
 بسم االله الرحمن الرحيم
، و له الحمد في الأرض ما فيالحمد الله الذي له ما في السماوات و

 وهو الحكيم الخبيرالآخرة

This is a compiled set of my lecture notes that I used in teaching COE 405 “Design

and Modeling of Digital Systems”. These notes have evolved since I developed and

offered the course for the first time in the 981 semester. The notes have been also

enhanced in the semesters; 011, 041, 042 and 052.

These lectures were also largely used by my colleague Dr. Aiman El-Maleh when

he taught the same course (COE 405) in 021 and 031.

With the exception of the “Introduction” and the “VHDL Synthesis” Lectures, all

these lectures were developed by me using the following references:

1. Zainalabedin Navabi, “VHDL: Analysis and Modeling of Digital Systems”,
McGraw-Hill, Inc., 2nd edition, 1997. (Current textbook of the course)

2. Douglas Perry, “VHDL” McGraw-HILL 1998.
3. K. Skahill, “VHDL for Programmable Logic,” Addison Wesley, 1996.
4. R. Lipsett, C. Schaefer, and C. Ussery, “VHDL: Hardware Description and

Design,” Kluwer Academic Publishers, 1990.
5. James R. Armstrong, “Chip-Level Modeling with VHDL,” Prentice Hall 1989.

The cover pages of these two lectures (“Introduction” and the “VHDL Synthesis”)

acknowledge their original authors.

Bookmarks of various topics and subtopics have been provided for Easy navigation.

To encourage thorough reading, I promise to pay 5 SR for the first student who

identifies any non-trivial coding error in these notes.

Wishing the best to all,

Dr. Alaaeldin Amin

Lecture 1 © Dr. Alaaeldin Amin Slide 1

COE 405
Design and Modeling of

Digital Systems *
Dr. Alaaeldin A. Amin

Computer Engineering Department

E-mail: amin@ccse.kfupm.edu.sa

Home Page : http://www.ccse.kfupm.edu.sa/~amin

* This Lecture is Mostly taken from from : Dr. A. Selçuk Öğrenci
ogrenci@boun.edu.tr

Lecture 1 © Dr. Alaaeldin Amin Slide 2

Course Objective

Learning VHDL
Write Functionally Correct and well-documented
VHDL Code of Combinational or Sequential
Digital Systems Intended for Modeling or
Synthesis Purposes

Define and Use the 3 Major Modeling Styles
(Structural, DataFlow, Behavioral)

Define a Suitable Test Bench for Model
Verification

Lecture 1 © Dr. Alaaeldin Amin Slide 3

Course Objective

More on Digital System Design (Data-
Path & Control)

More (Applications) on Computer
Arithmetic

Lecture 1 © Dr. Alaaeldin Amin Slide 4

TOPICS

Handout,
Ch 1

Digital System Design,
Abstraction hierarchy, Types
of Behavioral Descriptions
The Digital Design Space &
Design Decomposition.

Structured
Design
Methodologies

Lecture 1 © Dr. Alaaeldin Amin Slide 5

TOPICS

Tutorials on available SimulatorsDesign &
Modeling
Tools

HandoutData Path and Control Path.
Sample designs. VHDL Models

Digital System
Design

Handout
, Ch 3

Design Partitioning & Top-
Down Design. Design Entities,
Signals vs. Variables,
Architectural Bodies, Different
design views, behavioral model,
dataflow model, structural
models.

VHDL Quick
Overview

Lecture 1 © Dr. Alaaeldin Amin Slide 6

TOPICS

Ch 5Structural Models, Configuration
Statement, Modeling
Iterative/Regular Structures, and
Test Benches.

Structural
Models

Ch 4,
handout

Variables vs. Signals, sequential vs
concurrent constructs, Signal
Propagation Delay & Delay types,
Transactions, Events and
Transaction Scheduling, Signal
Attributes.

Signals, Delays
&
Concurrency.

Handou
t, Ch. 7

Lexical Elements, Data Types
(Scalars & Composites), Type
Conversion, Attributes, Classes of
objects. Operators & Precedence,
Overloading.

VHDL
Language
Basics

Lecture 1 © Dr. Alaaeldin Amin Slide 7

TOPICS

Ch. 9Process & Wait Statements, Assert
Statement, General Algorithmic
Model, Moore and Mealy Machine
Algorithmic Models, Data &
Control Path Design.

Behavioral
Models

Ch 8Concurrent Signal Assignment,
Block statements, Guards,
Resolution functions, Resolved
Signals and Signal Kinds, Data
Flow Moore & Mealy Models, Data
& Control Path Data Flow Models.

Dataflow Models

Ch 6Packages & Libraries. Design
Parameterization, Design
Configuration & General purpose
test bench.

Design
Organization &
Parameterization

Lecture 1 © Dr. Alaaeldin Amin Slide 8

TOPICS

Ch10, 11.CPU Design
Example

Handout
Notes

Combinational, sequential
logic synthesis, state machine
synthesis.

Introduction
to VHDL
Synthesis

Lecture 1 © Dr. Alaaeldin Amin Slide 9

Grading Policy

•Homework Assignments 20%

Midterm Exam 20%

Project 25%

Project Presentation 10%

Quizzes 25%

•Homework Assignments 15%

Midterm Exam 20%

Project 25%

Quizzes 15%

Final 25%

Option 2Option 1

Lecture 1 © Dr. Alaaeldin Amin Slide 10

Digital System Design

Realization of a specification Subject to
the Optimization of

Area (Chip, PCB)

Speed

Power dissipation

Design time

Testability

Lecture 1 © Dr. Alaaeldin Amin Slide 11

Digital System Design

REG1 REG2

Main Logic
 Unit

REG3

Logic

Finite
State

Machine

Data Path
Control

Path

Lecture 1 © Dr. Alaaeldin Amin Slide 12

Digital System Design Cycle
Design Idea System Specification

Behavioral (Functional) Design

Logic Design

Circuit Design

Physical Design

Fabrication & Packaging

Data Path Design

Pseudo Code, Flow Charts

Bus & Register Structure

Netlist (Gate & Wire Lists)

Transistor List

VLSI / PCB Layout

Lecture 1 © Dr. Alaaeldin Amin Slide 13

Number of Transistors in the CPU
(Intel family)

0,001

0,01

0,1

1

10

100

1970 1975 1980 1985 1990 1995 2000

tr
a

n
si

st
o

rs
 i

n
 m

il
li

o
n

s

Digital System complexity

Lecture 1 © Dr. Alaaeldin Amin Slide 14

How to deal with the
complexity?

Moore’s Law: Number of transistors that
can be packed on a chip doubles every 18
months while the price stays the same.

Hierarchy: structure of a design at
different levels of description

Abstraction: hiding the lower level
details.

Lecture 1 © Dr. Alaaeldin Amin Slide 15

H
i
e
r
a
r
c
h
y

Top
–

Down

Bottom
–

UP

Lecture 1 © Dr. Alaaeldin Amin Slide 16

Abstractions

An Abstraction is a Simplified Model of
Some Entity Which Hides Certain
Amount of the Internal Details of this
Entity
Examples are: NAND gate, Transistor,
Abstract Data Type, etc.
Lower Level Abstractions Give More
Details of the Modeled Entity.

Lecture 1 © Dr. Alaaeldin Amin Slide 17

Hardware Levels of
Abstraction

Several Levels of Abstractions (Details)
are Commonly Used:

System Level

Chip Level

Register Level

Gate Level

Circuit (Transistor) Level

Layout (Geometric) Level

More Details

(Less Abstract)

Lecture 1 © Dr. Alaaeldin Amin Slide 18

Design Domains &
Levels of Abstraction

Designs Can Be Expressed / Viewed in
one of 3 Possible Domains

Behavioral Domain (Behavioral View)

Structural/Component Domain (Structural View)

Physical Domain (Physical View)

A Design Modeled in a Given Domain
Can be Represented at Several Levels of
Abstraction (Details)

Lecture 1 © Dr. Alaaeldin Amin Slide 19

Design Domains &
Levels of Abstraction

 Design Domain

 Behavioral Structural Physical
Abstraction Level
System English Specs Computer, Disk

Units, Radar, etc.
Boards, MCMs,
Cabinets

Chip Algorithms, Flow
Charts

Processors,
RAMs, ROMs

Chips, Floor Plans,
PCBs

Register Data Flow, Reg.
Transfer

Registers, ALUs,
Counters, MUX,
etc.

Std. Cells, Floor
Plans

Gate Boolean
Equations

AND, OR, XOR,
FFs, etc

Cells, Gates, FFs,
PCBs

Circuit (Tr) Diff, and element
Equations

Transistors, R, L,
C, etc …

Mask Geometry
(Layout)

Black Box

View
Grey Box

View
White Box

View

Lecture 1 © Dr. Alaaeldin Amin Slide 20

Design methods
Full custom

Maximal freedom
High performance blocks
Slow

Semi-custom
Gate Arrays

Mask Programmable (MPGAs)
Field Programmable (FPGAs))

Standard Cells
Silicon Compilers & Parametrizable Modules (adder,
multiplier, memories)

Lecture 1 © Dr. Alaaeldin Amin Slide 21

Design vs. Synthesis

Synthesis:
The Process of Transforming H/W from One Level
of Abstraction to a Lower One

Design:
A Sequence of Synthesis Steps Down to a Level of
Abstraction Which is Manufacturable

Lecture 1 © Dr. Alaaeldin Amin Slide 22

Lecture 1 © Dr. Alaaeldin Amin Slide 23

Lecture 1 © Dr. Alaaeldin Amin Slide 24

Design Automation & CAD
Tools

Design Entry (Description) Tools
Schematic Capture
Hardware Description Language (HDL)

Simulation (Design Verification) Tools
Simulators (Logic level, Transistor Level, High Language
Level “HLL”)

Synthesis Tools
Test Vector Generation Tools

Lecture 1 © Dr. Alaaeldin Amin Slide 25

HARDWARE DESCRIPTION LANGUAGES

HDL are used to describe the hardware
for the purpose of modeling, simulation,
testing, design, and documentation.

Modeling: behavior, flow of data, structure

Simulation: verification and test

Design: synthesis

Lecture 1 © Dr. Alaaeldin Amin Slide 26

Purpose of VHDL

Problem
Need a method to quickly design, implement, test, and document
increasingly complex digital systems
Schematics and Boolean equations inadequate for million-gate IC

Solution
A hardware description language (HDL) to express the design
Associated computer-aided design (CAD) or electronic design
automation (EDA) tools for synthesis and simulation
Programmable logic devices for rapid implementation of hardware
Custom VLSI application specific integrated circuit (ASIC)
devices for low-cost mass production

Lecture 1 © Dr. Alaaeldin Amin Slide 27

History of VHDL
Two widely-used HDLs today

VHDL

Verilog HDL (from Cadence, now IEEE standard)

VHDL - VHSIC Hardware Description Language

Very High Speed Integrated Circuit

Lecture 1 © Dr. Alaaeldin Amin Slide 28

VHDL history

Created by DOD to document military designs for
portability

IEEE standard 1076 (VHDL) in 1987

Revised IEEE standard 1076 (VHDL) in 1993

IEEE standard 1164 (object types standard) in 1993

IEEE standard 1076.3 (synthesis standard) in 1996

Lecture 1 © Dr. Alaaeldin Amin Slide 29

VHDL: Why to use?
Reasons to use VHDL

Power and flexibility
Device-independent design
Portability among tools and devices
Device and tool benchmarking capability
VLSI ASIC migration
Quick time-to-market and low cost (with programmable logic)

Problems with VHDL
Loss of control with gate-level implementation (so what?)
Inefficient logic implementations via synthesis (engineer-
dependent)
Variations in synthesis quality among tools (always improving)

Lecture 1 © Dr. Alaaeldin Amin Slide 30

Design Flow in VHDL
Define the design requirements
Describe the design in VHDL

Top-down, hierarchical design approach
Code optimized for synthesis or simulation

Simulate the VHDL source code
Early problem detection before synthesis

Synthesize, optimize, and fit (place and route) the design for a
device

Synthesize to equations and/or netlist
Optimize equations and logic blocks subject to constraints
Fit into the components blocks of a given device

Simulate the post-layout design model
Check final functionality and worst-case timing

Program the device (if PLD) or send data to ASIC vendor

Lecture 1 © Dr. Alaaeldin Amin Slide 31

Design Tool Flow (Design Tool Flow (11))

VHDL
Design

Test Bench/
Stimulus

Source Simulation Software

Waveform Data File

Synthesis Software

Device
Selection

Synthesis
Directives

Equations or
Netlist

To Fitter Software

Functional Simulation

Courtesy of Prof. R.L. Haggard,

Tennessee Technological University

Lecture 1 © Dr. Alaaeldin Amin Slide 32

Design Tool Flow (Design Tool Flow (22))

Fitter (Place & Route) Software

Device
Programming

File
or ASIC Data

Report
File

Equations or
Netlist

From Synthesis
Test Bench/

Stimulus

Post-fit Simulation Software

Waveform Data FilePost-fit
Model

Full-timing Simulation
Courtesy of Prof. R.L. Haggard,

Tennessee Technological University

Lecture 1 © Dr. Alaaeldin Amin Slide 33

STYLES in VHDL
Levels of Abstraction (Architectural Styles):
Behavioral

High level, algorithmic, sequential execution
Hard to synthesize well
Easy to write and understand (like high-level language code)

Dataflow
Medium level, register-to-register transfers, concurrent execution
Easy to synthesize well
Harder to write and understand (like assembly code)

Structural
Low level, netlist, component instantiations and wiring
Trivial to synthesize
Hardest to write and understand (very detailed and low level)

Lecture 1 © Dr. Alaaeldin Amin Slide 34

SUMMARY
The VLSI digital design problem is described.

VLSI design automation and CAD tools are mentioned.

Purpose and background of VHDL have been pointed out.

VHDL and programmable logic are the best current solution for
rapid design, implementation, testing, and documenting of complex
digital systems.

A standard 6-step design synthesis process is used with VHDL.

The general flow of information through standard VHDL synthesis
CAD tools was described.

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

1

VHDL Lexical Elements

Dr. Alaaeldin Amin

• Design File
– Lexical Elements &&

– Separators

• Reserved Words

• User-Defined Identifiers

• Literals
– 1. Character Literals

– 2. String Literals

– 3. Bit-String Literals

– 4. Abstract (Numeric) Literals
• Based Literals

OUTLINE

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

2

(a) Separators: Any # of Separators Allowed
Between Lexical Elements

1. Space character

2. Tab

3. Line Feed / Carriage Return
(EOL)

(b) Lexical Elements: Three types:

1. Delimiters " Meaningful Separator Characters"

2. Identifiers

3. Literals Types of literals:

(i) Character Literal

(ii) String Literal

(iii) Bit String Literal

(iv) Abstract (Numeric) Literal

VHDL Lexical Elements

Design File = Sequence of

•Lexical Elements &&
•Separators

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

3

(i) Delimiters are Separators Which Have Meaning

Note: The operator <= has two meanings:

1. Less Than or Equal, and

2. Signal Assignment Operator

(ii) Identifiers: Two Types:

1. Key/Reserved Words (No Declaration Required)

2. User-Defined

VHDL Lexical Elements

Simple Delimiters

(Single character delimiters)

e.g.
& ' () * + , -
; < . / : = > |

Compound Delimiters

(Single character delimiters)

e.g.
** := <= => /=

>= - -

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

4

Reserved Words
abs disconnect label package

access downto library Poll units

after linkage procedure until

alias else loop process use

all elsif variable

and end map range

architecture entity mod record wait

array exit nand register when

assert new rem while

attribute file next report with

begin for nor return xor

block function not select

body generate null severity

buffer generic of signal

bus guarded on subtype

case if open then

component in or to

configuration inout others transport

constant is out type

VHDL Lexical Elements

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

5

User-Defined Identifiers
Definition:

Identifier ::= Letter { [underscore] Letter_or_Digit}

Identifiers in VHDL Must Satisfy the Following:

• Start with a Letter

• Followed by any # of Alpha-Numeric Characters

• No 2-Consecutive Underscores are Allowed

• Underscore Cannot be the Last Character in an
Identifier

• Case insensitive

• No VHDL reserved/key word.

Examples:

• mySignal_23 -- Valid identifier

• rdy, RDY, Rdy -- Valid identical identifiers

• vector_&_vector -- Invalid special character

• last of Zout -- Invalid white spaces

• idle__state --Invalid consecutive underscores

• 24th_signal -- Invalid Doesn’t Start
-- with a Letter

• open, register -- Invalid VHDL keywords

VHDL Lexical Elements

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

6

Extended Identifiers (VHDL-93 Only)
Definition:
extended_identifier ::= \\ graphic_character {graphic_character} \\

Extended Identifiers in VHDL are characterized by the following:
• Defined in VHDL-93 only
• Enclosed in back slashes
• Case sensitive
• Graphical characters allowed
• May contain spaces and consecutive underscores
• VHDL keywords allowed
Examples:
• \mySignal_23\ -- extended identifier
• \rdy\, \RDY\, \Rdy\ -- 3 different identifiers
• \vector_&_vector\ -- legal
• \last of Zout\ -- legal
• \idle__state\ -- legal
• \24th_signal\ -- legal
• \open\, \register\ -- legal

Comments

• Start with - - "2 Consecutive Dashes"

• Comment Must be the LAST Lexical Element on the Line
• IF Line starts with - -, It is a Full-Line Comment.

Examples:
- - This is a Full-Line Comment
C := A*B; - - This is an In-Line Comment

VHDL Lexical Elements

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

7

Literals

Character String Abstract(Numeric)

(Bit-String) (Based Literals)

(i) Character Literal

• Single Character Enclosed in Single Quotes

• Used to Define Constant Values of Objects of Type
Character

• Literal values are Case Sensitive; ‘z’ NOT SAME as ‘Z’

Examples of Character Literals:

‘A’ ‘B’ ‘e’ ‘ ’ ‘1’ ‘9’ ‘*’ ……….etc.

(ii) String Literal

• Sequence of Characters Enclosed in Double Quotes

• IF a Quotation Char is part of the character sequence, 2
Consecutive Quotation Marks Are Used

– No 2 Strings are Allowed on the same Line

Examples:

"A String" -- 8-Char String

"" -- Empty String

" " " " -- 4-Double Quotes String of Length 1

"A+B=C;#3=$" -- String with Special Chars

VHDL Lexical Elements

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

8

(ii) String Literal (Contd)

• Strings Must Be Typed on One Line

• Longer Strings Are Concatenated from Shorter Ones
Using the & operator.

Examples:

"This is a Very Long String Literal" &

"Formed By Concatenation"

(iii) Bit String Literals

• Is a String Literal representing a “Bit Pattern”

• Bit String Literal are characterized by :
– Preceded By A Base Identifier ∈ {B, O, X}

{B for Binary, O for Octal and X for Hex}

– Allowed Chars are Digits of the Base Number
System or Underscores.

– The Length of the String Does Not Include the
Number of Underscores

Examples:

• B"11011001" -- Length 8 (Binary)

• B"1101_1001" -- Length 8 (Binary)

• X"D9" -- Length 8 (HEX Equiv to Above String)

• O"331" -- Length 9 (Octal)

VHDL Lexical Elements (Literals)

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

9

(iii) Bit String Literals (Contd)

• Used to Specify Initial Contents of Registers

• Value of Bit-String is Equivalent to a String of Bits,
However, Interpreting This Value is a User Choice

Examples:

• X"A" -- Represents the String 1010

-- Interpreted as a Decimal Value of ten

-- if it represents an Unsigned Number.

