
COE 485: Senior Design Project

Smart Car Project Progress Report

1 Introduction
Remote starting the car is one of the great and important features that is

missing from most of the cars sold globally. Although some cars support the remote
starting functionality, dealers usually limit such feature to cars sold in certain regions
such as the US or to high-end models only. Additionally, manufacturers use short-
range remote controllers, which limits the benefits of using the system. This project
will help bring this important feature to almost all cars, either old or new, and will add
many important features such as GPS tracking in the system, all without compromising
the safety and security aspects.

2 Problem Statement
The project should add the feature of remote starting the car to almost all cars that

miss this feature, and it is important to use long-range connections in order not to limit
the usage of the system.

 The ability to start the engine remotely is very useful in two conditions:

1. In extreme hot weather conditions, it is very convenient for drivers to start the
car along with the air conditioner prior to getting out of the house and driving
the car. Especially that the temperature inside the car is expected to be hotter
than the hot outside temperature while it is parked. According to weather.com,
the temperature of a car cabin can reach 59 Celsius if the outside temperature is
32 Celsius, an extra 27 Celsius degress after parking the car for 90 minutes only.

2. Warming up the car in extreme cold weather conditions, which will save the
time of drivers by letting the car warm before reaching it.

There are negative impacts that may result from the usage of the remote starting

system:
1. Users may start the engine much earlier than what they need. Leaving the

engine running in idle mode for long periods consumes a lot of gas and affect the
engine health negatively. This negative effect can be limited by stopping the
engine automatically if the driver does not reach the car within a certain time
period.

2. Having the car running in public without people inside may attract thieves to
hijack the car. Although the system can be designed to prevent thieves from
stealing the car, losses can happen during hijacks attempts such as windows
glasses breakage.

The other part of the system is GPS tracking, such feature will be very useful in several
situations:

1. If the car is stolen, the user can easily locate its location accurately
2. Locating a driver who needs help by giving access to relatives or trusted people
3. Locating the car after parking it in a large parking area

However, car GPS tracking can have negative impacts as well, such as violating the

privacy of other people by tracking their location in real time, especially if the driver is
unaware of having such a system installed in the car if he is not the primary owner or if the
car is rented.

3 Project Specifications

The system must meet the following user requirements:
1. Ability to start the engine using mobile phone from long ranges.
2. Preventing thieves from stealing a car after remotely starting it
3. Locating the car location accurately from anywhere in the world
4. The system must not interfere or disable the regular operation of starting the car

using the key.

The above user requirements can be translated into technical requirements as follows:

1. GSM modem will be used to communicate with the system from virtually
anywhere in the world for performing the control functions as well as location
tracking. GSM connection must not replace the short-range communication
channel as GSM may have large latencies sometimes and the GSM network may
fail at any time. Additionally, using the GSM network may require additional user
costs that can be avoided in short ranges.

2. Bluetooth connection will be used as a short communication channel between
mobile phones and the system

3. GPS module will be used for locating the car position through the GSM
communication channel, and external antenna to the GPS should be used because
the system will be installed in hidden locations in the car most of the times; signals
in such locations are not strong enough to get a 3D GPS location.

4. The system should tap into all the required ignition wires and should minimize
cutting wires or performing modifications. If doing modifications is necessary, the
car should operate normally after doing all the required modifications in the
absence of the system or in case of failure.

5. After remotely starting the car, the user should use the car original key to drive
the car, otherwise the system should turn the engine off to prevent stealing the
car.

6. An Android mobile application should be developed as a user interface to the
system.

4 Task Schedule
For designing and prototyping the system, the process was divided into several task.

1) Determining the exact required components and purchasing them
This task is mainly about analysing the system technical specifications and

determining all the required components by model that will be used in designing
the system. It also includes purchasing the components either from the local
market or online.

Timespan: 2nd week of February
Status: Completed

2) Identifying all the required car wirings

The system will be prototyped and tested on a Honda Accord 2003. It’s
necessary to identify all the required wirings, their colors and locations in the
car. Some of the wirings have been identified in an early stage, and the task is
about identifying all the remaining wirings.
Timespan: 2nd and 3rd weeks of February
Status: Completed

3) Main Circuit Design

Designing the circuit of the system for interfacing with several parts of the car,
interfacing between different components within the system itself and driving
the relays as well as the power part.
Timespan: 3rd week of February – 2nd week of March
Status: In progress
Status Details: Working on the power part as its requirements changed with
the addition of components such as the GSM module.

