
King Fahd University of Petroleum and Minerals

Computer Engineering Department

COE 485: Senior Design Project

Smart Car Project
Report

Project Supervisor

Dr. Kamal Chenaoua

Project By

Mohammed Al-Shehri

200924950

Table of Contents

1. Introduction .. 6

2. Problem Statement ... 6

 Negative Impacts .. 6

3. Project Specifications .. 7

 System Concept .. 8

4. Car Wirings Identification ... 9

 Ignition System Wirings .. 9

 Security System Wirings ... 10

 Door Locks Wirings ... 10

 Immobilizer Wirings .. 11

 Doors Status .. 11

 Brakes Status .. 11

 Horn Trigger .. 11

5. Hardware Engineering Design .. 12

 Choosing Components .. 12

 Microcontroller ... 12

 Bluetooth Module .. 13

 GSM Modem ... 14

 GPS Module .. 14

 Relays .. 15

 Engine Starting Hardware Design ... 16

 Ignition Wirings Control .. 16

 Car Security System .. 17

 Immobilizer System .. 18

 Car Control and Inputs Interfacing ... 20

 Security System and Doors Lock Control .. 20

 Horn Control ... 20

 Car Inputs (Ignition, Doors Status, Brake Pressed Status) .. 21

 Powering the system .. 22

 System Components ... 22

 Power system design .. 23

 GSM/GPS and Bluetooth Interfacing .. 25

 Communication .. 25

 Bluetooth Module .. 25

 GSM/GPS Modem ... 26

6. Microcontroller Software Engineering Design ... 27

 Code Sections Summary ... 27

 Use Case Diagram ... 29

 Communication Section .. 30

 Bluetooth Communication ... 30

 SMS Communication .. 32

 Requests Processing Section .. 35

 Engine Control Section.. 36

 Powering accessories ON/OFF .. 38

 Starting/Stopping Engine .. 39

 Keep Engine Running without Key ... 41

 Engine Auto Shutdown ... 42

 Car Anti-Theft ... 42

 Design Violation Prevention ... 42

 Car Interfacing and Control Section .. 43

 Horn, doors lock & unlock, security arm & disarm ... 43

 Panic Mode ... 44

 Doors Auto Lock.. 45

 User Interfacing .. 45

 Memory System .. 46

 Permanent Memory Storage .. 46

 Constant Strings & Limited RAM .. 46

 Global Positioning System (GPS) ... 48

 Preparing the GPS engine ... 48

 Getting a GPS fix ... 48

 Sending GPS Data to Clients ... 49

 System Commands Summary ... 50

7. Android Software Engineering Design .. 51

 Use Case Diagram ... 51

 Class Diagram .. 52

 Application’s Permissions and Certificates ... 54

 Android Permissions ... 54

 Google Maps Certificate ... 54

 Connectivity .. 55

 Bluetooth Connectivity ... 55

 SMS Connectivity .. 56

 Cars Management ... 57

 Cars Data ... 57

 Car Management Interface .. 57

 Bluetooth Control ... 59

 Engine Control .. 59

 Car Locks Control .. 60

 Horn & Panic Control .. 60

 GPS Location ... 60

 SMS Control .. 60

 Engine Control, Car Locks, Horn and Panic Mode .. 60

 GPS Location ... 60

8. Power Analysis .. 63

 Prototype Power Consumption .. 63

 Reducing power consumption .. 64

9. Universal Compatibility ... 65

 Cars with engine start button ... 65

10. Issues .. 65

 Development Issues .. 65

11. Engineering Tools and Standards ... 66

12. Conclusion ... 66

List of Tables

Table 1 Ignition wires connectivity in different switch modes .. 16
Table 2 Forwarding destination of the reply and broadcast functions ... 35
Table 3 System external commands summary .. 50
Table 4 Summary for commands originated from the system .. 50
Table 5 Engine Control Commands available to the user per car status ... 59
Table 6 System power consumption in different components modes ... 63

List of Figures

Figure 1 Final concept for the system ... 8
Figure 2 Location and extension of the security system control wirings .. 10
Figure 3 Location and extension of the car locks control wirings ... 10
Figure 4 Arduino Mega 2560 board ... 13
Figure 5 Bluetooth Module .. 13
Figure 6 SIM908 development board .. 15
Figure 7 Automotive Relay rated at 40A 14V .. 15
Figure 8 Circuit for controlling one automotive relay from Arduino .. 17
Figure 9 ‘Honda-SL3’ immobilizer bypasser by Fortin Electronics .. 19
Figure 10 Immobilizer bypasser connections to the microcontroller and the Accord 19
Figure 11 Circuit for sending ground pulses to external sources .. 20
Figure 12 Circuit Controlling Car Horn ... 21
Figure 13 Reading car input using voltage division circuit .. 22
Figure 14 7.5 Voltage regulation circuit using LM2596 ... 24
Figure 15 Diagram illustrating the power design of the system ... 24
Figure 16 Voltage division circuit for 5v to 3.3v communication .. 25
Figure 17 Bluetooth module and the PINS used in Smart Car system .. 26
Figure 18 Diagram of main Arduino code sections and their interrelations ... 28
Figure 19 Use Case Diagram representing the main components of the microcontroller software 29
Figure 20 Activity diagram for the Bluetooth authorization use case ... 31
Figure 21 Sequence Diagram showing the process of processing a user command 36
Figure 22 Activity Diagram for the method responsible for changing ignition mode 37
Figure 23 Activity diagram for 'Powering Accessories' use case ... 38
Figure 24 Activity diagram for 'Powering Accessories OFF'... 39
Figure 25 Activity diagram for the 'Start Engine' use case .. 40
Figure 26 Activity diagram for the 'Keep Engine Running' use case ... 41
Figure 27 Activity diagram for the ‘Unlock Car’ use case .. 44
Figure 28 Activity diagram for the Lock Car use case .. 44
Figure 29 Pattern for triggering the horn in panic mode .. 44
Figure 30 Activity diagram for the 'Panic mode' use case ... 45
Figure 31 Use case diagram for the Android software .. 51
Figure 32 Class diagram for the Android application .. 53
Figure 33 Asking the user before starting Bluetooth if needed .. 55
Figure 34 Connecting to the system .. 55
Figure 35 Asking the user before sending SMS messages ... 56
Figure 36 Car Managment Activity Snapshot .. 58
Figure 37 Pick Bluetooth Device Interface .. 58
Figure 38 Main interface at application start .. 58
Figure 39 Main interface snapshot when car engine is OFF .. 59
Figure 40 Main interface snapshot when car engine is ON ... 59
Figure 41 Snapshot for the main SMS control ... 61
Figure 42 Snapshot for SMS control with GPS data available ... 61
Figure 43 Remote GPS tracking with car in campus .. 62
Figure 44 Nearby GPS tracking showing user location relative to car location 62
Figure 45 Warning message reporting faulty relays .. 62
Figure 46 Ammeter used for measuring system power consumption .. 63

1. Introduction
Remote starting the car is one of the great and important features that is missing from most

of the cars sold globally. Although some cars support the remote starting functionality, dealers
usually limit such feature to cars sold in certain regions such as the US or to high-end models only.
Additionally, manufacturers use short-range remote controllers, which limits the benefits of using
the system. This project will help bring this important feature to almost all cars, either old or new,
and will add many important features such as GPS tracking in the system, all without compromising
the safety and security aspects.

2. Problem Statement
The project should add the feature of remote starting the car to almost all cars that miss this

feature, and it is important to use long-range connections in order not to limit the usage of the
system.

The ability to start the engine remotely is very useful in two conditions:

1. In extreme hot weather conditions, it is very convenient for drivers to start the car
along with the air conditioner prior to getting out of the house and driving the car
especially that the temperature inside the car is expected to be hotter than the hot
outside temperature while it is parked. According to weather.com, the temperature
of a car cabin can reach 59 Celsius if the outside temperature is 32 Celsius, an extra
27 Celsius degrees after parking the car for 90 minutes only.

2. Warming up the car in extreme cold weather conditions, which will save the time of
drivers by letting the car warm before reaching it.

The other part of the system is GPS tracking. Such feature will be very useful in several
situations such as:

1. If the car is stolen, the user can easily locate its location accurately
2. Locating a driver who needs help by giving access to relatives or trusted people
3. Locating the car after parking it in a large parking area

 Negative Impacts
There are negative impacts that may result from the usage of the remote starting system:

1. Users may start the engine much earlier than what they need. Leaving the engine
running in idle mode for long periods consumes a lot of gas and affect the engine
health negatively.

2. Leaving the engine running for long periods especially in idle mode can affect the
environment and contribute negatively to the global warming issue. According to
EDF (Environmental Defense Fund), one pound of carbon dioxide is released into air
every 10 minutes of engine idling.

3. Having the car running in public without people inside may attract thieves to hijack
the car. Although the system can be designed to prevent thieves from stealing the
car, losses can happen during hijacks attempts such as windows glasses breakage.

The negative effect of idling engines can be limited by stopping the engine automatically if
the driver does not reach the car within a certain time.

GPS tracking can have negative impacts as well, such as violating the privacy of other people
by tracking their location in real time, especially if the driver is unaware of having such a system
installed in the car if he is not the primary owner or if the car is rented.

3. Project Specifications
The system must meet the following user requirements:

1. Ability to start the engine using mobile phone from long ranges.
2. Preventing thieves from stealing a car after remotely starting it
3. Locating the car location accurately from anywhere
4. The system must not interfere or disable the regular operation of starting the car

using the key.

The above user requirements can be translated into technical requirements as follows:

1. GSM modem will be used to communicate with the system from virtually anywhere
in the world for performing the control functions as well as location tracking. GSM
must not replace the short-range communication channel as GSM may have large
latencies sometimes and the GSM network may fail at any time. Additionally, using
the GSM network may require additional user costs that can be avoided in short
ranges.

2. Bluetooth connection will be used as a short communication channel between
mobile phones and the system

3. GPS module will be used for locating the car position through the GSM channel, and
external antenna to the GPS should be used because the system will be installed in
hidden locations in the car most of the times; signals in such locations are not strong
enough to get a 3D GPS location.

4. The system should tap into all the required ignition wires and should minimize
cutting wires or performing modifications. If doing modifications is necessary, the
car should operate normally after doing all the required modifications in the
absence of the system or in case of failure.

5. After remotely starting the car, the user should use the car original key to drive the
car, otherwise the system should turn the engine off to prevent stealing the car.

6. An Android mobile application should be developed as a user interface to the
system.

 System Concept
The final concept for the system can be pictured as shown in Figure 1.

Figure 1 Final concept for the system

4. Car Wirings Identification

Interfacing with the car requires identifying the location and color of several wires in the car.

Since the system will be prototyped and tested on a 2003 Honda Accord; this section will
show the details of the wires identified in the 2003 Accord.

 Ignition System Wirings
These are the main wirings that will eventually be controlled using the high current relays.

Because they carry large current, they usually have large diameter compared to the other wirings
which make them easier to locate.

Two methods helped in locating the ignition wires and verifying the identity of each wire.
First, by reading the service manual of the car. This manual is intended to guide Honda dealers on
how to identify the source of ignition problems, and the guide mentions the wiring colors of the
ignition wires and their location. Second, by using a voltmeter and measuring the voltage of each
wire relative to car ground in the different switch positions.

