

Dual-axis Solar Panel Tracking System

0

By Omar Al-Ajlan & Taha Bokhari

Outline

6

- INTRODUCTION
- PROBLEM STATEMENT
- **PROJECT SPECIFICATION**
- SYSTEM DESIGN
- COMPONENT
- **DESIGN DECISIONS**

INTRODUCTION

• Oil is running out

0

• Sun is everywhere

Crude Oil Proved Reserves

PROBLEM STATEMENT

- Increase the utilization of solar panels.
- Feeding the traffic lights with solar power.
 - Result into:
 - Greener world
 - Utilization resource that use to power the traffic light.
 - Open the door for renewable resources
 - Achieving closed economy in energy needs

PROJECT SPECIFICATION Requirement

- Adjust the Solar Panels to the most efficient angle.
- Feed 80% of its daily power.
 - With the following criteria:
 - Cost-effective solution.
 - Competent dual-axis tracking system with high degree of precision.
 - Battery switch in case of night or shady situation .
 - Fall-safe switch in case of an emergency or an error.

PROJECT SPECIFICATION Specifications

- Using Sensors will lower the cost of calculation and adjust the panels more accurately
- Comparing the angle calculated from the algorithm
- Using stepper motors to move the panel with high precision (200 steps/revolution)
- Battery charging controller used to switch between either solar (normal usage), battery (night or shady) or grid (In case of a system failure).

 \bigcirc

SYSTEM DESIGN ARCHITECTURE

• Sub-Function Identification

Locating

Computation

Action (adjustment) 6

SYSTEM DESIGN ARCHITECTURE

6

0

 \bigcirc

COMPONENT

READY FOR USE

- Stepper Motors.
- Linear actuators.
- Photo-light sensors.
- PV Solar Panel.

- Batteries.
- State LEDs.
- Driving motor controller.

6

• Charging controller.

COMPONENT CUSTOMIZED

• Stand to hold the PV Solar Panel

COMPONENT CUSTOMIZED

- Algorithm to track the sun
- Power relay

0

0

Application.Enab Application.SetC Application.SetC M = new Mutex(tex)

Implementation & Integration

6

F

0

0

Actors Start Activity diagram • Perevintev maintenance <<include>>-Maintenance LED of the Charging Replace the YES-<<include>>⁻ \rightarrow \rightarrow **Gatharing Data** Controller battery installation Assemble System <<include>>- - > Operator NO <<include>> Set intial GPS coordinates END

DESIGN DECISIONS

• <u>Stepper Motor vs Servo Motors</u>

Criteria	Weight	Stepper motor	Servo motor
Cost	0.4	6	4
Power - Continuance feed	0.25	8	2
Accuracy	0.15	6	4
Precision	0.05	4	6
Weight	0.05	5	5
Torque	0.1	7	3
Total	1	36	24
Final score		6.45	3.55

