FPGA Based Single Chip Controller For a Dual-Axis Sun Tracking System

Project advisor: Dr. Aiman El-Maleh

Team members: Murtadha Al-Saeedi *(Computer Engineer)* Qusay Al-Hasan *(Mechanical Engineer)* Rakan Asghar *(Test Engineer)*



Outline

Introduction Selecting Parts Architecture Components design and implementation Testing and analysis Development tools Conclusion

Introduction

- Potential of solar energy.
- Harvesting solar energy.
- Sun trackers.

Sun Trackers Types

- Based on axis:
- Single axis.
- Dual axis.

Based on tracking method:
Open loop.
Closed loop.
Hybrid.

Design Approach

- Dual-axis
- FPGA based
- Tracking the sun using
 - Time
 - Light sensors
- Moving the solar panel using two closed-loop servo motors
- Motors control signal generated by the FPGA chip.

Selecting Parts

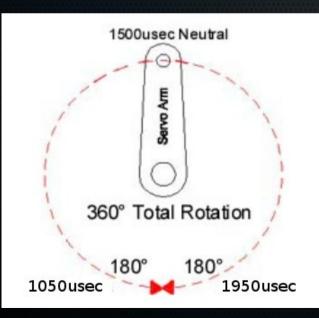
- FPGA chip:
 Altera MAX10
- Light sensors: Phidgets 1143
- Motors:
 Two servo motors

MAX10

- Relevant Specs:
- 12 bit ADC
 Or
- ADC measurement range: 0 – 2.5 V
- 32KB User Flash memory

- Why chosen?
- One chip
- Light sensors interfacing
- Storing records

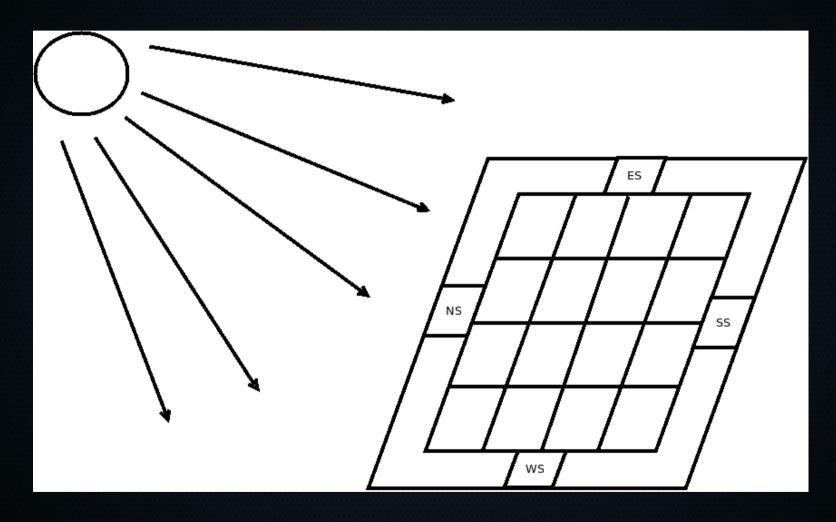
Phidgets 1143

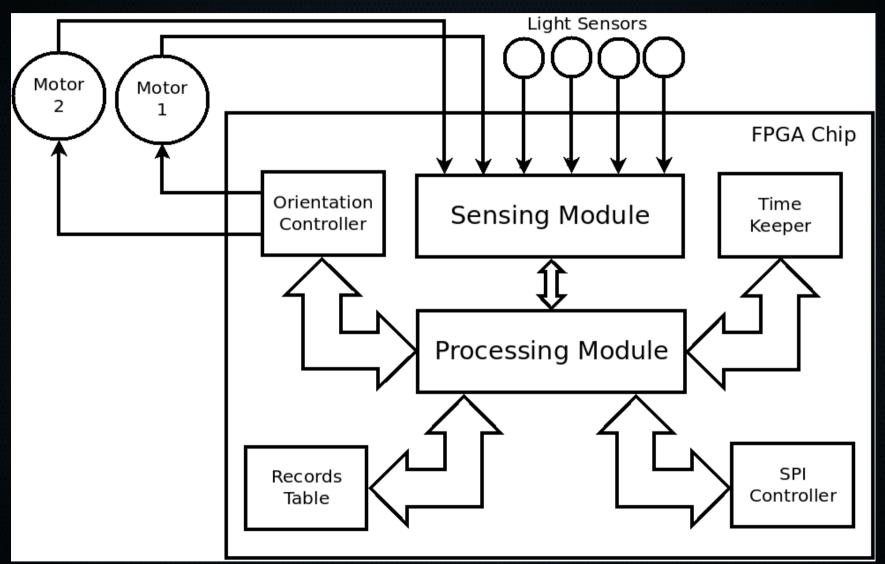

- Relevant Specs:
- Range:
- 0 70K lux
- Output signal range:
 0 2.5 V
- Why chosen?
- Direct sunlight, around 75k lux
- Full Resolution