After tracking the wiring harness coming from the ignition switch under the steering column,
the following ignition wires have been identified:

• White Wire:

This wire is directly connected to 12V battery. It’s used to provide battery power to the
other wires when desired.

• White/Red Wire:

This wire powers the accessory part of the car such as the radio and DVD player when
connected to 12V battery.

• Black/Yellow Wire:

This is the first main ignition wire that provides power to the several main components of
the car when connected to 12V battery.

• Black/Red Wire:

This is the second ignition wire, it provides power to several secondary components of the
car such as the heater and the AC when connected to 12V battery.

• Black/White Wire:

This is the starter wire that provides power to the starter motor while starting the car when
connected to 12V battery.

 Security System Wirings
It’s necessary to find the wires that will give control of enabling and disabling the security

system of the car. This is needed to prevent the car and the original security system from starting
the panic mode at the attempt of starting the engine remotely using our system.

After a deep search, the security system of the car is integrated in the door module of the
driver side inside the door panel. Two wires were identified that can control the security system of
the car. The white wire of the module disables the security system, while the white/red wire enables
the system. Both are activated by sending a ground pulse.

Unfortunately, the two wires control the doors locks along with the security system. For
example, disabling the security system unlocks all the doors of the car as well. No other wirings to
disable or enable the security system without changing the doors lock position were found, which is
not the case with several other car models. This could leave the doors of the car open after remotely
starting it, but a workaround is to relock the doors after disabling the security system.

The two wires were tapped and extended to the under-dash panel of the car as shown in
Figure 2.

 Door Locks Wirings
A way to control the doors locks without using the security system wirings is needed for two

reasons. First, to be able of relocking the doors after disabling the security system while remotely
starting the car. Second, because the security system wirings do not respond to any pulses while the
engine is running, while a user may want to lock or unlock the doors while it’s running from outside
the car. Even the original car remote control do not work while the engine is running to lock or
unlock the car, as most cars are not designed to have the engine running while the key and the
driver are outside the car.

Again, it was not easy to find central wires that control all locks of the car except for two
wires found in the module of the passenger side inside the door panel. The two wires control the
locks of all doors without changing the security system status of the car.

These two wires were also tapped and extended to the under-dash panel of the car as
shown in Figure 3.

Figure 2 Location and extension of the security system control
wirings

Figure 3 Location and extension of the car locks control wirings

 Immobilizer Wirings
It is true that the car will not panic while remotely starting it after disabling the security

system of the car, but it will never start while the immobilizer system is working, also it cannot be
disabled as the car computer will not allow fuel to flow to the engine without a confirmation from
the immobilizer system. This system is almost present in all cars sold within 12 years from writing
this report.

The car key has a built in RFID tag that is activated and read by an RFID loop near the key
lock of the 2003 Accord. Other cars may have different designs. The data read from the key is sent to
the immobilizer for verification. The data is sent on a blue/red wire near the key lock of the car
under the steering column. Also, a security key sign lamp will flash at the instrument panel if the car
was started without a key inserted in the key lock, a blue/orange wire powers the lamp of that sign.
Details on how to bypass the immobilizer will be on the remote starting design section of the report.

 Doors Status
Some applications in the system will require a signal indicating the status of the doors of the

car –either open or closed-. The doors status can be identified per door by using the signal going to
the lamp of every door which is activated when the door is open. Another simpler option is to find a
central wire that outputs high when one of the doors is open. Such wire was identified in the Accord
behind the fuse box near the kick panel which is not easy to reach. The wire color is green/red and it
goes to one of the plugs their.

This wire was also tapped and extended to the under dash panel of the car.

 Brakes Status
A wire identifying the brakes status of the car which outputs high when the brakes are

pressed will be needed as well. This wire was easily found, it’s located just above the brakes pedal
and it is originally responsible for powering the brake lamps behind the car. The wire color is
white/black and it was tapped and extended to the under dash panel as well.

 Horn Trigger
The system may need to interact with the outside world using the car horn. To control the

horn of the car a wire with a yellow/green color was found. It’s located inside the steering column
as expected. It was tapped and extended to the under dash panel as well.

Care must be taken while working with wirings near the steering column as some of them
are responsible for activating the air bags.

5. Hardware Engineering Design
 Choosing Components

Performing this task started by analyzing the system technical requirements. The following
major components needs to be purchased:

• Microcontroller
• Bluetooth module
• GSM modem
• GPS module
• Relays

There are several models from several companies for almost each of the components listed
above, therefore, it was necessary to make a reasonable comparison on which model to buy and use
for prototyping the system.

 Microcontroller
There are several candidates in the microcontroller section, they include PIC

microcontrollers, Arduino boards or even an FPGA chip, which is not considered a microcontroller.

The PIC microcontrollers are good for their cheap prices and the availability of huge models
that vary according to the user needs. They seem like a right choice for final production with large
quantities. However, for prototyping, their cost is not so cheap given the need for purchasing a
development board or a programming board for programming the chips. Using PICs for prototyping
has no justification over using an Arduino for example.

FPGAs are very powerful, however using a complete FPGA board for prototyping will be very
costly, will take large space and doesn’t seem the right choice for final production as well.
Additionally, although FPGAs are powerful, they don’t fit in this type of application where real time
processing is not needed, and FPGA lack the availability of software libraries that will ease the
process of development and integration with the system components.

Arduinos are the right choice for this type of applications; complete boards for prototyping
are available with reasonable prices, also, the ATmega chips that are used with the Arduino are
available with low prices for final production. Main advantages of the Arduino is its simple IDE that
will ease the process of development, also the availability of huge range of software libraries that
will accelerate developing the system and integrating its components.

The board that was chosen for prototyping is the MEGA2560 shown in Figure 4. It is based
on the ATmega2560 chip and runs at 16 MHZ. It has four hardware UART interfaces, while the other
models have only one UART interface which doesn’t fit the needs of this application. It also has all
the needed features such as having 6 external interrupts among the 54 digital ports. It also has 16
analog inputs pins but only few of them will be used.

Figure 4 Arduino Mega 2560 board

The new Arduino Due board was an attractive candidate for the project. It is more powerful
than the Mega board and runs at 84 MHZ, but it consumes more power during operation, which is a
major disadvantage for our car application.

 Bluetooth Module
A wide range of Bluetooth modules was found and their prices vary a lot. Many of the

modules found that were part of ready development boards were limited in the pins offered. For
this application, the module needs to support serial interface and must have pins available that
indicate the connection status, and a pin to access the command mode to configure the module
should be available.

Figure 5 Bluetooth Module

Five pieces of a cheap and very small module for prototyping that have all the requirements
were purchased for ~17SR/module. One module will be used in this application. The module is
shown in Figure 5.

 GSM Modem
The GSM modem is one of the important parts of the system. A good range of modems was

found. They vary a lot in prices as well as in features supported such as supporting 3G networks,
quad or dual band GSM networks. The modem for this application must support sending and
receiving text messages.

 The Arduino GSM shield

The Arduino GSM shield was a very attractive board for prototyping especially that the
Arduino community directly supports it, also libraries for easy and direct controlling of this modem
were available. However, it was not chosen as the GSM modem for this application for the following
reasons:

1. The version of this board that supports external antenna was not available at the
time of purchasing.

2. The board is overpriced, offered at ~$100
3. It was not clear whether it is possible to put the modem into power saving modes to

save power.

 The SIM900 modem

The SIM900 modem seems like the right choice as it supports all the application
requirements. A wide range of boards that uses this modem was found, and they vary in prices and
number of pins available to the user. The board chosen for prototyping is based on the SIM908 chip
as shown in the GPS module section.

 GPS Module
GPS modules are one of the modules that are widely available. Similar to GSM modules, a lot

of options were evaluated before choosing the right components to purchase. They differ in power
consumption as well as the number of satellites used.

 The SIM908 modem
The SIM908 modem packs all the GSM modem features of the previously mentioned SIM900

modem, but it is equipped with a GPS engine as well. What makes the SIM908 GPS special is that it
uses A-GPS (Assisted GPS), a feature that is usually available in smartphones that uses the
geographical location provided by the cellular network to accelerate the process of getting a 3D GPS
fix. The modem also supports direct control of the GPS power system for power saving.

Figure 6 SIM908 development board

A board from a Chinese provider that uses the SIM908 chip was purchased for 96$. It has
two antenna inputs for the GSM network and the GPS engine, and it is good for prototyping as it has
an RS232 interface for PC debugging. The board is shown in Figure 6.

 Relays

There are some ready to use relay boards in the market, however, they cannot be used in
this application because all of them use relays that are rated for 10A DC or less. To control the
ignitions wires of a car electronically, relays that can handle large current ~30-40A should be used.
Relays that are marketed as automotive relays can handle such amounts of current. A pack of relays
has been purchased for the purpose of controlling the ignition system of the car.

Figure 7 Automotive Relay rated at 40A 14V

 Engine Starting Hardware Design
This section will cover the design and integration of several components that are directly

related to starting the engine from a microcontroller.

 Ignition Wirings Control
The ignitions wires that were shown in the wires identification section before will be

controlled using high current rated relays, by measuring the voltage of each wire relative to ground
in the different switch positions, the wires connect as shown in Table 1.

Table 1 Ignition wires connectivity in different switch modes

 Wire

Mode

White/Red
ACC

Black/Yellow
IGN1

White
12V

Black/Red
IGN2

Black/White
Starter

OFF

ACC

ON

Start

The microcontroller must control the relays to connect all the ignition wires according to the
connections shown in Table 1. The Atemga2560 uses 5v digital output with limited maximum current
of 40mA which cannot drive the chosen relays. An external circuit driving the relays using the
Arduino digital output can be designed by using a transistor allowing the 12v power source to pass
through the relay coils when needed. A diode between the coils of the relay is needed as well to
protect the transistor.

To calculate the needed current to drive the relay we need to measure the coils resistance of
our relays. The multi-meter reads a value of 85ohms between the coils. Therefore, each relay needs
a current of:

𝐼𝐼𝑐𝑐 =
𝑉𝑉
𝑅𝑅

=
12𝑣𝑣

85𝑜𝑜ℎ𝑚𝑚𝑚𝑚
= 141 𝑚𝑚𝑚𝑚

The 2N2222A transistor will be used in the circuit; it is available in the local market in cheap
prices. Its maximum VCEO is 40v > 12v , and its maximum collector current is 600mA > 141mA.