-- Interpreted as -6 if it represents a

-- signed 2`s Complement Number

(iv) Abstract (Numeric) Literals

1. Default is Decimal

2. Other Bases Are Possible (Bases Between 2 and 16)

3. Underscore Char May Be Used to Enhance Readability

4. Scientific Notations Must Have Integer Exponent

5. Integer Literals Should Not Have Base Point

6. Integer Literals Should Not Have -ive Exponents

7. Real Literals, Should Have a Base Point which Must

Be Followed By AT LEAST ONE DIGIT

8. No Spaces Are Allowed

VHDL Lexical Elements

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

10

(iv) Abstract (Numeric) Literals (Contd)

Examples:

0 1 123_987_456 73E13 -- Integers

0.0 2.5 2.7_456 73.0E-2 12.5E3 -- Reals

Special Case (BASED LITERALS)

• General Base Abstract Literals (Including Decimal)

Based_Literal::=Base#Based_Integer[.Based_Integer]#[Exponent]

Based_Integer::=Extd_Digit { [Underscode] Extd_Digit }

Extd_Digit::=digit | Letters_A-F

• Both Base and Exponent are Expressed in Decimal

• Base Must be Between 2 & 16

• Digits Are Extended to Use the HEX Characters A-F

Examples:
The Following Represent Integer Value of 196

2#1100_0100# , 16#C4#

4#301#E1 , 10#196#

The Following Represent Real Value of 4095.0

2#1.1111_1111_111#E11 , 16#F.FF#E2

10#4095.0#

VHDL Lexical Elements

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

11

• Formal grammar of the IEEE Standard 1076-1993
VHDL language in BNF format

– Appendix E

– http://www.iis.ee.ethz.ch/~zimmi/download/vhdl93_synta
x.html

VHDL Lexical Elements

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

1

VHDL: A Quick Overview

Dr. Alaaeldin Amin

VHDL Basic Modeling Unit (Design Entity)

• Example (Ones Count Circuit)
– Interface Specs

– 1. Behavioral View

– 2. Data Flow View (2-Level
Implementation)

– 3. Data Flow View (using functions)

– 4. Behavioral View (using Truth Table)

– 5. Structural View

OUTLINE

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

2

Hardware MOdeling using vhdl

• VHDL is NOT CaSe-SeNsItIvE , Thus:
Begin = begin = beGiN

• Semicolon “ ; ” Terminates Declarations or Statements.
• Line Feeds and Carriage Returns are not Significant in

VHDL.

DESIGN ENTITY

Interface Specs

• Name

• Ports (In, Out, InOut)

• Attributes

ICON

Architectural Specs

•Behavioral(Algorithmic) ,

•DataFlow,

• Structural

A

B

ZName

Basic Modeling

Unit

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

3

Example

“Ones Count CIRCUIT”

• Value of C1 C0 = No. of Ones in the Inputs A2, A1, and
A0

• C1 is the Majority Function (=1 IFF Two or More
Inputs =1)

• C0 is a 3-Bit Odd-Parity Function (OPAR3))

• C1 = A1 A0 + A2 A0 + A2 A1

• C0 = A2 A1’ A0’ + A2’ A1’ A0 + A2 A1 A0 +

A2’ A1 A0’

A0

A2

C0

A1

C1

ONES_CNT

C1

Majority Fun

C0

OPAR Function

AND2 AND3OR3 OR4

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

4

Example “Ones Count CIRCUIT
INTERFACE SPECs

entity ONES_CNT is

port (A : in BIT_VECTOR(2 downto 0);

C : out BIT_VECTOR(1 downto 0));

-- Function Documentation of ONES_CNT
-- (Truth Table Form)
-- ---
-- This is a COMMENT
-- ___________________
--	A2 A1 A0	C1 C0
-- | 0 0 0 | 0 0 |
-- | 0 0 1 | 0 1 |
-- | 0 1 0 | 0 1 |
-- | 0 1 1 | 1 0 |
-- | 1 0 0 | 0 1 |
-- | 1 0 1 | 1 0 |
-- | 1 1 0 | 1 0 |
-- | 1 1 1 | 1 1 |
-- |__________ |________|
--

end ONES_CNT ;

1

2

3

D
O
C
U
M
E
N
T
A
T
I
O
N

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

5

example “Ones Count CIRCUIT

Architectural Body
(((((Behavioral view-1)))))

architecture Algorithmic of ONES_CNT is

begin

Process(A) -- Sensitivity List Contains only Vector A
Variable num: INTEGER range 0 to 3;

begin
num :=0;
For i in 0 to 2
Loop

IF A(i) = '1' then
num := num+1;

end if;
end Loop;

--

-- Transfer "num" Variable Value to a SIGNAL
--

CASE num is
WHEN 0 => C <= "00";
WHEN 1 => C <= "01";
WHEN 2 => C <= "10";
WHEN 3 => C <= "11";

end CASE;
--

end process;

end Algorithmic;
© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

6

example “Ones Count CIRCUIT

Architectural Body
2- Data Flow view (2-Level Implementation)

architecture Two_Level of ONES_CNT is

begin

C(1) <=(A(1) and A(0)) or (A(2) and A(0))
or (A(2) and A(1));

--
C(0) <= (A(2) and not A(1) and not A(0))

or (not A(2) and not A(1) and A(0))
or (A(2) and A(1) and A(0))
or (not A(2) and A(1) and not A(0));

end Two_Level;

• C1 = A1 A0 + A2 A0 + A2 A1

• C0 = A2 A1’ A0’ + A2’ A1’ A0 + A2 A1 A0 +

A2’ A1 A0’

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

7

architecture Macro of ONES_CNT is

begin

C(1) <= MAJ3(A);
--

C(0) <= OPAR3(A);

end Macro ;

Example “Ones Count CIRCUIT

Architectural Body
3- Data Flow view
(Using Functions)

• Functions OPAR3 and MAJ3 Must Have Been
Declared and Defined Previously

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

8

example “Ones Count CIRCUIT

Architectural Body
(((((Behavioral view -4)))))

architecture Truth_Table of ONES_CNT is

begin
--
Process(A) -- Sensitivity List Contains only Vector A

Variable num: BIT_VECTOR(2 downto 0);

begin
num :=A;

CASE num is
WHEN "000" => C <= "00";
WHEN "001" => C <= "01";
WHEN "010" => C <= "01";
WHEN "011" => C <= "10";
WHEN "100" => C <= "01";
WHEN "101" => C <= "10";
WHEN "110" => C <= "10";
WHEN "111" => C <= "11";

end CASE;
--

end process;

end Truth_Table;

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

9

“Ones Count CIRCUIT example ”

• C1 = A1 A0 + A2 A0 + A2 A1 =MAJ3(A)

• C0 = A2 A1’ A0’ + A2’ A1’ A0 + A2 A1 A0 +

A2’ A1 A0’ = OPAR3(A)

ONES_CNT

C1

Majority Fun

C0

Odd-Parity Fun

AND2 AND3OR3 OR4

VHDL STRUCTURAL DESCRIPTION

entity MAJ3 is
PORT(X: in BIT_Vector(2 downto 0);

Z: out BIT);
end MAJ3 ;

Structural Design Hierarchy

entity OPAR3 is
PORT(X: in BIT_Vector(2 downto 0);

Z: out BIT) ;
end OPAR3 ;

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

10

VHDL STRUCTURAL DESCRIPTION

G1

G3

G2

x(0)
x(1)

x(0)
x(2)

x(1)
x(2)

G4

A2

A1

A3

Z

Maj3
Majority Function

architecture Structural of MAJ3 is
COMPONENT AND2

PORT(I1, I2: in BIT; Declare Components
O: out BIT); To Be Instantiated

END COMPONENT;
COMPONENT OR3

PORT(I1, I2, I3: in BIT;
O: out BIT);

END COMPONENT;
--
SIGNAL A1, A2, A3: BIT; Declare Maj3 Local Signals
begin
-- Instantiate Gates

g1: AND2 PORT MAP (X(0), X(1), A1);
g2: AND2 PORT MAP (X(0), X(2), A2); Wiring of
g3: AND2 PORT MAP (X(1), X(2), A3); Maj3
g4: OR3 PORT MAP (A1, A2, A3, Z); Compts.

end Structural;

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

11

g3
g4

Z1

Z2

Z3

Z4

Z

g1 g2
x(0) A0B x(1) A1B

x(2) A2B
X(2)

A1B

X(0)
A1B

g5

g6

g7

A0B

A2B

X(0)
X(1)

X(2)

X(1)
A2B

A0B

C0 Odd-Parity

(OPAR3)

g8

architecture Structural of OPAR3 is
Component INV

PORT(Ipt: in BIT; Opt: out BIT);
end Component ;
Component NAND3

PORT(I1, I2, I3: in BIT; O: out BIT);
end Component ;
Component NAND4

PORT(I1, I2, I3, I4: in BIT; O: out BIT);
end Component ;
--
SIGNAL A1B, A2B, A0B, Z1, Z2, Z3, Z4: BIT;
begin

g1: INV PORT MAP (X(0), A0B);
g2: INV PORT MAP (X(1), A1B);
g3: INV PORT MAP (X(2), A2B);
g4: NAND3 PORT MAP (X(2), A1B, A0B, Z1);
g5: NAND3 PORT MAP (X(0), A1B, A2B, Z2);
g6: NAND3 PORT MAP (X(0), X(1), X(2), Z3);
g7: NAND3 PORT MAP (X(1), A2B, A0B, Z4);
g8: NAND4 PORT MAP (Z1, Z2, Z3, Z4, Z);

end Structural; © Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

12

Top Structural level of ones_cnt

architecture Structural of ONES_CNT is

COMPONENT MAJ3

PORT(X: in BIT_Vector(0 to 2);

Z: out BIT);

END COMPONENT;

COMPONENT OPAR3

PORT(X: in BIT_Vector(0 to 2);

Z: out BIT);

END COMPONENT;

--

begin

-- Instantiate Components

--

c1: MAJ3 PORT MAP (A, C(1));

c2: OPAR3 PORT MAP (A, C(0));

end Structural;

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

13

Behavioral definition of lower level components

entity INV is

PORT(Ipt: in BIT; Opt: out BIT);

end INV;

--

architecture behavior of INV is

begin

Opt <= not Ipt;

end behavior;

entity NAND2 is

PORT(I1, I2: in BIT; O: out BIT);

end NAND2;

--

architecture behavior of NAND2 is

begin

O <= not (I1 and I2);

end behavior;

Similarly Other Lower Level Gates Are
Defined

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

1

VHDL Lexical Elements

Dr. Alaaeldin Amin

• Design File
– Lexical Elements &&

– Separators

• Reserved Words

• User-Defined Identifiers

• Literals
– 1. Character Literals

– 2. String Literals

– 3. Bit-String Literals

– 4. Abstract (Numeric) Literals
• Based Literals

OUTLINE

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

2

(a) Separators: Any # of Separators Allowed
Between Lexical Elements

1. Space character

2. Tab

3. Line Feed / Carriage Return
(EOL)

(b) Lexical Elements: Three types:

1. Delimiters " Meaningful Separator Characters"

2. Identifiers

3. Literals Types of literals:

(i) Character Literal

(ii) String Literal

(iii) Bit String Literal

(iv) Abstract (Numeric) Literal

VHDL Lexical Elements

Design File = Sequence of

•Lexical Elements &&
•Separators

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

3

(i) Delimiters are Separators Which Have Meaning

Note: The operator <= has two meanings:

1. Less Than or Equal, and

2. Signal Assignment Operator

(ii) Identifiers: Two Types:

1. Key/Reserved Words (No Declaration Required)

2. User-Defined

VHDL Lexical Elements

Simple Delimiters

(Single character delimiters)

e.g.
& ' () * + , -
; < . / : = > |

Compound Delimiters

(Single character delimiters)

e.g.
** := <= => /=

>= - -

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

4

Reserved Words
abs disconnect label package

access downto library Poll units

after linkage procedure until

alias else loop process use

all elsif variable

and end map range

architecture entity mod record wait

array exit nand register when

assert new rem while

attribute file next report with

begin for nor return xor

block function not select

body generate null severity

buffer generic of signal

bus guarded on subtype

case if open then

component in or to

configuration inout others transport

constant is out type

VHDL Lexical Elements

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

5

User-Defined Identifiers
Definition:

Identifier ::= Letter { [underscore] Letter_or_Digit}

Identifiers in VHDL Must Satisfy the Following:

• Start with a Letter

• Followed by any # of Alpha-Numeric Characters

• No 2-Consecutive Underscores are Allowed

• Underscore Cannot be the Last Character in an
Identifier

• Case insensitive

• No VHDL reserved/key word.

Examples:

• mySignal_23 -- Valid identifier

• rdy, RDY, Rdy -- Valid identical identifiers

• vector_&_vector -- Invalid special character

• last of Zout -- Invalid white spaces

• idle__state --Invalid consecutive underscores

• 24th_signal -- Invalid Doesn’t Start
-- with a Letter

• open, register -- Invalid VHDL keywords

VHDL Lexical Elements

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

6

Extended Identifiers (VHDL-93 Only)
Definition:
extended_identifier ::= \\ graphic_character {graphic_character} \\

Extended Identifiers in VHDL are characterized by the following:
• Defined in VHDL-93 only
• Enclosed in back slashes
• Case sensitive
• Graphical characters allowed
• May contain spaces and consecutive underscores
• VHDL keywords allowed
Examples:
• \mySignal_23\ -- extended identifier
• \rdy\, \RDY\, \Rdy\ -- 3 different identifiers
• \vector_&_vector\ -- legal
• \last of Zout\ -- legal
• \idle__state\ -- legal
• \24th_signal\ -- legal
• \open\, \register\ -- legal

Comments

• Start with - - "2 Consecutive Dashes"

• Comment Must be the LAST Lexical Element on the Line
• IF Line starts with - -, It is a Full-Line Comment.

Examples:
- - This is a Full-Line Comment
C := A*B; - - This is an In-Line Comment

VHDL Lexical Elements

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

7

Literals

Character String Abstract(Numeric)

(Bit-String) (Based Literals)

(i) Character Literal

• Single Character Enclosed in Single Quotes

• Used to Define Constant Values of Objects of Type
Character

• Literal values are Case Sensitive; ‘z’ NOT SAME as ‘Z’

Examples of Character Literals:

‘A’ ‘B’ ‘e’ ‘ ’ ‘1’ ‘9’ ‘*’ ……….etc.

(ii) String Literal

• Sequence of Characters Enclosed in Double Quotes

• IF a Quotation Char is part of the character sequence, 2
Consecutive Quotation Marks Are Used

– No 2 Strings are Allowed on the same Line

Examples:

"A String" -- 8-Char String

"" -- Empty String

" " " " -- 4-Double Quotes String of Length 1

"A+B=C;#3=$" -- String with Special Chars

VHDL Lexical Elements

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

8

(ii) String Literal (Contd)

• Strings Must Be Typed on One Line

• Longer Strings Are Concatenated from Shorter Ones
Using the & operator.

Examples:

"This is a Very Long String Literal" &

"Formed By Concatenation"

(iii) Bit String Literals

• Is a String Literal representing a “Bit Pattern”

• Bit String Literal are characterized by :
– Preceded By A Base Identifier ∈ {B, O, X}

{B for Binary, O for Octal and X for Hex}

– Allowed Chars are Digits of the Base Number
System or Underscores.

– The Length of the String Does Not Include the
Number of Underscores

Examples:

• B"11011001" -- Length 8 (Binary)

• B"1101_1001" -- Length 8 (Binary)

• X"D9" -- Length 8 (HEX Equiv to Above String)

• O"331" -- Length 9 (Octal)

VHDL Lexical Elements (Literals)

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

9

(iii) Bit String Literals (Contd)

• Used to Specify Initial Contents of Registers

• Value of Bit-String is Equivalent to a String of Bits,
However, Interpreting This Value is a User Choice

Examples:

• X"A" -- Represents the String 1010

-- Interpreted as a Decimal Value of ten

-- if it represents an Unsigned Number.

-- Interpreted as -6 if it represents a

-- signed 2`s Complement Number

(iv) Abstract (Numeric) Literals

1. Default is Decimal

2. Other Bases Are Possible (Bases Between 2 and 16)

3. Underscore Char May Be Used to Enhance Readability

4. Scientific Notations Must Have Integer Exponent

5. Integer Literals Should Not Have Base Point

6. Integer Literals Should Not Have -ive Exponents

7. Real Literals, Should Have a Base Point which Must

Be Followed By AT LEAST ONE DIGIT

8. No Spaces Are Allowed

VHDL Lexical Elements

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

10

(iv) Abstract (Numeric) Literals (Contd)

Examples:

0 1 123_987_456 73E13 -- Integers

0.0 2.5 2.7_456 73.0E-2 12.5E3 -- Reals

Special Case (BASED LITERALS)

• General Base Abstract Literals (Including Decimal)

Based_Literal::=Base#Based_Integer[.Based_Integer]#[Exponent]

Based_Integer::=Extd_Digit { [Underscode] Extd_Digit }

Extd_Digit::=digit | Letters_A-F

• Both Base and Exponent are Expressed in Decimal

• Base Must be Between 2 & 16

• Digits Are Extended to Use the HEX Characters A-F

Examples:
The Following Represent Integer Value of 196

2#1100_0100# , 16#C4#

4#301#E1 , 10#196#

The Following Represent Real Value of 4095.0

2#1.1111_1111_111#E11 , 16#F.FF#E2

10#4095.0#

VHDL Lexical Elements

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

11

• Formal grammar of the IEEE Standard 1076-1993
VHDL language in BNF format

– Appendix E

– http://www.iis.ee.ethz.ch/~zimmi/download/vhdl93_synta
x.html

VHDL Lexical Elements

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

1

VHDL Data Types & Objects

Dr. Alaaeldin Amin

• Objects
– Constants,

– Variables

– Signals

• Data Types
– Scalars

• Numeric (Integer, Real)

• Enumerations

• Physical

– Composite
• Arrays, and

• Records

• VHDL Operations

OUTLINE

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

2

Data Types & objects

• VHDL OBJECT : Something that can Hold a Value
of a Given Data Type.

• VHDL has 3 Object Categories:
– CONSTANTS

– VARIABLES

– SIGNALS

Examples

Constant Rom_Size : Integer := 2**16;

Variable Busy, Active : Boolean := False;

Signal Reset: Bit := '0';

• Every Object & Expression Must Unambiguously
Belong to One Named Data Type

• A Data Type Defines a Set of Values & a Set of
Operations.

• VHDL is a Strongly-Typed Language. Types Cannot
be Mixed in Expressions or in Assigning Values to
Objects in General

objects

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

3

DATA TYPES

DATA TYPES

COMPOSITES

• Arrays

• Records

SCALERS

• Numeric
(Integer, Real)

• Enumerations

•Physical

SCALER DATA TYPES

File Type &

Access Type

• Not Used for
H/W Modeling

SYNTAX

TYPE Identifier IS Type-Definition

(I) Numeric Data Type

• Type-Definition is a Range_Constraint as follows:

Type-Definition := Range Initial-Value < To | DownTo> Final-Value

Ascending Range Descending Range

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

4

Examples

TYPE address IS RANGE 0 To 127;

TYPE index IS RANGE 7 DownTo 0;

TYPE voltage IS RANGE -0.5 To 5.5;

Number Formats:

• Integers Have no Base Point.

• Integers may be Signed or Unsigned (e.g. -5 356)

• Integers may not have -ive Exponents (Scientific
Notation),

• A Real Number must have a Base Point, and may
have -ive Exponents (Scientific Notation).

