
Senior Design Project:
Garage Door Opener based on

Image Processing
Coordinator:

Dr. Ahmad Khayyat
Supervisor:

Dr. Ahmed Al-Mulhem
By:

Mohammed Bashmmakh
200973670

 Table of Contents
1 Introduction 1---
2 Problem Statment 1---
3 Project Specifications 1---
3.1 System requirement: 1--
3.2 Specifications: 1--
4 System Design 2---
4.1 Architecture 2---
4.1.1 Sub-function identification 2---
4.1.2 System architecture and component 2--
4.1.3 Functions of each component 2--
4.2 Design Decisions 3---
4.3 Component Design and Implementation 4---
4.3.1 Off-the-shelf hardware and software components 4--------------------------
4.4 System Integration 6--
4.4.1 Custom software components 6--
4.4.2 Interfaces between components 6---
5 Testing and Evaluation 8---
5.1 Testing 8--
5.2 Evaluation 8--
6 Engineering Tools and Standards 8---
 7 Issues 8---
7.1 Problems and Challenges 8---
7.2 Limitations and constraints of the design 9--
7.3 Limitations and constraints of the implementation 9-----------------------------
8 Conclusion 9--
Appendix A 10---
appendix B 13--
appendix C 14---

�15

1 Introduction

These days, almost everything now tends to be moving toward automating.
people were used to to deal with everything manually, for example, people used to
open the garage manually, which means that users had to stop the car, leave the car,
then go to the garage door and open it by their hands. After that, the invention of the
remote controlled garage doors has caused a great impact on making the lives of the
consumer easier. However, as technology improves the lives of the consumers
become easier. Thus, this system is aiming to have the garage door to open
automatically without having the hands of the suer leave the steering wheel. The
system approaches the same idea in an easy and automated way by recognising the
car’s plate. One of the biggest advantages of automation is ensuring the quality and
consistency of the product without forgetting the important aspect which security. The
project is going to automate the functionality of the garage systems by using a unique
sign for opening the garage door. In other words, each individual car has its own
unique plate which is going throw identification and security processes.

2 Problem Statment

The design and the implementation of a garage door opener. Unlike the
traditional garage opener that uses a remote control, the system analyzes images of
approaching cars and opens the door when a recognized car plate is identified.

3 Project Specifications

3.1 System requirement:
- Accurate identification of car plates.

 - The gate opens in a short time.
- Notify the user when a recognition is succeed or failed.
- An automatic way to exit the garage

3.2 Specifications:
- Stay ideal until a car approaches the garage.
- Take a photo of the plate when the car is close to the garage.
- Processing the photo should take a maximum of 3 seconds.
- If a plate is recognise or not a LED will notify the user with different patent

indicating whether the plate is recognised or not.
- There will be sensors on the interior side of the garage in order to open it

when exiting.

�1

4 System Design

4.1 Architecture

4.1.1 Sub-function identification
The Project was divided into four sub-functions:
Car Approaching
This function is responsible to notify the system that there is a car

approaching the garage door, and to operate the System.

Recognition
This is the heart of the project. As it is responsible to capture and

recognizing the plate.

Comparison
This function is about comparing different cars’ plates that want to enter

the garage with registered plates. In addition, plates which are not saved
within the system will be denied and will not be permitted to enter.

Regestration
it this function is responsible of registering a new plate to the system.

4.1.2 System architecture and component

4.1.3 Functions of each component
1. Sensor: To sense if a car is at the gate.
2. Camera: To capture an image containing the car’s plate.

�2

Controller

Sensors

Camera

LEDGarage
Controller

Car
Approaching

Car Plate
Recognition Comparison

Figure 1: System architecture

Sensors

3. Controller: figure out the best position for the car to capture the image,
after that processes it in order to recognize the plate, and finally compare
the result with the registered plates, then send a signal to the garage
controller.

4. LED: Informing the user whether the plate has been reconized or not, and
read the signal which was sent to the garage controller.

4.2 Design Decisions

Controller
The controller has been chosen to be Raspberry Pi, since it is capable of

processing the image and identify it, and the advantages are great for the project.