From the datasheet of the 2N2222A, the transistor has an hFE (DC current gain) value of 100
at the conditions that are the closest to our application (10v , 150mA). Therefore, the resistance
between the Arduino and the transistor can be calculated as the following:

𝑚𝑚𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜 𝐴𝐴𝑛𝑛𝑛𝑛𝐴𝐴𝑛𝑛𝐴𝐴 𝑜𝑜𝐴𝐴𝑜𝑜𝑜𝑜𝐴𝐴𝑜𝑜 𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛𝐴𝐴𝑜𝑜 = 𝐼𝐼𝑎𝑎 =
𝐼𝐼𝑐𝑐
ℎ𝐹𝐹𝐹𝐹

=
141𝑚𝑚𝑚𝑚

100
= 1.41 𝑚𝑚𝑚𝑚

𝑅𝑅𝑛𝑛𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛𝐴𝐴 𝐴𝐴𝑛𝑛𝑚𝑚𝐴𝐴𝑚𝑚𝑜𝑜𝑟𝑟𝐴𝐴𝑐𝑐𝑛𝑛 <
𝑉𝑉
𝐼𝐼

=
5𝑉𝑉

1.41𝑚𝑚𝑚𝑚
= 3.5𝐾𝐾

Because the hFE value is not accurate, and to ensure that the relay will get enough current to
drive it safely, a lower resistance of 1K will be used. Such resistance will only draw 5mA < 40mA from
the Arduino digital output and the transistor will allow up to 0.5A > 0.14A to flow.

Note that driving the relays will be only when the engine is running or about to start which
will not affect the battery life of the car and the power consumption of the system negatively.

Figure 8 shows the final circuit for controlling one relay, the relay is represented by its coils
resistance of 85 ohms. The other three ignition relays will use identical circuits.

Figure 8 Circuit for controlling one automotive relay from Arduino

Software can activate the four relays according to the connections shown in Table 1 for each
mode. The normally closed connection terminal of each relay will have no connection. The other two
terminals will connect the white 12v wire to the other desired wire for each relay (ACC, IGN1, IGN2
and STARTER)

 Car Security System

The security system will panic during the attempt of connecting the ignition wires while it is
active. The first thing to do before setting the ignition to the ON mode is to disarm the security
system by sending a ground pulse to the disarm wire.

As noted before, sending such signal and disabling the security system will also unlock all the
doors of the car in some car designs, which is not desired. In such cases, it is necessary to relock the
wires of the car by sending a ground signal to the central lock wire.

 More on how to interface with the security system is on the car interfacing section of the
report.

 Immobilizer System

The immobilizer system is used to prevent thieves from hot wiring and starting the car,
which is very close to what our system does. The Blue/Red wire mentioned in the wirings section of
this report carries the data read from the key to the immobilizer system for verification. A method to
bypass the system is needed in order to have a usable remote starting system. Several methods can
be used to achieve this goal:

a. Placing a copy of the key near the key lock.

In this method, any user installing the remote starting system should make a copy of his key
(The chip inside the key is enough) and place it near the key lock of the car. Whenever the system
tries to remote start the car, the immobilizer will read the data from the copied key and will send its
confirmation to the car ECU allowing fuel to flow to the engine.

This method has one major drawback, which is disabling the immobilizer functionality. Hot
wiring the car will become easy and the immobilizer will allow any attempt to steal and start the car.

b. Designing the system to regenerate the signal

It is possible to design the system so it learns the data sent on the wire while starting the car
using the key, and then regenerate the data on the same wire whenever the system tries to remote
starting the car.

The only problem with this method is that it is very hard to design the system to work with
all car models. Such solution will make the system limited to certain car models. For example,
designing the system while prototyping on the Honda Accord will make the system work on that car
and similar Honda cars. This solution violates the goal of making the system universal for all car
models.

c. Immobilizer bypassing modules

The other solution is to use the bypassing modules available in the market. Its concept is
very close to the concept described above which is regenerating the signal on the data wire. The
bypassing modules are provided by specialized companies such as ‘Fortin Electronic Systems’.
Bypassing modules for almost all car types have been designed and are available in the market.

The solution of using a bypasser module fits our application especially while prototyping. In
terms of security, the bypassing module will be controlled from the microcontroller and it will be
enabled only while remote starting the car. Additionally, no need to get involved with the different
car immobilizer designs, the system will control the bypasser without the need of knowing which car
model it is controlling.

For prototyping on the Accord. The ‘HONDA-SL3’ bypasser by
Fortin Electronics is used.

The bypasser must be programmed to learn the code of the car
key. Instructions on how to program each bypasser is available on the
manual of each bypasser model per car.

 Bypasser Connections
In addition to the power inputs and the ignition signal, the bypasser will tap into the data

line to output the key data signal while remotely starting, and will also act as a bridge cutting the
signal from the security lamp if the car is started without the key. The security lamp has no effect on
the remote starting procedure after enabling the bypasser, but it will show a flashing lamp in the car
instrument panel, which can affect the user experience, therefore it is recommended to cut that
signal whenever the car is started remotely until it is stopped.

Figure 10 shows the connections of the bypasser to the car and to the microcontroller. If a
bypasser from a different company is used, the connections may slightly vary and the wiring colors
coming from the bypasser may not be the same.

Figure 10 Immobilizer bypasser connections to the microcontroller and the Accord

Figure 9 ‘Honda-SL3’ immobilizer
bypasser by Fortin Electronics

 Car Control and Inputs Interfacing
 Security System and Doors Lock Control

The four wires responsible for arming and disarming the security system and for locking and
unlocking the car wires is triggered by sending a ground pulse.

To send ground pulses to any wire, a transistor connecting the wire to ground with its gate
connected to the Arduino digital output is used as shown in Figure 11.

Figure 11 Circuit for sending ground pulses to external sources

The software part takes care of activating the transistor for only a short period to send a
ground pulse to the desired wire.

 Horn Control
Controlling the horn of the car or any similar component that is activated by a ground signal

depends on the current drawn from that component. In the prototyped Accord, connecting the horn
wire to ground using an Ammeter showed that only ~60mA is drawn from that wire. This indicates
that the wire is not directly connected to the horn ground, because horns are known to use much
larger amount of current. The wire is probably connected to a relay in the car.

The horn can be simply activated using the Arduino by connecting the wire to ground
through a transistor only as shown in Figure 12. Please note that if the horn wire was directly
connected to the horn ground, then a high power relay must be used.

Car wires to be pulsed

- Security Arm, Disarm
- Doors lock, unlock

Figure 12 Circuit Controlling Car Horn

 Car Inputs (Ignition, Doors Status, Brake Pressed Status)
The system needs to read several inputs from the car for proper and interactive operation.

Some of the inputs have values that are either HIGH or LOW, such as the input coming from the
‘Doors Status’ wire. Other inputs such as the ‘Ignition’ and the ‘Brake’ wires are actually power
wires, and they are either HIGH or floating (Z).

A voltage division circuit can be used to step down the voltage of the car input to the
Arduino 5v input. This method is currently used in the prototype because of its simplicity.

The input source will go through a series of two resistors to the ground. The Arduino input
will tap between the two resistors to read its lower voltage value. The current drawn from the input
source will depend on the summation of the two resistors, while the amount of voltage drop will
depend on the ratio between the two resistors.

The ratio of the two resistors should be selected based on several factors. First, the
maximum input voltage coming from the car input. Second, the divided output should be high
enough for the microcontroller when the input is at its nominal voltage.

For example, the usage of the two resistors 10K and 22K will have the following
characteristics:

Division output = 10
10+22

𝑣𝑣 = 0.3125𝑣𝑣

Given that Atmega2560 maximum input voltage = vcc + 0.5 = 5.5 volts

Car maximum input = 5.5
0.3125

= 17.6 𝑣𝑣𝑜𝑜𝑣𝑣𝑜𝑜𝑚𝑚

Division output at nominal car voltages

 12v (Engine OFF) 3.75 volts 14v (Engine ON) 4.375 volts

Both values of 3.75 and 4.375 will be read as HIGH by the Arduino, given that the
Atmega2560 VIH = 0.7vcc = 3.5 volts

The maximum voltage input can be increased if the Arduino analog inputs will be used
instead of the digital ones, because the system will be able to detect lower voltages when the car
inputs are at its nominal values. For example, if two resistors of value 10K and 33K are used:

Division output = 10
10+33

𝑣𝑣 = 0.2326𝑣𝑣

Car maximum input = 5.5
0.3125

= 23.65 𝑣𝑣𝑜𝑜𝑣𝑣𝑜𝑜𝑚𝑚

Division output at nominal car voltages

 12v (Engine OFF) 2.79 volts 14v (Engine ON) 3.26 volts

Note that the voltage division circuit will also pull the floating inputs to ground which is
desired. Circuit shown in Figure 13.

Another method to step the inputs voltage down is by using opto-isolators. For final
production, this method is recommended due to the fact that some car electrical environments are
noisy and their electrical systems may generate high voltage sparks that will harm the system and
the microcontroller. The opto-isolator will ensure that the car inputs are completely isolated from
the system.

 Powering the system
If the car engine is off, the car battery is stable at voltages near 12v. However, if the car

engine is running, the car electrical system is noisy and the alternator produces a voltage near 14.5v.
Clearly -in both situations-, our system needs power-regulating circuits to power the components of
the system.

 System Components
The main components of the system that needs power are:

 The Microcontroller
The microcontroller in the current system runs at 5V. The Arduino 2560 board that is used in

prototyping is already equipped with an NCP1117ST50T3G voltage regulator. This regulator has a
maximum voltage input of 20V, however the Arduino specifications recommends not exceeding an
input voltage of 12v for overheating reasons. The microcontroller can also be powered directly using

Car Input

Arduino Input

Digital/Analog

Figure 13 Reading car input using voltage division circuit

an external 5V regulated source. The Arduino board has an additional lP2985 regulator that outputs
3.3v. It can provide current up to 150mA but the Arduino website specifies a maximum allowed
current of 50mA.

 The GSM/GPS module
According to the datasheet of the SIM908, the board runs at 3.2-4.8 volts.

The board that is used in this prototype is equipped with two voltage regulators. First, the
LM2576S voltage regulator. It has a wide range of allowed input voltage up to 40V and it can handle
up to 3A of current. The second regulator is the adjustable LM2576-ADJ regulator. It was adjusted to
provide a voltage of 4.08 volts to the SIM908 board. This regulator is also capable of handling
current up to 3 amps with a max voltage of 40V.

 The Bluetooth Chip
The Bluetooth module runs at regulated 3.3v

 Power system design
It was decided to power the Arduino using an external regulated 5V instead of using the built

in regulator for several reasons. First, the maximum absolute rating of 20V for the on board
NCP1117ST50T3G regulator makes it a non appropriate choice for a car application. Second,
according to the Arduino website, and by experience, the regulator gets hot easily while operating at
voltage around 15v. Third, it was noticed that the power consumption increases when the Arduino is
powered using the on board regulator while measuring current consumption from the power source.

The first design was connecting the power source to the two LM2576 regulators that are
built on the GSM/GPS board. This powers the SIM908 chip with 4.08V. Additionally, the other
regulator produces clean 5.0v that is used to power the Atmega chip directly while bypassing the
Arduino on board regulator. This design works correctly except for the fact that the regulators get
very hot. Current drawn from all the regulators is small as shown in the power section, so it is not
the source of heat dissipation. The reason is the voltage drop which is considered to be large, for
example when the engine is running, one of the regulators will drop the car voltage from 14.5 to
4.08volts for the SIM908 chip. Installing heat sinks can help in minimizing the effects of over heat.