• Real Numbers May be Signed or Unsigned (e.g.
-3.75 1.0E-9 1.5E-12)

Based Numbers:

• Numbers Default to Base 10 (Decimal)

• VHDL Allows Expressing Numbers Using Other
Bases

Syntax

B#nnnn# -- Number nnnn is in Base B

Examples

16#DF2# -- Base 16 Integer (HEX)

8#7134# -- Base 8 Integer (OCTAL)

2#10011# -- Base 2 Integer (Binary)

16#65_3EB.37# -- Base 16 REAL (HEX)

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

5

Predefined numeric data types

1- INTEGER -- Range is Machine limited but At
Least -(231 - 1) To (231 - 1)

2- Positive -- INTEGERS > 0

3- Natural -- INTEGERS 0

4- REAL -- Range is Machine limited

≥

(II) Enumeration Data Type
• Parenthesized Ordered List of Literals. Each May be

an Identifier or a Character Literal. The List
Elements are Separated By Commas

• A Position # is Associated with Each Element in The
List

• Position #'s Begin with 0 for the Leftmost Element

• Variables & Signals of type ENUMERATION will
have the Leftmost Element as their Default (Initial)
Value unless, otherwise Explicitly Assigned.

Examples

TYPE Color IS (Red, Orange, Yellow, Green,
Blue, Indigo, Violet);

TYPE Tri_Level IS ('0', '1', 'Z');

TYPE Bus_Kind IS (Data, Address, Control);

TYPE state IS (Init, Xmit, Receiv, Wait, Terminal);

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

6

1- TYPE BIT IS ('0' , '1') ;

2- TYPE BOOLEAN IS (False, True) ;

3- TYPE CHARACTER IS (128 ASCII Chars......) ;

4- TYPE Severity_Level IS (Note, Warning, Error,
Failure) ;

5- TYPE Std_U_Logic IS (

'U' , -- Uninitialized

'X' , -- Forcing Unknown

'0' , -- Forcing 0

'1' , -- Forcing 1

'Z' , -- High Impedence

'W' , -- Weak Unknown

'L' , -- Weak 0

'H' , -- Weak 1

'-' , -- Don't Care

) ;

6- SUBTYPE Std_Logic IS resolved Std_U_Logic ;

Predefined Enumerated Data Types

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

7

• Specifies a Range Constraint , One Base Unit,

and 0 or More Secondary Units.

• Base Unit is Indivisible, i.e. No Fractional

Quantities of the Base Units Are Allowed.

• Secondary Units Must be Integer Multiple of

the Indivisible Base Unit.

Examples

TYPE Resistance IS Range 1 To 10E9

Units

Ohm; -- Base Unit

Kohm = 1000 Ohm; -- Secondary Unit

Mohm = 1000 Kohm; -- Secondary Unit

end Units ;

(III) Physical Data Type

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

8

Predefined Physical data types

• Time is the ONLY Predefined Physical Data
Type

TYPE Time IS Range 0 To 1E20

Units

fs; -- Base Unit (Femto* Second)

ps = 1000 fs; -- Pico_Second

ns = 1000 ps; -- Nano_Second

us = 1000 ns; -- Micro_Second

ms = 1000 us; -- Milli_Second

sec = 1000 ms; -- Second

min = 60 sec; -- Minuite

hr = 60 min; -- Hour

end Units ;

* Femto = 1E-15

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

9

Composite Data Types

Elements of an Array Have the Same Data Type

• Arrays May be Single / Multi - Dimensional

• Array Bounds may be either Constrained or
Unconstrained.

(a) Constrained Arrays

• Array Bounds Are Specified

Syntax:

TYPE id Is Array (Range_Constraint) of Type;

Examples

TYPE word Is Array (0 To 7) of Bit;

TYPE pattern Is Array (31 DownTo 0) of Bit;

2-D Arrays

TYPE col Is Range 0 To 255;

TYPE row Is Range 0 To 1023;

TYPE Mem_Array Is Array (row, col) of Bit;

TYPE Memory Is Array (row) of word;

(I) Arrays

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

10

(b) Unconstrained Arrays

• Array Bounds Not Specified Through Using the
notation RANGE<>

• Type of each Dimension is Specified, but the exact
Range and Direction are not Specified.

• Useful in Interface_Lists Allows Dynamic Sizing
of Entities , e.g. Registers.

• Bounds of Unconstrained Arrays in Such Entities
Assume the Actual Array Sizes When Wired to the
Actual Signals.

Example

TYPE Screen Is Array (Integer Range <> , Integer
Range<>) of BIT;

Predefined array types

Two UNCONSTRAINED Array Types Are Predefined

1) BIT_VECTOR

TYPE Bit_Vector Is Array (Natural Range<>) of Bit;

2) String

TYPE String Is Array (Positive Range<>) of Character;

Example

SUBTYPE Pixel Is Bit_Vector (7 DownTo 0);

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

11

Referencing arrays & array elements

• VHDL allows referencing an Array in its Entirety
or By a SLICE, or Element.

EXAMPLE

TYPE clock_state IS (Low, Rising, High, Falling);

TYPE Conversion_Array IS Array (Clock_state) of Bit;

Signal C_A : Conversion_Array := ('0' , '1', '0', '1') ;

C_A <= ('1', '1', '0', '0'); -- Positional Association List

C_A <= (High => ‘0', Rising => '1', Low => ‘1', Falling =>
'0'); -- Named Association List

C_A <= (Low => '0', Falling => '0', OTHERS=> '1');
-- Alternative 3

C_A(Low) <= '0';

TYPE Register4 IS Array (3 Downto 0) of Bit;

TYPE Reg4 IS Array (0 To 3) of Bit;
Signal A: Register4 := ('0' , '1', '0', '1') ;- -A(0)='1', A(3)='0'

Signal B: Reg4 := ('0' , '1', '0', '1') ;- -B(0)='0', B(3)='1'

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

12

Referencing arrays & array elements

2-D Arrays

TYPE Reg32 Is Array (31 DownTo 0) of Bit;

TYPE ROM Is Array (0 To 3) of Reg32;

TYPE ROM2 Is Array (0 To 4 , 0 To 2) of Bit;

Signal A: ROM := (X"2F3C_5456" , X"FF32_E7B8" ,

X"109A_BA15" , X"FFFF_FFFF");

Signal B: ROM2 := (('1', '0', '0'),

('0' , '1', '0'),

('0' , '1', '1',

('1' , '0', '1'),

('1' , '1', '1')) ;

B(1 , 2) <= '0' ; -- Referencing a 2-D Array Element

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

13

TYPE qit IS (‘0’ , ‘1’ , ‘Z’ , ‘X’);

TYPE qit_nibble IS ARRAY (3 DOWNTO 0) OF qit;

TYPE qit_byte IS ARRAY (7 DOWNTO 0) OF qit;

TYPE qit_word IS ARRAY (15 DOWNTO 0) OF qit;

TYPE qit_4by8 IS ARRAY (3 DOWNTO 0 , 0 TO 7)
OF qit; -- 2-D array

TYPE qit_nibble_by_8 IS ARRAY (0 TO 7) OF
qit_nibble;

SIGNAL sq1 : qit ;

SIGNAL sq4 : qit_Nibble ;

SIGNAL sq8 : qit_byte := "ZZZZZZZZ“ ;

SIGNAL sq16 : qit_word ;

SIGNAL sq_nibble_8 : qit_nibble_by_8 ;

sq8 <= "Z101000Z" ;

sq8 <= sq16 (11 DOWNTO 4); -- middle 8 bit slice of

-- sq16 to sq8

sq16 (15 DOWNTO 12) <= sq8(5 DOWNTO 2) ;

-- sq8 Middle Nibble into left 4 bit slice of sq16

sq4 <= sq_nibble_8(2) ;-- third nibble of sq_nibble_8 into

-- sq4

sq1 <= sq_nibble_8 (2)(1) ;

Examples on Referencing arrays

Direction of indexing must be as declared

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

14

TYPE qit IS (‘0’ , ‘1’ , ‘Z’ , ‘X’);

TYPE qit_nibble IS ARRAY (3 DOWNTO 0) OF qit;

TYPE qit_byte IS ARRAY (7 DOWNTO 0) OF qit;

--

SIGNAL sq4 : qit_Nibble ;

SIGNAL sq8 : qit_byte ;

--

sq8 <= sq8 (0) & sq8 (7 DOWNTO 1) ; -- right
rotate sq8

sq4 <= sq8 (2) & sq8 (3) & sq8 (4) & sq8 (5) ; --
reversing

-- sq8 into
sq4

• Concatenation operator “&”can be used for
shift and rotate

More Examples on Referencing arrays

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

15

TYPE qit_4by8 IS ARRAY (3 DOWNTO 0 , 0 TO 7)
OF qit; -- 2-D array

--

SIGNAL sq_4_8 : qit_4by8 :=

(

('0', '0', '1', '1', 'Z', 'Z', 'X', 'X'), -- sq_4_8 (3, 0 TO 7)

('X', 'X', '0', '0', '1', '1', 'Z', 'Z'), -- sq_4_8 (2, 0 TO 7)

('Z', 'Z', 'X', 'X', '0', '0', '1', '1'), -- sq_4_8 (1, 0 TO 7)

('1', '1', 'Z', 'Z', 'X', 'X', '0', '0') -- sq_4_8 (0, 0 TO 7)

);

• Example shows initialization of sq_4_8

• Use nested parenthesis for multidimensional arrays

• Deepest set of parenthesis corresponds to right most
index.

Examples on Referencing arrays

Outer Parenthesis

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

16

Composite data types

• Elements of a Record Are Heterogeneous (not
Necessarily of the Same Data Type)

Examples

TYPE opcode Is (STA, LDA, ADD, JMP);

TYPE mode Is Range 0 To 3;

SubType Address Is Bit_Vector(7 DownTo 0);

TYPE Instruction is

Record

OPC: opcode ;

M : mode ; -- Addressing mode

OP1, OP2 : Address ;

End record ;

Referencing Record Elements:

TYPE Instr_Q Is Array (0 To 15) of Instruction ;

SIGNAL IQ : Instr_Q ;

IQ(0) <= (LDA, 2, x"F3", x"13"); --Positional Association

Alternatively IQ(0).OPC <= LDA;

IQ(0).M <= 2;

IQ(0).OP1 <= X”F3”;

IQ(0).OP2 <= X"13" ;

Alternatively

IQ(0) <= (M => 2, OP2 => X"13", OPC => LDA,

OP1 => X"F3"); --Named Association

(II) Records

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

17

subtypes

• A SUBTYPE Defines a SUBSET of Values
Defined by a TYPE Declaration.

• Subtypes of Subtypes are also possible

SUBTYPE = Constrained "TYPE" or "SubType"

Example (i) Range Constrained Subtypes

SubType Lower_Case Is Character Range 'a' To 'z';

SubType Positive Is Integer Range 1 To Integer'High;

SubType Natural Is Integer Range 0 To Integer'High;

Example (ii) Index Constrained Subtypes

SubType Byte Is Bit_Vector (7 DownTo 0);

Range Constraint
Over a Scalar

Index Constraint
Over an Array

Predefined

Types

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

18

VHDL Operations

Higher Precedence
Operators

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

19

“mod” and the “rem” Operations

operatorreminderand the ”/“divisionInteger

(rem) are related by the following formula:

A = (A/B)*B + (A rem B),

where

1. Sign of (A rem B) = sign of A, and

2. |A rem B | < |B|

The mod operation must satisfy:

A = B*N + (A mod B),

where

1. N is Integer.

2. Sign of (A mod B) = sign of B, and

3. |A mod B | < |B|

Example

-3-32-4-11

-13-2-411

1-3-24-11

332411

A mod BA rem BA / BBA

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

1

Type Compatibility &

Type Conversion

Dr. Alaaeldin Amin

• Introduction

• Closely Related Types

• Mixed Type Arithmetic

• Type Conversion Using Functions

• Type Attributes

• Array Attributes

OUTLINE

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

2

Type Compatibility & conversion

• VHDL is a Strongly-Typed Language.

• Compiler Flags an Error Whenever Different Types
are Mixed.

• Subtypes are Type compatible with their higher level
Subtypes and their Root Type.

• Two Subtypes of the Same type Are also Type-
Compatible

• Type of an expression assigned to an object must be
the same as the type of the object.

• Operands of predefined operators must be of the
same type

SubType-A1 SubType-B1

SubType-A2
Compatible

C
om

pa
ti

bl
e

Base Type

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

3

Closely Related Types

• A Type is Closely Related to itself.
• Any Two Numeric Types Are Closely Related
• Type Casting May be used for type conversion

– I := Integer(X); -- Rounds X
– X :=Real(I);
– I := Integer(3.5); -- Ambiguous (Implementation

dependent)
• Array Types Are Closely Related Iff :

– Same Dimensionality
– Index Types Are Closely Related for Each Dimension
– Elements Types Are The Same

Example

SubType Minuites Is Integer Range 0 To 59;
SubType Seconds Is Integer Range 0 To 59;
SubType X_int Is Minuites Range 1 To 30;

Variable x : X_int ;
Variable M : Minuites ;
Variable S : Seconds ;
Variable I : Integer ;
Variable r : Real ;

I := 60*M + S; -- Legal I, M & S are compatible types
I := 60*Integer(r) + S ; -- Valid
r := Real (M); -- Legal
r := 3*Real(x); -- Illegal – 3 is Integer
M := Minuites(r/60); --Illegal Incompatible Types (60 Integer)
M := Minuites(r/Real(60)); --Legal

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

4

Mixed Type Arithmetic

• Explicit Type Conversion is Done Between Closely-Related
Types, e.g. REALs & INTEGERs

Example:

Variable x, y : Real;

Variable n,m : Integer;

n := INTEGER (x) * m; -- x is first converted to Integer

y := REAL (n) * x; -- n is first converted to Real

Example:

TYPE qit_byte IS ARRAY (7 DOWNTO 0) OF qit;

TYPE qit_octal IS ARRAY (7 DOWNTO 0) OF qit;

Signal qb: qit_byte;

Signal qo: qit_octal;

qb <= qit_byte(qo); - - Explicit Type Conversion (Type Casting)

- - of closely-related types

• Custom Type Conversions can be defined Using either:

– Constant Conversion Arrays, or

– Subprograms (Functions or Procedures)

• Type Conversion Arrays or Subprograms may be placed
within packages, e.g. functions already in predefined
standard packages may also be used, e.g. the package

std_logic_1164 defined within the “ieee” Library

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

5

Type Conversion Using Functions

Example:

Type MVL4 ('X', '0', '1', 'Z');

Function MVL4_To_Bit(B: in MVL4) Return Bit IS

Begin

Case B is

when 'X' => return '0';

when '0' => return '0';

when '1' => return '1';

when 'Z' => return '0';

End Case;

End MVL4_To_Bit ;

Function Bit_To_ MVL4(B: in Bit) Return MVL4 IS

Begin

Case B is

when '0' => return '0';

when '1' => return '1';

End Case;

End MVL4_To_Bit ;

Signal B4: MVL4;

Signal B: Bit;

B <= MVL4_To_Bit(B4);

B4 <= Bit_To_ MVL4(B);
© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

6

Array Attributes
• A Predefined Attribute is a named Feature of an Array or Data

Type

•Value of ARRAY Attribute is Referenced as:

Array_Name'Attribute_ID

•Find (1) Range, (2)Length, (3)Boundary of an
Array Object or Array Type

A'LEFT(N) Left Bound Of The Nth Index Of the Array Object
Or Subtype. Optional Parameter. Default Is 1.

A'RIGHT(N) Right Bound Of The Nth Index Of Array Object
Or Subtype. Optional Parameter. Default Is 1.

A'HIGH(N) Upper Bound Of Nth Index Of Array Object or
Subtype. Optional Parameter. Default is 1.

A'LOW(N) Lower Bound Of Nth Index Of Array Object Or
Subtype. Optional Parameter. Default Is 1.

A'RANGE(N) Range Of Nth Index Of Array Object Or
Constrained Array Subtype
Ascending: Left Bound To Right Bound
Descend: Left Bound Downto Right Bound

A'REVERSE _ RANGE(N) Identical To A'RANGE(N) Except Range Is
Reverse; i.e..
Ascending, Right Bound Downto Left Bound
Descending, Right Bound To Left Bound.

A'LENGTH(N) Number Of Values In The Nth Index Of Array
Object Or Constrained Array Subtype. Optional
Parameter. Default Is 1.

Pronounced Tick

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

7

Array Attributes

• Find (1) Range, (2)Length, (3)Boundary of an
Array Object or Array Type

• Follow attribute by () to specify index

TYPE qit_4by8 IS ARRAY (3 DOWNTO 0, 0 TO 7) OF qit;

SIGNAL sq_4_8 : qit_4by8;

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

8

Type Attributes

• A Predefined Attribute is a named Feature of a Type

• Value of Attribute is Referenced as:

• Type_Name'Attribute_ID

Pronounced Tick

Attributes of Types and SubTypes:

T'LEFT : Left Bound Of Scalar Type T.
T'RIGHT: Right Bound Of Scalar Type T.
T'HIGH: Upper Bound Of Scalar Type T.
T'LOW: Lower Bound Of Scalar Type T.
T'POS(X): Position Within The Enumeration Or Physical

Type Of The Value Of The Parameter X.
T'VAL(X): Value of Enumeration (Or Physical) Type

Element at Position X
T'SUCC(X): Value of Enumeration (Or Physical) Type

Element at Position (X+1)
T'PRED(X): Value of Enumeration (Or Physical) Type

Element at Position (X-1)
T'LEFTOF(X): Value of Enumeration (Or Physical) Type

Element to the Left of X
T'RIGHTOF(X): Value of Enumeration (Or Physical) Type

Element to the Right of X
T'BASE: Base Type Of Type T.

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

9Examples

TYPE qit IS ('0', '1', 'Z', 'X');

SUBTYPE tit IS qit RANGE '0' TO 'Z';

FOR the enumeration types: 'PRED = 'LEFTOF

'SUCC = 'RIGHOF

'LEFT = 'LOW

'RIGHT = 'HIGH

•Position wise, enumeration elements are in ascending order

•For types with ascending range low to high is left to right

6-1

COE 405
VHDL Objects and Signals

Dr. Alaaeldin A. Amin
Computer Engineering Department

E-mail: amin@ccse.kfupm.edu.sa

Home Page : http://www.ccse.kfupm.edu.sa/~amin

Outline

VHDL Objects
Variables vs. Signals
Signal Assignment
Signal Transaction & Event
Delta Delay
Transport and Inertial Delay
Sequential Placement of Transactions
Signal Attributes

6-3

VHDL Objects …

VHDL OBJECT : Something that can hold a
value of a given Data Type.
VHDL has 3 classes of objects

CONSTANTS
VARIABLES
SIGNALS

Every object & expression must unambiguously
belong to one named Data Type
Every object must be Declared.

6-4

… VHDL Object …

Obj_Class <id_list> : Type/SubType [signal_kind] [:= expression];

≥ 1
identifier

(,)

C
o
n
s
t
a
n
t

V
a
r
i
a
b
l
e

S
i
g
n
a
l

BUS Register

Only for Signals

Default Initial Value
(not Optional for Constant

Declarations)

Syntax

F

i

l

e

6-5

… VHDL Object …
Value of Constants must be specified when declared
Initial values of Variables or Signals may be specified when
declared
If not explicitly specified, Initial values of Variables or Signals
default to the value of the Left Element in the type range
specified in the declaration.
Examples:

Constant Rom_Size : Integer := 2**16;
Constant Address_Field : Integer := 7;

Constant Ovfl_Msg : String (1 To 20) :=
"Accumulator OverFlow";

Variable Busy, Active : Boolean := False;

Variable Address : Bit_Vector (0 To Address_Field)

:= "00000000";
Signal Reset: Bit := '0';

6-6

Variables vs. Signals
VARIABLES SIGNALS

* Variables are only Local and May
Only Appear within the Body of a
Process or a SubProgram

* Variable Declarations Are Not
Allowed in Declarative Parts of
Architecture Bodies or Blocks.