4) Car relays box

This task is directly related to prototyping the remote starting part of the
system, where several relays needs to be installed and connected to the
ignitions wires of the Accord and the system.
Timespan: 2nd week of February
Status: Delayed
Status Details: An initial prototype for testing was completed and installed
successfully. By time, one of the relays have failed and it is not easy to replace
it in the current design. Working on another professional design which will be
fabricated in the FABLAB that supports easy plugging and replacing of relays.

5) Bluetooth Communication
Working with the Bluetooth chip, identifying and soldering all the needed pins,
configuring the chip’s name and PIN, as well as testing communication
between Arduino and an Android mobile.
Timespan: 4th week of February – 1st week of March
Status: Completed

Status Details: The tasks in the description is completed, but the major part
of the Bluetooth communication lies in the software part of the Arduino and
Android which is not completed yet except for testing.

6) GSM Communication
This task is about the GSM modem, getting the modem working and registered
in the cellular network, testing it by making calls and sending text messages
and integrating the modem fully with the system.
Timespan: 2nd – 4th week of March
Status: In progress
Status Details: Most of the testing is complete; the testing was between the
modem and a PC using serial interface. After completing all the testing, the
remaining part is integrating the modem with the microcontroller and
performing all the required functions automatically by software.

7) GPS Module
This task is about getting the GPS module working and getting accurate
locations by verifying the coordinates on Google maps. Additionally,
integrating the module with the system.
Timespan: 2nd – 4th week of March
Status: In progress
Status Details: Testing the GPS module using PC and a serial interface is
completed. The remaining part is integrating the module with the system to
perform the required functions.

8) Arduino Software
Writing the code for the Arduino microcontroller for complete integration with
all the system components and the car. It includes Bluetooth and GSM
communication, as well as remote starting the car.
Timespan: 3rd week of February – 3rd week of April
Status: In progress
Status Details: This is one of the major tasks in the system as it includes a lot
of details and subtasks. A huge progress is done in this task as the code for all
the completed tasks such as starting the engine is already written. The
remaining progress on this task depends on the progress on the other tasks
such as GSM communication, GPS integration and the Android Application.

9) Android Application
The development of an Android application that will be the main user
interface for users remotely controlling the engine or tracking the location of
cars.
Status: Not started

5 Completed Tasks
1) Determining the exact required components and purchasing them

Performing this task started by analysing the system technical requirements. The
following major components needs to be purchased:

• Microcontroller
• Bluetooth module
• GSM modem
• GPS module
• Relays

There are several models from several companies for almost each of the

components listed above, therefore, it was necessary to make a reasonable
comparison on which model to buy and use for prototyping the system.

A. Microcontroller

There are several candidates in the microcontroller section, they
include PIC microcontrollers, Arduino boards or even an FPGA chip which is
not considered a microcontroller.

The PIC microcontrollers are good for their cheap prices and the

availability of huge models that vary according to the user needs. They seem
like a right choice for final production with large quantities. However, for
prototyping, their cost is not so cheap given the need for purchasing a
development board or a programming board for programming the chips. Using
PICs for prototyping has no justification over using an Arduino for example.

FPGAs are very powerful, however using a complete FPGA board for

prototyping will be very costly, will take large space and doesn’t seem the right
choice for final production as well. Additionally, although FPGAs are powerful,
they don’t fit in this type of application where real time processing is not
needed, and FPGA lack the availability of software libraries that will ease the
process of development and integration with the system components.

Arduinos are the right choice for this type of applications; complete

boards for prototyping are available with reasonable prices, also, the ATmega
chips that are used with the Arduino are available with low prices for final
production. Main advantages of the Arduino is its simple IDE that will ease the
process of development, also the availability of huge range of software
libraries that will accelerate developing the system and integrating its
components.

The board that was chosen for prototyping is the MEGA2560 shown in

Figure 1. It is based on the ATmega2560 chip and runs at 16 MHZ. It has four
hardware UART interfaces that are needed in this application, where the other
models have only one UART interface. It also has all the needed features such

as having 6 external interrupts among the 54 digital ports. It also has 16 analog
inputs pins but only few of them will be used.

Figure 1 Arduino Mega 2560 board

The new Arduino Due board was an attractive candidate for the
project. It is more powerful than the Mega board and runs at 84 MHZ, but it
consumes more power during operation, which is a major disadvantage for
our car application.

