voltage devices with a low voltage signals using relays.

4. Using third-party libraries to perform specific tasks and enhance the output.

APPENDIX

RFID reader Java Code
Note: This code must be compiled and executed with the RAPID libraries.

import com.sirit.data.DataManager;

import com.sirit.driver.IEventListener;

import com.sirit.mapping.*;

import com.sirit.driver.socket.*;

import com.sirit.mapping.modem.Dio;

import com.sun.org.apache.xml.internal.serializer.utils.SystemIDResolver;

import java.util.*;

/*

 * Sample code to demonstrate how to use RAPID API

 */

public class Parking implements IEventListener

{

 /**

 * Main method for this demo application

 * @param args Command line arguments

 * first argument -IP Address of the reader (optional)

 */

 public static void main(String[] args)

 {

 // Create Parking object

 Parking app;

 if(args.length > 0)

 app = new Parking(args[0]);

 else

 app = new Parking();

 // Execute the application

 app.run();

 System.out.println("Exiting");

 System.exit(0);

23

 }

 /*

 * IP Address of the reader, default is local host

 */

 private static final String officialTagSignature = "0000FFFF";

 private String ipAddress = "127.0.0.1";

 DataManager dataManager = null;

 DioManager dioManager = null;

 boolean isFreeSpace = true;

 String parkedCarTagId = "";

 ArrayList<String> monitor = new ArrayList<String>();

 /**

 * Constructor

 */

 public Parking()

 {

 }

 /**

 * Constructor - with IP Address

 * @param ipAddr IP Address for the reader

 */

 public Parking(String ipAddr)

 {

 ipAddress = ipAddr;

 }

 /**

 * Executes the application

 */

 public void run()

 {

 try

 {

 long startTime = System.currentTimeMillis();

 // Open a connection to the reader

 dataManager = new DataManager(DataManager.ConnectionTypes.SOCKET, ipAddress,

0);

 dataManager.open();

 System.out.println("Connection Opened");

 // Get the reader's name

24

 InfoManager infoManager = new InfoManager(dataManager);

 String v = infoManager.getName();

 System.out.println("Name: " + v);

 infoManager = null;

 // Login as administrator

 ReaderManager readerManager = new ReaderManager(dataManager);

 if(!readerManager.login("admin", "readeradmin"))

 throw new Exception("Login attempt failed: " +

readerManager.getLastErrorMessage());

 v = readerManager.whoAmI();

 System.out.println("Login: " + v);

 // Open an event channel and get it's ID

 String id = dataManager.getEventChannel(this);

 System.out.println("Event Channel ID: " + id);

 //Initialize a TagManager Object

 TagManager tagManager = new TagManager(dataManager);

 tagManager.setReportingArriveFields("tag_id user_data rssi");

 tagManager.setReportingDepartFields("tag_id time");

 tagManager.setReportingReportFields("tag_id rssi");

 //Initialize a Digital I/O manager

 dioManager = new DioManager(dataManager);

 // Register for event.tag.arrive

 if(!readerManager.eventsRegister(id, "event.tag.arrive"))

 throw new Exception("Failure to register for event: " +

readerManager.getLastErrorMessage());

 System.out.println("Registered for event.tag.arrive");

 // Register for event.tag.depart

 if(!readerManager.eventsRegister(id, "event.tag.depart"))

 throw new Exception("Failure to register for event: " +

readerManager.getLastErrorMessage());

 System.out.println("Registered for event.tag.depart");

 // Register for event.tag.report

 if(!readerManager.eventsRegister(id, "event.tag.report"))

 throw new Exception("Failure to register for event: " +

readerManager.getLastErrorMessage());

 System.out.println("Registered for event.tag.report");

25

 // Set operating mode to active

 SetupManager setupManager = new SetupManager(dataManager);

 setupManager.setOperatingMode(SetupManager.OPERATING_MODE_TYPES.ACTIVE);

 System.out.println("Operating Mode: Active");

 // Sleep while handling tag events

 Thread.sleep(36000000);