* Signals May be Local or Global.
* Signals May not be Declared within Process

or Subprogram Bodies.
* All Port Declarations Are for Signals.

A Variable Has No HardWare
Correspondence

A Signal Represents a Wire or a Group of
Wires (BUS)

Variables Have No Time Dimension
Associated With Them. (Variable
Assignment occurs instantaneously)

Signals Have Time Dimension (A Signal
Assignment is Never Instantaneous (Minimum
Delay = δ Delay)

Variable Assignment Statement is
always SEQUENTIAL

Signal Assignment Statement is Mostly
CONCURRENT (Within Architectural Body).
It Can Be SEQUENTIAL (Within Process
Body)

Variable Assignment Operator is
:=

Signal Assignment Operator is <=

6-7

Variables vs. Signals

Variables Within Process Bodies are
STATIC, i.e. a Variable Keeps its Value from
One Process Call to Another.

Variables Within Subprogram Bodies Are
Dynamic, i.e. Variable Values are Not held from
one Call to Another.

6-8

Simulation Algorithm
Initialization phase

each signal is assigned its initial (or default) value
simulation time set to 0
for each concurrent construct / process

Activate / execute
execution usually involves scheduling transactions on signals for later
times

Repeat The folllowing (Simulation cycle (1 δ time))
Advance simulation time to time of next transaction.

for each transaction at this time
update signal values
Generate events for signals whose new values are different
from old values
Schedule Activate processes & concurrent constructs sensitive
to any of these signal events.

Simulation finishes when there are no further
scheduled transactions

6-9

Signal Assignments …
Syntax:
Target Signal <= [Transport] Waveform ;
Waveform := Waveform_element {, Waveform_element }
Waveform_element := Value_Expression [After Time_Expression]

Examples:
X <= ‘0’ ; -- Assignment executed After δ delay
S <= ‘1’ After 10 ns;
Q <= Transport ‘1’ After 10 ns;
S <= ‘1’ After 5 ns, ‘0’ After 10 ns, ‘1’ After 15 ns;

Signal assignment statement
mostly concurrent (within architecture bodies)
can be sequential (within process body ONLY)

6-10

… Signal Assignments

Concurrent signal assignments are order independent
Sequential signal assignments are order dependent
Concurrent signal assignments are executed

Once at the beginning of simulation (Initialization phase)
Any time a signal on the right hand side changes

Time
Increases

6-11

Signal Transaction

When the time element of a signal transaction
expires (t=0)

Its associated value is made the current value (CV) of a
signal
The transaction is deleted from the list of transactions
forming the Projected Waveform (P_Wfm) of the signal

6-12

Signal Transactions & Events …

When a new value is assigned to a signal, it is
said that

a Transaction has been Scheduled for this signal
or a Transaction has been placed on this Signal Driver

A Transaction which does not cause a signal
transition (Event) is still a Transaction
A Transaction May/May not cause a signal
transition (Event) on the target signal

6-13

… Signal Transaction & Events …

A <= ‘1’ After 10 ns, ‘0’ After 20 ns, ‘1’ After 30 ns;

Executing the above assignment defines the following
values & waveform for signal A

(‘1’, 10ns)(‘0’, 10ns)
(‘1’, 20ns)

(‘1’, 5ns)
(‘0’, 15ns)
(‘1’, 25ns)

(‘1’, 10ns)
(‘0’, 20ns)
(‘1’, 30ns)

A
(P_Wfm)

‘1’‘0’‘1’‘0’‘0’A (CV)

t=30 nst=20 nst=10 nst=5 nst=0

6-14

Scope of Signal Declarations

Signals declared within a Package are Global
usable by all Entities using this package
Signals declared within an Entity are usable by
all architectural bodies of this entity
Signals declared within an Architectural body are
only usable within this Architectural body

6-15

Delta Delay …

If no Time Delay is explicitly specified,
Signal assignment is executed after an
infinitesimally small δ-delay

Delta is the duration of a simulation cycle ,
and is not physical / real time
An infinite number of deltas still add up to
zero seconds
Delta is used for scheduling

6-16

Delta Delay - Example…
Notes:

The 3 Assignment Statements Are
Concurrent (Order-Independent)
They Are All Executed at the
Beginning of Simulation Assuming
the Default Value of ‘0’.

ARCHITECTURE concurrent
OF timing_demo IS
SIGNAL a, b, c : BIT := '0';
BEGIN

a <= '1';
b <= NOT a;
c <= NOT b;

END concurrent;

Time A B C
 CV P-Wave CV P-Wave CV P-Wave

0(-) ‘ 0 ’ ‘0’ ‘0’
0 ‘ 0 ’ (‘1 ’, δ) ‘0’ (‘1 ’, δ) ‘0’ (‘1 ’, δ)
δ ‘1’ ‘1’ (‘0 ’ , δ) ‘1’ (‘0 ’ , δ)

2δ ‘1’ ‘ 0 ’ ‘ 0 ’ (‘1 ’, δ)
3δ ‘1’ ‘ 0 ’ ‘1’

δ 2δ 3δ0

A

B

C

6-17

Delta Delay in Sequential Signal
Assignments …

Effect of δ-delay should be carefully considered when
signal assignments are embedded within a process

Entity BUFF2 IS
Port (X: IN BIT;

Z: OUT BIT);
END BUFF2;

Architecture Wrong of BUFF2 IS
Signal y: BIT;
Begin

Process(x)
Begin

y <= x;
z <= y;

End Process;
End Wrong;

• Process activated on x-events only
• y x(δ)
• z y(0)

• z gets OLD value of y and not new
value of x

x y z

6-18

… Delta Delay in Sequential Signal
Assignments

• Process activated on both x and y events

• x changes and process activated

• y x; -- y gets x value after δ

• z y; -- z gets y(0) value after δ

• Process terminated

• After δ, y changes and process activated

• z gets new y (=x) after δ

• Process terminated

Architecture OK of BUFF2 IS
Signal y: BIT;
Begin

Process(x , y)
Begin

y <= x;
z <= y;

End Process;
End OK;

x y z

6-19

Oscillation in Zero Real Time

Architecture forever of oscillating IS
Signal x: BIT :=‘0’;
Signal y: BIT :=‘1’;
Begin

x <= y;
y <= NOT x;

End forever;

Delta x y

+0 0 1

+1 1 1

+2 1 0

+3 0 0

+4 0 1

+5 1 1

+6 1 0

+7 0 0

+8 0 1

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

1

COE 405
VHDL Design Organization

Dr. Alaaeldin A. Amin

Computer Engineering Department

amin@ccse.kfupm.edu.samail: -E

www.ccse.kfupm.edu.sa/~aminhttp://

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

2

OUTLINE

• Concurrent vs. Sequential Constructs /

Statements

• Concurrent Signal Assignments

• Sequential Statements

• Sequential Bodies

• Overloading

• Packages

• Libraries

• Process Statement

• Modeling FSMs

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

3

Concurrent Versus Sequential statements

Sequential Statements

• Used Within Process Bodies
or SubPrograms

• Order Dependent

• Executed When Control is
Transferred to the
Sequential Body

– Assert

– Signal Assignment

– Procedure Call

– Variable Assignment

– IF Statements

– Case Statement

– Loops

– Wait, Null, Next, Exit,
Return

Concurrent Statements

•Used Within Architectural
Bodies or Blocks

•Order Independent

•Executed Once At the
Beginning of Simulation or
Upon Some Triggered Event

– Assert

– Signal Assignment

– Procedure Call (None of
Formal Parameters May be
of Type Variable)

– Process

– Block Statement

– Component Statement

– Generate Statement

– Instantiation Statement

Data Flow

Model Structural

Model

Behavioral

Model

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

4

Concurrent Signal Assignment

Syntax 1

Label : target <= [Guarded] [Transport]

Wave1 when Cond1 Else
Wave2 when Cond2 Else

……………………………

Waven-1 when Condn-1 Else

Waven ;

Syntax 2

With Expression Select

target <= [Guarded] [Transport]

Wave1 when Choice1 ,
Wave2 when Choice2 ,
……………………………
Waven-1 when Choicen-1 ,
Waven when OTHERS;

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

5

CONTROL STATEMENTS

Conditional

• IF statements

• CASE statement

Iterative

• Simple Loop

• For Loop

•While Loop

(I) Conditional control

a) IF Statements

Syntax: 3-Possible Forms

(i) IF condition Then

statements;

End IF;

Sequential Statements

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

6

(ii) IF condition Then

statements;

Else

statements;

End IF;

(iii) IF condition Then

statements;

Elsif condition Then

statements;

Elsif condition Then

statements;

Elsif condition Then

statements;

End IF;

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

7
b) CASE Statement

Syntax:

(i) CASE Expression is

when value => statements;

when value1 | value2| ...|valuen => statements;

when discrete range of values => statements;

when others => statements;

End CASE;

Notes:

• Values/Choices Should not Overlap (Any value of the
Expression should Evaluate to only one Arm of the
Case statement).

• All Possible Choices for the Expression Should Be
Accounted For Exactly Once.

• If ''others'' is used, It must be the last ''arm'' of the
CASE statement.

• There can be Any Number of Arms in Any Order
(Except for the others arm which should be Last)

Example:

CASE x is

when 1 => out :=0;

when 2 | 3 => out :=1;

when 4 to 7 => out :=2;

when others => out :=3;

End CASE;

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

8

Notes:

• The Loop_Label is Optional

• The exit statement may be used to exit the Loop. It has
two possible Forms:

1- exit Loop_Label; -- This may be used in an if
statement

2- exit Loop_Label when condition;

(2) LOOP control

a) Simple Loops

Syntax:

Loop_Label: LOOP

statements;

End LOOP Loop_Label;

Optional

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

9

Example:

Process

variable A:Integer :=0;

variable B:Integer :=1;

Begin

Loop1: LOOP

A := A + 1;

B := 20;

Loop2: LOOP

IF B < (A * A) Then

exit Loop2;

End IF;

B := B - A;

End LOOP Loop2;

exit Loop1 when A > 10;

End LOOP Loop1;

End Process;

b) For Loop

Syntax:

Loop_Label: FOR Loop_Variable in range LOOP

statements;

End LOOP Loop_Label;

Optional Need Not Be Declared

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

10

Example:

Process

variable B:Integer :=1;

Begin

Loop1: FOR A in 1 TO 10 LOOP

B := 20;

Loop2: LOOP

IF B < (A * A) Then

exit Loop2;

End IF;

B := B - A;

End LOOP Loop2;

End LOOP Loop1;

End Process;

c) WHILE Loop

Syntax:

Loop_Label: WHILE Condition LOOP

statements;

End LOOP Loop_Label;

Optional

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

11

Example:
Process

variable B:Integer :=1;
Begin

Loop1: FOR A in 1 TO 10 LOOP
B := 20;
Loop2: WHILE B < (A * A) LOOP

B := B - A;
End LOOP Loop2;

End LOOP Loop1;
End Process;

c) Next Statement

Syntax:

Next [Loop_Label][When Condition];

• Skip Current Loop Iteration When Condition is True

• If Loop_Label is Absent, innermost Loop iteration is
Skipped When Condition is True

• IF Condition is Absent, Appropriate Loop Iteration is
Skipped .

c) Null Statement

Syntax: Null;

• Does Nothing

• Useful in CASE Statements If No Action Is Required.

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

12

Subprograms
FUNCTIONS
Syntax :

FUNCTION function_Name(Input Parameter_List) RETURN
type IS

{Function Declarative Part}

Begin

Function Algorithm;

RETURN Expression;

End function_Name;

Examples :

FUNCTION maj3(Signal x, y, z :Bit) RETURN Bit IS

variable M : Bit;

Begin

M := (x and y) or (x and z) or (z and y);

RETURN M;

End maj3;

FUNCTION maj3(Signal x, y, z :Bit) RETURN Bit IS

Begin

RETURN (x and y) or (x and z) or (z and y);

End maj3;

Only Input Constants (Default)
or Signals (No Input Variables)

Default is Constant

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

13

Function Usage Notes

• The Only Allowed Mode For Function
Parameters is ''IN''. No Out or INOUT
Parameters Are Allowed.

• The Only Allowed Object Class for Parameters
are Constants and Signals. If Not Specified,
''Constant Is Assumed'', (No Variables
Parameters are Allowed)

• Since Only parameters of Mode ''IN'' Are
Allowed, Functions Have No Side Effects.

• Parameters of mode “IN” Can only be Read but
not Written into

• At least One Return Statement must be included

• Functions Can Be Recursively Defined

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

14
Subprograms

PROCEDURES
Syntax :

PEOCEDURE Procedure_Name (Interface_List) IS
{Procedure Declarative Part}

Begin
Procedure Algorithm;

End Procedure_Name;

Example :

TYPE Bit4 IS ('X', '0', '1', 'Z');
TYPE Bit4_Vector IS array(Integer range<>) of Bit4;
PROCEDURE Ones_N_Zeros_CNT (X : in Bit4_Vector;
N_Ones, N_Zeros : Out Integer) IS

variable N0, N1 : Integer :=0;
Begin

FOR i in X'Range LOOP
IF X(i) = '1' THEN

N1 := N1 + 1;
ElsIF X(i) = '0' THEN

N0 := N0 + 1;
END IF;

End Loop;
N_Zeros := N0;
N_Ones := N1;

End Ones_N_Zeros_CNT ;

Both Input& Output
Parameters Allowed

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

15

Procedures Usage Notes

• Allowed Modes For Procedure Parameters are
''In'', ''Out'', and ''InOut''.

• “IN” Parameters can only be Read, while “OUT”
Parameters can only be Written Into

• Allowed Object Classes for Procedure
Parameters are Constants, Variables and
Signals. If Mode=In, the Default is Constant. If
Mode=Out or InOut, the Default is Variable.
Thus, Signal Type Parameters Have to be
Explicitly Declared.

• A Signal Formal Parameter can be of Mode in,
out or inout.

• Procedure Calls May Be Either Sequential or
Concurrent. IF Concurrent, Only Parameters of
Type Constant or Signal May be Used
(Variables are not Defined Within Concurrent
Bodies)

• Procedures May be Declared within Other
Procedures

• Procedure Variables are Dynamic (Don't
Maintain Their Values Between Calls)

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

16

Parameter Default Values
• Default Values May Be Specified for Parameters of

Mode In only.

• The Parameter Must be either Constant or Variable
(Not a Signal)

Example

Procedure increment(a: inout word32;

by: in word32:=X”0000_0001”) is

Variable Sum: word32 ;

Variable Carry: Bit:= '0' ;

Begin

For i in a'reverse_Range Loop

Sum(i) := a(i) xor by(i) xor Carry;

Carry := (a(i) and by(i)) or (Carry and (a(i) xor
by(i))) ;

End Loop;

a := Sum;

End Procedure increment;

CALL Examples

increment(count , X”0000_0004”); -- Increment by 4

increment(count); -- Increment by Default Value (1)

increment(count , by => open); -- Increment by Default

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

17

Good Practice

• Write Generic Subprograms that work for:

– Any Array Size (Size-Flexible)

– Any Index Range (Range-Flexible)

– Use Unconstrained Array Parameters

6-20

Signal Assignment & Delay Types

Types of Signal Delay

Transport Delay
Exact Delayed Version

of Input Signal No
Matter how short/Brief
the Input Stimulus is.

“Transport” Key-word
must be used.

Inertial Delay
A Delayed Version of The

Input Waveform
Signal Changes (Glitches)
which Do not Persist for a
Duration ≥ Specified Value
Are Missed (Filtered out).
Is the Default Delay Type
(More Realistic)

6-21

Signal Assignment & Delay Types

T1

T1

T1

T2 < T1t < T1

A

C

B

Examples

B <= A After T1; -- Default Inertial Delay
C <= Transport A After T1; -- Transport Delay

• VHDL-93 provides additional Reject specification

Example: S<= REJECT 3 ns INERTIAL waveform after 5 ns; -- VHDL’93 only

Problem

What if the period of the glitch to

be filtered is smaller than the

signal delay ?

6-22

…Transport & Inertial Delay…

Entity example Is
End example;
Architecture ex1 of example is
SIGNAL a, b, c, wave : BIT;
BEGIN

a <= wave after 5 ns;
b <= REJECT 2 ns INERTIAL wave after 5 ns;
c <= transport wave after 5 ns;
wave <= '1' after 5 ns, '0' after 8 ns, '1' after 15 ns,

'0' after 17 ns, '1' after 25 ns;
END ex1;

6-23

Sequential Placement of Transactions
The Scheduling Mechanism Reflects The Difference in Nature
Between Inertial & Transport Delays.

Let the Projected Waveform of a Signal Consist of the Transactions:
(V1, T1), (V2, T2), …(Vi, Ti),…, (Vn, Tn)

such that Tn > Tn-1 > .. > Ti > .. T2 > T1
IF a new Transaction be (V , T) is to Scheduled on this Signal, Then:

Transport Delay
T > Tn

• Append New Transaction to P_Wfm
{(V1, T1), (V2, T2), (Vn, Tn), (V, T) }
Ti < T ≤ Ti+1
• Later Transactions Are Discarded (Vi+1,

Ti+1),..(Vn, Tn)
• All Earlier Transactions Are Maintained
• The Resulting P_Wfb is

{(V1, T1), (V2, T2), .., (V, T) }

Inertial Delay

Ti < T ≤ Ti+1

• Later Transactions Are
Discarded (Vi+1, Ti+1),..(Vn, Tn)

• Earlier Transactions with Vj ≠ V
Are Discarded (∀j= 1,2, .., i)

• Append New Transaction

6-24

Sequential Placement of Transactions

Lemma
The Semantics of Inertial-Delay Signal Assignment is
Such That if a Number of waveform elements are
assigned to a signal as in:

S <= 1 After 1 NS, 3 After 3 NS, 5 After 5 NS;

Only the First Element is Considered to Have Inertial
Delay, i.e. Elements After the First One Are
Considered to Have Transport Delay

Note: Wfm Elements Must Have Ascending Time
Delays

6-25

Sequential Placement of Transactions

A <= 1 After 1 NS, 3 After 3 NS, 5 After 5 NS;

Is NOT Equivalent To: Is Equivalent To:

A <= 1 After 1 NS;

A <= 3 After 3 NS;

A <= 5 After 5 NS;

A <= 1 After 1 NS;

A <= Transport 3 After 3 NS;

A <= Transport 5 After 5 NS;

6-26

Sequential Placement of Transactions

Process
Begin
 A <= Transport 1 After 5 NS;
 A <=Transport 2 After 10 NS;
 Wait;
End Process;

Process
Begin
 B <= Transport 2 After 10 NS;
 B <= Transport 1 After 5 NS;
 Wait;
End Process;

Line P_WFM(A) Time P_WFM(B)

1 (1, 5NS) t0 (2, 10 NS)
2 (1, 5NS) (2, 10 NS) t1 (1, 5 NS) {Previous

Transaction Discarded}

Line 1= After Executing the First Statement

Line 2= After Executing the Second Statement

6-27

Sequential Placement of Transactions

Process
Begin
 A <= 1 After 5 NS;
 A <= 2 After 10 NS;
 Wait;
End Process;

Process
Begin
 B <= 2 After 10 NS;
 B <= 1 After 5 NS;
 Wait;
End Process;

Line P_WFM(A) Time P_WFM(B)