Car Plate Recognition
There are two ways of identifying the plate either by reconizing the characters

on the plate or by comparing plates’ images. The optimal method on comparing
plates’ images will take too much of time, processing power and memory usage,
since the first step is to locate the plate then segment it, meaning that the system will
cut image of the plate of the car, and store it with a specific size to compare it later
with an approaching cars plate. Also, when comparing, the program has to do the
previous steps then compare the images, which requires a lot of processing and
power consumption. While characters recognition is easier to implement and will take
less processing and power consumption, since there is no need to segment the
image and then store it. And for comparing, the system will compare to strings only
rather than two images.

�3

Controller Advantages Disadvantages

Raspberry pi Full OS
Support multi developing languages
Many types of ports
High processing power
Fully documented

Few number of pins
OS drawbacks
Need of system calls

Arduino Use C
Plenty of digital pins
Accessories
Fully documented

Low processing power
Memory limitation
Relatively expensive

CMUcam3 Small
built in Camera

Poor Documentation

Table 1: Controller Designing Options

Sensing
There multiple method to sense a car is at the garage. Using the camera, by

processing the image that has been token every a short period of time, 5 second for
example. This method uses a lot of processing and memory usage. Another method,
Using approaching sensors or pressure plate as an indicate of car existing at the
gate. This solution is better since it is simple and it needs no processing so it saves
time and processing power.

4.3 Component Design and Implementation
4.3.1 Off-the-shelf hardware and software components

Raspberry Pi Model B
Raspberry Pi is a credit card-sized single-board computer developed in the

UK. Model B is the higher-spec variant of the Raspberry Pi, with 512 MB of RAM, two
USB ports, a 100mb Ethernet port and powered by 700 MHz ARM1176JZF-S core.

�4

Figure 2: Raspberry Pi Model B

Components Specifications

Operating system Linux (Raspbain)

Power 3.5 W

CPU 700 MHz ARM1176JZF-S

Memory 512 MB

Storage SD card slot

Graphics Broadcom VideoCore IV

Table 2: Raspberry Pi Model B specs

Raspberry Pi camera module
a 5MP camera module capable of 1080p video and still images and connects

directly to Raspberry Pi. Connected through the CSI (Camera Serial Interface) port
on Raspberry Pi. The board is tiny, at around 25mm x 20mm x 9mm and weighing in
at just over 3g.

Pressure Plate
This plate will help to identify the system that there is a car at the gate, by just

sending a signal to the Raspberry Pi.

LED
LED will be used as notifier for either if the plate is recognized or not and as

reader for the garage controller signal.

Tesseract
Tesseract is an optical character recognition engine for various operating

systems It is an open source library. Tesseract is considered one of the most
accurate open source OCR engines currently available. To install the library into the
Raspberry Pi type “sudo apt-get install tesseract-ocr" on the terminal
and to use it from the terminal type “tesseract image.jpg txtFile” , where
image.jpg is the image that will be processed to get the characters form it and txtFile
containing the result with a txt format. If you want to use Tesseract directly with in the
code, there webpage is fully documented.

�5

Figure 3: Raspberry Pi Camera module

http://en.wikipedia.org/wiki/Optical_character_recognition

ImageMagick
ImageMagick is a free and open source software suit for converting and

editing raster image. It is capable of dealing with over 200 image file formats. It is
used on reducing the size of the image taken by the Raspberry Pi camera, since the
image is large, Tesseract takes more time to processes it. Reducing the size of the
image will decrease the time that tesseract usually takes by almost a half. To Install
the library and use it on the terminal the user has to type “sudo apt-get install
imagemagick”, then to resize the image type “convert A.jpg -resize 50%
B.jpg”, where A is the targeted image and B the resulting, and the percentage is
the resizing ratio of the image, this command will make the image 50% smaller.

4.4 System Integration
4.4.1 Custom software components

Raspberry code
The system has specific tasks, and finding a code that meets all of the

requirements is difficult. Using Tesseract OCR library saves a lot of time, since OCR
is a big topic.