Illuminance	Example					
0.002 lux	Moonless clear night sky					
0.2 lux	Design minimum for emergency lighting (AS2293).					
0.27 - 1 lux	Full moon on a clear night					
3.4 lux	Dark limit of civil twilight under a clear sky					
50 lux	Family living room					
80 lux	Hallway/toilet					
100 lux	Very dark overcast day					
300 - 500 lux	Sunrise or sunset on a clear day. Well-lit office area.					
1,000 lux	Overcast day; typical TV studio lighting					
10,000 - 25,000 lux	Full daylight (not direct sun)					
32,000 - 130,000 lux	Direct sunlight					

Servo Motors

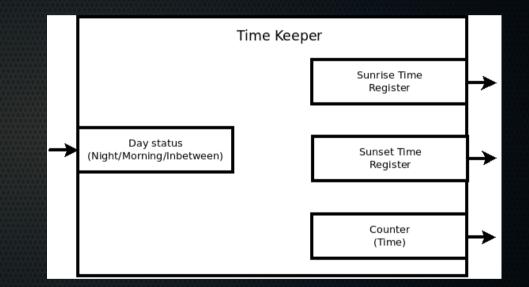
- Power consumption
- Closed loop


- Why chosen?
- Power consumption
- Accuracy
- Simplicity


Mechanical Architecture

Detecting and Computing the Position of the Sun

Design Architecture



Component Design and Implementation

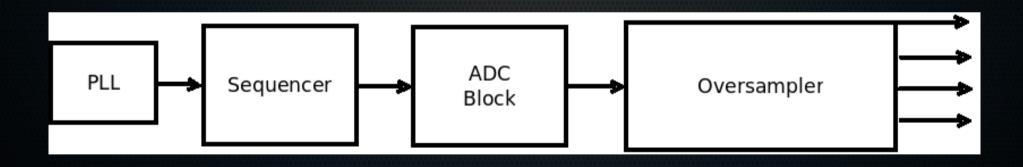
Time keeper. Orientation controller. Records table. SPI controller. Processing unit.

Time Keeper

Objective: Keep track of the time. How it works How it is implemented

Sensing Module

Objective:


Provide the reading from the sensors to the processing unit.

How it works:

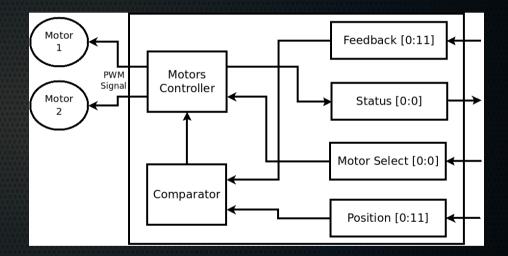
A sequencer controlling the ADC block to fill a register for each sensors.

How it is implemented:

ADC block and sequencer generated using Qsys

Orientation Controller

Objective:

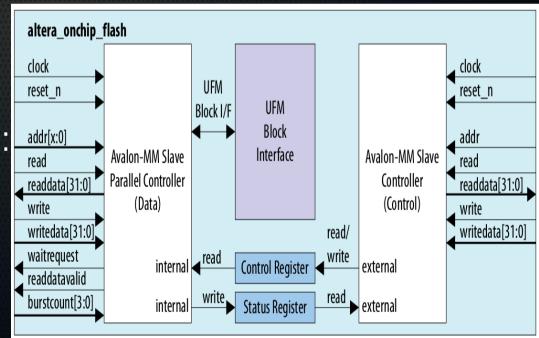

Control the position of the motors.

How it works:

Generates position signal based on position value from the processing unit.

How it is implemented:

Two PWM generators.



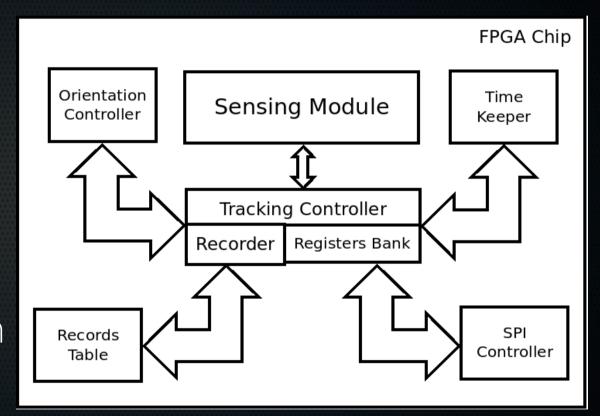
Records Table

Objective:

Stores data collected from the environment.
How it works:
Each record has an address.
How it is implemented:
On the flash memory

Hour	Minute	Position X	Position Y	LE	LW	LN	LS
1	00	106	154	2.0	2.0	2.0	2.0
1	15	110	160	2.2	2.2	2.2	2.2
1	30	115	160	2.5	2.5	2.5	2.5
	••••	••••					