1 (1, 5NS) t0 (2, 10 NS)
2 (2, 10 NS) {Discard

Previous Transaction
Since 1 ≠ 2}

t1 (1, 5 NS) {Later
Transaction Discarded}

Line 1 = After Executing the First Statement

Line 2= After Executing the Second Statement

6-28

Sequential Placement of Transactions

Process
Begin
 S1: A <= 1 After 1 NS, 3 After 3 NS, 5 After 5 NS;
 S2: A <= 3 After 4 NS, 4 After 5 NS;
 Wait;
End Process;

Statement P_WFM(A)
S1 (1, 1NS) (3, 3NS) (5, 5NS)
S2 Upon Adding (3, 4 NS)) (Inertial)

• Discard (5, 5 NS) Since it is later than (3, 4 NS)
• Discard (1, 1 NS) Since 1 ≠ 3 (3, 3 NS) (3, 4 NS)

Upon Adding (4, 5 NS) (Transport)
Maintain All Earlier Transactions (3NS & 4NS)
(3, 3 NS) (3, 4 NS) (4, 5 NS)

6-29

Sequential Placement of Transactions

B(`1`,5)
C(`1`,5) B(`1`,3)

C(`1`,3)
C(`0`,5)

B(`0`,5) B(`1`,5)
C(`1`,5)

B(`0`,5)
C(`0`,5)

B(`0`,2)

C(`0`,2)

A

B

C

20155 7

2510 12

Architecture Ex OF Delay IS
Begin
 A <= `1` After 5 NS, `0` After 7 NS, `1` After 15 NS, `0` After 20 NS;
 B <= A After 5 NS;
 C <= Transport A After 5 NS;
End;

6-30

Sequential Placement of Transactions
 t=0 t=5 ns t=7 ns t=15 ns t=20 ns
A (CV) ` 0 ` ` 1 ` ` 0 ` ` 1 ` ` 0 `

A(P_Wfm)

(`1`, 5 ns)
(`0`, 7 ns)
(`1`,15 ns)
(`0`,20 ns)

(`0`, 2 ns)
(`1`,10 ns)
(`0`,15 ns)

(`1`,8 ns)
(`0`,13ns)

(‘0`,5 ns) --

 t=0 t=5 ns t=7 ns t=12 ns t=15 ns t=20 ns
B(CV) ` 0

`
` 0 ` ` 0 ` ` 0 ` ` 0 ` ` 1 `

B(P_Wfm) -- (`1`, 5ns)

(`0 `, 5 ns)
(`1 `,3 ns)

-- (`1`,5 ns)

(`0`,5ns)

 t=0 t=5 ns t=7 ns t=10 ns t=12 t=15 ns t=20 ns
C(CV) ` 0

`
` 0 ` ` 0 ` ` 1 ` `0` ` 0 ` ` 1 `

C(P_W
fm)

-- (`1`,5ns)

(`0`,5ns)
(`1`,3ns)

(`0`,2 ns) -- (`1`,5 ns) (`0`,5 ns)

6-31

Sequential Placement VHDL-93

Append new
transaction

New
Transaction is
After Already
Existing

Overwrite
existing

transaction

Overwrite
existing

transaction

New
Transaction is
Before Already
Existing

InertialTransport

Tnew-Told> Reject
Append new

transaction

Tnew-Told<= Reject
Overwrite existing

transaction

Vnew = Vold

Append new

transaction

Vnew /= Vold

Vnew /= Vold

(No Reject Specified)

Overwrite earlier

Transactions

6-32

Example: Inertial, New Transaction After
Already Existing (Diff. Value with Reject)

ARCHITECTURE sequential OF appending IS
Type tit is (‘0’, ‘1’, ‘Z’);
SIGNAL x : tit := 'Z';
BEGIN

PROCESS
BEGIN

x <= ‘1' AFTER 5 NS;
x <= Reject 2 ns Inertial ‘0' AFTER 8 NS;
WAIT;

END PROCESS;
END sequential;

•Time difference
between new and
existing transaction
is greater than reject
value
•Appends transaction

Z

0 1 2 3 4 5 6 7 8 9

x 01

6-33

Example: Inertial, New Transaction After
Already Existing (Diff. Value with Reject)

ARCHITECTURE sequential OF appending IS
Type tit is (‘0’, ‘1’, ‘Z’);
SIGNAL x : tit := 'Z';
BEGIN

PROCESS
BEGIN

x <= ‘1' AFTER 5 NS;
x <= Reject 4 ns Inertial ‘0' AFTER 8 NS;
WAIT;

END PROCESS;
END sequential;

•Time difference
between new and
existing transaction
is less than reject
value
•Discards old value

Z

0 1 2 3 4 5 6 7 8 9

x 0

6-34

Signal Attributes…

6-35

Attribute Example Meaning T/E Kind Type

`Event S`Event If S changes in the Current simulation cycle,

S`EVENT will be TRUE for this cycle (δ time).

EV Value Boolean

`Active S`Active If a transaction is scheduled on S in the current

simulation cycle, S`ACTIVE will be TRUE for

this simulation cycle, i.e. for a δ-time,

TR Value Boolean

`Last_event S`Last_event Time elapsed since the last value change on S. If

S`Event is TRUE, then S`Last_event = 0.

EV Value Time

`Last_active S`Last_active Time elapsed since the last transaction occurred on

S. If S`Active is TRUE, then S`Last_active =0.

TR Value Time

`Last_value S`Last_value The value of S before its most recent event. EV Value Same as S

`Delayed[(Time)] S`Delayed(5 Ns) A copy of S, delayed by 5 NS or by δ-time if no

parameter or 0 parameter is specified

(Equivalent to TRANSPORT delay of S).

-- Signal Same as S

`Stable[(Time)] S`Stable(15 Ns) A signal that is TRUE if S has not changed in the

last 15 NS. If used with no parameter or 0, the

resulting signal is TRUE if S has not changed in

the current simulation time.

EV Signal Boolean

`Quiet[(Time)] S`Quiet(5 Ns) A signal that is TRUE if no transaction has been

scheduled on S in the last 5 NS. If no parameter or

0, for current simulation cycle is assumed.

TR Signal Boolean

`Transaction S`Transaction A signal that toggles each time a transaction is

scheduled on S.

TR Signal Bit

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

1

COE 405
VHDL Design Organization

Dr. Alaaeldin A. Amin

Computer Engineering Department

amin@ccse.kfupm.edu.samail: -E

www.ccse.kfupm.edu.sa/~aminhttp://

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

2

OUTLINE

• Concurrent vs. Sequential Constructs /

Statements

• Concurrent Signal Assignments

• Sequential Statements

• Sequential Bodies

• Overloading

• Packages

• Libraries

• Process Statement

• Modeling FSMs

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

3

Concurrent Versus Sequential statements

Sequential Statements

• Used Within Process Bodies
or SubPrograms

• Order Dependent

• Executed When Control is
Transferred to the
Sequential Body

– Assert

– Signal Assignment

– Procedure Call

– Variable Assignment

– IF Statements

– Case Statement

– Loops

– Wait, Null, Next, Exit,
Return

Concurrent Statements

•Used Within Architectural
Bodies or Blocks

•Order Independent

•Executed Once At the
Beginning of Simulation or
Upon Some Triggered Event

– Assert

– Signal Assignment

– Procedure Call (None of
Formal Parameters May be
of Type Variable)

– Process

– Block Statement

– Component Statement

– Generate Statement

– Instantiation Statement

Data Flow

Model Structural

Model

Behavioral

Model

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

4

Concurrent Signal Assignment

Syntax 1

Label : target <= [Guarded] [Transport]

Wave1 when Cond1 Else
Wave2 when Cond2 Else

……………………………

Waven-1 when Condn-1 Else

Waven ;

Syntax 2

With Expression Select

target <= [Guarded] [Transport]

Wave1 when Choice1 ,
Wave2 when Choice2 ,
……………………………
Waven-1 when Choicen-1 ,
Waven when OTHERS;

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

5

CONTROL STATEMENTS

Conditional

• IF statements

• CASE statement

Iterative

• Simple Loop

• For Loop

•While Loop

(I) Conditional control

a) IF Statements

Syntax: 3-Possible Forms

(i) IF condition Then

statements;

End IF;

Sequential Statements

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

6

(ii) IF condition Then

statements;

Else

statements;

End IF;

(iii) IF condition Then

statements;

Elsif condition Then

statements;

Elsif condition Then

statements;

Elsif condition Then

statements;

End IF;

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

7
b) CASE Statement

Syntax:

(i) CASE Expression is

when value => statements;

when value1 | value2| ...|valuen => statements;

when discrete range of values => statements;

when others => statements;

End CASE;

Notes:

• Values/Choices Should not Overlap (Any value of the
Expression should Evaluate to only one Arm of the
Case statement).

• All Possible Choices for the Expression Should Be
Accounted For Exactly Once.

• If ''others'' is used, It must be the last ''arm'' of the
CASE statement.

• There can be Any Number of Arms in Any Order
(Except for the others arm which should be Last)

Example:

CASE x is

when 1 => out :=0;

when 2 | 3 => out :=1;

when 4 to 7 => out :=2;

when others => out :=3;

End CASE;

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

8

Notes:

• The Loop_Label is Optional

• The exit statement may be used to exit the Loop. It has
two possible Forms:

1- exit Loop_Label; -- This may be used in an if
statement

2- exit Loop_Label when condition;

(2) LOOP control

a) Simple Loops

Syntax:

Loop_Label: LOOP

statements;

End LOOP Loop_Label;

Optional

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

9

Example:

Process

variable A:Integer :=0;

variable B:Integer :=1;

Begin

Loop1: LOOP

A := A + 1;

B := 20;

Loop2: LOOP

IF B < (A * A) Then

exit Loop2;

End IF;

B := B - A;

End LOOP Loop2;

exit Loop1 when A > 10;

End LOOP Loop1;

End Process;

b) For Loop

Syntax:

Loop_Label: FOR Loop_Variable in range LOOP

statements;

End LOOP Loop_Label;

Optional Need Not Be Declared

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

10

Example:

Process

variable B:Integer :=1;

Begin

Loop1: FOR A in 1 TO 10 LOOP

B := 20;

Loop2: LOOP

IF B < (A * A) Then

exit Loop2;

End IF;

B := B - A;

End LOOP Loop2;

End LOOP Loop1;

End Process;

c) WHILE Loop

Syntax:

Loop_Label: WHILE Condition LOOP

statements;

End LOOP Loop_Label;

Optional

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

11

Example:
Process

variable B:Integer :=1;
Begin

Loop1: FOR A in 1 TO 10 LOOP
B := 20;
Loop2: WHILE B < (A * A) LOOP

B := B - A;
End LOOP Loop2;

End LOOP Loop1;
End Process;

c) Next Statement

Syntax:

Next [Loop_Label][When Condition];

• Skip Current Loop Iteration When Condition is True

• If Loop_Label is Absent, innermost Loop iteration is
Skipped When Condition is True

• IF Condition is Absent, Appropriate Loop Iteration is
Skipped .

c) Null Statement

Syntax: Null;

• Does Nothing

• Useful in CASE Statements If No Action Is Required.

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

12

Subprograms
FUNCTIONS
Syntax :

FUNCTION function_Name(Input Parameter_List) RETURN
type IS

{Function Declarative Part}

Begin

Function Algorithm;

RETURN Expression;

End function_Name;

Examples :

FUNCTION maj3(Signal x, y, z :Bit) RETURN Bit IS

variable M : Bit;

Begin

M := (x and y) or (x and z) or (z and y);

RETURN M;

End maj3;

FUNCTION maj3(Signal x, y, z :Bit) RETURN Bit IS

Begin

RETURN (x and y) or (x and z) or (z and y);

End maj3;

Only Input Constants (Default)
or Signals (No Input Variables)

Default is Constant

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

13

Function Usage Notes

• The Only Allowed Mode For Function
Parameters is ''IN''. No Out or INOUT
Parameters Are Allowed.

• The Only Allowed Object Class for Parameters
are Constants and Signals. If Not Specified,
''Constant Is Assumed'', (No Variables
Parameters are Allowed)

• Since Only parameters of Mode ''IN'' Are
Allowed, Functions Have No Side Effects.

• Parameters of mode “IN” Can only be Read but
not Written into

• At least One Return Statement must be included

• Functions Can Be Recursively Defined

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

14
Subprograms

PROCEDURES
Syntax :

PEOCEDURE Procedure_Name (Interface_List) IS
{Procedure Declarative Part}

Begin
Procedure Algorithm;

End Procedure_Name;

Example :

TYPE Bit4 IS ('X', '0', '1', 'Z');
TYPE Bit4_Vector IS array(Integer range<>) of Bit4;
PROCEDURE Ones_N_Zeros_CNT (X : in Bit4_Vector;
N_Ones, N_Zeros : Out Integer) IS

variable N0, N1 : Integer :=0;
Begin

FOR i in X'Range LOOP
IF X(i) = '1' THEN

N1 := N1 + 1;
ElsIF X(i) = '0' THEN

N0 := N0 + 1;
END IF;

End Loop;
N_Zeros := N0;
N_Ones := N1;

End Ones_N_Zeros_CNT ;

Both Input& Output
Parameters Allowed

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

15

Procedures Usage Notes

• Allowed Modes For Procedure Parameters are
''In'', ''Out'', and ''InOut''.

• “IN” Parameters can only be Read, while “OUT”
Parameters can only be Written Into

• Allowed Object Classes for Procedure
Parameters are Constants, Variables and
Signals. If Mode=In, the Default is Constant. If
Mode=Out or InOut, the Default is Variable.
Thus, Signal Type Parameters Have to be
Explicitly Declared.

• A Signal Formal Parameter can be of Mode in,
out or inout.

• Procedure Calls May Be Either Sequential or
Concurrent. IF Concurrent, Only Parameters of
Type Constant or Signal May be Used
(Variables are not Defined Within Concurrent
Bodies)

• Procedures May be Declared within Other
Procedures

• Procedure Variables are Dynamic (Don't
Maintain Their Values Between Calls)

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

16

Parameter Default Values
• Default Values May Be Specified for Parameters of

Mode In only.

• The Parameter Must be either Constant or Variable
(Not a Signal)

Example

Procedure increment(a: inout word32;

by: in word32:=X”0000_0001”) is

Variable Sum: word32 ;

Variable Carry: Bit:= '0' ;

Begin

For i in a'reverse_Range Loop

Sum(i) := a(i) xor by(i) xor Carry;

Carry := (a(i) and by(i)) or (Carry and (a(i) xor
by(i))) ;

End Loop;

a := Sum;

End Procedure increment;

CALL Examples

increment(count , X”0000_0004”); -- Increment by 4

increment(count); -- Increment by Default Value (1)

increment(count , by => open); -- Increment by Default

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

17

Good Practice

• Write Generic Subprograms that work for:

– Any Array Size (Size-Flexible)

– Any Index Range (Range-Flexible)

– Use Unconstrained Array Parameters

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

18

OverLoading

Definition: Can Be Defined To

Have More Than One Meaning.
__

Example :

• A Char Literal Can Be Defined as an Element in
More than one Enumeration Data Type.

Type Tri_State IS ('0', '1', 'Z');

Type MVL4 IS ('X, '0', '1', 'Z');

Thus '0' is Overloaded Being Member of

{Bit, Tri_State, MVL4}
__

• VHDL Differentiates Between Overloaded Char
Literals and Identifiers Based on Context.

• VHDL Differentiates Between Overloaded
Subprogram Names Based on The Type and
Number of Passed Parameters, and the Type of
Returned Data Type in Case of Functions.

A Character Literal
An Identifier
A Procedure Name
A Function Name
An Operator Symbol

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

19

Example :
SubType Word32 IS Bit_Vector(31 DownTo 0);
Function Check_Bounds(Value: Integer) Return Boolean IS
Function Check_Bounds(Value: Word32) Return Boolean IS

Valid_int := Check_Bounds(4095);
Valid_Bin := Check_Bounds(X''000F_FFFF'');
__

• Meanings of Predefined Operators Can Be
Further Extended To Cover Other Data Types
not Covered By the Original Operator.

• A Function Whose Name is a String
Representing the Operator is Defined for the
New Operand Types.

Example Extend the ''+'' Operator to Add Two 32-Bit
Binary Numbers.

Function ''+'' (a, b: Word32) Return Word32 IS
Begin

Return(int2bin(Bin2Int(a) + Bin2Int(b)));
End ''+'';

Usage:
(a) X''1F0E_1015'' + X''3AF0_0C12''
(b) ''+''(X''1F0E_1015'' , X''3AF0_0C12'');

OverLoading

Type of Passed
Parameters
Determine Which
Function is Used

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

20

Example : OverLoad The AND Operator To Operate on
Type MVL4 Operands

Function ''AND'' (L, R: MVL4) Return MVL4 IS
Type T_Table IS Array(MVL4, MVL4) OF MVL4;
Constant AND_Table : T_Table :=
-- --
-- ('X', '0', '1', 'Z')
-- --

(('X', '0', 'X', 'X') , -- 'X'
('0', '0', '0', '0') , -- '0'
('X', '0', '1', 'X') , -- '1'
('X', '0', 'X', 'X')); -- 'Z'

Begin
Return (AND_Table(L, R));

End ''AND'' ;

Note : The overloaded AND Operator in the Above
example is still CASE-INSENSITIVE, even
though the operator name is placed between
double quotes.

Example :
Variable v1, v2, v3: MVL4;
………………………………….
v3 := “and”(v1, v2);
v3 := “AND”(v1, v2);

v3 := v1 and v2;
v3 := v1 AND v2

OverLoading

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

21

Packages

• Packages Group Frequently Used Declarations
of Data Types, Subprograms, Constants, Signals,
and Components.

• A Package Has a Name Consists of a
Declaration-Part and a Body-Part. The Package
Declaration Takes the Following General Form:

Package Package_Name IS
Declarations;

End Package_Name;

• A Package Body Should Have the Same
Package_Name as the Package Declaration Part.
The Package Body Contains the Subprogram
Bodies Whose Corresponding Declarations
Appeared in the Package Declaration. The
Package Body Takes the Following General
Form:

Package Body Package_Name IS
Subprogram_Bodies;

End Package_Name;

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

22

• Declarations Made within an Entity Are Visible only Within
the Architectural Bodies of this Entity.

• Declarations Appearing Within an Architectural Body Are
Visible Only Within this Body and are not visible to Other
Architectural Bodies Even if they Describe the Same Design
Entity.

• Declarations Within a Package Construct, However, Can Be
made Visible To Any Number of Design Entities By
Preceding these Design Entities by a USE Clause for this
Package

Example: Declaration Part of Package Sample

Package Sample IS
File RSPNS: text open write_mode is "./Digits.out";
Constant Dash30: String(1 to 30):=(Others => '-');
Constant Dash60: String(1 to 60):=(Others => '-');
Constant eqs: String(1 to 3) := " = ";
Shared Variable ll: Line;
Type Tri_Level IS ('0', '1', 'Z');
SubType Bit32 IS Bit_Vector (31 downto 0);
Function Invert (X: Tri_Level) Return Tri_Level;
Procedure Bin2Int(Bin: in Bit_Vector; Int: out Integer);

End Sample;

• The following USE Statement makes all these declarations
Visible

USE Work.Sample.ALL ;

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

23

Package BODY Sample IS
--

Function Invert (X: Tri_Level) Return Tri_Level IS
Variable y: Tri_Level;

Begin
Case X IS

when '0' => y:= '1';
when '1' => y:= '0';
when 'Z' => y:= 'Z';

End Case;
Return (y);

End Invert;
--

Procedure Bin2Int (Bin: in Bit_Vector; Int: out Integer) IS
Variable result: Integer:=0;
Variable Tmp: Integer:=1;

Begin
For i in Bin'Low To Bin' high Loop

IF Bin(i) = '1' Then result := result +Tmp; End IF
Tmp := 2 * Tmp;

End Loop;
Int := result ;

End Bin2Int;

End Sample;

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

24

Predefined Packages - Examples

Standard Package
• Defines primitive types, subtypes, and functions.

