Autonomous Person-Following Robot Design Document

Team Members:
- Adnan AlSinan 201015940
- Abdulrahman Bataweel 200927570
- Husam Habarah 200971590

Advisors:
- Dr. Muhamed Mudawar
- Dr. Yahya Osais
Table of Contents

1 Introduction .......................................................................................................................................... 5
   1.1 How the project deals with the issue............................................................................................ 5
   1.2 Project Impact on society locally and globally .............................................................................. 5
      1.2.1 Positive impact ...................................................................................................................... 5
2 Problem Statement............................................................................................................................... 5
3 Background ........................................................................................................................................... 5
   3.1 Existing Solutions, Products & Research....................................................................................... 5
      3.1.1 Nippon Institute of Technology, Japan. ................................................................................ 5
      3.1.2 R&D Center, Toshiba Corporation, Japan. ............................................................................ 6
4 Requirements and Specifications .......................................................................................................... 7
   4.1 Functional user requirements. ...................................................................................................... 7
   4.2 Non-functional user requirements. .............................................................................................. 7
   4.3 Technical Specification................................................................................................................. 7
5 System Design ....................................................................................................................................... 7
   5.1 Solution Concept ........................................................................................................................... 7
      5.1.1 General approach of solving the stated problem. ................................................................. 7
      5.1.2 Description of used/developed algorithms .......................................................................... 8
      5.1.3 Alternative approaches and algorithms............................................................................. 10
      5.1.4 Comparison, and selection criteria ..................................................................................... 11
      5.1.5 Sub-function identification ................................................................................................. 12
   5.2 Architecture ................................................................................................................................ 12
      5.2.1 System architecture and components ................................................................................ 12
      5.2.2 Alternative architectures ................................................................................................... 13
      5.2.3 Comparison, and selection criteria ..................................................................................... 13
      5.2.4 Hardware vs software components .................................................................................... 14
      5.2.5 Functions of each component ............................................................................................ 14
   5.3 Component Design ...................................................................................................................... 14
      5.3.1 Motion Control Unit ............................................................................................................ 14

2/28/2015
5.3.2 Distance Sensors .................................................................................................................. 15
5.3.3 Bluetooth Module .................................................................................................................. 15
5.3.4 Image Processing and Movement Decision Units ................................................................. 16
5.4 System Integration ....................................................................................................................... 17
5.4.1 Interfaces .............................................................................................................................. 17
5.4.2 Sequence Diagram .................................................................................................................. 18
5.5 Progress ..................................................................................................................................... 18
6 References .................................................................................................................................... 21
Table of Tables

Table 1: Approach Comparison Table ......................................................................................................... 11
Table 2: Architectures Comparison ................................................................................................................ 13
Table 3: Image Processing and Movement Decision Units options comparison ........................................ 16
Table 4: Cameras options comparison ........................................................................................................... 17
Table 5: Tasks progress ....................................................................................................................................... 20
1 Introduction
Every day, we see shopping carts in the supermarket. Customers usually push the carts with both hands, and so, if the customer had only one hand or had to carry a child, then pushing shopping carts becomes a real burden.

Thus, in order to improve the situation and assist those with disability, we plan to develop a robot system that follows the user. Enabling disabled people to enjoy shopping with the need for human assistance (pick and drop on the robot).

1.1 How the project deals with the issue
People live in their lives in many modes. There is the young and adults mode where they are able to help themselves and help others. But there is certain stages in life that people needs help from others to carry their substances. It is embarrassing to ask help from anyone that might either happy accept, or might sadly refuse. This project aims to help those people to avoid asking others for help. A Robot will help in carrying there substances and follow them in a convenient way without disturbing their attention in shopping.

1.2 Project Impact on society locally and globally
1.2.1 Positive impact
Personal assistant robot is one of the promising areas where robotics could be put in practice. Nowadays, approaching “aging society” could make use of robots by helping people in their everyday life. To keep a better quality of life of elderly people, a robot could move with people like a partner and carry items without disturbing anyone by avoiding obstacles. Moreover, it is possible to use this robot to monitor and keep an eye at kids preventing them from hurting themselves or messing with electronic appliances. Beyond that, this robot could be used in different areas such as military, rescuing missions and medical applications.

2 Problem Statement
Autonomous robots have the capability of gaining information about the environment. They work without the need for human intervention for a long period of time. They can also adapt to changes in their surrounding environment.

