

ATM

Abdulaziz Almulhem

January 2000

 $High\text{-}Speed\ Networks \\ \mathbb{C}Almulhem$

Recap

- Traffic characterization
- Switching techniques
- Internetworking

January 2000

High-Speed Networks@Almulhem

This lecture

- ATM
- Features
- Services
- Protocol
- ATM switching

January 2000

High-Speed Networks@Almulhem

3

ATM

- Asynchronous Transfer Mode
- To carry ISDN traffic

January 2000

High-Speed Networks@Almulhem

Basic Features

- Connection-oriented network service using virtual circuits. Virtual circuits are referred to as <u>virtual channels</u> and have associated <u>virtual channel identifer</u> (VCI)
- Constant length packets of 53 bytes called cells
 - » 5-byte header, 48-byte payload

January 2000

High-Speed Networks@Almulhem

5

Basic Features

- Cells delivered in order but with possible cell loss
- Statistical multiplexing of cells from VC's sharing a link
- Switches may discriminate among cells belonging to different VC's to provide different QoS

January 2000

High-Speed Networks@Almulhem

Virtual Path

- The concept introduced only in ATM.
- It bundles a number of VCs that have the same end point.
- It is developed in response to the high control cost of high-speed networks.
 - Control of same Vc all at once

January 2000

High-Speed Networks@Almulhem

Virtual Path Advantages

- Simplified network architecture
- Increased network performance and reliability
- Reduced processing and short connection setup time
- Enhanced network services

January 2000

High-Speed Networks@Almulhem

9

Fixed cell size

- Advantages of fixed cell size
 - » expedites switching
 - » allows cell boundaries to be determined implicitly--i.e., without delimiters
 - last byte of 5-byte header is header error control (HEC) field
 - by shifting 1-bit at a time until find a 5-byte segment where last byte checks first 4 bytes, cell boundary can be determined

January 2000

High-Speed Networks@Almulhem

Fixed cell size

- once cell boundary is found, future cell boundaries can be determined by counting 53 bytes
- if CRC appears wrong for several consecutive cells, then resynchronization is probably required

January 2000

High-Speed Networks@Almulhem

11

Why short cell length?

- Short cell length has disadvantage of large overhead (9.4%)
- Short cell length chosen to reduce packetization delay for real-time voice
 - » Transmission time per switch (assuming 155 Mbps) is about 3 ms. If 10 switches in path, total is 30 ms, which is negligible
 - » Propagation delay for 1000 km path is about (1000 km)(5 ms/km) = 5000 ms

January 2000

High-Speed Networks@Almulhem

QoS and Traffic Parameters

- Network and user negotiate 'contract'
 - » network agrees to provide specified QoS (delay, loss, rate, etc.) provided user traffic conforms to specifications (bit rate, burstiness, etc.)

January 2000

High-Speed Networks@Almulhem

13

User Traffic Parameters

- Peak cell rate (PCR)
 - » reciprocal of minimum time between consecutive cells
- Sustained cell rate (SCR)
 - » long-term average cell rate
- Cell delay variation tolerance (CDVT)
 - » measures permissible departure from periodicity

January 2000

High-Speed Networks@Almulhem

User Traffic Parameters (cont.)

- Burst tolerance (BT)
 - » maximum number of cells in burst of back-toback cells
- Meaning of CDVT and BT made precise via Generalized Cell Rate Algorithm (GCRA)

January 2000

High-Speed Networks@Almulhem

15

QoS Parameters

- Cell loss ratio (CLR)
 - » long-term proportion of cells that are lost
- Maximum cell transfer delay (Max CTD)
- Mean cell transfer delay (Mean CTD)
- Cell delay variation (CDV)
 - » refers to output stream while CDVT refers to input

January 2000

High-Speed Networks@Almulhem

QoS Parameters (cont.)

- Minimum cell rate (MCR)
 - » reciprocal of maximum time between consecutive cells

January 2000

High-Speed Networks@Almulhem

17

Categories of service

- Constant bit rate (CBR)
 - » essentially periodic stream of cells with some acceptable jitter
 - » telephony, real-time audio/video streams
 - » contract specifies CLR, CDV, Max CTD, PCR, CDVT
 - » regulated at source (open loop)

January 2000

High-Speed Networks@Almulhem

Categories of service (cont.)

- Variable bit rate-real time (VBR-RT)
 - » bursty traffic with real-time constraints
 - » compressed video (e.g., MPEG2)
 - » contract specifies CLR, CDV, Max CTD, PCR, CDVT, SCR, BT
 - » regulated at source (open loop)

January 2000

High-Speed Networks@Almulhem

19

Categories of service (cont.)

- Variable bit rate-nonreal time (VBR-NRT)
 - » bursty traffic without real-time constraints
 - » multimedia email
 - » contract specifies CLR, Mean CTD, PCR, CDVT, SCR, BT
 - » regulated at source (open loop)

January 2000

High-Speed Networks@Almulhem

Categories of service (cont.)

- Available bit rate (ABR)
 - » bursty traffic whose bandwidth is approximately known
 - » contract specifies CLR, PCR, CDVT, MCR
 - » network guarantees to accept traffic at MCR; additional traffic may be accepted <u>based on</u> <u>feedback information</u>
 - » Regulated by source and destination (closed loop)

January 2000

High-Speed Networks@Almulhem

21

Categories of service (cont.)