Raspberry Pi pseudocode
While forever

- if the car is at the gate
• Capture an image
• process it with Tesseract OCR
• Compare the result

- If the plate is registered
• Open the garage
• Turn LED pattern

- Else don't open
• Do not open the garage
• Turn LED pattern

- If Registered
• Capture an image
• process it with Tesseract OCR
• Register new plate

4.4.2 Interfaces between components
The system has two interfaces:
1. Camera to Raspberry PI: dedicated CSI interface, which was designed

especially for interfacing to cameras. The CSI bus is capable of extremely
high data rates, and it exclusively carries pixel data. 

�6

2. Sensors and LEDs to Raspberry PI: through GPIO (general purpose input/
output) pins on the Raspberry PI .

�7

Figure 4: Raspberry Pi and Camera module connected

Figure 5: Raspberry Pi GPIO connected to Breadboard

5 Testing and Evaluation

5.1 Testing
In the testing phase, Everything has to work as intended expect Tesseract

OCR. The system was tested with a custom plates, a white paper with 3 characters
and 3 numbers, because the version of Tesseract that installed on the Raspberry Pi
does not recognise arabic characters probably; thus, Tesseract could not recognize
saudi car plates. As Tesseract faces the arabic letters first and does not recognised it,
it ignores the rest. In other words, when it tries to process Saudi plates it gives a
plank text. However when Tesseract processes Dubai’s plates it recognised it.

5.2 Evaluation
The system achieved the requirements; however there is a security

vulnerability. The prototype does not prevent fake attempts to the garage, as the
system is using characters recognition only as an identification method it can be
deceived by a fake plate, or a paper that has the characters of the registered plate.
To fix this issue, solutions can include using the image matching or studying the
depth of the image (Depth Map). That means studying the information that is related
to the distance of the surfaces of scene objects from a viewpoint, or use a two step
verification, for example, using RFID tag in addition to plate recognition.
!!
6 Engineering Tools and Standards

1. Tesseract library.
2. ImageMagick library
3. Python as programming language

 7 Issues

7.1 Problems and Challenges
All the project problems are listed in the following tables, including the

unsuccessful attempts and final solution: 

�8

The issue Unsuccessful
attempted

Cause of failure Final resolution

1 Using CMUcam3 as a
processing unit

implementing and
running a program

Poor documentation
and bad decisions
on choosing the
parts based on
availability

switch to
raspberry pi as a
processing after
wasting a week
and half

2 Using motion sensor it senses that there is
an object always

Long rage use a pressure
plate

7.2 Limitations and constraints of the design
The project is a standalone system with no interface to communicate

with other systems, so any additional communication with this system need an
extra effort to make it work. For example, if the implantation wants another
sensing rather than a sensor that send either high or low voltage as an output
there will be some modification on the program.

7.3 Limitations and constraints of the implementation
There was constrains on the implementation which is using open sources

libraries. The only limitation on implementation is the security vulnerability that has
been mentioned above and it can be solved.

8 Conclusion
To sum up, this project is going to attempt make the consumer's life easier by

improving the traditional remote controlled garage. This report has identified
requirements, specification, advantages and disadvantages of the product.In
addition, limitations of developing this product has been encountered, and will be,
hopefully, solved in the future. Furthermore, I have learned how to develop
applications on Python. Getting to know how to use and develop using raspberry pi
was such a great experience to have. Using third-party libraries to perform specific
tasks and enhance the output. It was a bad decision to work alone, being alone have
bad impacts, lake of creativity, sharing ideas.  

�9

3 Ultra sonic sensor conect it to raspberry
pi

Raspberry pi does
not have an ADC.

use a pressure
plate

4 Recognize Arabic
letters

Tesseract does not
recognise Suadi’s
Plate

Tesseract fails on
recognition Arabic
letters

Making a custom
plates

APPENDIX A
Raspberry Pi code
#imported library
import RPi.GPIO as GPIO
import os
import time
import picamera

GPIO.cleanup()
GPIO.setmode(GPIO.BCM)

pins setup
LED=23
GPIO.setup(LED, GPIO.OUT)
#setup pin 22 as pull down to check later if it is pressed the
plate will return High
PrussurePlate=22
GPIO.setup(PrussurePlate, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)

#Stop the process
Stop=18
GPIO.setup(Stop, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)