B. Bluetooth Module
A wide range of Bluetooth modules was found and their prices vary a

lot. Many of the modules found that were part of ready development boards
were limited in the pins offered. For this application, the module needs to
support serial interface and must have pins available that indicate the
connection status which will be used as an interrupt to wake up the
microcontroller to save power, and a pin to access the command mode to
configure the module should be available.

Figure 2 Bluetooth Module

Five pieces of a cheap and very small module for prototyping that have

all the requirements were purchased for ~17SR/module. One module will be
used in this application. The module is shown in Figure 2.

C. GSM Modem
The GSM modem is one of the important parts of the system. A good

range of modems was found. They vary a lot in prices as well as in features
supported such as supporting 3G networks, quad or dual band GSM networks.
The modem for this application must support sending and receiving text
messages.

• The Arduino GSM shield
The Arduino GSM shield was a very attractive board for

prototyping especially that the Arduino community directly supports
it, also libraries for easy and direct controlling of this modem were
available. However, it was not chosen as the GSM modem for this
application for the following reasons:

1. The version of this board that supports external antenna was
not available at the time of purchasing.

2. The board is overpriced, offered at ~$100
3. It was not clear whether it is possible to put the modem into

power saving modes to save power.

• The SIM900 modem
The SIM900 modem seems like the right choice as it supports

all the application requirements. A wide range of boards that uses
this modem was found, and they vary in prices and number of pins
available to the user. The board chosen for prototyping is based on
the SIM908 chip as shown in the GPS module section.

D. GPS Module
GPS modules are one of the modules that are widely available. Similar

to GSM modules, a lot of options were evaluated before choosing the right
components to purchase. They differ in power consumption as well as the
number of satellites used.

• The SIM908 modem

The SIM908 modem packs all the GSM modem features of the
previously mentioned SIM900 modem, but it is equipped with a GPS
engine as well. What makes the SIM908 GPS special is that it uses A-
GPS (Assisted GPS), a feature that is usually available in smartphones
that uses the geographical location provided by the cellular network to
accelerate the process of getting a 3D GPS fix. The modem also
supports direct control of the GPS power system for power saving.

Figure 3 SIM908 development board

A board from a Chinese provider that uses the SIM908 chip was

purchased for 96$. It has two antenna inputs for the GSM network and the
GPS engine, and it is good for prototyping as it has an RS232 interface for PC
debugging. The board is shown in Figure 3.

E. Relays

There are some ready to use relay boards in the
market, however, they cannot be used in this application
because all of them use relays that are rated for 10A DC
or less. To control the ignitions wires of a car
electronically, relays that can handle large current ~30-
40A should be used. Relays that are marketed as
automotive relays can handle such amounts of current. A
pack of relays has been purchased for the purpose of
controlling the ignition system of the car.

2) Car wirings identification and analysis

The required wirings of the Accord car where the system will be prototyped needs
to be identified and located. By analysing the system technical requirements, the
following wirings have been identified per category:

• Ignition System Wirings

These are the main wirings that will eventually be controlled using the high
current relays. Because they carry large current, they usually have large diameter
compared to the other wirings which make them easier to locate.

Figure 4 Automotive Relay rated at 40A 14V

Two methods helped in locating the ignition wires and verifying the identity of

each wire. First, by reading the service manual of the car. This manual is intended
to guide Honda dealers on how to identify the source of ignition problems, and the
guide mentions the wiring colors of the ignition wires and their location. Second,
by using a voltmeter and measuring the voltage of each wire relative to car ground
in the different switch positions.

After tracking the wiring harness coming from the ignition switch under the

steering column, the following ignition wires have been identified:

- White Wire:

This wire is directly connected to 12V battery. It’s used to provide battery
power to the other wires when desired.

- White/Red Wire:

This wire powers the accessory part of the car such as the radio and DVD
player when connected to 12V battery.

- Black/Yellow Wire:

This is the first main ignition wire that provides power to the several main
components of the car when connected to 12V battery.

- Black/Red Wire:

This is the second ignition wire, it provides power to several secondary
components of the car such as the heater and the AC when connected to 12V
battery.

- Black/White Wire:

This is the starter wire that provides power to the starter motor while
starting the car when connected to 12V battery.

• Security System Wirings

It’s necessary to find the wires that will give control of enabling and disabling
the security system of the car. This is needed to prevent the car and the original
security system from starting the panic mode at the attempt of starting the
engine remotely using our system.