• e.g. Type Boolean IS (false, true);

• e.g. Type Bit is ('0', '1');

TEXTIO Package
• Defines types, procedures, and functions for

standard text I/O from ASCII files.

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

25

Design Libraries…

• VHDL supports the use of design libraries for
categorizing components or utilities.

• Applications of libraries include

– Sharing of components between designers

– Grouping components of standard logic
families

– Categorizing special-purpose utilities such as
subprograms or types

Predefined libraries
– STD Library

• Contains the STANDARD and TEXTIO
packages

• Contains all the standard types & utilities

• Visible to all designs

– IEEE library
• Contains VHDL-related standards

• Contains the std_logic_1164 (IEEE 1164.1)
package

* Defines a nine values logic system

– WORK library

• Root library for the user

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

26

Visibility of Design Libraries &
Packages

• To make a library visible to a design entity

– LIBRARY library_name;

• To make a Package visible to a design
entity

– Use library_name.Package_Name.ALL;

• The following statement is assumed by all
designs

– LIBRARY WORK;

• To use the std_logic_1164 package

– LIBRARY IEEE

– USE IEEE.std_logic_1164.ALL

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

27

Process Statement
• Main Construct for Behavioral Modeling.

• Other Concurrent Statements Can Be Modeled By an
Equivalent Process.

• Process Statement is a Concurrent Construct which
Performs a Set of Consecutive (Sequential) Actions once
it is Activated. Thus, Only Sequential Statements Are
Allowed within the Process Body.

• Optional Optional

Process_Label: PROCESS(Sensitivity_List)

Process_Declarations;

Begin

Sequential Statements;

END Process;

• Whenever a SIGNAL in the Sensitivity_List of the
Process Changes, The Process is Activated.

• After Executing the Last Statement, the Process is
SUSPENDED Until one (or more) Signal in the Process
Sensitivity_List Changes Value where it will be
REACTIVATED.

Constant/Variables
No Signal
Declarations
Allowed

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

28

• A Process Statement Without a Sensitivity_List is ALWAYS
ACTIVE, i.e. After the Last Statement is Executed,
Execution returns to the First Statement and Continues
(Infinite Looping).

• It is ILLEGAL to Use WAIT-Statement Inside a Process
Which Has a Sensitivity_List .

• In case no Sensitivity_List exists, a Process may be activated
or suspended Using the WAIT-Statement :

Syntax :

• WAIT; -- Process Suspended Indefinitely

• WAIT ON Signal_List; -- Waits for Events on one of the
-- Signals in the List Equiv. To Process With Sensitivity_List.

• WAIT UNTIL Condition; -- Event Makes Condition True

• WAIT FOR Time_Out_Expression;

Notes :

• When a WAIT-Statement is Executed, The process
Suspends and Conditions for its Reactivation Are Set.

• Process Reactivation conditions may be Mixed as follows

WAIT ON Signal_List UNTIL Condition FOR Time_Expression ;

• Process Reactivated IF:

– Event Occurred on the Signal_List while the Condition is
True, OR

– Wait Period Exceeds "Time_Expression "

• UNLESS SUSPENDED, Process Execution
– (1) Takes Zero Real Time (Process Executed in one

Simulation Cycle Delta Time).

– (2) Repeats Forever (Infinite Loop)

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

29
Example:

Process

Begin

A<= '1';

B <= '0';

End Process;
__

• Sequential Processing:
– First A is Scheduled to Have a Value '1'

– Second B is Scheduled to Have a Value '0'

– A & B Get their New Values At the SAME TIME (1
Delta Time Later)

__

Example:

Process

Begin

A<= '1';

IF (A= '1') Then Action1;

Else Action2;

End IF;

End Process;

• Assuming a '0' Initial Value of A,
– First A is Scheduled to Have a Value '1' One Delta Time

Later

– Thus, Upon Execution of IF_Statement, A Has a Value
of '0' and Action 2 will be Taken.

– If A was Declared as a Process Variable, Action1 Would
Have Been Taken

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

30
Examples : An Edge-Triggered D-FF

D_FF: PROCESS(CLK)
Begin

IF (CLK'Event and CLK = '1') Then
Q <= D After TDelay;

END IF;
END Process;

D_FF: PROCESS -- No Sensitivity_List
Begin

WAIT UNTIL CLK = '1';
Q <= D After TDelay;

END Process;

D_FF: PROCESS(Clk, Clr) -- FF With Asynchronous Clear
Begin

IF Clr= '1' Then
Q <= '0' After TD0;

ELSIF (CLK'Event and CLK = '1') Then
Q <= D After TD1;

END IF;
END Process;

wait on X,Y until (Z = 0) for 70 NS; -- Process Resumes
After 70 NS OR (in Case X or Y Changes Value and Z=0 is
True) Whichever Occurs First

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

31

Generalized VHDL
Mealy Model

X
F2

F1

Z

Register

Y

D

Architecture Mealy of fsm is
Signal D, Y: Std_Logic_Vector(...); -- Local Signals

Begin
FFs: Process(Clk)
Begin

IF (Clk'EVENT and Clk = '1') Then Y <= D;
End IF;

End Process;

Transitions: Process(X, Y)
Begin

D <= F1(X, Y);
End Process;

Output: Process(X, Y)
Begin

Z <= F2(X, Y);
End Process;

End Mealy;

Can Be One
Process

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

32

Generalized VHDL
MOORE Model

Architecture Moore of fsm is
Signal D, Y: Std_Logic_Vector(...); -- Local Signals

Begin
FFs: Process(Clk)
Begin

IF (Clk'EVENT and Clk = '1') Then Y <= D;
End IF;

End Process;

Transitions: Process(X, Y)
Begin

D <= F1(X, Y);
End Process;

Output: Process(Y)
Begin

Z <= F2(Y);
End Process;

End Moore;

X

F2

F1

Z

Register
Y D

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

33

FSM example

entity fsm is

port (Clk, Reset : in Std_Logic;

X : in Std_Logic_Vector(0 to 1);

Z : out Std_Logic_Vector(1 downto 0));
end fsm;

Architecture behavior of fsm is

Type States is (st0, st1, st2, st3);
Signal Present_State , Next_State : States ;

Begin

register: Process(Reset, Clk)
Begin

IF Reset = '1' Then
Present_State <= st0; -- Machine

-- Reset to st0 1st. Process
elsIF (Clk'EVENT and Clk = '1') Then

Present_State <= Next_state;
End IF;

End Process;

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

34

Transitions: Process(Present_State, X)
Begin

CASE Present_State is
when st0 =>

Z <= "00";
IF X = "11" Then Next_State <= st0;
else Next_State <= st1;
End IF;

when st1 =>
Z <= "01";
IF X = "11" Then Next_State <= st0;
else Next_State <= st2;
End IF;

when st2 =>
Z <= "10";
IF X = "11" Then Next_State <= st2;
else Next_State <= st3;
End IF;

when st3 =>
Z <= "11";
IF X = "11" Then Next_State <= st3;
else Next_State <= st0;
End IF;

End CASE;
End Process;

End behavior;

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

35

Behvioral Modeling of Combinational Logic

Modeling Strategy

1. Put All Input Signals (X) in the Process Sensitivity List.

2. Define Local Process Variables (Zvar) Corresponding
To the Output Signals Z

3. In the Process Body, Compute The Local Output
Variables (Zvar) as Function of the Inputs X.

4. Circuit delay is modeled by assigning ZVAR to the
Signals Z After Delay DEL.

Process(X)

-- Declare Process Variables

Variable ZVAR: Bit;

Begin

-- Compute ZVAR=F(X)

Z <= ZVAR After Del;

End Process ;

CL

X Z

Z = F(X)

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

©
D

r.
 A

la
ae

ld
in

 A
m

in

36

Behvioral Modeling of Sequential Logic

Modeling Strategy

1. Put Both the Input Signals (X) AND the Feedback
Signals (Y) in the Process Sensitivity List.

2. Define Local Process Variables (Yvar and Zvar)
Corresponding To the Feedback Signals (Y) and Output
Signals Z Respectively.

3. In the Process Body, Compute The Local Variables
(Yvar and Zvar) as Function of X and Yvar.

4. Circuit delay is modeled by assigning Yvar and Zvar to
the Signals Y and Z After the Corresponding Delays.

Process(X, Y)

-- Declare Process Variables

Variable Yvar, Zvar: Bit;

Begin

-- Compute YVAR and Zvar=F(X, Y)

Z <= Zvar After Delz;

Y <= Yvar After Dely;

End Process ;

SL

X Z

Z = F(X, Y)

YY = F(X, Y)

6-1

COE 405
VHDL Structural Modeling

Dr. Alaaeldin A. Amin
Computer Engineering Department

E-mail: amin@ccse.kfupm.edu.sa

Home Page : http://www.ccse.kfupm.edu.sa/~amin

Outline
Structural Models
Example 4-Bit Comparator
Elements of a Structural Model

Component Declarations
Instantiation Statements
Configuration
Binding of Component Instances

Iterative Networks
4-bit comparator
For…Generate Statement
IF…Generate Statement

Binding Alternative
SR Latch Example

Top Down Wiring
Sequential Comparator
Byte Latch
Byte Comparator

Structural Models

Structural Model Starts Down-
Up

Structural Model Set of
Hierarchically Interconnected
Modules.

Leaf Cells behavioral
Description

Wire gates into components

Iterative VHDL constructs
Wire components into larger
designs

Design is Top Down

Implementation Bottom Up

P

P

PP

PP

S

S

S

Full System

P

S

System Primitives
(Behavioral/Data Flow Description)

Structurally Defined Module
(Interconnection of Sub-Modules)

6-4

Example 4-Bit Comparator

• Cascadable 4-bit comparator
• Top Level Input Control Signal Values

• > = 0
• < = 0
• = = 1

TOP LEVEL

6-5

4-Bit Comparator

• Cascading single bit comparators
into a 4- bit comparator

• Intermediate Signals Needed for
Wiring lower level Components
into higher level ones

1-LEVEL Down

1-Bit Comparator

gt

eq

lt

A> B

A= B

A< B

ai
bi

1-Bit Comparator

gt

eq

lt

A> B

A= B

A< B

ai
bi

1-Bit Comparator

gt

eq

lt

A> B

A= B

A< B

ai
bi

1-Bit Comparator

gt

eq

lt

A> B

A= B

A< B

ai
bi

a0 b0a1 b1a2 b2a3 b3

im0

im1

im2

im3

im4

im5

im6

im7

im8

>

=

<

6-6

Cascadable Single-Bit Comparator

When a > b the a_gt_b becomes 1
When a < b the a_lt_b becomes 1
If a = b outputs become the same as corresponding
inputs

6-7

Cascadable Single-Bit Comparator

6-8

Structural Single-Bit Comparator

Design uses basic
gates

The a_lt_b and
a_gt_b outputs
use the same
logic

1-LEVEL Down

6-9

Basic Components & Graphical
Notation

Three basic components are used
Will use as the basic components of several designs
A graphical notation helps clarify wiring

6-10

Structural Single-Bit Comparator

6-11

Structural Model of Single-Bit Comparator
ENTITY bit_comparator IS

PORT (a, b, gt, eq, lt : IN BIT; a_gt_b, a_eq_b, a_lt_b : OUT BIT);
END bit_comparator;

ARCHITECTURE gate_level OF bit_comparator IS
--
COMPONENT n1 PORT (i1: IN BIT; o1: OUT BIT); END COMPONENT ;
COMPONENT n2 PORT (i1,i2: IN BIT; o1:OUT BIT); END COMPONENT;
COMPONENT n3 PORT (i1, i2, i3: IN BIT; o1: OUT BIT); END OMPONENT;

-- Component Configuration

FOR ALL : n1 USE ENTITY WORK.inv (single_delay);
FOR ALL : n2 USE ENTITY WORK.nand2 (single_delay);
FOR ALL : n3 USE ENTITY WORK.nand3 (single_delay);

--Intermediate signals
SIGNAL im1,im2, im3, im4, im5, im6, im7, im8, im9, im10 : BIT;

6-12

BEGIN
g0 : n1 PORT MAP (a, im1); -- Generates a_Bar
g1 : n1 PORT MAP (b, im2); -- Generates b_Bar

-- a_gt_b output
g2 : n2 PORT MAP (a, im2, im3);
g3 : n2 PORT MAP (a, gt, im4);
g4 : n2 PORT MAP (im2, gt, im5);
g5 : n3 PORT MAP (im3, im4, im5, a_gt_b);

-- a_eq_b output
g6 : n3 PORT MAP (im1, im2, eq, im6);
g7 : n3 PORT MAP (a, b, eq, im7);
g8 : n2 PORT MAP (im6, im7, a_eq_b);

-- a_lt_b output
g9 : n2 PORT MAP (im1, b, im8);
g10 : n2 PORT MAP (im1, lt, im9);
g11 : n2 PORT MAP (b, lt, im10);
g12 : n3 PORT MAP (im8, im9, im10, a_lt_b);

END gate_level;

Netlist Description of Single-Bit Comparator

6-13

Model without Explicit Configuration Statement

ARCHITECTURE netlist OF bit_comparator IS
SIGNAL im1,im2, im3, im4, im5, im6, im7, im8, im9, im10 : BIT;
BEGIN
-- a_gt_b output

g0 : ENTITY Work.inv(single_delay) PORT MAP (a, im1);
g1 : ENTITY Work.inv(single_delay) PORT MAP (b, im2);
g2 : ENTITY Work.nand2(single_delay) PORT MAP (a, im2, im3);
g3 : ENTITY Work.nand2(single_delay) PORT MAP (a, gt, im4);
g4 : ENTITY Work.nand2(single_delay) PORT MAP (im2, gt, im5);
g5 : ENTITY Work.nand3(single_delay) PORT MAP (im3, im4, im5,
a_gt_b);

-- a_eq_b output
g6 : ENTITY Work.nand3(single_delay) PORT MAP (im1, im2, eq, im6);
g7 : ENTITY Work.nand3(single_delay) PORT MAP (a, b, eq, im7);
g8 : ENTITY Work.nand2(single_delay) PORT MAP (im6, im7, a_eq_b);

-- a_lt_b output
g9 : ENTITY Work.nand2(single_delay) PORT MAP (im1, b, im8);
g10 : ENTITY Work.nand2(single_delay) PORT MAP (im1, lt, im9);
g11 : ENTITY Work.nand2(single_delay) PORT MAP (b, lt, im10);
g12 : ENTITY Work.nand3(single_delay) PORT MAP (im8, im9, im10,
a_lt_b);

END netlist;

6-14

General Model for Structural Architectural Bodies

Entity X Is
Generic (Constant_Parameters);
Port (Interface_List);

End X;

Architecture Structural of X Is

Component-Declarations
-- (May Appear in Visible Packages Instead)

Configuration Statements
-- (Binding Instances to Particular Entities)

Local Signal Declarations

Begin
Component Instantiation Statements

{Generic MAPs + Port MAPs }

End Structural;

Declarative Part

Wiring Instances

6-15

Component Declarations
General Syntax

Component Comp_Name [is]
Generic (Constant_Parameters);
Port (Interface_List);

End Component;

Difference Bet Component & Entity Declarations

1- Component Declaration May Appear In a Package, while Entity
Declarations May Not.

2. Entity Declaration Declares Something that Really Exists, while
Component Declarations only Declare Templates That Have No
Physical Existence.

6-16

Component Declarations

Ports & Interface Lists
Each Port Declaration Includes

1- Port Object Name (Only Signal Objects Can Be Ports).
2. Port (Signal) Direction of Flow (Mode).
3. The Type of the Port Signal

Four Possible Signal Modes
1. IN Mode -- This is The Default Mode
2. OUT Mode
3. INOUT Mode
4. Buffer Mode

• Both inout & Buffer Modes can be read &
written into

• Buffer may never have more than 1 signal
driver even if it is resolved type.

• Buffer ports can only be connected to another
buffer port or a signal with a single driver

6-17

Component Declarations (Port Modes)

An in port
can be read but not updated within the module, carrying
information into the module. (An in port cannot appear on the
left hand side of a signal assignment.)

An out port
can be updated but not read within the module, i.e. it carries
information out of the module. (An out port cannot appear on
the right hand side of a signal assigment.)

A buffer port
likewise carries information out of a module, but can be both
updated & read (used as input) within the module. Can only be
connected to a signal of buffer mode.

An inout port
is bidirectional and can be both read and updated, with multiple
update sources possible.

6-18

Component Declarations

Generics& Interface Lists
May Appear in Design Entities & Component
Declarations.
Generics Provide Means for Parameterization of:

Timing
Range of SubTypes
The Number of Instantiated Components, e.g. n-Bit
Adder
Array Sizes
Documenting Physical Quantities, e.g. Temperature

6-19

Component Declarations

Example
Component Decoder Is

Generic (N: Positive);
Port (En: bit; Sel: bit_vector(N-
1 DownTo 0);
Dout: Out bit_vector(N-1
DownTo 0));

End Component ;

Example
Component ALU Is

Generic (Size: Positive:8) ;
Port(Sel: bit_vector(3 downto 0);
RA, RB: bit_vector(Size-1
DownTo 0) ;

C, M : Bit; Cout: Out Bit ;
Result: Out Bit_Vector(Size-1
DownTo 0));

End Component ;

Default
Mode = IN

Syntax
Label : Compt_Name

Generic Map Association_List
Port Map Association_List ;

Required 1. Named Association, or

2. Positional Association

Objects Associated with Instantiated
Ports Must Be of Type SIGNAL (an
Expression, Variable or Constant
Types Are Not Allowed)
If a Generic Map is Not Specified,
Generic Default Values are Used).

Component Instantiations

6-20

Component Declarations
Generics& Interface Lists

Component Generic-Specified Values Overwrite Entity Default Values

Association with OPEN Causes Default Values to be Used Generic
Map can specify only some of the parameters

Using OPEN causes use of Entity default values

Exclusion of Generic Map Leaves All Parameters OPEN

Example

Generic(tplh1, tplh2, tplh3, tphl1, tphl2, tphl3 : Time := 3 ns);

Generic Map (Open, Open, 8 NS, Open, Open, 10 NS)

Alternatively

Generic Map (tplh3 => 8 NS, tphl3 => 10 NS)

6-21

Component Declaration & Instantiation
Example

Example
Package xxx IS

Type ….. -- Type Declarations
Constant ….. -- Constant Declarations
Component N2 -- Component Declarations

Port (I1, I2 : Bit ; O1 :out Bit);
End Component;

End Package;

6-22

Component Instantiation Statement

Example
Use Work.xxx.ALL ; -- Makes Package xxx visible
Entity y IS ….. End y;
Architecture Struc of y IS

Signal S1, S2, S3, S4 : Bit; -- Declares local interconnect wires
For G1 : N2 Use Work.AND2(DF) ; -- Configuration Binding # 1
For G2 : N2 Use Work.OR2(Behavior) ; -- Configuration Binding # 2

Begin
G1: N2 Port Map (I1 => S1 , I2 => S2, O1 =>S3) ; -- Instance # 1
G2: N2 Port Map (S3 , S1, S4) ; -- Instance # 2

End Struc; Positional Association Named Association

6-23

… Configuration Specification
Specifies for Each Component Instance the Actual Entity it Represents

Which Entity Declaration
In Which Library
Which Architecture to Use for this Entity

Syntax
For instantiated_Compt Use Entity entity_binding;

Library.Entity(Arch)

[Generic Map(List)]

[Port Map(List)]

List = Either Named or
Positional Association List .