SPI Controller

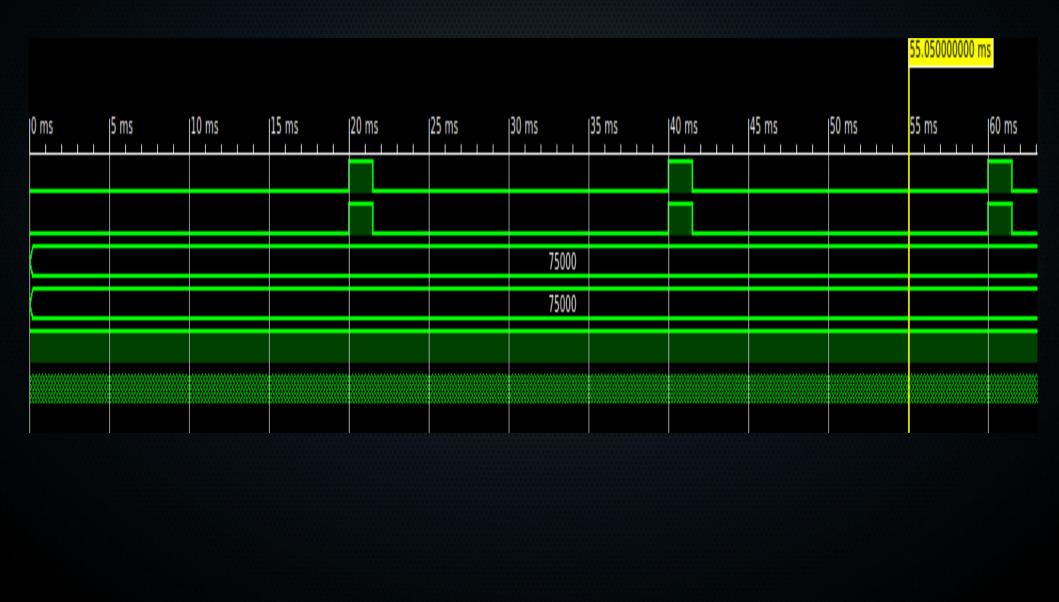

Objective:

Communicates with external systems and provides or writes registers in the registers bank. How it works: How it is implemented:

Processing Unit

Objective:

Management and computations. How it works: How it is implemented: Behavioral description of the tracking algorithm.


Tracking Algorithm

- Detecting and computing the position of the sun.
- Machine learning
- Adjusting records

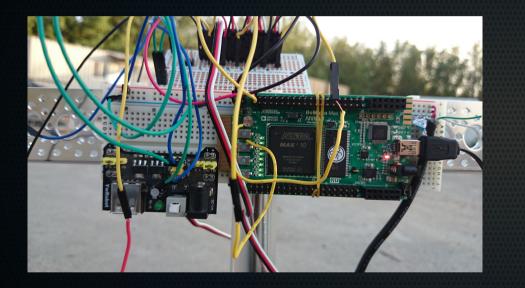
Testing and Analysis, Timekeeper

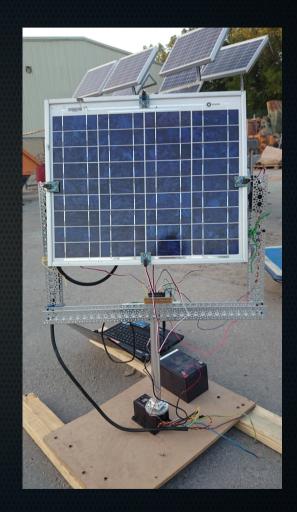
Name	Valu	352 s	354 s	356 s	358 s	1360 s	362 s	364 s	366 s	368 s	370 s
Minutes[5:0]	б		5			(6
▶ 📲 hours[4:0]	0								0		
Image: sunrise_time_out[10:0]	0								0		
🕨 📲 sunset_time_out[10:0]	0								0		
🗓 alarm_int	0										
🗓 sunrise_int	0										
🕼 sunset_int	0										
🕨 👹 alarm_time_in[10:0]	255								255		
🚡 load_alarm	0										
🐻 day	0										
🌆 night	0										
🐻 enable	1										
1🔓 rst	0										
16 cik	1										
l <mark>]</mark> hzl	0										
${\mathbb L}$ increment_hour	0										
minutes_register[5:0]	б		5								6
▶ 🐻 counter[31:0]	17	53 54	55 56	57 58	59 60	1 2	3 4	5 6	7 8	9 10	11 / 12

Testing and Analysis, Orientation Controller

Development Tools

- Development Software: Quartus 2 (Altera)
- Development Board: Bemicro MAX10
- Simulation Software: iSimulator (Xilinx)


Videos


https://www.dropbox.com/s/zpxymc70a5c cuzw/MOV_0160.mp4?dl=0 https://www.dropbox.com/s/dk37ijd4j7j0 9yh/MOV_0124.mp4?dl=0 https://www.dropbox.com/s/5io0ha47fnv wmbq/MOV_0156.mp4?dl=0

Difficulties

Very new IC to the market. Rare tutorials. Limited documentation.

Conclusion