After a deep search, the security system of the car is integrated in the door

module of the driver side inside the door panel. Two wires were identified that
can control the security system of the car. The white wire of the module disables
the security system, while the white/red wire enables the system. Both are
activated by sending a ground pulse. Unfortunately, the two wires control the
doors locks along with the security system. For example, disabling the security

system unlocks all the doors of the car as well. No other wirings to disable or
enable the security system without changing the doors lock position were found,
which is not the case with several other car models. This could leave the doors of
the car open after remotely starting it, but a workaround is to relock the doors
after disabling the security system.

The two wires were tapped and extended to the under-dash panel of the car.

• Doors Locks Wirings

A way to control the doors locks without using the security system wirings is
needed for two reasons. First, to be able of relocking the doors after disabling the
security system while remotely starting the car. Second, because the security system
wirings do not respond to any pulses while the engine is running, while a user may
want to lock or unlock the doors while it’s running from outside the car. Even the
original car remote control do not work while the engine is running to lock or unlock
the car, as most cars are not designed to have the engine running while the key and
the driver are outside the car.

Again, it was not easy to find central wires that control all locks of the car except

for two wires found in the module of the passenger side inside the door panel. The
two wires control the locks of all doors without changing the security system status
of the car.

These two wires were also tapped and extended to the under-dash panel of the

car.

• Immobilizer Wirings
It is true that the car will not panic while remotely starting it after disabling the

security system of the car, but it will never start while the immobilizer system is
working, also it cannot be disabled as the car computer will not allow fuel to flow to
the engine without a confirmation from the immobilizer system. This system is
almost present in all cars sold within 12 years from writing this report.

The car key has a built in RFID tag that is activated and read by an RFID loop

near the key lock of the 2003 Accord. Other cars may have different designs. The
data read from the key is sent to the immobilizer for verification. The data is sent on
a blue/red wire near the key lock of the car under the steering column. Also, a
security key sign lamp will flash at the instrument panel if the car was started
without a key inserted in the key lock, a blue/orange wire powers the lamp of that
sign. Details on how to bypass the immobilizer will be on the remote starting design
section of the report.

3) Engineering Design

a. Engine Starting Hardware Design

This section will cover the design and integration of several components
that are directly related to starting the engine from a microcontroller.

i. Ignition Wirings Control
The ignitions wires that were shown in the wires identification section

before will be controlled using high current rated relays, by measuring the
voltage of each wire relative to ground in the different switch positions, the
wires connect as shown in Table 1.

Table 1 Ignition wires connectivity in different switch modes

 Wire

Mode

White/Red
ACC

Black/Yellow
IGN1

White
12V

Black/Red
IGN2

Black/White
Starter

OFF

ACC

ON

Start

 The microcontroller must control the relays to connect all the ignition

wires according to the connections shown in Table 1. The Atemga2560 uses 5v
digital output with limited maximum current of 40mA which cannot drive our
relays. An external circuit driving the relays using the Arduino digital output
can be designed by using a transistor allowing the 12v power source to pass
through the relay coils when needed. A diode between the coils of the relay is
needed as well to protect the transistor.

 To calculate the needed current to drive the relay we need to measure

the coils resistance of our relays. The multi-meter reads a value of 85ohms
between the coils. Therefore, each relay needs a current of:

𝐼𝐼𝑐𝑐 =
𝑉𝑉
𝑅𝑅

=
12𝑣𝑣

85𝑜𝑜ℎ𝑚𝑚𝑚𝑚
= 141 𝑚𝑚𝑚𝑚

 The 2N2222A transistor will be used in the circuit; it is available in the

local market in cheap prices. Its maximum VCEO is 40v > 12v , and its maximum
collector current is 600mA > 141mA.