The final design was done by using two levels of regulations. An adjustable LM2596
regulator was used, it can accept voltage inputs up to 40V and can handle current up to 3A. This
regulator is the first level of regulation, taking input from the car power source and producing
7.5volts. Then the adjustable LM2576 will use this 7.5v to produce the 4.08v required to power the
SIM908 chip. Additionally, the 5v version of the LM2576 will produce clean 5v that will be used to
power the Arduino board while bypassing the Arduino on board regulator. Although the on board
Arduino regulator NCP1117ST50T3G is bypassed, the lP2985 regulator will keep operating as it uses
the clean 5v source to produce 3.3v, it will be used to power the Bluetooth chip since it uses a
maximum power of 50mA.

The datasheet of the LM2596 shows the steps of building the circuit and configuring the
regulator to the desired output. For example, the desired output voltage can be selected by
choosing the corresponding resistors according to the following equation:

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑉𝑉𝑅𝑅𝐹𝐹𝐹𝐹 ∗ �1 +
𝑅𝑅2
𝑅𝑅1
� = 1.23 ∗ �1 +

𝑅𝑅2
𝑅𝑅1
�

The value of R1 should be between 240 Ω and 1.5K Ω. For an output of 7.5v, the choice of
resistors can be 1K and 6.1K. Figure 14 shows the regulation circuit used, note that the feed forward
capacitor (CFF) is not shown as it is not needed in applications with output less than approximately
10V.

Figure 14 7.5 Voltage regulation circuit using LM2596

The diagram in Figure 15 illustrates the final power design of the system.

Figure 15 Diagram illustrating the power design of the system

 GSM/GPS and Bluetooth Interfacing
 Communication

The GSM/GPS module (SIM908) and the Bluetooth module (HC-05) both uses UART as a
communication channel. However, they both operate at 3.3v while the Arduino in the current
system is operating at 5.0v. The modules may get damaged from the Arduino voltage of 5 volts.

The issue of voltage difference is actually in one direction, the Arduino can detect 3.3 signals
coming from the modules as a HIGH signals without problems. However, the problem relies in the
other direction. There are two possible solutions to the issue:

• Logic Conversion Chips
There are several chips that take care of doing the voltage logic conversion. They
differ in speed as well as supported voltages.

• Voltage Division Circuit
The problem can also be easily solved using simple voltage division circuit on the
data lines. This will work especially if the data rate required is not very high.

Figure 16 shows the circuit for UART communication between the 5.0v Arduino and
a 3.3v device using voltage division. A choice of two resistors where R2= 2R1 will
give an output of 3.333v from the Arduino TX line where:

 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 = 2𝑅𝑅1

2𝑅𝑅1+𝑅𝑅1
∗ 𝑉𝑉𝐴𝐴𝐴𝐴 = 2

3
∗ 5 = 3.333 𝑣𝑣𝑜𝑜𝑣𝑣𝑜𝑜𝑚𝑚

Figure 16 Voltage division circuit for 5v to 3.3v communication

 Bluetooth Module
The Bluetooth modules vary in terms of connection mode per model. The model HC-05 used

in this application supports slave and master modes. Other models such as the HC-06 support one of
the two modes based on the firmware of the chip.

This application will use the slave mode where the system will receive connections from the
Android phone or any other master device. The HC-05 model is configured as a slave device by
default and the connection mode can be changed if necessary.

The Bluetooth module by default will send all the data received by Bluetooth to the TX line
to the microcontroller and will also send all the data on the RX line to the Bluetooth connected
device. This is enough for simple applications.

In the smart car system, it is important to know the connection status of the module for
several reasons such as power saving and authentication issues. One pin in the chip can provide a
signal indicating the connection status of the module. The actual purpose of the pin is to power an
LED indicating the connection status, but clearly, the Arduino can use this signal as a digital input
directly. Again, the HIGH output of the pin is 3.3v which will be read as HIGH by the Arduino 5v
System.

Another important pin is the KEY pin. When this pin is pulled to low, the Bluetooth module
will transfer the data between the Bluetooth node and the microcontroller as described before.
However, pulling this pin HIGH will let the Bluetooth module enter the AT command mode where it’s
possible to configure the chip such as changing its broadcasting name or PIN number.

Figure 17 Bluetooth module and the PINS used in Smart Car system

 GSM/GPS Modem
Beside the power and GND lines, only the UART lines are needed for interfacing with the

modem. All the functions, including GSM and GPS functions, can be done by AT commands to the
SIM908 module. The modem does provide a dedicate UART interface for GPS data, but GPS can be
controlled and its data can be obtained using the original UART interface.

Additionally, two separate antennas were used to ensure having a good GPS as well as GSM
signal in all locations. By experience, the GSM reception is good enough without the antenna in
some locations but the antenna ensures a very good reception. However, a GPS signal will never fix a
position without an antenna even in clear sight.

6. Microcontroller Software Engineering Design
The software of the microcontroller represents the heart of the system. It is the component

responsible for performing all the actions related to engine starting, control, security,
communication and GPS tracking in a smart way.

 Code Sections Summary
During the software development of the microcontroller. The software code was divided

into several categories based on functionality and the interacting components. The main sections in
summary are:

• Global Section
This section includes the global variables that are used by most other sections such
as the Microcontroller pins definitions.

• Communication Section
This section contains the code of interfacing and communicating with the Bluetooth
module, GSM and GPS modem. The communication section was also divided into
subsections based on the interacting components. Other sections that need access
to the communication channels use methods from this section.

• Request Processing Section
This section contains the code responsible for processing users requests despite of
its source, it represents the interface between the communication section and the
control sections of the system.

• Arduino Main Section
The code in this section contains the Microcontroller setup and loop functions.
Inputs that needs to be checked periodically and time based actions take place in
this section.

• User Interfacing Section
Code for interfacing with external components such as LEDS or buzzers come here.

• Car Interfacing and Control Section
Direct interaction with the car systems for controlling or reading inputs take place in
this section for non-engine related components. Examples are sending pulse signals
to the central lock of the car and reading the car brakes status.

• Engine Control Section
This section contains the code that is directly related to engine controlling, such as
controlling the ignition mode and the bypasser status.

 Figure 18 shows a diagram representing the main sections and their interrelations in a class
diagram manner.

Figure 18 Diagram of main Arduino code sections and their interrelations

 Use Case Diagram
Figure 19 shows a UML use case diagram representing the Main components of the software

part of the Microcontroller. Actors on the system are the Bluetooth User, SMS Command, Car Driver
and a potential thieve as well as time based actors. Additionally, when a Bluetooth client is
connected to the system, the system will keep reading the GPS location data and sending it to the
user periodically, such time action is shown as an actor as well.

Figure 19 Use Case Diagram representing the main components of the microcontroller software

 Communication Section
 Bluetooth Communication

Bluetooth is the communication channel that will provide complete functionality and
interactive control with the system for Bluetooth clients such as mobile phone users. Therefore, it
important that the system is reliable and secure.

 Bluetooth Communication Format
The format for communication between the system and Bluetooth clients was designed as

the following:

Header (4) Command (5) Optional Arguments (?) Trailer (1)
BGN> XXXXX ? <CR>

• Header:

Fixed 4 bytes “BGN>” indicating the beginning of a message

• Command:

5 bytes indicating the command type

• Optional Arguments:

Variable size field for optional arguments based on the command type

• Trailer:

1 byte consisting of Carriage Return character indicating message completion

For example, a Bluetooth client can send a command requesting starting the engine by filling
the command field with ‘ENGST’ and the optional argument with one byte ‘1’ indicating that the
system should lock the car doors as well, as the following:

BGN>ENGST1<CR>

The header and trailer helps the system identify messages and extract them even if they are
followed or preceded by an unexpected flow of characters.

Please note that throughout the report, the header and trailer of any message will not be
shown intentionally in any communication example because they are fixed.

 Bluetooth Authorization
Upon the connectivity of any Bluetooth client, the system will immediately send a welcome

message “WELCM” indicating a successful connection with the system.

Any Bluetooth client must send an authorization request to the system before sending any
command to the system. All commands will be automatically dropped by the system if a Bluetooth
client did not authorize with the system.

To authorize with the system, the client needs to send an authorization command “AUTHR”
followed by a 10 byte system device ID. For example, this command is used to authorize with a
system of device ID equal to “1xW%3@100-“:

AUTHR1xW%3@100-

Upon receiving the authorization request, if the system accepts the device ID, it will change
the internal state for the Bluetooth client to be authorised and will send an authorization
acknowledgment “AUTHS”, the system will immediately send the current car status as well.
Otherwise, the system will refuse the request and send an authorization failure reply “AUTHF”.

Figure 20 shows the activity diagram for the Bluetooth authorization use case.

Figure 20 Activity diagram for the Bluetooth authorization use case

If the Bluetooth device disconnected from the system, the internal state of Bluetooth
authorization is reset before another Bluetooth client connects to the system.

 SMS Communication
SMS communication is the channel used for long range connectivity, due to the additional

costs that are usually carried by GSM operators in both directions of communication (between
system and mobile device), the system will provide most of the control functions over this channel
but in a limited way. Compared to Bluetooth communication channel, if the car status change due to
an SMS, Bluetooth or driver interaction, the new car status will be reported immediately to the
connected Bluetooth client. For SMS, and unlike the Bluetooth design, the system will only send the
car status to the user phone through SMS but only when the user request it, or when there is a
special case such as someone stealing the car.

 Authorization
Given the characteristics of SMS communication, its cost and speed, the authorization

between the system and mobile clients should be part of each message sent. This is illustrated in the
message format below.

 SMS Message Format for Receiving Commands
Every message sent to the system should have the following format:

The message doesn’t need header and trailers similar to the Bluetooth design message
format, because reliable transfer in the SMS case and receiving the message in one piece is the
responsibility of the GSM modem and the GSM network.

• Header:

Fixed 9 bytes, the purpose of the header here is to easily identify messages that are directed
to the Smart Car system, and to easily filter messages that are coming from other sources such as
advertisement messages that are usually sent over the GSM network.

• Device ID:

10 bytes containing the device ID of the controlled Smart Car system. Device ID and
authorization is sent along every command sent to the system using SMS.

• Command:

5 bytes indicating the command type

• Optional Arguments:

Variable size field for optional arguments based on the command type

Note that the command and the optional arguments fields are the same as the fields in the
Bluetooth message format to facilitate the process of development.

Header (9) Device ID (10) Command (5) Optional Arguments (?)
SmartCar: XXXXXXXXXX XXXXX ?

 Receiving SMS commands
This subsection will cover how the system acts upon receiving a new SMS.

When a new SMS message is sent to the system mobile number, the GSM modem upon
receiving that message successfully will send the following to the system microcontroller:

GSM Modem:
+CMTI: "SM",X

The letter X in the above message represent the message number as stored in the SIM card
storage by the GSM modem. The system will then recognize that a new SMS is received and will
attempt reading that message from the SIM storage by sending the following request with the
message number to the GSM modem:

Microcontroller:
AT+CMGR=X

If the request is accepted by the GSM modem, the following response is expected:

GSM Modem:
+CMGR: "REC UNREAD","SENDER","","Time"
Message

OK

Upon receiving the expected response, the system will immediately parse the message and
extract the sender phone number and the message. The sender phone number will be temporarily
stored as the system may need to send a reply to that particular phone as a result of executing some
commands.

The message will be checked by verifying that it’s directed to the system by checking its
header, and then, the system will check the device ID and verifies that it matches the system device
ID. After that the system will safely execute the command and the arguments assuming the message
contains a valid command. Verifying the validity of the command is the responsibility of the ‘Request
processing section’ of the code.