In order to assist elderly or disabled people in supermarkets, our goal is to design and build a robot that is capable of following them, and carry weight for them, to substitute for pushing a shopping cart.

3 Background
3.1 Existing Solutions, Products & Research
3.1.1 Nippon Institute of Technology, Japan.
They were able to develop a robot shopping cart, the robot successfully recognized its user and followed him through the use of Laser Range Sensor (LRS). The sensor could detect objects in the distance of 4m and in the azimuth of 240 degrees.

However, this solution suffered a major flaw, when a third person cut across between the user and the robot shopping cart, the cart ended up following the third person. Minor flaws included,
interference with the following procedure from obstacles such as shopping shelves and display tables.

![Figure 1: Robot Shopping Cart](image1)

3.1.2 R&D Center, Toshiba Corporation, Japan.
ApriAttenda is a more sophisticated robot that uses cameras, LRF and ultrasonic sensors. ApriAttenda adopts a stereo vision system and additionally a LRF is mounted on it to enhance the performance of person following motion. The designed tracking system uses highly accurate measurement information by combining vision and LRF data according to the congestion level of movement space.

An experiment of person following was done using ApriAttenda using the sensor fusion method. And from this experiment, it was observed and confirmed that the robot can follow a person smoothly who moves quickly and randomly.

![Figure 2: ApriAttenda Robot](image2)
4 Requirements and Specifications

4.1 Functional user requirements.
- The robot should be able to follow a specific person
- It should be able to recognize the person from different directions.
- It should be able to recognize obstacles such as aisles, counters, and people and avoid them.

4.2 Non-functional user requirements.
- The robot should be able to carry at least 1 kg of weight.
- The robot can follow a subject within 2-5 M.
- The robot should not exceed a power consumption of 2100AMH.
- Response time should be within 2 seconds

4.3 Technical Specification.
- Identify subject to follow by camera.
- Following subject identified.
- Robot can carry up to 1 kg.
- 180 degree of view supported by servo motor move horizontally.
- 5 photo per second to catch subject movement.
- Movement speed is 6 km/h to Follow-up human at maximum speed of 6 km/h.
- Keep distance of <2 meters to the followed person.
- Length adjustment of camera between 1.5 -2 meter.

5 System Design

5.1 Solution Concept
So the stated problem is, to create a robot that is able to follow its user and carry weight for them. That by itself, can be divided into two sub-problems, first is person detection, and second is person following. So, in all three solution concepts mentioned below, we are going to show how each one generally solves the problem.

5.1.1 General approach of solving the stated problem.

Description:
The approach we are proposing here with ultimatly provides the best results. consist of using camera to detect the user of the robot, and distance sensors to measure the distance between the user and the robot.
5.1.2 Description of used/developed algorithms

- Image processing algorithm

Histogram of Oriented Gradients (HOG) is feature descriptors used in computer vision and image processing for the purpose of object detection. The technique counts occurrences of gradient orientation in localized portions of an image. This method is similar to that of edge orientation histograms, scale-invariant feature transform descriptors, and shape contexts, but differs in that it is computed on a dense grid of uniformly spaced cells and uses overlapping local contrast normalization for improved accuracy.

The people detector object detects people in an input image using HOG and a trained Support Vector Machine (SVM) classifier. The object detects unclouded people in an upright position.

- Follow and motion algorithm
This algorithm should provide control over the Robot motors. To drive the robot forward or backward, or turn to any direction with provided angle. For simplicity, we will start with one parameter for each function: move time (move for t seconds). Work should be done to determine the accurate measurement for the time given over distance covered.
5.1.3 Alternative approaches and algorithms.

Approach 2:

The alternative approach would use RFID technology in order to detect the person.

![Diagram of Alternative Approach #2](image)

**Figure 4: Alternative Approach #2**

Approach 3:

The third alternative approach is just using an infrared sensor (IR) to detect the person and follow him. However by just using a sensor, this approach is far beyond from being autonomous or smart. This approach rely directly on infrared sensor to detect the person and send commands to move the cart. However as mentioned previously, this approach fails when a third person cuts in between the robot and the user.
5.1.4 Comparison, and selection criteria