 From the datasheet of the 2N2222A, the transistor has an hFE (DC

current gain) value of 100 at the conditions that are the closest to our
application (10v , 150mA). Therefore, the resistance between the Arduino and
the transistor can be calculated as the following:

𝑚𝑚𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜 𝐴𝐴𝑛𝑛𝑛𝑛𝐴𝐴𝑛𝑛𝐴𝐴 𝑜𝑜𝐴𝐴𝑜𝑜𝑜𝑜𝐴𝐴𝑜𝑜 𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛𝐴𝐴𝑜𝑜 = 𝐼𝐼𝑎𝑎 =
𝐼𝐼𝑐𝑐
ℎ𝐹𝐹𝐹𝐹

=
141𝑚𝑚𝑚𝑚

100
= 1.41 𝑚𝑚𝑚𝑚

𝑅𝑅𝑛𝑛𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛𝐴𝐴 𝐴𝐴𝑛𝑛𝑚𝑚𝐴𝐴𝑚𝑚𝑜𝑜𝑟𝑟𝐴𝐴𝑐𝑐𝑛𝑛 <
𝑉𝑉
𝐼𝐼

=
5𝑉𝑉

1.41𝑚𝑚𝑚𝑚
= 3.5𝐾𝐾

Because the hFE value is not very accurate, and to ensure that the relay

will get enough current to drive it safely, a lower resistance of 1K will be used.
Such resistance will only draw 5mA < 40mA from the Arduino digital output
and the transistor will allow up to 0.5A > 0.14A to flow.

Note that driving the relays will be only when the engine is running or

about to start which will not affect the battery life of the car and the power
consumption of the system negatively.

Figure 5 shows the final circuit for controlling one relay, the relay is

represented by its coils resistance of 85 ohms.

Figure 5 Circuit for controlling one automotive relay from a microcontroller

Software can activate the four relays according to the connections
shown in Table 1 for each mode. The normally closed connection terminal of
each relay will have no connection. The other two terminals will connect the
white 12v wire to the other desired wire for each relay (ACC, IGN1, IGN2 and
STARTER)

ii. Car Security System

The security system will panic during the attempt of connecting the
ignition wires while it is active. The first thing to do before setting the ignition
to the ON mode is to disarm the security system by sending a ground pulse to
the disarm wire.

As noted before, sending such signal and disabling the security system

will also unlock all the doors of the car in some car designs, which is not
desired. In such cases, it is necessary to relock the wires of the car by sending
a ground signal to the central lock wire.

To send ground pulses to any wire, a transistor connecting the wire to

ground with its gate connected to the Arduino digital output is used as shown
in Figure 6.

Figure 6 Circuit for sending ground pulses to external sources

The software part takes care of activating the transistor for only a
short period to send a pulse to the desired wire. The following function sends
the pulse to the desired digital pin for a given duration in milliseconds:

Inputs to be pulsed
- Security Arm, Disarm
- Doors lock, unlock

void sendPulse(int pin, int duration)
{
 digitalWrite(pin,HIGH);
 delay(duration);
 digitalWrite(pin,LOW);
}

iii. Immobilizer System
The immobilizer system is used to prevent thieves from hot wiring and

starting the car, which is very close to what our system does. The Blue/Red
wire mentioned in the wirings section of this report carries the data read from
the key to the immobilizer system for verification. A method to bypass the
system is needed in order to have a usable remote starting system. Several
methods can be used to achieve this goal:

• Placing a copy of the key near the key lock.

In this method, any user installing the remote starting
system should make a copy of his key (The chip inside the key
is enough) and place it near the key lock of the car. Whenever
the system tries to remote start the car, the immobilizer will
read the data from the copied key and will send its
confirmation to the car ECU allowing fuel to flow to the
engine.

This method has one major drawback, which is
disabling the immobilizer functionality. Hot wiring the car will
become easy and the immobilizer will allow any attempt to
start the car.

• Designing the system to regenerate the signal

It is possible to design the system so it learns the data
sent on the wire while starting the car using the key, and then
regenerate the data on the same wire whenever the system
tries to remote starting the car.

The only problem with this method is that it is very
hard to design the system to work with all car models. Such
solution will make the system limited to certain car models.
For example, designing the system while prototyping on the
Honda Accord will make the system work on that car and
similar Honda cars. This solution violates the goal of making
the system universal for all car models.

• Immobilizer bypassing modules

The other solution is to use the bypassing modules
available in the market. Its concept is very close to the concept
described above which is regenerating the signal on the data
wire. The bypassing modules are provided by specialized
companies such as ‘Fortin Electronic Systems’. Bypassing
modules for almost all car types have been designed and are
available in the market.

The solution of using a bypasser module fits our application especially
while prototyping. In terms of security, the bypassing module will be
controlled from the microcontroller and it will be enabled only while remote
starting the car. Additionally, no need to get involved with the different car
immobilizer designs, the system will control the bypasser without the need of
knowing which car model it is controlling.

For prototyping on the Accord. The

‘HONDA-SL3’ bypasser by Fortin Electronics is
used.