Examples

Work.INV(Behvioral)

Work.INV(DataFlow)

• Different Instances of the Same
Component May Be Mapped To
Different Entities or Different
Architectures

• The Keyword Others Must Be the Last
Configuration Spec for This Particular
Component

List of instance Labels : Compt_Name

ALL : Compt_Name

OTHERS : Compt_Name

6-24

Configuration Specification …
Example

For g1, g3, g9 : Inverter
Use Entity Work.Inv(DataFlow) ;

For Others : Inverter - - All Other Inverter Instances
Use Entity Work.Inv(Delayed) ; - - Use Diff Arch

Example
For ALL : Inverter

Use Entity Work.Inv(DataFlow) ;

Example
Entity Inverter IS

Port (I: in Bit; O: out Bit);
End Entity;

…………………………………….
Component Inv is

Port (IN1 : in Bit; Out1: out Bit);
End Component

…………………………………….
For ALL : Inv Use Entity Work.Inverter(DF)

Port Map (I => IN1 , O => Out1) ;

6-25

Binding of Component Instances

A Component Instance May be Bound to A Particular
Entity Architecture in Several Ways:

1- Default Binding -- (Hard Binding
2. Configuration Specification -- (Firm Binding)
3. Configuration Declaration. -- (Soft Binding)

Default Binding
Component Instance is Bound to an Entity which :
1. Has the Same NAME as the Component
2. Has the Same Number of Ports as the Component
3. Ports Must Have The Same Name , Type and be of
Compatible modes
If the entity has more than one Architecture , the Most Recently
Analyzed Architecture Will Be Used

6-26

Port Compatibility
Formal Actual

(entity) (Instance)

XBUFFER

XINOUT

XXOUT

XXIN

BUFFERINOUTOUTIN

Actual`s Mode (Instance Ports)

For mal`s Mode
Entity For mal Ports

6-27

… Port Map Association
Association is done in two steps:
1. Instance-To-Component

(Actuals Component Local Ports)
2. Componenet-To-Entity (Configuration Port Map)

(Component Local Ports Entity Formal Ports)

PORT MAP in Instantiation Statements defines actual
signal names corresponding to Component Port Names

actual

Specifying PORT MAP in Configuration Statements is
Optional

actual

To Override Entity Local Port Names by Component Port
Names, USE PORT MAP in Configuration Statement

actual

IF No Port Map is Specified in Configuration Statement,
Local Port Names of COMPONENT declaration are the Default
and they must be the Same as the Formals of the Design
Entity.

actual

A Locally Declared Signal Can Be Associated with A Formal
Port of Any Mode As Long As It Has The Same Type

6-28

Port Map Association …

Instance Actual Signals

Component. Local Ports

Entity Formal Ports

Config.
Spec.

6-29

Iterative Logic… The Generate Statement
Allows Generation of Regular Structure through Repeated Instantiation of
Components in Some Regular Pattern.

Useful for Modeling Size-Flexible (Definable) Regular Structures when
used with Generic Parameters

Syntax

Label : FOR/IF Generation Scheme GENERATE
Concurrent Statements; -- Typically Component

-- Instantiation Statements
End Generate Label ;

Optional

Required

For Generatation Scheme (Repetitive
Generation)

For identifier IN Discrete Range

Must Iterate Over ALL Values of
the Discrete Range
Unlike Sequential Loop Statement, No
EXIT or NEXT Statements Are
Allowed.

IF Generatation Scheme (Conditional
Generation)

IF Boolean condition

Unlike Sequential If Statement, IF-
Generate Cannot Have ELSE or ELSIF
Used Where Some Irregularities Exist at
the terminal Points of the Regular
Structure

6-30

4-Bit Comparator

• Cascading single bit into a
four bit comparator

• Port Signals are visible in the
ARCHITECTURE

im0

im1

im2

im3

im4

im5

im6

im7

im8

1-Bit Comparator

gt

eq

lt

A> B

A= B

A< B

ai
bi

1-Bit Comparator

gt

eq

lt

A> B

A= B

A< B

ai
bi

1-Bit Comparator

gt

eq

lt

A> B

A= B

A< B

ai
bi

1-Bit Comparator

gt

eq

lt

A> B

A= B

A< B

ai
bi

a0 b0a1 b1a2 b2a3 b3

>

=

<

im0

im1

im2

im3

im4

im5

im6

im7

im8

a_gt_b

a_eq_b

a_lt_b

6-31

4-Bit Comparator: “For ……. Generate” Statement
ENTITY nibble_comparator IS

PORT (a, b : IN BIT_VECTOR (3 DOWNTO 0); -- a and b data inputs
gt, eq, lt : IN BIT; -- previous greater, equal & less than
a_gt_b, a_eq_b, a_lt_b : OUT BIT); -- a > b, a = b, a < b

END nibble_comparator;
--

ARCHITECTURE iterative OF nibble_comparator IS

COMPONENT comp1 [IS] -- “IS” May Be Used in VHDL-93
PORT (a, b, gt, eq, lt : IN BIT; a_gt_b, a_eq_b, a_lt_b : OUT BIT);

END COMPONENT;
FOR ALL : comp1 USE ENTITY WORK.bit_comparator (gate_level);
SIGNAL im : BIT_VECTOR (0 TO 8);

BEGIN
-- First Instance of Single bit comparator
c0: comp1 PORT MAP (a(0), b(0), gt, eq, lt, im(0), im(1), im(2));

6-32

c1to2: FOR i IN 1 TO 2

GENERATE

c: comp1 PORT MAP (a(i), b(i), im(i*3-3),
im(i*3-2), im(i*3-1), im(i*3+0),

im(i*3+1), im(i*3+2));

END GENERATE;

-- Last Instance of Single bit comparator

c3: comp1 PORT MAP (a(3), b(3), im(6), im(7),
im(8), a_gt_b, a_eq_b, a_lt_b);

END iterative;

BIT_VECTOR for Ports a & b

Separate first and last bit-slices

Arrays for intermediate signals facilitate
iterative wiring

Can easily expand to an n-bit comparator

4-Bit Comparator: “For ……. Generate” Statement

Generate statement is
a concurrent statement

Generate statement
brackets concurrent
statements

6-33

ARCHITECTURE iterative OF nibble_comparator IS
--
COMPONENT comp1 [IS] – “IS” May Be Used in VHDL-93

PORT (a, b, gt, eq, lt : IN BIT; a_gt_b, a_eq_b, a_lt_b : OUT BIT);
END COMPONENT;
--

FOR ALL : comp1 USE ENTITY WORK.bit_comparator (gate_level);
CONSTANT n : INTEGER := 4;
SIGNAL im : BIT_VECTOR (0 TO (n-1)*3-1);
--

BEGIN
c_all : FOR i IN 0 TO n-1 GENERATE

L : IF i = 0 GENERATE
least: comp1 PORT MAP (a(i), b(i), gt, eq, lt,

im(0), im(1), im(2));
END GENERATE;

4-Bit Comparator: “IF . Generate” Statement

6-34

m: IF i = n-1 GENERATE
most: comp1 PORT MAP (a(i), b(i), im(i*3- 3),

im(i*3-2), im(i*3-1), a_gt_b,
a_eq_b, a_lt_b);

END GENERATE;

--

r : IF i > 0 AND i < n-1 GENERATE

rest: comp1 PORT MAP (a(i), b(i), im(i*3-3),
im(i*3-2), im(i*3-1), im(i*3+0),
im(i*3+1), im(i*3+2));

END GENERATE;

--

END GENERATE; -- Outer Generate

END iterative;

4-Bit Comparator: “IF . Generate” Statement

6-35

Alternative Architecture (Single Generate)
ARCHITECTURE Alt_iterative OF nibble_comparator IS
constant n: Positive :=4;
COMPONENT comp1 IS

PORT (a, b, gt, eq, lt : IN BIT; a_gt_b, a_eq_b, a_lt_b : OUT BIT);
END COMPONENT;
FOR ALL : comp1 USE ENTITY WORK.bit_comparator (gate_level);
SIGNAL im : BIT_VECTOR (0 TO 3*n+2);
BEGIN
im(0 To 2) <= gt&eq<
cALL: FOR i IN 0 TO n-1 GENERATE

C : comp1 PORT MAP (a(i), b(i), im(i*3), im(i*3+1), im(i*3+2),
im(i*3+3), im(i*3+4), im(i*3+5));

END GENERATE;
a_gt_b <= im(3*n);
a_eq_b <= im(3*n+1);
a_lt_b <= im(3*n+2);
END Alt_iterative ;

6-36

Different Binding Schemes
Entity sr_latch IS

Port (S, R, C : IN Bit; q : Out Bit);
END sr_latch;

ARCHITECTURE Wrong OF sr_latch IS
COMPONENT n2 IS

PORT (i1, i2: IN BIT; o1: OUT BIT);
END COMPONENT;

FOR ALL : n2 USE ENTITY WORK.nand2 (single_delay);
SIGNAL im1, im2, im4 : BIT;
BEGIN
g1 : n2 PORT MAP (s, c, im1);
g2 : n2 PORT MAP (r, c, im2);
g3 : n2 PORT MAP (im1, im4, q);
g4 : n2 PORT MAP (q, im2, im4);
END Wrong;

USE 4 2-Input NAND gates
to design an SR latch

qbar

-- Error … q declared as Output

6-37

SR Latch Modeling …

Fix #1 (Same Architecture -- Change mode of q to Inout)

Entity sr_latch IS
Port (S, R, C : IN Bit; q : InOut Bit);
END sr_latch;

Fix #2 (Same Architecture -- Change mode of q to Buffer)

Entity sr_latch IS
Port (S, R, C : IN Bit; q : Buffer Bit);
END sr_latch;

6-38

… SR Latch Modeling …
Fix #3 (Use Local Signal - Mode of q is maintained as Out)

ARCHITECTURE Problem OF sr_latch IS
COMPONENT n2 IS

PORT (i1, i2: IN BIT; o1: OUT BIT);
END COMPONENT;
FOR ALL : n2 USE ENTITY WORK.nand2 (single_delay);
SIGNAL im1, im2, im3, im4 : BIT;
BEGIN
g1 : n2 PORT MAP (s, c, im1);
g2 : n2 PORT MAP (r, c, im2);
g3 : n2 PORT MAP (im1, im4, im3);
g4 : n2 PORT MAP (im3, im2, im4);
q <= im3;
END Problem;

•Correct Syntax Problem Oscillating
•If all delays are equal then (0,0) on (q, qbar) will oscillate
•Remedy by using gates of different delay values

6-39

… SR Latch Modeling
ARCHITECTURE fast_single_delay OF nand2 IS
BEGIN

o1 <= i1 NAND i2 AFTER 1 NS;
END fast_single_delay;

ARCHITECTURE Problem OF sr_latch IS
COMPONENT n2 IS

PORT (i1, i2: IN BIT; o1: OUT BIT);
END COMPONENT;
FOR g1, g3 : n2 USE ENTITY WORK.nand2 (fast_single_delay);
FOR g2, g4 : n2 USE ENTITY WORK.nand2 (single_delay);
SIGNAL im1, im2, im3, im4 : BIT;
BEGIN
g1 : n2 PORT MAP (s, c, im1);
g2 : n2 PORT MAP (r, c, im2);
g3 : n2 PORT MAP (im1, im4, im3);
g4 : n2 PORT MAP (im3, im2, im4);
q <= im3;
END Problem;

6-40

Binding 3-Input NAND Entity (Different
Delay) to 2-Input “NAND” Component

ARCHITECTURE gate_level OF sr_latch IS
COMPONENT n2

PORT (x, y: in BIT; z: out BIT);
END COMPONENT;
FOR g1, g3 : n2 USE ENTITY
WORK.nand2 (single_delay) PORT MAP
(x, y, z);
FOR g2, g4 : n2 USE ENTITY
WORK.nand3 (single_delay) PORT MAP
(x, x, y, z);
SIGNAL im1, im2, im3, im4 : BIT;
BEGIN
g1 : n2 PORT MAP (s, c, im1);
g2 : n2 PORT MAP (r, c, im2);
g3 : n2 PORT MAP (im1, im4, im3);
g4 : n2 PORT MAP (im3, im2, im4);
q <= im3;
END gate_level;

6-41

Port Map Association …

Instance Actual Signals

Component. Local Ports

Entity Formal Ports

Config.
Spec.

6-42

… Port Map Association
Association is done in two steps:
1. Instance-To-Component

(Actuals Component Local Ports)
2. Componenet-To-Entity (Configuration Port Map)

(Component Local Ports Entity Formal Ports)

PORT MAP in Instantiation Statements defines actual
signal names corresponding to Component Port Names

actual

Specifying PORT MAP in Configuration Statements is
Optional

actual

To Override Entity Local Port Names by Component Port
Names, USE PORT MAP in Configuration Statement

actual

IF No Port Map is Specified in Configuration Statement,
Local Port Names of COMPONENT declaration are the Default
and they must be the Same as the Formals of the Design
Entity.

actual

A Declared Signal Can Be Associated with A Formal Port of Any
Mode As Long As It Has The Same Type

6-43

Default Biniding
Default Binding: Component instance is Bound
to an Entity which :

Has the same NAME as the Component
Has the same number of Ports as the Component
Ports must have the Same Name, Type and be of Compatible modes
The most Recently analyzed Architecture will Be used
A declared Signal can be associated with A Formal Port of Any Mode
as long as it has the Same Type

Port Compatibility: Formal => Actual

XBUFFER

XINOUT

XXOUT

XXIN

BUFFERINOUTOUTIN

Actual`s Mode (Instance Ports)

Formal`s Mode
Entity Formal Ports

6-44

Use of Configuration Specifications

6-45

Sequential Comparator …

Compare consecutive sets of data on an 8-bit
input bus.
Data on the input bus are synchronized with a
clock signal

6-46

D-Latch
ENTITY d_latch IS

PORT (d, c : IN BIT; q: OUT BIT);
END d_latch;
--
ARCHITECTURE sr_based OF d_latch IS
COMPONENT sr_latch

PORT (s, r, C : IN BIT; q : OUT
BIT);

END COMPONENT;
COMPONENT inv

PORT (i1 : IN BIT; o1 : OUT BIT);
END COMPONENT;
SIGNAL dbar: BIT;
BEGIN

c1 : sr_latch PORT MAP(d, dbar, c,
q);
c2 : inv PORT MAP (d, dbar);

END sr_based;

6-47

Byte Latch
ENTITY byte_latch IS
PORT (di : in BIT_VECTOR (7 DOWNTO 0); clk : in BIT;

qo : OUT BIT_VECTOR(7 DOWNTO 0));
END byte_latch;
--
ARCHITECTURE iterative OF byte_latch IS
COMPONENT d_latch

PORT (d, c : IN BIT; q : OUT BIT);
END COMPONENT;
BEGIN
g : FOR i IN di'RANGE GENERATE

L7DT0 : d_latch PORT MAP (di(i), clk, qo(i));
END GENERATE;

END iterative;

6-48

… Sequential Comparator …
ENTITY old_new_comparator IS

PORT (i : in BIT_VECTOR (7 DOWNTO 0);
clk : in BIT; compare : out BIT);

END old_new_comparator;
--
ARCHITECTURE wiring Of

old_new_comparator IS
COMPONENT byte_latch

PORT (di : in bit_vector (7 downto 0);
clk : in bit ; qo : out bit_vector (7 downto 0));

END COMPONENT;
COMPONENT byte_comparator

PORT (a, b : in bit_vector (7 downto 0); gt,
eq, lt : in bit; a_gt_b, a_eq_b, a_lt_b : out bit);

END COMPONENT;
SIGNAL con1 : BIT_VECTOR (7 DOWNTO 0);
SIGNAL vdd : BIT := '1';
SIGNAL gnd : BIT := '0';

6-49

… Sequential Comparator

BEGIN

l : byte_latch PORT MAP (i, clk, con1);

c : byte_comparator
PORT MAP (con1, i, gnd, vdd, gnd, OPEN, compare, OPEN);

END wiring;
•Unconnected Outputs OPEN
•Unconnected Inputs (Only with
Default Specified) OPEN

6-1

COE 405
Test Benches &&

File I/O

Dr. Alaaeldin A. Amin
Computer Engineering Department

E-mail: amin@ccse.kfupm.edu.sa

Home Page : http://www.ccse.kfupm.edu.sa/~amin

Outline

Test Benches
VHDL Files
File Types & External I/O

Opening & Closing Files
Text Input and Output
Byte Comparator

6-3

Test Benches

A Testbench is an Entity without Ports that has a Structural
Architecture
The Testbench Architecture, in general, has 3 major components:

Instance of the Entity Under Test (EUT)

Test Pattern Generator (Generates Test Inputs for the Input
Ports of the EUT)

Response Evaluator (Compares the EUT Output Signals to the
Expected Correct Output)

Input & Output ports of the EUT must be declared as local signals

6-4

Testbench Example …
Entity nibble_comparator_test_bench IS
End nibble_comparator_test_bench ;
--

ARCHITECTURE input_output OF nibble_comparator_test_bench IS
--

COMPONENT comp4 IS
PORT (a, b : IN bit_vector (3 DOWNTO 0); gt, eq, lt : IN BIT;

a_gt_b, a_eq_b, a_lt_b : OUT BIT);
END COMPONENT;
--

FOR a1 : comp4 USE ENTITY WORK.nibble_comparator(iterative);
--

SIGNAL a, b : BIT_VECTOR (3 DOWNTO 0);
SIGNAL eql, lss, gtr, gnd : BIT;
SIGNAL vdd : BIT := '1';
--

BEGIN
a1: comp4 PORT MAP (a, b, gnd, vdd, gnd, gtr, eql, lss);

eq

6-5

…Testbench Example
a2: a <= "0000", -- a = b (steady state)
"1111" AFTER 0500 NS, -- a > b (worst case)
"1110" AFTER 1500 NS, -- a < b (worst case)
"1110" AFTER 2500 NS, -- a > b (need bit 1 info)
"1010" AFTER 3500 NS, -- a < b (need bit 2 info)
"0000" AFTER 4000 NS, -- a < b (steady state, prepare FOR next)
"1111" AFTER 4500 NS, -- a = b (worst case)
"0000" AFTER 5000 NS, -- a < b (need bit 3 only, best case)
"0000" AFTER 5500 NS, -- a = b (worst case)
"1111" AFTER 6000 NS; -- a > b (need bit 3 only, best case)
--

a3 : b <= "0000", -- a = b (steady state)
"1110" AFTER 0500 NS, -- a > b (worst case)
"1111" AFTER 1500 NS, -- a < b (worst case)
"1100" AFTER 2500 NS, -- a > b (need bit 1 info)
"1100" AFTER 3500 NS, -- a < b (need bit 2 info)
"1101" AFTER 4000 NS, -- a < b (steady state, prepare FOR next)
"1111" AFTER 4500 NS, -- a = b (worst case)
"1110" AFTER 5000 NS, -- a < b (need bit 3 only, best case)
"0000" AFTER 5500 NS, -- a = b (worst case)
"1110" AFTER 6000 NS; -- a > b (need bit 3 only, best case)
END input_output;

6-6

VHDL Files
Files provide a way for a VHDL design to communicate
with the host environment.
File declarations make a file available for use to a
design.
Files can be opened for reading and writing:

In VHDL87, files are opened and closed when their
associated objects come into and out of scope.
In VHDL93 explicit file_open() and file_close()
procedures were added.
The contents of a file may only be accessed sequentially.

The package standard defines basic file I/O routines for
VHDL types.
The package textio defines more powerful routines
handling I/O of text files.