Additionally, after receiving any new SMS and processing it, the system will remove all SMS
messages that are stored in the SIM storage. This is done to make sure that the storage doesn’t get
full of messages which will prevent the modem from receiving any new SMS message from the
network. The following command is sent to the modem to delete all the messages:

Microcontroller:
AT+CMGD=0,4

 The second parameter ‘4’ indicates the desire to delete all the messages, while the first
parameter has no meaning here as it’s used to point to a particular message to be deleted if the
command is used to delete one message only

 Format and Destination for SMS messages sent from the system
SMS messages sent from the system to the user mobile phone fall into two categories:

 Human Readable Messages
In some cases the system will send alarm messages to the user such as notifying him
of a theft attempts. This messages are sent in plain human readable text.
The destination of this type of messages is the master phone number that is stored
in the system.

 Data messages
Those messages are directed to a client application running on the user mobile
phone, this type of messages will have the following format:

This format is similar to the format of receiving SMS commands except that it does
not have the device ID as it is not needed. If the client application is controlling more
than one car system, the client can identify the system sending the message using
the sender (system) mobile number.

The destination for this type of messages is the phone number of the mobile that
originated the SMS command to the system.

 Sending SMS replies
This section will cover how the system send SMS replies to mobile clients.

The destination of the SMS message is discussed in the previous subsection. To send an SMS
command, the first step is to send a request to the GSM modem and then follow it by the message
text:

Microcontroller:
AT+CMGS=”PHONE NUMBER”
MESSAGE
<Ctrl+Z>

Please note that there should be a small time delay of at least 500ms after sending the
AT+CMGS command and before writing the message text. This was observed by experience, because
the modem needs this time delay to be ready and it doesn’t send any text after receiving the
AT+CMGS command indicating that it is ready to receive the message text.

The <CTRL+Z> is the substitute character that has an ASCII code of 26.

Header (9) Command (5) Optional Arguments (?)
SmartCar: XXXXX ?

 Requests Processing Section
This part of the Microcontroller code represent the bridge between the communication part

and the other parts of the system.

When a Bluetooth command is received, the Bluetooth communication section is
responsible for extracting that command out of the communication stream and giving it to the
request processing section. This applies to SMS commands as well.

This segment of the code will execute the command despite of its source, this makes
development much easier and helps in avoiding safety violations in the system design while
interfacing with the control sections of the system.

The only difference when executing commands that are originated from different sources is
when the system wants to send a reply to the client that issued the command in the first place. The
following should be taken into consideration:

 The reply should go to the correct communication channel
 Some replies should not be sent to some communication channels. For example,

when the system receives an engine start command from a Bluetooth client it will
send an acknowledgment to that client that the command was received. The system
will send another confirmation after starting the engine successfully. However, an
SMS client is only interested in that final confirmation message but not the first
acknowledgment.

To achieve this, a separate reply function was written so that it supports directing the
message to the appropriate communication channel, and it has a priority argument that control
whether the message should be sent to an SMS client or not. Also, the function supports
broadcasting that sends the message to multiple communication channels based on the priority
value.

Table 2 summarizes the possible scenarios for a reply message:

Table 2 Forwarding destination of the reply and broadcast functions

Command Source Broadcast Reply Priority Forwarding Destination
Bluetooth - Anything Bluetooth
SMS - Low -
SMS - High SMS
Bluetooth Yes Low Bluetooth
Bluetooth Yes High Bluetooth, SMS
SMS Yes Anything Bluetooth, SMS

In the meantime, the system only supports Bluetooth and SMS controlling, but the current
design of the request processing section of the system makes adding and integrating any new
communication channel such as the Internet very easy. Figure 21 shows a sequence diagram for the
system main sections while processing and executing an external user command.

 Engine Control Section
This section will cover the use cases and methods that are part of the Engine Control Section

code segment.

 The method setIgnition(int) is responsible for changing the ignition mode of the car to the
four possible modes which are: OFF, ACC, ON and Start. The ignition modes will be controlled using
the four relays as shown previously in Table 1. This method will be used by several other methods
such as the StartEngine() method.

 In addition to controlling the ignition of the car, it is important to pay attention to the case
where the user started the engine remotely, then stopped the engine control by the system while
using the key to operate the car. In this case, it is important that the system does not turn off the
bypasser until the car engine is completely stopped despite the scenario of how that would happen.
Violating this and turning the bypasser off while the engine is running will show the key lamp to the
driver in the instrument panel of the Accord. In cars other than the Accord 2003, this may cause
other unexpected consequences.

 Figure 22 shows the activity diagram for the changing the ignition mode.

Figure 21 Sequence Diagram showing the process of processing a user command

Figure 22 Activity Diagram for the method responsible for changing ignition mode

 Powering accessories ON/OFF
In terms of powering the accessories ON, the system will only check that the engine must be

OFF before proceeding. If the engine is ON, then the command has no meaning as the car
accessories must already be ON. Figure 23 shows the activity diagram for the ‘Power Accessories’
use case.

For powering the accessories OFF, the system should check that the engine is not controlled
by the system, because proceeding with changing the ignition mode to OFF in such case will lead to
stopping the engine as well.

Figure 23 Activity diagram for 'Powering Accessories' use case

Figure 24 Activity diagram for 'Powering Accessories OFF'

 Starting/Stopping Engine
The ‘Start Engine’ use case checks first for the engine status to avoid attempting starting the

engine while it is already running either through the system or even through the car key. If the
command is accepted, it will send a low priority acknowledgment reply to the client issuing the
command. Then it will disable the security system of the car.

The system will also activate the horn for a short period as an acknowledgment to the
nearby driver for receiving the command. However, the system will not activate the horn if the
command was received through SMS to avoid attracting attention around the car while the driver is
away.

Additionally, the system will lock all the car doors if needed and will attempt the engine
starting operation. After starting the car, the system will send a low priority broadcast to connected
clients. Figure 25 shows the activity diagram for the ‘Start Engine’ use case

 Engine Stop Request
Any engine stop command will be accepted immediately despite the status of the car. The

command will stop the engine and all running components.

Figure 25 Activity diagram for the 'Start Engine' use case

 Keep Engine Running without Key

In some scenarios, the drive may want to leave the car and leave the engine running as well.
Drivers some times leave the car key inside the car to achieve this. This is dangerous and may result
in having the car stolen.

The system can provide a feasible solution by allowing the driver to take the car key with
him and keep the engine running, despite whether he started the car using the system or by key only
in the first place. To achieve this, the user sends a ‘Keep engine running’ command to the system
and takes the car key. No need to start the bypasser and the engine is already ON. The system then
will keep the engine running as if it was remotely started and will ensure it doesn’t get stolen.

The system should check that the engine is actually running, otherwise this will result in
violating the bypassing system design. This feature is only available to Bluetooth clients as it is not
suitable for SMS clients. Figure 26 shows the activity diagram for this use case.

Figure 26 Activity diagram for the 'Keep Engine Running' use case

 Engine Auto Shutdown

When the driver starts the engine remotely, or even if he uses the keep engine running
feature, if he doesn’t use the car within 10 minutes from starting the engine or asking to keep it
running, the system will automatically shut the engine off and lock the car.

This is done to avoid having the engine running if the driver forgets about it, or if he was not
able to reach the car within the period of 10 minutes. This feature is important for environmental
reasons as well as maintaining the health of the engine and minimizing the gas consumption.

 Car Anti-Theft
An important aspect is preventing thieves from stealing the car if the original driver starts it

remotely or if he leaves and asks the system to keep the engine running. The system must identify
the original driver by the car original key. This means that the point of detecting a non-authorized
driver is if someone tries to drive the car without the key present in the key switch.

This is achieved by monitoring the brakes line of the car, if someone presses the brake
pedals of the car without inserting the car keys in the ON position of the switch, the system will
immediately shut the engine off. This will not even allow the thieve to change the gear position of
the car –assuming the car uses an automatic gear-.

Once a theft attempt is detected, the system will send an alert human readable SMS to the
master phone number stored in the system. The system can be designed to activate the panic mode
as well, but this was not implemented because it is expected that car owners will fall in this scenario
a lot by trying to drive the car without inserting the key in the switch.

 Design Violation Prevention
In all the engine control features, the system will never allow any violation of the original car

electrical design. Some scenarios were discussed in other sections, such as attempting to start the
engine while it’s already running using the car key.

 Starting the car with key while powering the accessories with the system
Additionally, if the user power the car accessories such as the radio using the system, if he

attempts to start the car using his key, once he puts the key switch in the start position, a design
violation of the electrical car system that was shown previously in Table 1 will happen, because the
system is powering the accessories line with 12V while it should be OFF when the engine is cranking.

To prevent such scenario from happening, once the car accessories are powered by the
system, the system will continuously watch the ignition line, if the car key switch goes to the ON
position, the ignition line will read HIGH and the system will immediately power off the accessories
of the car before the driver starts cranking the engine.

 Car Interfacing and Control Section

 Horn, doors lock & unlock, security arm & disarm

 Pulsing Time
All the functions of triggering the horn, locking and unlocking the car doors as well as

enabling and disabling the car security system depends on sending a signal to the desired digital
output for a given period of time.

This can be easily achieved in software by writing a HIGH value to the output and then
waiting for desired period of time before resetting that value to LOW.

In terms of the time needed for the signal to be HIGH, for triggering the horn it depends on
how long the horn should be on, but for pulsing wires such as the central lock and the security wires,
a minimum of 100ms was observed so that the car can detect the signal.

Command Source Controlled Wire Pulse Time (ms)
Short Horn User Command Horn 120

Engine Start Acknowledgment Horn 80

Anything

Doors Lock

175
Doors Unlock
Security Arm

Security Disarm

 Car Lock & Unlock Commands
Upon receiving a car lock or unlock command from the user, the system should act based on

the current status of the engine. If the car engine is running, then the system should simply control
the lock and unlock wires. However, if the car engine is not running, then the system should control
the security system wires, additionally, if the security system wires do not control the doors locks as
well –which is not the case with prototypes accord- the system should use the lock & unlock wires as
well. Figure 27 and Figure 28 show the activity diagram for the lock and unlock use cases.

Figure 27 Activity diagram for the ‘Unlock Car’ use case

Figure 28 Activity diagram for the Lock Car use case

 Panic Mode
In the panic mode the system will utilize the horn control to attract attention around the car

if the user desires. When the panic mode is activated, the system will trigger the horn in the
following pattern:

Figure 29 Pattern for triggering the horn in panic mode

The user can send a stop panic command to deactivate the panic mode. Additionally, the
system will automatically stop the panic mode after 3 minutes to avoid draining the car battery
especially if the user is activating the panic mode remotely. The user can reactivate the panic mode
if desired.

ON
600ms

OFF
350ms

Figure 30 Activity diagram for the 'Panic mode' use case

 Doors Auto Lock
If the driver uses the previously mentioned ‘Keep engine running’ feature, where the driver

asks the system to keep the engine running while removing the key from the car, the system will
automatically close the car doors when the driver leaves the car. This is done to avoid having the
engine running with the doors open without a driver although it cannot be stolen.