The bypasser must be programmed to

learn the code of the car key. Instructions on
how to program each bypasser is available on
the manual of each bypasser model per car.

Bypasser Connections
 In addition to the power inputs and the ignition signal, the bypasser
will tap into the data line to output the key signal while remotely starting, and
will also act as a bridge cutting the signal from the security lamp if the car is
started without the key. The security lamp has no effect on the remote
starting procedure after enabling the bypasser, but it will show a flashing lamp
in the car instrument panel, which can affect the user experience, therefore it
is recommended to cut that signal whenever the car is started remotely until it
is stopped.

Figure 8 shows the connections of the bypasser to the car and to the

microcontroller. If a bypasser from a different company is used, the
connections may slightly vary and the wiring colors coming from the bypasser
may not be the same.

Figure 7 ‘Honda-SL3’ immobilizer
bypasser by Fortin Electronics

Figure 8 Immobilizer bypasser connections to the microcontroller and the Accord

b. Engine Starting Software Design
The software part plays a major role in automating the process of

starting the engine remotely. The relays will be driven according to the
connections shown in Table 1 for each mode. Time delay is used between each
mode to simulate the process of starting the engine by a human.

The process of starting the engine while it is completely off is as the

following:
• Disable the security system of the car
• Enable the bypasser module
• Set the ignition mode to ON by powering the ACC, IGN1 and

IGN2 relays. No need to go to the ACC mode first.
• An optional action of relocking the doors can be done if the

engine-starting request is remote.
• Most gas cars can be started immediately after setting the

ignition to ON unlike diesel cars, but it is good to wait for the
fuel pump to prime the fuel rails for a smoother engine
cranking especially in the winter.
The system will wait for 6.9 seconds. This time was estimated
based on the sound of the fuel pump of the Accord.

• The system will set the ignition mode to the START mode by
powering the IGN1 and START relays only. Other relays need to
be powered off. The system should keep the car in the ignition
mode for a period of ~960ms, which is enough to crank the
engine and get the car started.

• After starting the car, the system should set the ignition mode
of the car to the ON mode as long as the car is running without
a key.

It is important not to attempt starting the engine while the engine is
already running by the key switch; this could result in harming the starter
motor of the car if not more components. In addition, the system should not
attempt starting the engine if the key is present on the ON mode of the key
switch even if the engine is not running, because the line IGN2 will get power
from the key switch while the system is in the START mode which violates the
original design modes of the car electrical system shown in the table before.

These two scenarios can be avoided by checking for the IGN1 line of
the car before attempting to start the engine. Having a high value of 12V in
the wire indicates that either the car is running or the key switch is on the ON
mode, and the engine-starting request should be aborted.

Appendix A contains the Arduino code written to illustrate the
automation process of starting the engine and controlling the locks of the car
and the security system. The other part of the code related to parts not
documented in this report such as Bluetooth communication still not finalized
and under the progress of development.

1 #include <avr/sleep.h>
2 #include <avr/power.h>
3
4 //pins
5 int ign[] = {2,3,4,10,8}; //acc,ign,ign2,st, bypass
6 int control[] = {6,7,9, 40, 50}; //arm,disarm, horn, lock, unlock
7 int input[] = {47,51, 53}; //brake, ignition, doors
8
9 //Bluetooth Communication
10 int blue[] = {20}; //Connection
11
12 //Serial
13 int buffer1[10];
14 int status1 = 0;
15 int pointer1 = 0;
16
17 //PWD
18 unsigned long mil = 0;
19
20 //Status
21 int ignStatus = 0;
22 boolean bypass = false;
23
24 //millis
25 int ignledm=0;
26
27 boolean BluetoothConnected()
28 {
29 return (digitalRead(blue[0]) == HIGH);
30 }
31
32 void sendBluetooth(String msg)
33 {
34 if (BluetoothConnected())
35 Serial1.print(msg);
36 }
37
38 void setup()
39 {
40 //Prepare ports
41 setOutput(ign,5);
42 setOutput(control,5);
43 setOutput(interface,1);
44 //Prepare Serial pins
45 Serial1.begin(9600); //Bluetooth
46 //Prepare Inputs
47 setInput(input,3);
48 //Prepare Interrupts
49 pinMode(blue[0],INPUT);//BlueInterrupt
50 attachInterrupt(3,blueInterrupt,CHANGE); //Interrupt 3 -> Pin 20
51 //System Setup Completed
52 sendPulse(interface[0] , 200); //Starting buzz
53 }
54
55 //Bluetooth connection status change