 // Unregister for event.tag.report

 if(!readerManager.eventsUnregister(id, "event.tag.arrive"))

 throw new Exception("Failure to unregister for event: " +

readerManager.getLastErrorMessage());

 System.out.println("Unregistered for event.tag.arrive");

 // Unregister for event.tag.depart

 if(!readerManager.eventsUnregister(id, "event.tag.depart"))

 throw new Exception("Failure to unregister for event: " +

readerManager.getLastErrorMessage());

 System.out.println("Unregistered for event.tag.depart");

 // Unregister for event.tag.report

 if(!readerManager.eventsUnregister(id, "event.tag.report"))

 throw new Exception("Failure to unregister for event: " +

readerManager.getLastErrorMessage());

 System.out.println("Unregistered for event.tag.report");

 // Set operating mode to standby

setupManager.setOperatingMode(SetupManager.OPERATING_MODE_TYPES.STANDBY);

 System.out.println("Operating Mode: Standby");

 // Close the connection

 setupManager = null;

 readerManager = null;

 dataManager.close();

 System.out.println("Connection Closed");

 // Output the time to execute application

 long endTime = System.currentTimeMillis();

 long t = endTime - startTime - 500;

 System.out.println("Estimated Time: " + t + "(ms)");

 }

 catch(Exception e)

26

 {

 System.out.println("Error: " + e.getMessage());

 }

 }

 /**

 * Common Event Handler for all of the triggered (registered) events

 */

 public void EventFound(Object sender, EventInfo eventInfo)

 {

 String eventName = eventInfo.getName();

 if(eventName.equalsIgnoreCase("event_tag_arrive"))

 tagArrivedEventHandler(sender, eventInfo);

 else if(eventName.equalsIgnoreCase("event_tag_depart"))

 tagDepartEventHandler(sender, eventInfo);

 else if(eventName.equalsIgnoreCase("event_tag_report"))

 tagReportEventHandler(sender, eventInfo);

 }

 //Validates the tag based on its ID.

 //Every user can implement their own criteria.

 public boolean isOfficialTagID(String tagId)

 {

 return true;

 }

 //Validating the tag based on the content.

 //In this case, the signature for any official tag is (0000FFFF)HEX

 public boolean isOfficialTagData(String tagUserData)

 {

 if(tagUserData != null)

 if(tagUserData.substring(2,10).equalsIgnoreCase(officialTagSignature))

 return true;

 return false;

 }

 //Event handler for newly arrived tag in the field of the antenna.

 public void tagArrivedEventHandler(Object sender, EventInfo eventInfo)

 {

 if(isFreeSpace)

 {

 String tagID =

eventInfo.getParameter(EventInfo.EVENT_TAG_ARRIVE_PARAMS.TAG_ID);

 String data =

eventInfo.getParameter(EventInfo.EVENT_TAG_ARRIVE_PARAMS.USER_DATA);

 String rssi = eventInfo.getParameter(EventInfo.EVENT_TAG_ARRIVE_PARAMS.RSSI);

27

 long arriveTime = System.currentTimeMillis();

 //Checking the validity of the tag based on the ID

 if(tagID!= null) //This is done to avoid the issue of miss-read tag ID.

 if(isOfficialTagID(tagID))

 {

 //Checking the validity of the tag based on the data

 if(data != null) //This is done to avoid the issue of miss-read tag user-data.

 if(isOfficialTagData(data))

 {

 if(isAllowedToPark(data))

 {

 System.out.println(tagID + " is Allowed to park !!");

 addToMonitorList(tagID);

 }

 }

 }

 }

 }

 //This is a continuous scan for all the tags in the range of the antenna/s.

 public void tagReportEventHandler(Object sender, EventInfo eventInfo)

 {

 String tagID =

eventInfo.getParameter(EventInfo.EVENT_TAG_ARRIVE_PARAMS.TAG_ID);

 String data =

eventInfo.getParameter(EventInfo.EVENT_TAG_ARRIVE_PARAMS.USER_DATA);

 String rssi = eventInfo.getParameter(EventInfo.EVENT_TAG_ARRIVE_PARAMS.RSSI);

 if(isFreeSpace & monitor.contains(tagID))

 {

 int RSSI = Integer.parseInt(rssi);

 if(RSSI < -400 && RSSI > -500) //Range of RSSI for a close tag.