This feature requires monitoring the doors status as well. It was noticed that when the driver
tries to close the door, sometime the door doesn’t get closed properly and stays in the middle, the
system will keep reading random signals for the car doors status.

To solve this problem, whenever the system reads a signal that the doors are open, it will
immediately record this signal as the current car doors status. However, the system will never record
that the car doors are closed until the doors signal indicate that the doors are closed for a minimum
of 3.5 seconds.

 User Interfacing
 Bluetooth Interaction
The system will provide Bluetooth clients with interactive information. Any change in the

current status of the car engine status, panic status or the latest GPS data will always be sent to
connected Bluetooth clients despite of the source that changed the status of the system.

 SMS Interaction
SMS interaction will be limited. The system will send SMS messages only in the case of alerts

or as a result of responding to a user SMS command as discussed before.

 Buzzer
A buzzer will be used for in-car notifications for the driver. In the mean time, the buzzer is

used for one purpose which is reminding the driver of inserting the key in the car switch before
driving the car to avoid identifying the driver as a thieve. The buzzer will keep playing tones as long
as the engine is controlled by the system. Once the driver inserts his key and presses the brakes
pedal, the system will stop controlling the engine and will stop the buzzer.

 Memory System
 Permanent Memory Storage

The system needs a reliable storage area to store some local parameters such as the system
device serial. The system will use the EEPROM built inside the Atmega2560 chip to store such values.
The EEPROM was chosen for several reasons. First, it is already available in the system with a space
of 4KB that is much more than what is needed. Second, it is reliable and easy to access from the
Arduino environment.

Other options were evaluated such as using an external SD card, but this type of storage is
applicable for applications that needs large space. One limitation in the usage of the EEPROM is that
it has limited number of writing cycles, around 100K, but this does not violate the requirements of
the Smart Car system.

 System Device Serial
As shown previously in the communication sections, clients need to authenticate with the

system using the device serial. This device serial is stored permanently in the system. The device
serial should be unique for each smart car system. To achieve this, the system accept one command
over Bluetooth ‘SETST’ followed by a 10 byte device serial to set the device serial number for the
first time after manufacturing. The system will store the device serial upon receiving the command
in the EEPROM, and will not allow executing the command or changing the device serial number any
more in lifetime.

 Master Phone Number
A master phone number will also be stored in the EEPORM. It will be used whenever the

system wants to send an alert SMS to the user. The master phone number can always be changed by
the user by sending a “SETMTP” command followed by the new phone number.

 Constant Strings & Limited RAM
Microcontrollers in general has low amount of RAM. The Atmega2560 used in this

application has 8Kbytes of SRAM, which is the highest among its siblings such as the ATMega168
that has only 1Kbytes of RAM.

 Constant strings consume significant amount of RAM in runtime. For example, the String in
the following code printing to the Serial UART interface will consume 31 bytes (30 characters + null
character) of SRAM:

Serial.println("King Fahd University - COE 485");

 One way of saving the RAM and preventing constant Strings from consuming large amount
of RAM is to store such Strings in the program ROM. Starting from Arduino IDE version 1.0, constant
Strings can be wrapped around the F() function and they will be stored automatically in the program
memory. Example:

Serial.println(F("King Fahd University - COE 485"));

 Please note that the return type of the F() function is not String, therefore it cannot be
assigned to a String. The output is of Type FlashStringHelper, and it is accepted by several functions
such as the print function of the serial interface.

 The usage of the constant strings in the system requires the modifications of the
implementation for methods that use such strings by overloading its arguments to accept the type
FlashStringHelper as an argument type in addition to the String type. For example, the system had
an internal function to send messages to a connected Bluetooth client.

void sendBluetooth(char* msg)

 To use the previously mentioned F function with the Bluetooth function, the system needs
to support the FlashStringHelper by providing an overloaded function:

void sendBluetooth(const __FlashStringHelper* msg)

 Additionally, this raises another problem. If the system wants to send a message such as the
car status. The message will be in the format

<HEADER><Car Status Command><Car Status><Trailer>

 Usually, the car status command will use the F wrapper function, while arguments like the
car status will be available in a String variable. The system can’t send the two fields in two
consecutive calls because the sendBluetooth() function will include the HEADER and the TRAILER
with both fields. This special case can be solved by providing another overloaded function that has
one additional argument indicating whether the function should send the TRAILER only, the HEADER
only, both of them or neither of them.

void sendBluetooth(char* msg)

void sendBluetooth(const __FlashStringHelper* msg)

void sendBluetooth(char* msg, byte mode)

void sendBluetooth(const __FlashStringHelper* msg, byte mode)

This applies to GSM communication as well. In the case of SMS communication, this get a
little more complicated as SMS message sending requires communicating with the GSM modem
first. However, it is achieved similar to the Bluetooth case, but upon calling the function with the
first portion of the SMS message text, the function performs all the required communication with
GSM that was mentioned in the communication section of the report.

void sendGSM(char* msg)

void sendGSM(const __FlashStringHelper* msg)

void sendGSM(char* msg, byte mode)

void sendGSM(const __FlashStringHelper* msg, byte mode)

void sendSMSMessage(char* phone, char* msg, byte msgMode)

void sendSMSMessage(char* phone, const __FlashStringHelper* msg, byte msgMode)

 Global Positioning System (GPS)
 Preparing the GPS engine

The GPS engine is part of the SIM908 modem and it is controlled over the same UART
interface. To activate the GPS engine, the system should power the engine and reset the GPS.

For controlling the power of the GPS engine, the following command is used:

Microcontroller:
AT+CGPSPWR=X

The value ‘X’ can be set to 0 the shut the engine OFF, or to 1 to power the GPS engine.

Additionally, the GPS engine must be reset after powering it to get a GPS fix. The following
command is used to reset the GPS engine:

Microcontroller:
AT+CGPSRST=0

 Getting a GPS fix
After preparing the GPS engine as shown in the previous section, a GPS fix and a 3D location

is expected within 30 seconds in clear sight. However, in some locations where there is no direct
view to the sky, the GPS fix took up to 4 minutes.

The system should always check for the GPS engine status before attempting to read or send
the GPS location to clients. The following command asks for the current status of the GPS engine:

Microcontroller:
AT+CGPSSTATUS?

The following response is expected:

SIM908:
AT+CGPSSTATUS: STATUS

The ‘STATUS’ can be one of the following four possible statuses, each status followed by an
explanation from experience:

- Location Unknown
Either the GPS engine is OFF, needs a reset or simply there is no clear sight to the sky

- Location Not Fix
- A GPS location is available, but it is not accurate

- Location 2D Fix

A GPS location is available, but with an estimated altitude. May result in a non-
accurate horizontal coordinates. However, most of the time, it is accurate.

- Location 3D Fix
An accurate GPS location is available

The smart car system will always treat the last two statuses, ‘2D’ and ‘3D’ fixes, as an
available GPS coordinates.

If the system tries to read the GPS location for 5 minutes with no success, the system will
automatically reset the GPS engine although it has been reset before, to ensure that the GPS engine
does not enter a dead lock status.

 Sending GPS Data to Clients
Once the GPS data are available from the GPS engine, the system will send the following

command to read the GPS last available data:

Microcontroller:
AT+CGPSINF=0

The following response is expected

SIM908:
AT+CGPSINF=
mode,longitude,latitude,altitude,UTC time,TTFF,num,speed,course

The fields ‘longitude’, ‘latitude’ and ‘altitude’ represent the GPS location. Speed represent
the car speed over ground in meters per second. Other values are not of the system interest such as
the ‘TTFF’ represent the time it took the engine to fix the signal.

 Feeding Bluetooth Clients
Bluetooth clients do not need to send any GPS request to locate the car GPS location. Once a

Bluetooth client is connected and authenticated, the system will automatically activate the GPS
engine and start trying to fix the signal. It will keep informing the Bluetooth client about the GPS
engine status, whether it has a fix or not. Once a GPS fix is available, it will start feeding the
Bluetooth client with the latest available location until the client disconnects or the GPS signal is not
available.

 Fulfilling SMS requests
If an authorized client sends an SMS message requesting the GPS location of the car. The

system will immediately response with the GPS location if it was available. If the GPS data is not
available, the system will start the GPS engine and attempt reading the GPS data. It will keep trying
until GPS data is available, it will then send one SMS response to the SMS client.

 System Commands Summary
 System Commands from external clients
Table 3 summarizes the possible commands that can be received from external clients

Table 3 System external commands summary

Command (Arguments) Description Originating Source
AUTHR (Device Serial) Authentication Request Bluetooth
SETSR (New Device Serial) Change Device Serial

Allowed once in lifetime
Bluetooth

ENGST (Lock Car?) Start Engine Request and lock
car if desired

Bluetooth, SMS

GETST Get Car Status including
engine status and panic mode

SMS
Bluetooth will receive status
updates automatically

ACCOF Turn Car Accessories OFF Bluetooth, SMS
ACCON Turn Car Accessories ON Bluetooth, SMS
ENGOF Stop Engine & All Components Bluetooth, SMS
SHORN Short Horn Bluetooth, SMS
PANIC Activate Panic Mode Bluetooth, SMS
PANCO Stop Panic Mode Bluetooth, SMS
ENGKP Keep Engine Running Bluetooth
SLOCK (Lock Car?) Lock or Unlock Car Bluetooth, SMS
GTGPS Car GPS Location Request SMS

Bluetooth will receive GPS
updates automatically

SETMP(PhoneNumber) Set the master phone for
communication

Bluetooth, SMS

 Messages originated from the system
Table 4 shows a summary for the commands and messages that are originated from the

system to external clients

Table 4 Summary for commands originated from the system

Command (Arguments) Description Potential Destination
WELCM Welcome Message Bluetooth
AUTHS Authorization Succeeded Bluetooth
AUTHF Authorization Failed Bluetooth
ACKW=(arg) Acknowledgment for

commands received or
executed

Bluetooth, SMS
Some acknowledgments will
not be sent to SMS clients

STAT=(STATUS) Car Status Details
Used as acknowledgment as
well

Bluetooth, SMS

GPSCO(GPSData) GPS Data Bluetooth, SMS
GPSNO GPS Data not available

Waiting for fix
Bluetooth

7. Android Software Engineering Design
The Android application is the main user interface for interacting with the smart car system,

through either Bluetooth or SMS.

 Use Case Diagram
The use case diagram in shows the main actors on the android software, the phone user and

the commands coming from the system through the two communication channels.

Figure 31 Use case diagram for the Android software

 Class Diagram
Figure 32 shows the classes of the Android application. This section will summarize the role

of each class in the application.

- Car Class
The car class contains data about a car that can be controlled by the system. Such
data inlcudes the car system unique serial number, Bluetooth address and the
phone number of the system. It also includes the car status as well as it’s GPS
location.

- AppData Class
This class holds data about the current status of the program such as the connection
mode used for controlling a car and the current user view. The purpose of this class
is to offer such data to all the activities of the application and to sustain the data
even if the activities are destroied by the Android OS throughout the application
lifecycle.

- Bluetooth Controller
This class contains all the necessary methods and variables that are needed to
establish a connection with the smart car system using Bluetooth and do all the
required communication and data extraction and filteration.