1

Appendix A - Arduino Code

56 void blueInterrupt()
57 {
58 if (BluetoothConnected() == false)
59 //Reset power down timer
60 mil = millis();
61 else
62 {
63 //Connection established!!
64 sendBluetooth("Bluetooth connection established!");
65 }
66 }
67
68 //Array of pins fast output setting
69 void setOutput(int arr[] , int len)
70 {
71 for (int i = 0 ; i < len ; i++)
72 {
73 pinMode(arr[i],OUTPUT);
74 digitalWrite(arr[i] , LOW);
75 }
76
77 }
78
79 //Array of pins fast input setting
80 void setInput(int arr[] , int len)
81 {
82 for (int i = 0 ; i < len ; i++)
83 pinMode(arr[i],INPUT);
84 }
85
86 //Car Engine Status
87 boolean eng = false;
88 boolean engineRunning()
89 {
90 if (digitalRead(input[1]) == HIGH)
91 {
92 eng = true;
93 } else
94 {
95 if (eng == true) //Safe check before deciding that engine has stopped running
96 {
97 delay(800);
98 eng = (digitalRead(input[1]) == HIGH);
99 }
100 }
101 return eng;
102 }
103
104 void loop()
105 {
106 if (Serial1.available() > 0)
107 readSerial();
108 if (BluetoothConnected() == false && ((millis() - mil) > 11000 || (millis() < mil)) &&

engineRunning() == false)
109 {

2

110 //System power down for power consumption
111 pwd();
112 delay(100);
113 //System wake up
114 mil = millis();
115 }
116
117 //If turning the car off by key and the engine was remotely started and bypassed at

first
118 //keep bypasser on
119 //check for opposite scenario
120 if (bypass == true && engineRunning() == false)
121 setBypass(false);
122 }
123
124 //Microcontroller Power Down Mode
125 void pwd()
126 {
127 set_sleep_mode(SLEEP_MODE_PWR_DOWN);
128 sleep_enable();
129 sleep_mode();
130 //PWD
131 sleep_disable();
132 }
133
134 void readSerial()
135 {
136 buffer1[pointer1++] = Serial1.read();
137 switch (status1)
138 {
139 case 0:
140 int val[3];
141 val[0] = 'b'; val[1] = 'g'; val[2] = 'n';
142 if (buffer1[pointer1-1] != val[pointer1-1])
143 {
144 pointer1 = 0;
145 } else if(pointer1 == 3)
146 {
147 pointer1 = 0;
148 status1 = 1;
149 }
150 break;
151 case 1:
152 if (pointer1 >= 4)
153 {
154 pointer1 = 0;
155 processSerial();
156 }
157 break;
158 }
159 }
160
161 void processSerial()
162 {
163 int val[4];

3

164 //Non-Authorised orders:
165 val[0] = 'a'; val[1] = 'r'; val[2] = 'm'; val[3] = '0';
166 if (checkValue(buffer1 , val , 4))
167 {
168 setArm(0);
169 }
170 val[0] = 'a'; val[1] = 'r'; val[2] = 'm'; val[3] = '1';
171 if (checkValue(buffer1 , val , 4))
172 {
173 setArm(1);
174 }
175 val[0] = 'i'; val[1] = 'g'; val[2] = 'n'; val[3] = '0';
176 if (checkValue(buffer1 , val , 4))
177 {
178 setIgn(0);
179 }
180 val[0] = 'i'; val[1] = 'g'; val[2] = 'n'; val[3] = '1';
181 if (checkValue(buffer1 , val , 4))
182 {
183 setIgn(1);
184 sendBluetooth("Car Mode = ACC/");
185 }
186 val[0] = 'i'; val[1] = 'g'; val[2] = 'n'; val[3] = '2';
187 if (checkValue(buffer1 , val , 4))
188 {
189 if (engineRunning())
190 {
191 setIgn(2);
192 sendBluetooth("Car Mode = ON/");
193 }
194 //else //marked to avoid alarm
195 //{
196 // setBypass(true);
197 // setIgn(2);
198 //}
199 }
200 val[0] = 'e'; val[1] = 'n'; val[2] = 'g'; val[3] = 's';
201 if (checkValue(buffer1 , val , 4))
202 {
203 if (engineRunning() == false && ignStatus < 2)
204 {
205 broadcast("Starting Engine.../");
206 horn(85); //horn
207 setArm(1); //Disarm
208 delay(100);
209 startEngine(true);
210 broadcast("Engine Started!!/");
211 } else
212 {
213 //reply
214 }
215 }
216 val[0] = 'h'; val[1] = 'r'; val[2] = 'n'; val[3] = '1';
217 if (checkValue(buffer1 , val , 4))
218 {

