Performance modeling

Dr. Abdulaziz Almulhem

Recap

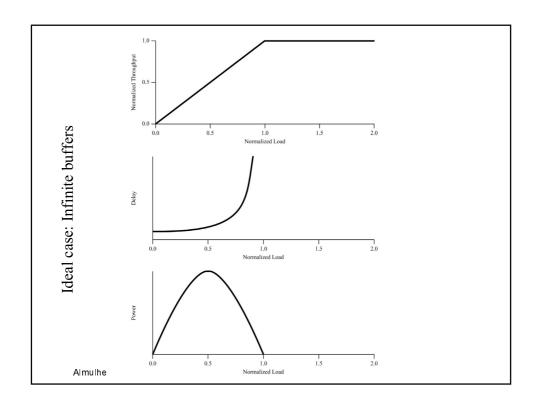
- Data networks
- Congestion

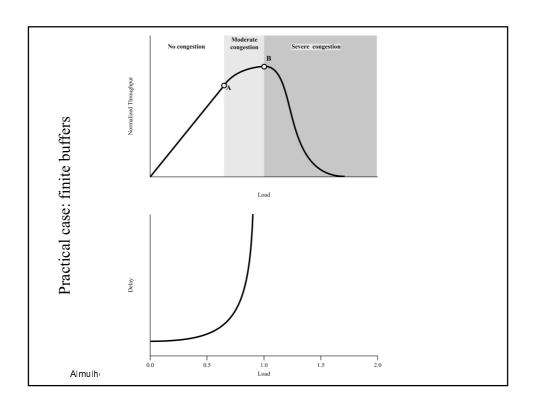
Almulhem©2001

Today's lecture

- Congestion
- Traffic characterization
- Probability
- examples

Almulhem@2001


3


Congestion

- To see the impact of congestion of network performance, we define:
 - Throughput = delivered packets to dest
 - Offered load = transmitted pkts by src
 - We normalize to max. theoretical throughput
 - Delay
 - Power = ratio of throughput to delay

Almulhem@2001

.

Preliminary

- An important design issue of networking is the ability to model and estimate performance parameters
 - For example, estimate future traffic volumes and characteristics

Almulhem@2001

7

Why do we need such estimates?

- To study the effect of routing protocols
- To estimate resources needed by reservation protocols
- To study queuing discipline
- To identify buffer sizes needed

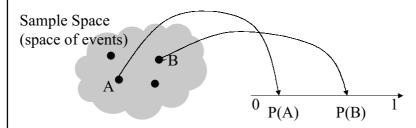
Almulhem@2001

Preliminary

- Parameters used in characterizing data traffic:
 - Throughput characteristics:
 - Average rate: the load sustained by the source over a time period (resource allocation)
 - Peak rate: the max. load a source can generate (buffering might be needed for smoothing)
 - 3. <u>Variability</u>: burstiness of a source

Almulhem@2001

9


Preliminary

- Delay characteristics:
 - Transfer delay: delay from source to destination
 - Delay variation (jitter): variation in transfer delay (impacts real-time applications)

Almulhem@2001

Probability Premier

Probability P(A) of an event A is a number that corresponds to the likelihood that the event A will occur

Almulhem©2001

11

Definitions & observations

- 0 P(A) 1
- P(A_i) = 1; A_i is an event in the sample space
- $P(A) = N_a/N;$
 - N_a= number of outcomes in which A occurred (frequency)
 - N= total number of possible outcome

Almulhem@2001

Definitions & observations

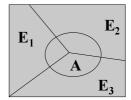
- If two events A & B are mutually exclusive (independent) then:
 - Prob (A or B is to occur) =P(A) + P(B)
 - Prob (A and B to occur) =P(A) * P(B)
 - EX. Out of 2 apples and 3 oranges in a basket, what is the prob. of having 2 oranges when I need to grab three items from the basket?

Almulhem@2001

13

Definitions & observations

- The conditional prob. of an event A assuming the event B has occurred P(A|B) is (A & B are not independent):
 - P(A|B)=P(AB)/P(B)
 - If A & B are independent:
 - \bullet P(A|B)=P(A) & P(A|B)=P(B)


Almulhem@2001

Baye's Theorem

- Given the set of mutual exclusive events E₁, ..., E_n
 - E_i covers an arbitrary event A
 - $P(A) = \prod_{i=1}^{n} P(A|E_i)P(E_i) = ?$

Then

 $P(E_i|A)=P(A|E_i)P(E_i)/P(A)$

Almulhem©2001

15

Example

Given,

 S_0 = event of sending 0

 S_1 = event of sending 1

 R_0 = event of receiving 0

 R_1 = event of receiving 1

$$P(S_0) = p$$
 $P(S_1) = 1-p$

Also the received data (bits) can be observed

$$P(R_0|S_1) = p_a \& P(R_1|S_0) = p_b$$

Almulhem©2001

Example

- Now to calculate the conditional probability of an error
 - That is a one was sent given that a zero is received

$$P(S_1|R_0) = P(R_0|S_1) P(S_1) / P(R_0)$$

Where $P(R_0) = P(R_0|S_0) P(S_0) + P(R_0|S_1) P(S_1)$

$$P(S_1|R_0)=p_a p / [p_a p+(1-p_b)(1-p)]$$

Almulhem@2001