- Unspecified bit rate (UBR)
 - » best effort service; no QoS is guaranteed
 - contract specifies only PCR, CDVT
 - » application: transporting IP packets

January 2000

High-Speed Networks@Almulhem

ATM Bit Rate Services

January 2000 High-Speed Networks@Almulhem

B-ISDN Service Classes

Service Class	Timing Relation	Bit Rate	Connection Mode	Examples
Class A				
Class B				
Class C				
Class D				
January 2000	High-	24		

ATM Header Structure

GFC

VPI

VCI

VCI

HEC

- » At user-network interface
- » GFC=generic flow control
- » VPI=virtual path identifier
- » VCI=virtual channel iden.
- » PT=payload type
- » CLP=cell loss priority
- » HEC=header error control
- » NNI similar to UNI but GFC replaced by 4 extra bits for VPI

January 2000

High-Speed Networks@Almulhem

25

VPI

VCI

PΤ

Header structure (cont.)

- GFC may be used by network to signal to user of need for (temporary) changes in instantaneous cell stream rate
- VCI is equivalent to virtual circuit number
 » local to link
- VPI: virtual channels with same VPI form group
 - » routed and switched together
 - speeds up processing since switching is based on shorter VPI (as opposed to VCI)

January 2000

High-Speed Networks@Almulhem

Header structure (cont.)

- » BW and buffer allocations for VP can be fixed at time of service subscription. During operation, fixed resources for VPI can be allocated to various VCI's
 - functions like private network
- PT permits network to distinguish between data cells and control cells

January 2000

High-Speed Networks@Almulhem

27

Header structure (cont.)

- CLP indicates whether cell is discardeligible (CLP=1)
 - » may be specified by user or assigned by network if negotiated traffic rate exceeded

January 2000

High-Speed Networks@Almulhem

Header structure (cont.)

• HEC

- » equivalent to CRC code
- » can correct single bit errors and detect multiple bit errors
- » error control algorithm has two states: correction (C) and detection (D)
 - error in cell causes transition from C to D. If single bit, error corrected; if multiple bit, cell discarded
 - when in D, cells with detected errors (even if single bit) are discarded. A correct cell causes transition back to C

January 2000

 $High\text{-}Speed\ Networks@Almulhem$

29

ATM Protocol Architecture

Figure 4.1 ATM Protocol Architecture

January 2000

High-Speed Networks@Almulhem

ATM Protocol Architecture

Higher layers

ATM Adaptation Layer (AAL)

ATM Layer

Physical Layer

January 2000

High-Speed Networks@Almulhem

31

ATM Layer

- Cell header generation and extraction
- Cell multiplex and demultiplex
- VPI and VCI translation and switching
- Generic flow control

January 2000

High-Speed Networks@Almulhem

ATM Adaptation Layer

- End-to-end layer above ATM layer
 - » unlike true transport layer (e.g., TCP), does not guarantee reliable end-to-end transport
 - some AAL protocols support error detection, but not retransmissions.

January 2000

High-Speed Networks@Almulhem

33

ATM Adaptation Layer (Cont.)

- Several distinct sets of AAL protocols.
 Each is designed for particular type of application.
 - » AAL 1: for CBR traffic
 - » AAL 2: for VBR-RT traffic
 - » AAL 3/4: for NRT traffic, either stream or message
 - » AAL 5: for NRT message traffic

January 2000

High-Speed Networks@Almulhem

ATM Protocol Architecture

Higher layers

ATM Adaptation Layer (AAL)

ATM Layer

Physical Layer

Convergence Sublayer

Segmentation and
Reassembly Sublayer

January 2000 High-Speed Networks@Almulhem

Convergence Sublayer (CS)

- » upper sublayer of AAL
- » purpose is to interface with application
- » consists of a <u>application specific part</u> and <u>common part</u>
 - common part is same for all applications using the particular type of AAL
- » generates packets in standardized format (CS-PDU's) which are passed to SAR sublayer
 - packets may contain CS overhead

January 2000

High-Speed Networks@Almulhem

36

Segmentation and reassembly (SAR) sublayer

- » at source, segments CS-PDU's and adds overhead to form 48-byte cells that are passed to ATM layer
- » at destination, reassembles CS-PDU's which are passed to CS-sublayer.

January 2000 High-Speed Networks@Almulhem

AAL Services

Service Class	Class A	Class B	Class C	Class D	
Timing Relation					
Bit Rate					
Connection Type					
AAL Type					
Examples	Circuit emulation, CBR audio/video	VBR audio/video	FTP	UDP	
January 2000	High-Sp	peed Networks©Alm	ulhem	38	

ATM Switching

- Cells get switched in a synchronous fashion.
- During one cell time:
 - » a cell is taken from an input port
 - » a cell is witched inside the fabric
 - » a cell is served on the output port

January 2000

High-Speed Networks@Almulhem

Input Queuing

• Head-of-line blocking.

January 2000

High-Speed Networks@Almulhem

Output Queuing

January 2000

High-Speed Networks@Almulhem

42

Homework #1

- Using MATLAB, build an ATM switch as described earlier. The switch should do input queuing, output queuing or both.
 - Start with a single queue
 - Build a 2x2 switch
 - Build an NxN switch
- Deadline is Saturday Feb 24, 2001.

January 2000

High-Speed Networks@Almulhem