4

219 horn(1000); //horn
220 }
221 val[0] = 'h'; val[1] = 'r'; val[2] = 'n'; val[3] = '0';
222 if (checkValue(buffer1 , val , 4))
223 {
224 horn(85); //horn
225 }
226 val[0] = 'a'; val[1] = 'n'; val[2] = 'l'; val[3] = '0';
227 if (checkValue(buffer1 , val , 4))
228 {
229 Serial1.print(analogRead(A0));
230 Serial1.print("/");
231 }
232 val[0] = 'a'; val[1] = 'n'; val[2] = 'l'; val[3] = '1';
233 if (checkValue(buffer1 , val , 4))
234 {
235 //Serial1.print(analogRead(analog[1]));
236 delay(10);
237 //Serial1.print(analogRead(analog[1]));
238 Serial1.print("/");
239 }
240
241 //Authorised order:
242 //Finalization
243 status1 = 0;
244 // }
245 }
246
247 void setArm(int st)
248 {
249 sendPulse((st ==1) ? control[1] : control[0]);
250 }
251
252 void setLock(int st)
253 {
254 sendPulse((st ==1) ? control[4] : control[3]);
255 }
256
257 void horn(int duration)
258 {
259 sendPulse(control[2],duration);
260 }
261
262 void sendPulse(int pin, int duration)
263 {
264 digitalWrite(pin,HIGH);
265 delay(duration);
266 digitalWrite(pin,LOW);
267 }
268
269 void sendPulse(int pin)
270 {
271 sendPulse(pin,175);
272 }
273

5

274 void setBypass(boolean st)
275 {
276 bypass = st;
277 if (bypass == true)
278 digitalWrite(ign[4],HIGH);
279 else
280 digitalWrite(ign[4],LOW);
281 }
282
283 void startEngine(boolean lock)
284 {
285 switch (ignStatus)
286 {
287 case 0:
288 case 1:
289 setBypass(true);
290 setIgn(2);
291 delay(1000);
292 if (lock == true)
293 setLock(0);
294 delay(5900);
295 case 2:
296 setIgn(3);
297 delay(960);
298 setIgn(2);
299 break;
300 default:
301 break;
302 }
303 }
304
305 void setIgn(int mode)
306 {
307 switch(mode)
308 {
309 case 0: //Ignition OFF
310 digitalWrite(ign[3],LOW);
311 digitalWrite(ign[2],LOW);
312 digitalWrite(ign[1],LOW);
313 digitalWrite(ign[0],LOW);
314 delay(500);
315 //Bypasser might still be needed
316 if (engineRunning() == false)
317 setBypass(false);
318 break;
319 case 1: //Ignition ACC
320 digitalWrite(ign[3],LOW);
321 digitalWrite(ign[2],LOW);
322 digitalWrite(ign[1],LOW);
323 digitalWrite(ign[0],HIGH);
324 delay(500);
325 //Bypasser might still be needed
326 if (engineRunning() == false)
327 setBypass(false);
328 break;

6

329 case 2: //Ignition ON
330 digitalWrite(ign[3],LOW);
331 digitalWrite(ign[2],HIGH);
332 digitalWrite(ign[1],HIGH);
333 digitalWrite(ign[0],HIGH);
334 break;
335 case 3: //Starter motor
336 digitalWrite(ign[3],HIGH);
337 digitalWrite(ign[2],LOW);
338 digitalWrite(ign[1],HIGH);
339 digitalWrite(ign[0],LOW);
340 break;
341 }
342 ignStatus = mode;
343 }
344
345 boolean checkValue(int arr[] , int chk[] , int len)
346 {
347 for (int i = 0 ; i < len ; i++)
348 if (arr[i] != chk[i])
349 return false;
350 return true;
351 }

7

	Report.pdf
	1 Introduction
	2 Problem Statement
	3 Project Specifications
	4 Task Schedule
	5 Completed Tasks

	arduino_code.pdf