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Approach</th>
<th>Range</th>
<th>Accuracy</th>
<th>Invasiveness</th>
<th>Processing Time</th>
<th>Deployment</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RFID, with active tags</td>
<td>4 meters – 50 meters</td>
<td>Very accurate</td>
<td>Need to wear a tag or a device</td>
<td>Depends on the type of the tag</td>
<td>Two sides, on robot and on user</td>
<td>$ 500 - $ 2000</td>
</tr>
<tr>
<td></td>
<td>IR</td>
<td>1 meter – 3 meters</td>
<td>Not accurate, a third person might cut between.</td>
<td>No</td>
<td>Negligible</td>
<td>On the robot</td>
<td>$15 - $ 30</td>
</tr>
<tr>
<td></td>
<td>Camera and sensors</td>
<td>No specific range; dependent on the sensors</td>
<td>90%. [1]</td>
<td>No need to wear a tag nor to carry a device</td>
<td>the average processing per frame is about 51.76 ms.[2]</td>
<td>Everything will be on the robot.</td>
<td>Camera $300 - $400 Sensor $6 - $10</td>
</tr>
</tbody>
</table>

Table 1: Approach Comparison Table
5.1.5 Sub-function identification

Function =  
Sub-function =  

Robot

Detection
- Identification
- Localization

Following
- Avoid Obstacles
- Motion Control

5.2 Architecture
5.2.1 System architecture and components

Camera
Distance Sensors
Motion Control Unit
Mechanical parts

Image Processing Unit
Movement Decision Unit

Figure 6: System Architecture
5.2.2 Alternative architectures

![Alternative Architecture Diagram](image)

5.2.3 Comparison, and selection criteria

Based on the following criteria, we have chosen the first architecture.

<table>
<thead>
<tr>
<th>ARCHITECTURE/Criteria</th>
<th>PROCESSING TIME</th>
<th>POWER CONSUMPTION &amp; BATTERY LIFE</th>
<th>LATENCY</th>
<th>ADDITIONAL COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCHITECTURE 1 (WITH AN IMAGE PROCESSING UNIT)</td>
<td>5 frames/sec, 1 frame = 50 kb 250kb x 60 = 21MB/min</td>
<td>Would last for 8 hours</td>
<td>Negligible</td>
<td>None</td>
</tr>
<tr>
<td>ARCHITECTURE 2 (WITH CLOUD)</td>
<td>5 frames/sec, 1 frame = 50 kb 250kb x 60 = 21 MB/min (and that’s just to upload the image to the cloud, add to it the processing time of the image itself then the download time)</td>
<td>Since, it requires the device to be connected to the internet all the time. Would last for about 3 hours.</td>
<td>In best case milliseconds; dependent in the Cellular network</td>
<td>Cellular network ; 1 GB/month 79 riyals</td>
</tr>
</tbody>
</table>

*Table 2: Architectures Comparison*
5.2.4 Hardware vs software components

**Hardware**
- Camera
- Distance Sensors
- Mechanical parts

**Software**
- Image Processing Unit
- Movement Decision Unit
- Motion Control Unit

*Figure 8: Hardware vs Software*

5.2.5 Functions of each component

- **Camera**: Image input
- **Distance Sensors**: To measure the distance between the user and the robot, for the purpose of knowing whether he moved or not.
- **Motion Control Unit**:
  - Provide signals to move the robot based on the output from the movement decision unit
  - Control the servos
- **Mechanical Parts**:
  - Like wheels, servos.
- **Image Processing Unit**:
  - Receives the image from the camera and extract features of the object of interest in it.
- **Movement Decision Unit**
  - Decide the movement of the robot (whether it goes right, left, forward or backward) based on the sensors and image processing results.
  - Keeps the robot line of sight synchronized.

5.3 Component Design

5.3.1 Motion Control Unit
For the **motion control unit** we’re going to use the T'Rex Robot/Motor Controller
The T’Rex controller from DAGU is an Arduino compatible robot controller designed to power and control servos and brushed motors. This controller combines an Arduino development board with a dual FET H-bridge motor driver. The heart of the board is an ATMega328P AVR microcontroller.

The T’REX controller is rated for a maximum voltage of 30V and can handle currents in excess of 40A per motor. A set of screw terminals are provided for the battery connection as well as for connecting motor outputs. The Dual H bridges are rated for stall currents of 40A per motor and average currents of 18A per motor.