 {

 openGate();

 parkedCarTagId = tagID;

 isFreeSpace = false;

 }

 }

28

 }

 //This event is triggered if a tag isn't detected within n milliseconds.

 //The number of seconds can be configured. In this case, it's 3000 milliseconds

 public void tagDepartEventHandler(Object sender, EventInfo eventInfo)

 {

 String tagID =

eventInfo.getParameter(EventInfo.EVENT_TAG_ARRIVE_PARAMS.TAG_ID);

 String data =

eventInfo.getParameter(EventInfo.EVENT_TAG_ARRIVE_PARAMS.USER_DATA);

 String rssi = eventInfo.getParameter(EventInfo.EVENT_TAG_ARRIVE_PARAMS.RSSI);

 if(tagID.equalsIgnoreCase(parkedCarTagId))

 {

 parkedCarTagId = "";

 isFreeSpace = true;

 closeGate();

 }

 if(monitor.contains(tagID))

 monitor.remove(tagID);

 }

 private void openGate()

 {

 //Open the gate

 try

 {

 dioManager.setOut4("1");

 System.out.println("Gate Opened");

 }

 catch (Exception e)

 {

 System.out.println("Error: " + e.getMessage());

 }

 }

 private void closeGate()

 {

 //Close the gate

 try

 {

 dioManager.setOut4("0");

 System.out.println("Gate Closed");

29

 }

 catch (Exception e)

 {

 System.out.println("Error: " + e.getMessage());

 }

 }

 //Adding a tag-id to the monitor list keeps allows the program to keep checking it to

see if it's in the right position.

 private void addToMonitorList(String tagId)

 {

 System.out.println(tagId + " added to monitor");

 monitor.add(tagId);

 }

 //Checks if the tag owner is allowed to use this space based on the expiration time in

the tag.

 private boolean isAllowedToPark(String data)

 {

 String timeFromTag = data.substring(114);

 long time = Long.parseLong(timeFromTag, 16);

 if(time > System.currentTimeMillis())

 return true;

 return false;

 }

}

RSA Code

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.IOException;

import java.io.ObjectInputStream;

import java.io.ObjectOutputStream;

import java.security.KeyPair;

import java.security.KeyPairGenerator;

import java.security.NoSuchAlgorithmException;

import java.security.PrivateKey;

import java.security.PublicKey;

import javax.crypto.Cipher;

30

/**

 * @author JavaDigest

 *

 */

public class EncryptionUtil {

 /**

 * String to hold name of the encryption algorithm.

 */

 public static final String ALGORITHM = "RSA";

 /**

 * String to hold the name of the private key file.

 */

 public static final String PRIVATE_KEY_FILE = "C:/keys/private.key";

 /**

 * String to hold name of the public key file.

 */

 public static final String PUBLIC_KEY_FILE = "C:/keys/public.key";

 /**

 * Generate key which contains a pair of private and public key using 1024

 * bytes. Store the set of keys in Prvate.key and Public.key files.

 *

 * @throws NoSuchAlgorithmException

 * @throws IOException

 * @throws FileNotFoundException

 */

 public static void generateKey() {

 try {

 final KeyPairGenerator keyGen = KeyPairGenerator.getInstance(ALGORITHM);

 keyGen.initialize(512);

 final KeyPair key = keyGen.generateKeyPair();

 File privateKeyFile = new File(PRIVATE_KEY_FILE);

 File publicKeyFile = new File(PUBLIC_KEY_FILE);

 // Create files to store public and private key

 if (privateKeyFile.getParentFile() != null) {

 privateKeyFile.getParentFile().mkdirs();

 }

 privateKeyFile.createNewFile();

31

 if (publicKeyFile.getParentFile() != null) {

 publicKeyFile.getParentFile().mkdirs();