Register = 24
GPIO.setup(Register, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)

camera = picamera.PiCamera()
camera.hflip = True
camera.vflip = True

RegisteredPlate = "ABC123"
############

########
t=1
while t:
 #if PrussurePlate is pressed
 if GPIO.input(PrussurePlate)== True:
 # Capture an image
 camera = picamera.PiCamera()
 camera.hflip = True
 camera.vflip = True
 print("capturing an image")
 camera.capture('image1.jpg')

 # Reducing image size to half
 print ("resizing the image")

�10

 os.system(" convert image1.jpg -resize 50%
image2.jpg ")

 # runnung tesseract
 print("Running Tesseract ")
 os.system ("tesseract image2.jpg testing ")
 print ("Tesseract Finished")
 print ("the output is ")
 f = open ("testing.txt", "r")
 result = f.readline().replace(" ","")
 result = result.replace("\n","")
 print (result)

 if result == RegisteredPlate :
 print ("The Plate has been recognized")
 GPIO.output(LED, 1)
 time.sleep(2)
 GPIO.output(LED, 0)
 time.sleep(2)

 else :
 print ("The Plate has not been recognized")
 GPIO.output(LED, 1)
 time.sleep(2)
 GPIO.output(LED, 0)
 time.sleep(2)
 GPIO.output(LED, 1)
 time.sleep(2)
 GPIO.output(LED, 0)
 time.sleep(2)

 if GPIO.input(RegisteredPlate)== True:
 # Capture an image
 camera = picamera.PiCamera()
 camera.hflip = True
 camera.vflip = True
 print("capturing an image")
 camera.capture('image1.jpg')

 # Reducing image size to half
 print ("resizing the image")
 os.system(" convert image1.jpg -resize 50%
image2.jpg ")

 # runnung tesseract
 print("Running Tesseract ")
 os.system ("tesseract image2.jpg testing ")
 print ("Tesseract Finished")

�11

 print ("the output is ")
 f = open ("testing.txt", "r")
 result = f.readline().replace(" ","")
 result = result.replace("\n","")
 print (result)
 # if the plate recognized
 if result != "" :
 print ("Plate information was : " + Register +
" and has been updated to : " + result)
 Register = result
 else :
 print ("Plate did not recognized")

 if GPIO.input(Stop)== True:
 print ("the Program stoped, Goodbye")
 t=0
 GPIO.output(LED, 1)
 time.sleep(2)
 GPIO.output(LED, 0)
 time.sleep(2)

GPIO.cleanup()

�12

APPENDIX B
Long Term Plan

�13

APPENDIX C
commands to deal with GPIO in Python

import RPi.GPIO module
import RPi.GPIO as GPIO
choose BOARD or BCM
BCM for GPIO numbering
GPIO.setmode(GPIO.BCM)
BOARD for P1 pin numbering
GPIO.setmode(GPIO.BOARD)
Set up Inputs
set port/pin as an input
GPIO.setup(port_or_pin, GPIO.IN)
input with pull-down
GPIO.setup(port_or_pin, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)
input with pull-up
GPIO.setup(port_or_pin, GPIO.IN, pull_up_down=GPIO.PUD_UP)
Set up Outputs
set port/pin as an output
GPIO.setup(port_or_pin, GPIO.OUT)
set initial value option (1 or 0)
GPIO.setup(port_or_pin, GPIO.OUT, initial=1)
Switch Outputs
set an output port/pin value to 1/GPIO.HIGH/True
GPIO.output(port_or_pin, 1)
set an output port/pin value to 0/GPIO.LOW/False
GPIO.output(port_or_pin, 0)
Read status of inputs OR outputs
read status of pin/port and assign to variable i
i = GPIO.input(port_or_pin)
use input status directly in program logic
if GPIO.input(port_or_pin):
Clean up on exit
GPIO.cleanup()
What Raspberry Pi revision are we running?
0 = Compute Module, 1 = Rev 1, 2 = Rev 2, 3 = Model B+
GPIO.RPI_REVISION
What version of RPi.GPIO are we running?
GPIO.VERSION
What Python version are we running?
import sys; sys.version  

�14

