

Team Members:

Abdulrahman Bataweel & & Adnan AlSinan & & Husam Habarah

Advisors:

Dr. Muhamed Mudawar (Primary) Dr. Yahya Osais (Secondary)

Outline

- Problem Statement
- System architecture and integration
- Design of custom components
- Design decisions
- Inter-component interfaces
- Conclusion
- Demo
- Questions

Problem Statement

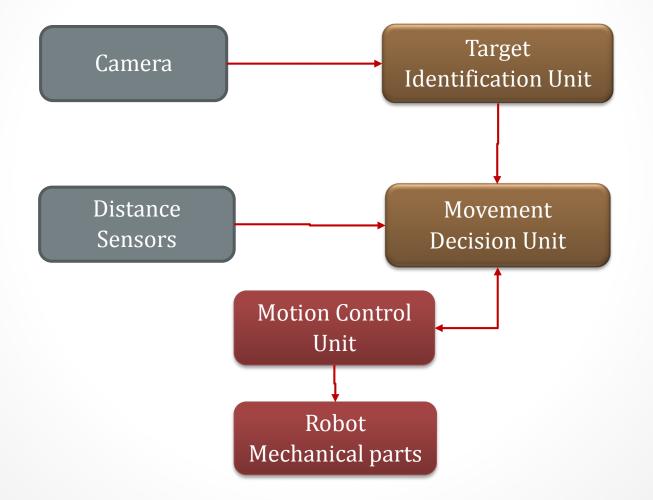
- To Assist elderly or disabled people in supermarkets, our goal is to design and build a robot that is capable of following them, and carry weight for them.
- Many other applications:
 - Security and rescue missions.
 - Medical applications.
 - Commercial applications.

Requirements

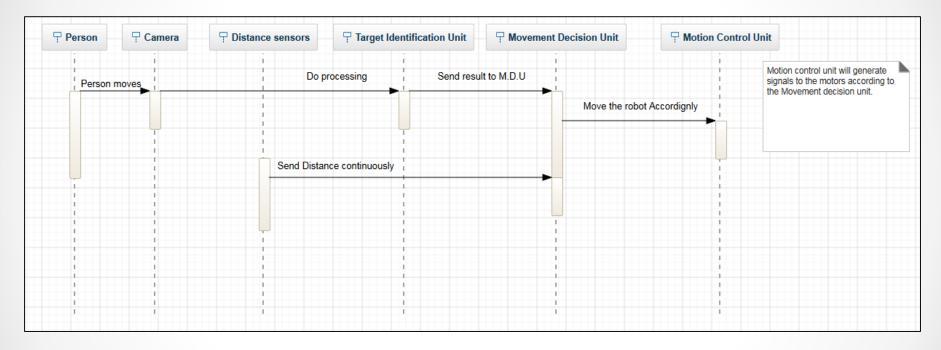
• Functional user requirements.

- The robot should be able to identify any person and be able to follow him/her.
- It should be able to recognize the person from different directions.
- It should be able to recognize obstacles and avoid them.

• Non-functional user requirements.


- The robot should be able to carry at least 1 kg of weight.
- The robot can follow a subject within 2-5 M.
- Response time should be within 2 seconds

Specifications


• Technical Specification.

- Identify subject to follow by camera.
- Robot can carry up to 1 kg.
- Movement speed is 6 km/h to Follow-up human at maximum speed of 6 km/h.
- Keep distance of <2 meters to the followed person.
- Usage of distance sensors to avoid bumping into the user
- Height between camera and robot is 1.5 -2 meters.

System Architecture

System Integration

Target Identification Unit

• Two approaches :

Color detection

oHuman feature detection.

Target Identification Unit Color detection

Target Identification Unit

Human feature detection

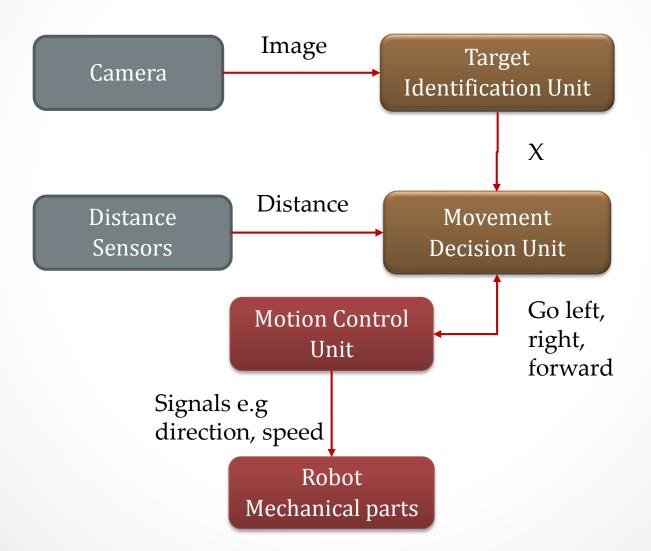
o Trained by Haar-like features.

by 100's positive and negative images
Classifying : Cascade classifier.

Movement Decision Unit

- Custom component.
- Two inputs :
 - X (position of person in the frame)
 d (distance reading from sensors)
- Frame consist of 3 regions:
 - o Center
 - o Left
 - o Right
- Synchronization

Design decisions


Design decisions

Mobile phone vs Microprocessors

o Raspberry pi 2, Beaglebone

C	Option	OS	CPU	Storage	RAM	Camera	Interface	BT	Connecti vity	Cost	Total cost
	aglebon black	Linux	Dual-core 1.3GHz	4GB eMMC, and micro SD	512MB DDR3	180 SR	4.3 inch Touchscreen (140 SR)	No need	Ethernet	SR 190	190 + 140 + 180 = SR 510
	ispberry PI 2 B	Can run Linux/ windo ws	Quad- core 900MHz	Micro SD	1GB	180 SR	4.3 inch Touchscreen (140 SR)	No need	Ethernet	SR 150	150 + 140 + 180 = SR 470
	Android phone	Androi d	1 GHz dual- core– up to octal- core	Built in 16 GB -	1 GB – 3 GB	Built-in	Built-in	SR 30	Wi-Fi + cellular	SR 450 -	450 + 30 = SR 480

Inter-component interfaces

Conclusion

- Problem Statement
- System Architecture
- Design decisions

Demo Video

Live demo is available after Questions

& comments