 }

 publicKeyFile.createNewFile();

 // Saving the Public key in a file

 ObjectOutputStream publicKeyOS = new ObjectOutputStream(

 new FileOutputStream(publicKeyFile));

 publicKeyOS.writeObject(key.getPublic());

 publicKeyOS.close();

 // Saving the Private key in a file

 ObjectOutputStream privateKeyOS = new ObjectOutputStream(

 new FileOutputStream(privateKeyFile));

 privateKeyOS.writeObject(key.getPrivate());

 privateKeyOS.close();

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 /**

 * The method checks if the pair of public and private key has been generated.

 *

 * @return flag indicating if the pair of keys were generated.

 */

 public static boolean areKeysPresent() {

 File privateKey = new File(PRIVATE_KEY_FILE);

 File publicKey = new File(PUBLIC_KEY_FILE);

 if (privateKey.exists() && publicKey.exists()) {

 return true;

 }

 return false;

 }

 /**

 * Encrypt the plain text using public key.

 *

 * @param text

 * : original plain text

 * @param key

 * :The public key

32

 * @return Encrypted text

 * @throws java.lang.Exception

 */

 public static byte[] encrypt(String text, PublicKey key) {

 byte[] cipherText = null;

 try {

 // get an RSA cipher object and print the provider

 final Cipher cipher = Cipher.getInstance(ALGORITHM);

 // encrypt the plain text using the public key

 cipher.init(Cipher.ENCRYPT_MODE, key);

 cipherText = cipher.doFinal(text.getBytes());

 } catch (Exception e) {

 e.printStackTrace();

 }

 return cipherText;

 }

 public static byte[] encryptHex(String text, PublicKey key) {

 byte[] cipherText = null;

 try {

 // get an RSA cipher object and print the provider

 final Cipher cipher = Cipher.getInstance(ALGORITHM);

 // encrypt the plain text using the public key

 cipher.init(Cipher.ENCRYPT_MODE, key);

 cipherText = cipher.doFinal(text.getBytes());

 } catch (Exception e) {

 e.printStackTrace();

 }

 return cipherText;

 }

 /**

 * Decrypt text using private key.

 *

 * @param text

 * :encrypted text

 * @param key

 * :The private key

 * @return plain text

 * @throws java.lang.Exception

 */

 public static String decrypt(byte[] text, PrivateKey key) {

 byte[] dectyptedText = null;

 try {

33

 // get an RSA cipher object and print the provider

 final Cipher cipher = Cipher.getInstance(ALGORITHM);

 // decrypt the text using the private key

 cipher.init(Cipher.DECRYPT_MODE, key);

 dectyptedText = cipher.doFinal(text);

 } catch (Exception ex) {

 ex.printStackTrace();

 }

 return new String(dectyptedText);

 }

 /**

 * Test the EncryptionUtil

 */

 public static void main(String[] args) {

 try {

 // Check if the pair of keys are present else generate those.

 if (!areKeysPresent()) {

 // Method generates a pair of keys using the RSA algorithm and stores it

 // in their respective files

 generateKey();

 }

 final String originalText = "Text to be encrypted ";

 ObjectInputStream inputStream = null;

 // Encrypt the string using the public key

 inputStream = new ObjectInputStream(new FileInputStream(PUBLIC_KEY_FILE));

 final PublicKey publicKey = (PublicKey) inputStream.readObject();

 final byte[] cipherText = encrypt(originalText, publicKey);

 // Decrypt the cipher text using the private key.

 inputStream = new ObjectInputStream(new FileInputStream(PRIVATE_KEY_FILE));

 final PrivateKey privateKey = (PrivateKey) inputStream.readObject();

 final String plainText = decrypt(cipherText, privateKey);

 // Printing the Original, Encrypted and Decrypted Text

 System.out.println("Original Text: " + originalText);

 System.out.println("Encrypted Text: " +cipherText.toString());

 System.out.println("Decrypted Text: " + plainText);