Features:

- 6V -30V operation with built in solid state power switch
- Programmable with the Arduino IDE (ATMega328P, 5V @ 16MHz)
- Dual FET “H” bridge rated 18A with self-resetting PTC fuses
- Electronic braking and current monitoring for each motor
- 3-axis accelerometer provides angle and impact detection
- Auto-detects RC, Bluetooth, or I2C control
- Voltage translation on I2C interface
- 6x Servo Outputs

5.3.2 Distance Sensors

For the distance sensors, we’re going to use ultrasonic sensors

Features:

For the servos, we’re going to use Hitec HS-422 (Standard Size)

Features:

- Voltage: 4.8-6.0 Volts
- Torque: 45.82/56.93 oz-in. (4.8/6.0V)
- Speed: 0.21/0.16 sec/60° (4.8/6.0V)
- Direction: Clockwise/ Pulse Traveling 1500-1900usec
- Rotation: 180°
- Dual Oilite Bushing
- Nylon Gears
- 3-Pole Ferrite Motor
- C1 Standard Spline

5.3.3 Bluetooth Module

For the Bluetooth, we’re going to use DAGU Bluetooth module, to communicate between the android and the T’Rex microcontroller.

Features:

- Input voltage 3.3v ~ 6v, module with 3V LDO voltage regulator
- Support AT command set the baud rate, name, pair password
- Search and pairing automatically when the power up
- Power, link status indicator
- 4pin 2.54 Pitch status indicator

5.3.4 Image Processing and Movement Decision Units

For the image processing and movement decision units, we had four options; an android device, an iPad/iPhone device, Beaglebone black, raspberry pi 2 rev b.

So based on the comparison, we have decided to go with the android device option. As it has almost everything built-in in it. And it is easy to develop in it, as it uses java.

<table>
<thead>
<tr>
<th>Option</th>
<th>OS</th>
<th>CPU</th>
<th>Storage</th>
<th>RAM</th>
<th>Camera</th>
<th>Bluetooth</th>
<th>Connectivity</th>
<th>Cost</th>
<th>Development platform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beaglebone black</td>
<td>Linux</td>
<td>Dual-core1.3GHz</td>
<td>4GB eMMC, and micro SD</td>
<td>512MB DDR3</td>
<td>Not built in</td>
<td>Not Built in</td>
<td>Ethernet</td>
<td>SR 190</td>
<td>C, C++, Python, Perl, Ruby, Java, or even a shell script</td>
</tr>
<tr>
<td>Raspberry Pi 2 B</td>
<td>Can run linux/windows</td>
<td>Quad-core900MHz</td>
<td>Micro SD</td>
<td>1GB</td>
<td>Camera interface</td>
<td>Not built in</td>
<td>Ethernet</td>
<td>SR 150</td>
<td>C, C++, Python, Perl, Ruby, Java.</td>
</tr>
<tr>
<td>Android device</td>
<td>Android</td>
<td>Quad-core 2.3GHz</td>
<td>16 GB</td>
<td>2GB</td>
<td>8 MP</td>
<td>v4.1, A2DP, apt-X</td>
<td>Wifi, GSM</td>
<td>SR 1450</td>
<td>Free to develop. Uses Java as a programming language for development</td>
</tr>
<tr>
<td>IPhone 5s</td>
<td>iOS 8.1.3</td>
<td>Dual-core 1.3GHZ</td>
<td>16 GB</td>
<td>1GB</td>
<td>8 MP</td>
<td>v4.0, A2DP</td>
<td>Wifi, gsm</td>
<td>SR 2225</td>
<td>Restrict development, must pay for developer ID. Languages are restricted to Swift and objective C.</td>
</tr>
</tbody>
</table>

Table 3: Image Processing and Movement Decision Units options comparison

<table>
<thead>
<tr>
<th>Option</th>
<th>Criteria</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Android built-in Camera</td>
<td>1080 @30 fps</td>
<td>Included with the android device</td>
</tr>
<tr>
<td>IPhone built-in Camera</td>
<td>1080 @30 fps</td>
<td>Included with the iPhone device</td>
</tr>
<tr>
<td>Logitech c920</td>
<td>1080 @ 5(at jpeg format)-30(at h264 format) fps</td>
<td>SR 400</td>
</tr>
</tbody>
</table>
### 5.4 System Integration

#### 5.4.1 Interfaces

For system Integration, **Decision Making Unit** should receive input from the **Image processing unit** in the form of *object location on 180 degree of camera view*, and from **distance sensor** in form of *distance between robot and object*. By complaining those two input in algorithm it should provide a decision whether the robot will move or not, and in which angel to move and how much distance should be covered to keep the specified distance between robot and object.

One more input is needed to determine if there is an **obstacle** in the direction specified or not, this should be processed by the Decision making Unit by using provided inputs from **distance sensor** and **Image processing** output.