- SMS Controller
This class is responsible for delivering SMS messages from the application to the
Android system for end delivery to the smart car system. The class is also
responsible for listening for all incoming SMS message that are coming to the user
phone and identify messages that are directed to the smart car application, such
messages will be verified and extracted by the class.

- MainControlActivity
This is the main activity class that is started at first by the Android OS when the user
starts the application. It’s responsible for managing the main layout of the
application and most of the user interaction with the software.

- BluetoothFragment
- SMSFragment

These are two inner classes for the MainControlActivity class. They are responsible
for the layout and interaction with the user in the corresponsing control
communication method (Bluetooth or SMS).

- CarEditActivity
This is the activity responsible for interacrting with the user while adding a new car
to the system or while managing a previously added car.

- CarMapActivity
This is the activity responsible for displaying the car GPS location on the map if the
location is available.

Figure 32 Class diagram for the Android application

Diagram generated automatically using the free eclipse Add-On ‘Object Aid UML’

 Application’s Permissions and Certificates
 Android Permissions

The application uses the following permissions, which are part of the application manifest
XML. These permissions must be part of the application so the system can access the required
Android services.

Storage
android.permission.WRITE_EXTERNAL_STORAGE
Bluetooth Connectivity
android.permission.BLUETOOTH
SMS Control
android.permission.SEND_SMS
android.permission.RECEIVE_SMS
Google Maps Services
android.permission.ACCESS_NETWORK_STATE
android.permission.INTERNET
com.google.android.providers.gsf.permission.READ_GSERVICES

 Google Maps Certificate
To integrate Google Maps in the Android application, a development account and a

certificate specific for this application must be obtained.

An account can be obtained from the Google Console website
https://code.google.com/apis/console/?noredirect where a project can be added and a certificate
for the application can be generated.

Additionally, several steps should be taken to integrate that certificate in the application,
details can be read from this documentation
https://developers.google.com/maps/documentation/android/start#getting_the_google_maps_and
roid_api_v2

https://code.google.com/apis/console/?noredirect
https://developers.google.com/maps/documentation/android/start%23getting_the_google_maps_android_api_v2
https://developers.google.com/maps/documentation/android/start%23getting_the_google_maps_android_api_v2

 Connectivity
 Bluetooth Connectivity

The system uses the same Bluetooth messaging format shown in section 6.3.1 in both
directions.

For details on how to use the Bluetooth classes of the Android OS please refer to
http://developer.android.com/guide/topics/connectivity/bluetooth.html

Upon establishing a connection with the system, the application will create a separate
thread for receiving and analyzing data from the smart car system. This is needed as the receive
methods of the available Bluetooth classes will block the main thread of the application.

Additionally, when creating the Bluetooth socket while connecting to a standard Bluetooth
serial port such as the one used by the chip in the smart car system, the value “00001101-0000-
1000-8000-00805F9B34FB” should be used as a UUID:

blueSocket =
device.createRfcommSocketToServiceRecord(UUID.fromString("00001101-0000-
1000-8000-00805F9B34FB"));

If the Bluetooth adapter of the phone is turned off, the system can start Bluetooth
automatically, however, the system will prompt the user first before starting Bluetooth following the
convention of the Android OS development.

Figure 33 Asking the user before starting Bluetooth if

needed

Figure 34 Connecting to the system

http://developer.android.com/guide/topics/connectivity/bluetooth.html

 SMS Connectivity
The application uses the smsManager class provided by the Android OS to send SMS and

listen for incoming SMS messages. Please refer to the smsManager API for additional details:
http://developer.android.com/reference/android/telephony/SmsManager.html

The Android application developed will allow the user to send SMS commands to the system
automatically without the need for writing the commands in messaging applications manually.

For Android versions before KitKat 4.4, the Android system will not keep version of messages
sent from the application in the user’s phone messaging application. However, starting from version
4.4, this is no longer the case. The messaging software will keep versions of the messages sent and
received by the smart car application. This can be avoided only by being the master messaging
application, or by asking the master application to delete the messages every time a message is sent
or received, but this is not guaranteed to work on all devices especially if the system is using a
messaging application other than the default one.

Given the type of messages sent and received by the software, there is no harm from
keeping such messages in the messaging application.

 Sending SMS messages
The application will use the same messaging format discussed in the microcontroller section.

The system will not send any SMS
message before prompting the user. This is
done to avoid any unnecessary cost. Figure
35 shows a sample dialog requesting
permission before sending an SMS message
to start the engine.

Figure 35 Asking the user before sending SMS messages

http://developer.android.com/reference/android/telephony/SmsManager.html

 Receiving SMS messages
The application handler will receive all SMS messages received by the mobile phone of the

user. The application will accept the message if two conditions are met. First, if the message sender
number is the same as the number stored in the controlled car. Second, if the message is originated
to the application by checking the header of the message.

The application will use the PhoneNumberUtils class provided by the Android OS to
compare the phone number of the sender and the stored number for the car. The class provides
correct comparison when comparing phone numbers that are equal but not alphabetically identical.
For example, the user may store the phone number in the format 05xxxxxxxx while the phone
number provided by the network for the message is +9665xxxxxxx.

 Cars Management
 Cars Data

The application will allow users to configure multiple cars on their phone for controlling.

Data stored for each car in the application are:

- Car Name
A display name provided by the user

- Car Device ID
The device ID for the system to be controlled; for authentication.

- Car Bluetooth Address
The Bluetooth address of the Bluetooth chip of the system. Used to connect to the
system over Bluetooth.

- Mobile Number
The phone number of the SIM card used by the car system. Used to control the
system over SMS.

- Car Status
The car last recorded status including engine status, panic mode and the time this
status was recorded.

- Car GPS Data
The car last recorded GPS data including coordinates, speed and the time this data
was recorded.

All cars data are stored in the phone storage using the ‘SharedPreferences’ classes provided
by the Android system. All data are reloaded upon restarting the application.

 Car Management Interface
The user is required to enter the system device PIN and its phone number in plain text. In

terms of Bluetooth connectivity, the application will show the list of paired devices to the user to
choose the system Bluetooth device of the car, and it will show the option to pair a new device if the
device is used for the first time.

Figure 36 and Figure 37 show two snapshots for the car configuration interface.

Figure 36 Car Managment Activity Snapshot

Figure 37 Pick Bluetooth Device Interface

Figure 38 Main interface at application start

Figure 38 shows the main interface
when the application starts. It allows the
user from one window to select the desired
connection method and car to control. The
user can also manage one of the cars or add
a new car to control.

 Bluetooth Control
As discussed in the Microcontroller section, the system will provide the latest car status

updates and GPS location to the connected Bluetooth client. Therefore, the Android application
must provide an interactive interface that will show commands to the mobile user based on the
status of the car.

 Engine Control
Table 5 shows list of the commands available to the mobile user based on the car status. The

commands shown in the table were previously discussed in the microcontroller section.

Table 5 Engine Control Commands available to the user per car status

Car Status Engine is OFF Engine is ON by
system

Engine is ON by
car key

Accessories are
ON by system,

Engine is off

Commands
Start Engine Stop Engine Keep Engine

Running Start Engine

Power Accessories
ON Power Accessories

OFF

Figure 39 and Figure 40 show the main interface in two of the possible statuses; when the

engine is OFF and when the engine is ON by system.

Figure 39 Main interface snapshot when car engine is
OFF

Figure 40 Main interface snapshot when car engine is
ON

 Car Locks Control
The two commands controlling the car locks by locking or unlocking the car will be shown to

the user in all car possible statuses. The description shown to the user for each command may differ
in the different statuses because the lock command if the engine is OFF will enable the security
system as well which is not the case when the engine is running.

 Horn & Panic Control
The ‘Short Horn’ command will be available to the user in all car statuses. The ‘Panic’

command will also be always available but it will be replaced by a ‘Stop Panic’ command when the
panic mode is reported active by the system and vice verse.

 GPS Location
While the system is trying to fix the GPS location, the android application will show a

‘Waiting for GPS fix’ message to the user.

Once the system fixes the GPS location, the Android application will immediately show the
GPS coordinates to the user as well as the current car speed. Additionally, the user will have the
capability to view the car location on map using a Google Maps fragment integrated in the map
Activity of the application, and the car speed will also be shown next to the car location in map. The
GPS location on the map will be updated as long as the phone is connected to the system.
Additionally, the map will show the phone location using the phone GPS along with the car location
to locate the car more easily.

GPS Data Units
The GPS speed will be received in m/s and they will be converted to km/h for user

convenience. Also, the GPS coordinates will be received in ‘Degrees Minutes’ format and they will be
converted to decimals for proper viewing on Google Maps.

 SMS Control
As discussed before, the Application will not receive all car updates over SMS to minimize

operator costs. Therefore, the system will display all the possible commands to the user assuming
the user is aware of the latest car status. The application in the SMS mode will show that latest
known car status and the time of obtaining such data. Also, the user can request a status update
from the system over SMS. It is the responsibility of the embedded system to ensure that no harmful
action is taken, for example when receiving a ‘Start Engine’ command while the engine is already
running, the embedded system will drop such command.

 Engine Control, Car Locks, Horn and Panic Mode
The system will show the latest car status known to the user, and will provide complete list

of the commands to the mobile user even the commands that don’t comply with the latest known
status, because it’s possible that the Android application is not aware of a newly updated car status
when controlling over SMS. However, commands such as ‘Keep Engine Running’ will not be shown as
users are not expected to use such command using SMS from a long range.

 GPS Location
If the user starts the application for the first time, one command will be available to the user

in the GPS section which is requesting the GPS location form the system. Once GPS data is received
from the system, the system will show the GPS data coordinates and speed, and will allow the user
to view the location on map. Also, a command to update the GPS location will be shown to the user

as well if the user wants to refresh the GPS location. Similar to the Bluetooth mode, the map will
show the phone location using the phone GPS along with the latest known car location to locate the
car more easily.

Figure 41 shows a snapshot for the application in SMS control, and Figure 42 shows the
same main Activity but with GPS data available.

Figure 43 and Figure 44 show the map Activity of the application while displaying the car
location on the map. These two figures apply to the Bluetooth and SMS connections.

Figure 41 Snapshot for the main SMS control

Figure 42 Snapshot for SMS control with GPS data
available

Figure 43 Remote GPS tracking with car in campus

;

Figure 44 Nearby GPS tracking showing user location
relative to car location

Additionally, the application will
show a warning message to the user if the
relays are not operating as expected. This is
done by comparing the values of the
ignitions lines as reported by the system
with the expected values for the current car
mode. Figure 45

Figure 45 Warning message reporting faulty relays

8. Power Analysis
 Prototype Power Consumption

The section will cover the power consumption of the system using the prototype boards and
components.

For an accurate measure of power consumption, the power will be measured at the source
of power and before passing any of the regulators of the power system. This will ensure that the
power numbers calculated in this section will cover all the aspects including power dissipated as a
result of the regulators efficiency.

Figure 46 Ammeter used for measuring system power consumption

Table 6 System power consumption in different components modes

Mode GSM Modem GPS Microcontroller Bluetooth Total Current
~ @12V

1 Idle OFF ON ON 160mA
2 Idle OFF ON OFF 130mA
3 Idle ON ON ON 190mA
4 Idle OFF Idle* ON 150mA
5 Sleeping OFF ON ON 125mA

*idle: Putting the Atmega2560 on ‘Power_Mode_Idle’ and powering off all the ADCs.