34

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

Arduino Code

#include <SPI.h>

#include <TFT.h>

#define cs 10

#define dc 9

#define rst 8

TFT TFTscreen = TFT(cs, dc, rst);

int w = TFTscreen.width();

int h = TFTscreen.height();

int cv = 1;

int count = 1;

char sensorPrintout[4];

void setup() {

 pinMode(2, OUTPUT);

 pinMode(3, OUTPUT);

 pinMode(4, OUTPUT);

 pinMode(5, OUTPUT);

 pinMode(6, OUTPUT);

 pinMode(7, OUTPUT);

 digitalWrite(2, LOW);

 digitalWrite(3, HIGH);

 digitalWrite(4, LOW);

 digitalWrite(6, HIGH);

 digitalWrite(7, LOW);

 pinMode(22,INPUT);

 pinMode(23,INPUT);

 pinMode(24,INPUT);

 pinMode(25,INPUT);

35

 pinMode(26,INPUT);

 digitalWrite(5, HIGH);

 cv=digitalRead(22)^1;

 TFTscreen.begin();

 TFTscreen.background(0, 0, 0);

 TFTscreen.stroke(255,255,255);

 TFTscreen.setTextSize(1.5);

 TFTscreen.text("Empty Parking # :\n ",0,0);

 TFTscreen.setTextSize(5);

}

void loop() {

 String countVal = String(count);

 countVal.toCharArray(sensorPrintout, 4);

 TFTscreen.stroke(255,255,255);

 TFTscreen.text(sensorPrintout, w/2, h/2-5);

 int nv = digitalRead(22);

 if(cv!=nv){

 if(digitalRead(22)==1){

 delay(5000);

 if(digitalRead(22)==1){

 digitalWrite(5,LOW);

 count = 0;

 }

 }

 if(digitalRead(22)==0){

 delay(5000);

 if(digitalRead(22)==0){

 digitalWrite(5,HIGH);

 count = 1;

 }

 }

 cv=nv;

 TFTscreen.stroke(0,0,0);

 TFTscreen.text(sensorPrintout, w/2, h/2-5);

 }

}

Visit www.omni-id.com to learn more about

the complete line of Omni-ID RFID products.

Building Intelligent Supply Chains
With an excellent read range across all geographic regions
and a durable, high heat resistant encasement, the Dura
1500 is best suited to outdoor applications, including:

�	Container tracking for yard management.

�	Cargo tracking.

�	Defense asset management.

	

DS0021-C PAGE 1 OF 2

Omni-ID® Dura 1500
Omni-ID Dura 1500 is the most durable and long range tag

product offering long read ranges across all geographies.

Designed with heavy industry in mind, the Omni-ID Dura 1500

features extreme impact resistance and high temperature

ratings, enabling it to be deployed in outdoor heavy industry

environments anywhere in the world.

mm
14 mm

Dimensions stated in mm

Radiation Patterns
Large Metal

Sheet

Physical Specifications

Encasement ABS or Polycarbonate

Size (mm)
(tolerance)

140 x 66 x 14.0
(+/–1.0)

Size (in)
(tolerance)

5.51 x 2.6 x 0.55
(+/–0.04)

Weight (g) 79.0 (ABS)
82.0 (PC)

RF Specifications

Protocol EPC Class 1 Gen2

Frequency Range (MHz) 860–960 (global)

Read Range (Fixed reader)1 Up to 15.0 (global)

Read Range (Handheld reader)1 Up to 7.5 (global)

Material Compatibility Optimized for metal

IC Type (chip) Alien H3

Memory 2 EPC - 96bits
User - 512bits
TID - 64bits

1. Quoted performance achieved using standard testing methodology. Read range will vary with
reader hardware and output power.

2. EPC and User memory are reprogrammable, TID is locked at point of manufacture.

Visit www.omni-id.com to learn more about

the complete line of Omni-ID RFID products.

©2013 Omni-ID Cayman, Ltd. All rights reserved.

DS0021-C PAGE 2 OF 2												 042013	

				

Related Products and Services
�	Omni-ID Dura 600 - Highly durable RFID tag ideal for

industrial curved assets due to its durable case for curved
surfaces.