To interface this with the Motor (or Motion) Unit, output should be send to Moving Control Unit in form of distance and angle to be executed by functions in the MCU.

A Distance sensor integrated to T’Rex to provide input to the Follow-Person algorithm.
5.5 Progress
The following tables will show the project tasks along with their description and duration, as well as the team accomplished tasks so far.
<table>
<thead>
<tr>
<th>Tasks</th>
<th>Owner</th>
<th>Duration</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Project Plan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Collecting the requirement</td>
<td>1/25/15</td>
<td>2/2/15</td>
<td>Completed</td>
</tr>
<tr>
<td>2.1 Collect the requirement</td>
<td>2/1/15</td>
<td>2/7/15</td>
<td>Completed</td>
</tr>
<tr>
<td>2.2 Review with the advisor</td>
<td>2/1/15</td>
<td>2/1/15</td>
<td>Completed</td>
</tr>
<tr>
<td>2.3 Researching the idea</td>
<td>2/2/15</td>
<td>2/2/15</td>
<td>Completed</td>
</tr>
<tr>
<td>2.4 Finalizing the requirements</td>
<td>2/3/15</td>
<td>2/3/15</td>
<td>Completed</td>
</tr>
<tr>
<td>2.5 Finishing the specifications</td>
<td>2/4/15</td>
<td>2/7/15</td>
<td>Completed</td>
</tr>
<tr>
<td>2.6 Researching the specifications</td>
<td>2/8/15</td>
<td>2/8/15</td>
<td>Completed</td>
</tr>
<tr>
<td>3. Designing</td>
<td>2/9/15</td>
<td>2/28/15</td>
<td>Waiting</td>
</tr>
<tr>
<td>3.1 Researching solutions of similar problems</td>
<td>2/9/15</td>
<td>2/9/15</td>
<td>Completed</td>
</tr>
<tr>
<td>3.2 Discuss and compare the different solution concepts to solve the problem</td>
<td>2/10/15</td>
<td>2/11/15</td>
<td>Completed</td>
</tr>
<tr>
<td>3.3 Evaluate the different solution concepts</td>
<td>2/12/15</td>
<td>2/14/15</td>
<td>Completed</td>
</tr>
<tr>
<td>3.4 Discuss the different approaches for image processing and person detection</td>
<td>2/15/15</td>
<td>2/18/15</td>
<td>Completed</td>
</tr>
<tr>
<td>3.5 Evaluating the different approaches</td>
<td>2/19/15</td>
<td>2/20/15</td>
<td>Completed</td>
</tr>
<tr>
<td>3.6 Discuss and compare the different system architectures</td>
<td>2/15/15</td>
<td>2/22/15</td>
<td>Completed</td>
</tr>
<tr>
<td>3.7 Evaluate the different architectures</td>
<td>2/23/15</td>
<td>2/24/15</td>
<td>Completed</td>
</tr>
<tr>
<td>3.8 Evaluate the different component options</td>
<td>2/24/15</td>
<td>2/25/15</td>
<td>Completed</td>
</tr>
<tr>
<td>3.9 Finalize the hardware components</td>
<td>2/22/15</td>
<td>2/25/15</td>
<td>Completed</td>
</tr>
</tbody>
</table>
3.10. Check that all the hardware components work

<table>
<thead>
<tr>
<th>Task Description</th>
<th>Responsible</th>
<th>Start Date</th>
<th>End Date</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Abdulrahman</td>
<td>2/22/15</td>
<td>2/26/15</td>
<td>Delayed – Missing Bluetooth module</td>
</tr>
<tr>
<td>4.1. program the motion control unit</td>
<td>Abdulrahman</td>
<td>3/3/15</td>
<td>4/23/15</td>
<td>In progress</td>
</tr>
<tr>
<td>4.2. program the Image processing Unit</td>
<td>Adnan</td>
<td>3/3/15</td>
<td>4/27/15</td>
<td>In progress</td>
</tr>
<tr>
<td>4.3. Connecting the motors and the board</td>
<td>Husam</td>
<td>3/3/15</td>
<td>4/30/15</td>
<td>In progress</td>
</tr>
<tr>
<td>4.4. Coding the person-following algorithm</td>
<td>Adnan</td>
<td>3/3/15</td>
<td>5/3/15</td>
<td>In progress</td>
</tr>
<tr>
<td>5. Testing</td>
<td>Husam</td>
<td>5/3/15</td>
<td>-</td>
<td>Waiting</td>
</tr>
</tbody>
</table>
6 References


6. 