 Table 6 shows that the Bluetooth module saves 30mA if powered off, however the system
will not turn the module off in the current design as this will disable Bluetooth connectivity on the
system.

 Turning the GPS engine OFF saves around 30mA as well. The system utilizes this important
aspect because GPS engine will be used only when there is an SMS request from the user or when
there is a Bluetooth connection to the system.

 Putting the microcontroller on the idle mode saved only 10mA. Also, putting it on complete
power down saving mode gave close results which is not expected. This can be explained by the non-
efficient regulators on the Arduino board as well as the LEDs and the ATmega16U2 chip that
consumes static power even when the micro controller is not operating. Bypassing the
NCP1117ST50T3G regulator on the Arduino board which is explained in the power section helped
greatly in reducing the power consumption.

Putting the SIM908 board on sleep mode saves around 35 mA. The system will utilize this
mode in most of the operating times.

In the current system prototype, the system will operate on mode 5 that is shown in Table 6
most of the time. The system will operate on mode 3 only when there is a need to get the GPS
location because of an SMS command requesting the location or when the user connects to the
system using Bluetooth. The system will operate on mode 1 only when there is a need to
communicate with the GSM modem such as when sending or receiving an SMS message.

Assuming that the current prototype is installed in a small sized car that is equipped with a
40AH battery. The system will drain the car battery if it is not used in:

=
40𝑚𝑚ℎ

125𝑚𝑚𝑚𝑚ℎ
= 320 ℎ𝑜𝑜𝐴𝐴𝐴𝐴𝑚𝑚 = 13.33 𝐴𝐴𝑟𝑟𝑑𝑑𝑚𝑚

 Reducing power consumption
 System board
It is expected that the power consumption will drop largely upon using our own system PCB

with the required components only, and by using efficient regulators such as the ones used in the
current prototype to power the SIM908 chips and the Atemga2560. The Arduino and the GSM
boards contain several non-necessary components and non-efficient regulators.

 Bluetooth Chip
The usage of Bluetooth chips that are based on the new version 4.0 will save some power.

The system will use the low power services instead of the regular Bluetooth serial service. The only
limitation is that it’s not supported by old phones.

 Microcontroller Power
Powering the microcontroller with 3.3 volts instead of 5 volts will save power. Please note

that the Atmega2560 used in this application can be powered directly using 3.3 volts according to its
datasheet. Additionally, all components in the system will be using 3.3 volts which will make power
design as well as communication easier.

9. Universal Compatibility
The aspect of universal compatibility for all cars was considered during the system design.

This include the usage of an external bypasser as well as dealing with the security system and car
locks based on the car original design.

In terms of the ignition control, other car models are expected to have the same ignition
requirements of the Accord discussed in the engine control sections. However, it is important to
verify the electrical operation of the ignition switch of any new car to verify its compilation before
installing the system, it must match the connections shown in Table 1, otherwise small modifications
can be done to the system to ensure compatibility.

 Cars with engine start button
The current design works only with cars that uses the ignition key switch. However, cars that

are equipped with a start button are much easier to control.

The system will not worry about simulating the ignition switch positions. Actually, the
system will not even need to use relays to start the car engine. A design suggestion is to have a copy
of the Active RFID transmitter inside our system, the system will control the power going to the RFID
chip, because powering it all the time will violate the security of the car. Once a remote start
command is received, the system will enable the transmitter to simulate the presence of the driver
inside the car, and will send a signal to the start button to start the car. The car itself will take care of
starting the engine electronically. This method will not require even a bypasser, and its compatibility
with all cars that use a start button is guaranteed since all the electrical part is taken care of by the
car itself, unlike the regular method for cars with a key which is discussed in this report.

10. Issues
The system in its current state is reliable and has no operating issues.

 Development Issues
 Arduino Hanging
In the first weeks of developing the embedded system, an issue was faced were the Arduino

hangs and does not respond to any external command. It was hard to debug such problem, however
after tracking the code execution and printing debugging data to the PC serial, the problem was
found. The problem was mainly a memory pointer that was incremented as the software needs but
not reset to the previous location by mistake. This causes the system to access random memory
location which causes unexpected behaviour.

 Lack of documentation
The Chinese GSM/GPS board is a complete development board but without any proper

documentation. The board has so many jumpers and pins without any proper documentation. I had
to identify the pins by tracking the lines on the PCB coming from the components such as the
SIM908.

I received the board around the third week of the semester, communicating with the
supplier for more than 4 weeks finally resulted in receiving a schematic diagram explaining parts of
the board. Development has started much before receiving such file, but this schematic was useful in
helping me disable some of the non-used chips and components on the board for saving power.

11. Engineering Tools and Standards
 Arduino IDE
The Arduino IDE was used for compiling the microcontroller C code and uploading it to the

microcontroller.

 Notepad++
The Notepad++ is a rich text and code editor. It was used for writing the Arduino C code

because the Arduino IDE provides limited functionality in its code editor. The Notepad++ allows
splitting the code into segments for easier navigation and it shows the methods of the class in the
side of the application. It is a light, rich and free software.

Unfortunately, the Arduino IDE does not allow code compilation and uploading from
external sources. However, Notepad++ allows configuring a keyboard shortcut that easily sends the
code file to the Arduino IDE for compilation when desired.

 Android SDK
The Android SDK Tools and the Android Platform tools provide the APIs for different Android

versions as well as the tools needed for testing the software on a real device or an emulator.

 Eclipse
Eclipse is a very powerful and free development environment and it’s the official IDE for

developing Android applications. It was used for writing the JAVA code and debugging the android
application, and for writing the XML files of the application, the Activities and View layouts.

 TortoiseHg and Bitbucket
TortoiseHg was used for creating and managing mercurial repositories for the source codes

of the Arduino and the Android as well. The usage of version control made the development much
easier and safer.

Additionally, the BitBucket website was used for pushing the repositories commits, mainly to
keep a backup of the source code during development.

 Adobe Photoshop
Photoshop was used to design the graphical part of the user interface for the Android

application. Some parts were designed from scratch while some parts were designed by modifying
icons provided by free websites as needed.

 PSpice
PSpice was used to simulate the circuits that was used in the design.

12. Conclusion
The project was a great learning experience. I am into the field of software development

from a long time, but this project had the special taste of integrating hardware and software to
come up with a complete and useful product. The project added to my knowledge in several areas
including hardware components integration, communication, electrical circuits designing, Android
software development as well as microcontroller software designing.

Although all the basic requirements were met, I plan to continue the development of the
project by adding more features that enhance the user experience to make cars more smarter.

	1. Introduction
	2. Problem Statement
	2.1. Negative Impacts

	3. Project Specifications
	3.1. System Concept

	4. Car Wirings Identification
	4.1. Ignition System Wirings
	4.2. Security System Wirings
	4.3. Door Locks Wirings
	4.4. Immobilizer Wirings
	4.5. Doors Status
	4.6. Brakes Status
	4.7. Horn Trigger

	5. Hardware Engineering Design
	5.1. Choosing Components
	5.1.1. Microcontroller
	5.1.2. Bluetooth Module
	5.1.3. GSM Modem
	5.1.4. GPS Module
	5.1.5. Relays

	5.2. Engine Starting Hardware Design
	5.2.1. Ignition Wirings Control
	5.2.2. Car Security System
	5.2.3. Immobilizer System
	 Bypasser Connections

	5.3. Car Control and Inputs Interfacing
	5.3.1. Security System and Doors Lock Control
	5.3.2. Horn Control
	5.3.3. Car Inputs (Ignition, Doors Status, Brake Pressed Status)

	5.4. Powering the system
	5.4.1. System Components
	 The Microcontroller
	 The GSM/GPS module
	 The Bluetooth Chip

	5.4.2. Power system design

	5.5. GSM/GPS and Bluetooth Interfacing
	5.5.1. Communication
	5.5.2. Bluetooth Module
	5.5.3. GSM/GPS Modem

	6. Microcontroller Software Engineering Design
	6.1. Code Sections Summary
	6.2. Use Case Diagram
	6.3. Communication Section
	6.3.1. Bluetooth Communication
	 Bluetooth Communication Format
	 Bluetooth Authorization

	6.3.2. SMS Communication
	 Authorization
	 SMS Message Format for Receiving Commands
	 Receiving SMS commands
	 Format and Destination for SMS messages sent from the system
	 Sending SMS replies

	6.4. Requests Processing Section
	6.5. Engine Control Section
	6.5.1. Powering accessories ON/OFF
	6.5.2. Starting/Stopping Engine
	 Engine Stop Request

	6.5.3. Keep Engine Running without Key
	6.5.4. Engine Auto Shutdown
	6.5.5. Car Anti-Theft
	6.5.6. Design Violation Prevention
	 Starting the car with key while powering the accessories with the system

	6.6. Car Interfacing and Control Section
	6.6.1. Horn, doors lock & unlock, security arm & disarm
	 Pulsing Time
	 Car Lock & Unlock Commands

	6.6.2. Panic Mode
	6.6.3. Doors Auto Lock

	6.7. User Interfacing
	 Bluetooth Interaction
	 SMS Interaction
	 Buzzer

	6.8. Memory System
	6.8.1. Permanent Memory Storage
	 System Device Serial
	 Master Phone Number

	6.8.2. Constant Strings & Limited RAM

	6.9. Global Positioning System (GPS)
	6.9.1. Preparing the GPS engine
	6.9.2. Getting a GPS fix
	6.9.3. Sending GPS Data to Clients
	 Feeding Bluetooth Clients
	 Fulfilling SMS requests

	6.10. System Commands Summary
	 System Commands from external clients
	 Messages originated from the system
	

	7. Android Software Engineering Design
	7.1. Use Case Diagram
	7.2. Class Diagram
	7.3. Application’s Permissions and Certificates
	7.3.1. Android Permissions
	7.3.2. Google Maps Certificate

	7.4. Connectivity
	7.4.1. Bluetooth Connectivity
	7.4.2. SMS Connectivity
	 Sending SMS messages
	 Receiving SMS messages

	7.5. Cars Management
	7.5.1. Cars Data
	7.5.2. Car Management Interface

	7.6. Bluetooth Control
	7.6.1. Engine Control
	7.6.2. Car Locks Control
	7.6.3. Horn & Panic Control
	7.6.4. GPS Location
	GPS Data Units

	7.7. SMS Control
	7.7.1. Engine Control, Car Locks, Horn and Panic Mode
	7.7.2. GPS Location

	8. Power Analysis
	8.1. Prototype Power Consumption
	8.2. Reducing power consumption
	 System board
	 Bluetooth Chip
	 Microcontroller Power

	9. Universal Compatibility
	9.1. Cars with engine start button

	10. Issues
	10.1. Development Issues
	 Arduino Hanging
	 Lack of documentation

	11. Engineering Tools and Standards
	 Arduino IDE
	 Notepad++
	 Android SDK
	 Eclipse
	 TortoiseHg and Bitbucket
	 Adobe Photoshop
	 PSpice

	12. Conclusion