�	Omni-ID Exo 750- Extreme durability, long range and global
operability in a small, square footprint, on metal RFID tag.

�	Omni-ID Dura 3000- Globally compliant, UFH tag with
extreme read ranges up to 35m on, off or near metals and
 liquids.

�	Service Bureau - Omni-ID offers a full service bureau for printing
and pre-encoding Omni-ID tags at point of manufacture.

 Ordering Information

Order Numbers 008 - GS
:302 (PC)
:304 (ATEX/IECEx certified)
:307 (US&Canada (C1D1/D2) certified)
:507 (std. foam),
:508 (premium foam)
:701 (Standard Service Bureau)
:702 (Custom Service Bureau)

Environmental Specifications

Operating Temperature ABS: –40 to +65 °C
PC: –40 to +100 °C

Long term Max Temperature 1

exposure - (days,weeks,years)
ABS: +65 °C
PC: +100 °C

Short term Max Temperature 1

exposure - (minutes,hours)
ABS: +75 °C
PC: +120°C

IP Rating IP68

Shock and Vibration MIL STD 810-F

Impact2 >25kg from 1m

Attachment Manual (standard)
Standard foam adhesive (option)
Premium foam adhesive (option)

Certifications RoHS approved
CE approved
ATEX/IECEx certified (option)
US&Canada (C1D1/D2) certified
(option)

Warranty 3 years

Omni-ID office locations: US | UK | China | India | Southeast Asia

For product or technology inquiries email: sales@omni-id.com

1.	 Excludes adhesive options, consult adhesive data sheets for recommended
temperature ratings.

2.	 Testing methodology available on request

					 DS0002-23H

Visit the Omni-ID Store at www.omni-id.com to learn
more about the complete line of Omni-ID RFID products.

 Dura Range - Heavy Duty

Product Name Dura 600 Dura 1500 Dura 3000

Typical Applications

Maintenance for deployed field equipment.

Chemical drum tracking.

Beverage keg tracking.

Container tracking for yard management.

Cargo tracking.

Defense asset management.

Cargo and container tracking.

Heavy equipment tracking and maintenance.

Location identification in lay down zones.

RF
 S

pe
ci

fic
at

io
ns

Frequency
Range (MHz)

902–928 (US)
865–868 (EU)
952–954 (JPN)

860–960 (global) 860–960 (global)

Read Range (m)
- Fixed reader

Up to 6.0m (US)
Up to 5.0m (EU)
Up to 3.0m (JPN)

Up to 15.0 Up to 35.0

Material Compatibility Optimized for Metal substrates Optimized for Metal substrates Metal and non-metallic substrates

IC Type Alien Higgs 3 Alien Higgs 3 Alien Higgs 3

Ph
ys

ic
al

 a
nd

 E
nv

iro
nm

en
ta

l
Sp

ec
ifi

ca
tio

ns

Encasement Durable Thermoplastic Material ABS or Polycarbonate ABS or Polycarbonate

Size (mm) 48.5 x 38.0 x 9.5 140 x 66 x 14.0 210 x 110 x 21.0

Weight (g) 11.2 82.0 292

Operating Temperature Max
Exposure Temp (°C)

-40 to +85 °C
+105 °C

Polycarbonate :
 -40 to +100 °C

+120 °C

Polycarbonate :
 -40 to +100 °C

+120 °C

Ingress Protection IP68 IP68 IP68

Shock and Vibration MIL STD 810-F MIL STD 810-F MIL STD 810-F

Attachment Industrial Foam Tape Manual (standard)
Standard foam adhesive (option)
Premium foam adhesive (option)

Manual (standard)
Standard foam adhesive (option)
Premium foam adhesive (option)

Order Codes 025 - US, EU, JPN 008 - GS 009 - GS

 + Order Option Codes are listed on the datasheets.

Values for Comparison only, please refer to Product Datasheets for full specifications. ©2013 Omni-ID All rights reserved. DS0079-A 052013	
 	