6-7

VHDL Files

VHDL ’87:
FILE identifier : file_type is [mode] “file_name”;

VHDL ‘93:
FILE identifier : file_type [[open mode] is “file_name”;

A file type must be defined for each VHDL type that is to
be input from or output to a file:

TYPE bit_file is FILE of bit;

6-8

File Type & External File I/O …

File Type Declaration Example

Type logic_data is FILE of Character;

File Declaration Examples

FILE file1 : logic_data; - - file must be explicitly opened to be associated
with a physical file

FILE file2 : logic_data IS “Input.dat”; - - file IMPLICITLY opened in the
default “Read_Mode”

FILE file3 : logic_data OPEN READ_MODE IS “Input.dat”;

FILE file4 : logic_data OPEN Write_Mode IS “output.dat”;
File can be opened in READ_MODE, WRITE_MODE, or
APPEND_MODE

file1, file2, file3 and file4 are LOGICAL file names

Specifying files is a two step process of
File type declaration
File declaration

Type of data contained
in this file type

6-9

… Opening & Closing Files …
FILE_OPEN MUST be used with declared files which are
not IMPLICITLY opened

FILE_OPEN(file1, “input.dat”, READ_MODE);

FILE_OPEN(file1, “output.dat”, WRITE_MODE);

FILE_CLOSE(file1);

FILE file1 : logic_data; - - Not Implicitly Opened. file must be
explicitly opened to be associated with a physical file

FILE file2 : logic_data IS “Input.dat”; - - file IMPLICITLY opened in
the default “Read_Mode”

FILE file3 : logic_data OPEN READ_MODE IS “Input.dat”;

FILE file4 : logic_data OPEN Write_Mode IS “output.dat”;

6-10

TEXT Input & Output

The TEXTIO package of the std library contains basic
functions and procedures:

use std.textio.all;

The basic read and write operations of the FILE type
are not very useful because they work with binary files.

The following data types are supported by the TEXTIO
routines:

Bit, Bit_vector
Boolean
Character, String
Integer, Real
Time

6-11

TEXT Input & Output

The TEXTIO package provides additional TYPES and

read/write subprograms for manipulating text more

easily and efficiently:

The LINE type is a text buffer used to interface VHDL I/O and

the file. Only the LINE type may read from or write to a file.

A new File type of TEXT is also defined. A file of type TEXT may

only contain ASCII characters.

6-12

TEXT Input & Output
Procedures defined by TEXTIO package include:

Readline(f , k) -- reads a LINE of file f and places it in
-- buffer k (of type LINE)

Read(k , v1, v2,...) -- reads values vi from the LINE k

write(k, v1, v2,...) -- writes values vi to the LINE k

writeline(f,k) -- writes the LINE k to file f

endfile(f) -- returns true at the end of file

File of Type
Text

…………………………………
…………………………………
…………………………………
…………………………………
…………………………………
…………………………………
…………………………………
…………………………………

…………………………….

L

I

N

E

Writeln

Readln

Write

Read

A line is first read from the file
via readline command and is
dis-assembled in variables with
successive read statements.

A line is assembled first via
write commands and is finally
written to the file with a
writeline statement.

6-13

TEXT Input & Output (EXAMPLE)
use std.textio.all;

type state is (reset, good);

procedure display_state(current_state: in state) is

variable k : line;

file flush : text OPEN Write_Mode is "debug.txt";

variable state_string : string(1 to 7);

begin

case current_state is

when reset => state_string := "reset ";

when good => state_string := "good ";

end case;

write (k, state_string, left, 7);

writeline (flush, k);

end display_state;

6-14

TEXT Input & Output (EXAMPLE)
stimuli : process

variable l_in : LINE; variable char : character;

variable data_0,data_1: Bit_vector(7 downto 0);

file stim_in : TEXT is "stim_in.txt";

begin

w_value_0 <= (others => '0');

w_value_1 <= (others => '0');

wait for period;

while not endfile(stim_in) loop

readline (stim_in,l_in); read (l_in,data_0);

w_value_0 <= data_0;

read (l_in, char); read (l_in, data_1);

w_value_2 <= data_1;

wait for period;

end loop;

wait;

end process stimuli;

6-15

TEXT Input & Output (EXAMPLE)
Fultst: Process

VAriable ll: Line;

Variable N1: Integer range 0 to 255;

Variable P1, rslt: Integer;

begin

Lp0: While not EndFile (Stim_in) Loop

readline (stim_in , ll);

read(ll, N1);

N <= Int2Bin (N1 , 8); -- N is a Bit_Vector 7 downto 0)

wait for Period;

….. “More Processing”

End Loop Lp0;

File_Close(stim);

end Process Fultst;

6-16

TEXTIO Package (READ)

PROCEDURE READLINE(file f: TEXT; L: out LINE);

PROCEDURE READ(L:inout LINE; VALUE: out bit);

PROCEDURE READ(L:inout LINE; VALUE: out bit_vector);

PROCEDURE READ(L:inout LINE; VALUE: out BOOLEAN);

PROCEDURE READ(L:inout LINE; VALUE: out character);

PROCEDURE READ(L:inout LINE; VALUE: out integer);

PROCEDURE READ(L:inout LINE; VALUE: out real);

PROCEDURE READ (L:inout LINE; VALUE: out string);

PROCEDURE READ (L:inout LINE; VALUE: out time);

6-17

TEXTIO Package (Write)
PROCEDURE WRITELINE(file f : TEXT; L : inout LINE);
PROCEDURE WRITE(L : inout LINE; VALUE : in bit;

JUSTIFIED: in SIDE := right;
FIELD: in WIDTH := 0);

PROCEDURE WRITE(L : inout LINE; VALUE : in bit_vector;
JUSTIFIED: in SIDE := right;
FIELD: in WIDTH := 0);

PROCEDURE WRITE(L : inout LINE; VALUE : in BOOLEAN;
JUSTIFIED: in SIDE := right;
FIELD: in WIDTH := 0);

PROCEDURE WRITE(L : inout LINE; VALUE : in character;
JUSTIFIED: in SIDE := right;
FIELD: in WIDTH := 0);

PROCEDURE WRITE(L : inout LINE; VALUE : in integer;
JUSTIFIED: in SIDE := right;
FIELD: in WIDTH := 0);

6-18

TEXTIO Package (Write)

PROCEDURE WRITE(L : inout LINE; VALUE : in real;

JUSTIFIED: in SIDE := right;

FIELD: in WIDTH := 0;

DIGITS: in NATURAL := 0);

PROCEDURE WRITE(L : inout LINE; VALUE : in string;

JUSTIFIED: in SIDE := right;

FIELD: in WIDTH := 0);

PROCEDURE WRITE(L : inout LINE; VALUE : in time;

JUSTIFIED: in SIDE := right;

FIELD: in WIDTH := 0;

UNIT: in TIME := ns);

6-19

Test Bench Package (Write)

Package T_Bench IS

File Stims_in: text open read_mode is "./Data_in.txt";

File RSPNS: text open write_mode is "./Data_out.txt";

Shared Variable ll: Line;

--

Constant Dash10: String(1 to 10):=(Others => '-');

Constant Dash30: String(1 to 30):=(Others => '-');

Constant Dash60: String(1 to 60):=(Others => '-');

Constant eqs: String(1 to 3) := " = ";

End T_Bench;

SAMPLE Test Bench (1)

Repeated ADD Multiplier

Use std.TEXTIO.ALL;
Use work.Bin_Arith.ALL;
Use work.T_Bench.ALL;
entity tst_MR is
end tst1_MR;

Architecture struc of tst_MR is
--
Component Add_Multr is
 Generic (n : positive:=4);
 Port (A, X : in Unsigned(n-1 downto 0);
 Strt, Reset, clk: in Bit;
 P : out Unsigned(2*n-1 downto 0);
 Done: out Boolean := False);
end Component;
--
Signal A, X : Unsigned(3 downto 0);
Signal Strt, Reset: Bit;
Signal Clk : Bit := '0';
Signal P : Unsigned(7 downto 0);
Signal Done, Stop_Clk: Boolean := False;
--
begin
Clk <= not clk after 10 ns when not(stop_Clk) else '0';
--
MR1: Add_Multr
 Generic Map (n => 4)
 Port Map(A, X, Strt, Reset, clk, P, Done);
tst:Process
 variable nn : Positive:=4;
 variable Ntot: Positive :=2**nn;
 constant crrct: string(1 to 16):= " Correct Result ";
 constant wrng: string(1 to 21) := " *** WRONG Result ***";
 begin
 Reset <= '1';
 wait For 5 ns;
 Reset <= '0';
 Strt <= '0';
 wait For 5 ns;
outLp: For i in Ntot-1 downto 0 Loop
 A <= Int2Unsigned(i,nn);
inrLp: For j in i downto 0 Loop
 X <= Int2Unsigned(j,nn);

 wait For 0 ns; -- Causes Delta time to pass For A &
 --X to assume their new values
 write(ll,"A"&eqs); -- writes "A = "
 write(ll,Bit_Vector(A)); -- writes Bit_Vector value
 -- of A
 write(ll,"("&eqs); -- writes "(= "
 write(ll, i); -- writes the integer value of A
 write(ll,R_Pran&Spc&" X ");

 write(ll,"B"&eqs); -- writes "B = "
 write(ll,Bit_Vector(X)); -- writes Bit_Vector value
 -- of B
 write(ll,"("&eqs); -- writes "(= "
 write(ll, j); -- writes the integer value of B
 write(ll,")" &eqs); -- writes ")"
 strt <='1';
 wait until not(Done) and clk='1' and clk'event;
 strt <='0';
 wait until Done;
 write(ll,Bit_Vector(P)); -- writes Bit_Vector value
 -- of P
 write(ll,"("&eqs); -- writes "(= "
 write(ll, IntVal(P)); -- writes the integer value
 -- of P
 write(ll,R_Pran&Spc&Arrow); -- writes ")"
 IF IntVal(P)= i*j then
 write(ll, crrct);
 else
 write(ll, wrng);
 end if;
 writeline(Rspns, ll);
 write(ll, dash40);
 writeline(Rspns, ll);
 End Loop;
 write(ll, dash85);
 writeline(Rspns, ll);
 write(ll, dash85);
 writeline(Rspns, ll);
 End Loop;
 stop_Clk <= True;
 File_Close(Rspns);
 wait;
 End Process;

end struc;

SAMPLE Test Bench (2)

Repeated ADD Multiplier

Architecture struc2 of tst_MR is
--
Component Add_Multr is
 Generic (n : positive:=4);
 Port (A, X : in Unsigned(n-1 downto 0);
 Strt, Reset, clk: in Bit;
 P : out Unsigned(2*n-1 downto 0);
 Done: out Boolean := False);
end Component;
--
Signal A, X : Unsigned(3 downto 0);
Signal Strt, Reset: Bit;
Signal Clk : Bit := '0';
Signal P : Unsigned(7 downto 0);
Signal Done, Stop_Clk: Boolean := False;
--
begin
Clk <= not clk after 10 ns when not(stop_Clk) else '0';
--
MR1: Add_Multr
 Generic Map (n => 4)
 Port Map(A, X, Strt, Reset, clk, P, Done);
tst:Process
 variable Lin : Line;
 variable nn : Positive:=4;
 variable i, j: Positive ;
 constant crrct: string(1 to 16):= " Correct Result ";
 constant wrng: string(1 to 21) := " *** WRONG Result ***";
 begin
 Readline(Stims, Lin);
 Read(Lin, nn);
 Reset <= '1';
 wait For 5 ns;
 Reset <= '0';
 Strt <= '0';
 wait For 5 ns;
outLp: While not(EndFile(Stims)) loop
 Readline(Stims, Lin);
 Read(Lin, i);
 Read(Lin, j);
 A <= Int2Unsigned(i,nn);
 X <= Int2Unsigned(j,nn);
 wait for 0 ns; -- Causes Delta time to pass for A & X to assume
 -- their new values
 write(ll,"A"&eqs); -- writes "A = "
 write(ll,Bit_Vector(A)); -- writes Bit_Vector value of A
 write(ll,"("&eqs); -- writes "(= "
 write(ll, i); -- writes the integer value of A
 write(ll,R_Pran&Spc&" X ");

 write(ll,"B"&eqs); -- writes "B = "
 write(ll,Bit_Vector(X)); -- writes Bit_Vector value of B

 write(ll,"("&eqs); -- writes "(= "
 write(ll, j); -- writes the integer value of B
 write(ll,")" &eqs); -- writes ")"
 strt <='1';
 wait until not(Done) and clk='1' and clk'event;
 strt <='0';
 wait until Done;
 write(ll,Bit_Vector(P)); -- writes Bit_Vector value of P
 write(ll,"("&eqs); -- writes "(= "
 write(ll, IntVal(P)); -- writes the integer value of P
 write(ll,R_Pran&Spc&Arrow); -- writes ")"
 IF IntVal(P)= i*j then
 write(ll, crrct);
 else
 write(ll, wrng);
 end if;
 writeline(Rspns, ll);
 write(ll, dash85);
 writeline(Rspns, ll);
 write(ll, dash85);
 writeline(Rspns, ll);
 End Loop;
 stop_Clk <= True;
 File_Close(Stims);
 File_Close(Rspns);
 wait;
 End Process;

end struc2;

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

Chapter 6

Design_Organization & Parameterization

OUTLINE

• Subprograms for Test Benches

• Design Parametrization

• Design libraries

o IEEE Library

 Std_Logic_1164 Package (9-Valued Logic)

 Numeric_Std" Package

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

TEST BENCH SubPrograms

ARCHITECTURE procedural OF nibble_comparator_test_bench is
TYPE integers IS ARRAY (0 TO 12) OF INTEGER;

PROCEDURE apply_data (SIGNAL target : OUT BIT_VECTOR

 (3 DOWNTO 0); CONSTANT values : IN integers;

 CONSTANT period : IN TIME) IS

VARIABLE buf : BIT_VECTOR (3 DOWNTO 0);

BEGIN

FOR i IN values'LOW TO values'High LOOP

int2bin (values(i), buf); -- buf := int2bin(values(i));

target <= TRANSPORT buf AFTER i * period;

END LOOP;
END apply_data;

Component comp4 PORT (a, b : IN bit_vector (3 DOWNTO 0);
 gt, eq, lt : IN BIT; a_gt_b, a_eq_b, a_lt_b : OUT BIT);
END Component;

FOR a1 : comp4 USE ENTITY work.nibble_comparator(structural);

SIGNAL a, b : BIT_VECTOR (3 DOWNTO 0);
SIGNAL eql, lss, gtr, gnd : BIT:= '0'; SIGNAL vdd : BIT := '1';

BEGIN
a1: comp4 PORT MAP (a, b, gnd, vdd, gnd, gtr, eql, lss);
apply_data (a, 0&15&15&14&14&14&14&10&00&15&00&00&15,

500 NS);
apply_data (b, 0&14&14&15&15&12&12&12&15&15&15&00&00,

500 NS);
END procedural;

Type
Mismatch??

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

• Two concurrent procedure calls of apply_data.
• Procedure uses integers and places binary equivalent on target signal
• Invoked at initialization or when inputs change (Here Called Once)

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

Design_Parametrization

ENTITY inv_t IS
GENERIC (tplh : TIME := 3 NS; tphl : TIME := 5 NS);
PORT (i1 : in BIT; o1 : out BIT);

END inv_t;
--

ARCHITECTURE average_delay OF inv_t IS
BEGIN

o1 <= NOT i1 AFTER (tplh + tphl) / 2;
END average_delay;

ARCHITECTURE Asym_delay OF inv_t IS
BEGIN

Process(i1)
Variable V: Bit;
Begin
 V := NOT i1;

 Case V is
 When '0' => o1 <= '0' after tphl;
 When '1' => o1 <= '1' after tplh;
 End Case;
 END;
END Asym_delay;

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

ENTITY nand2_t IS

GENERIC (tplh : TIME := 4 NS; tphl : TIME := 6 NS);
PORT (i1, i2 : IN BIT; o1 : OUT BIT);
END nand2_t;

--
ARCHITECTURE average_delay OF nand2_t IS
BEGIN

o1 <= i1 NAND i2 AFTER (tplh + tphl) / 2;
END average_delay;

• GENERICs allow passing various design parameters

• New versions of gate descriptions (Architecture bodies)

contain timing information.

• GENERICs can include default values

ENTITY nand3_t IS
 GENERIC (tplh : TIME := 5 NS; tphl : TIME := 7 NS);
 PORT (i1, i2, i3 : IN BIT; o1 : OUT BIT);
END nand3_t;
--
ARCHITECTURE average_delay OF nand3_t IS
BEGIN
 o1 <= NOT (i1 and i2 and i3) AFTER (tplh + tphl) / 2;
END average_delay;

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

Values Passed to Generic Parameters

Several alternatives for passing values to GENERICs

1. Using entity defaults

2. Passing_Values Through Component Defaults

3. Assigning fixed values

4. Passing values from higher level components

1. Using Entity Default_Values

ARCHITECTURE default_delay OF bit_comparator IS

Component n1 is PORT (i1: IN BIT; o1: OUT BIT);
END Component;

Component n2 is PORT (i1, i2: IN BIT; o1: OUT BIT);
END Component;

Component n3 is PORT (i1, i2, i3: IN BIT; o1: OUT BIT);
END Component;

FOR ALL : n1 USE ENTITY WORK.inv_t (average_delay);
FOR ALL : n2 USE ENTITY WORK.nand2_t (average_delay);
FOR ALL : n3 USE ENTITY WORK.nand3_t (average_delay);

-- Intermediate signals
SIGNAL im1,im2, im3, im4, im5, im6, im7, im8, im9, im10 : BIT;

No Generics Specified in
Component Declarations

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

BEGIN

-- a_gt_b output

g0 : n1 PORT MAP (a, im1);
g1 : n1 PORT MAP (b, im2);
g2 : n2 PORT MAP (a, im2, im3);
g3 : n2 PORT MAP (a, gt, im4);
g4 : n2 PORT MAP (im2, gt, im5);
g5 : n3 PORT MAP (im3, im4, im5, a_gt_b);

-- a_eq_b output

g6 : n3 PORT MAP (im1, im2, eq, im6);
g7 : n3 PORT MAP (a, b, eq, im7);
g8 : n2 PORT MAP (im6, im7, a_eq_b);

-- a_lt_b output

g9 : n2 PORT MAP (im1, b, im8);
g10 : n2 PORT MAP (im1, lt, im9);
g11 : n2 PORT MAP (b, lt, im10);
g12 : n3 PORT MAP (im8, im9, im10, a_lt_b);

END default_delay;

• Component declarations do not contain GENERICs

• Component instantiation are as before (Only Port maps)

• Entity default values are used.

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

2. Passing_Values Through Component Defaults

ARCHITECTURE iterative OF nibble_comparator IS

Component comp1 is
Generic (tplh1: Time := 2 ns; tplh2: Time:= 3 ns; tplh3: Time:=
 4 ns; tphl1: Time:= 4 ns; tphl2: Time:= 5 ns; tphl3: Time:= 6 ns);
Port (a, b, gt, eq, lt : in Bit; a_gt_b, a_eq_b, a_lt_b : Out Bit);
END Component;

FOR ALL : comp1 USE ENTITY WORK.bit_comparator_t
(passed_delay);

SIGNAL im : BIT_VECTOR (0 TO 8);

BEGIN
c0: comp1 Port Map (a(0), b(0), gt, eq, lt, im(0), im(1), im(2));
 -- No Generic Map…
c1to2: FOR i IN 1 TO 2 GENERATE
c: comp1 PORT MAP (a(i), b(i), im(i*3-3), im(i*3-2), im(i*3-
1), im(i*3+0), im(i*3+1), im(i*3+2)); -- No Generic Map…
END GENERATE;
c3: comp1 PORT MAP (a(3), b(3), im(6), im(7), im(8),
a_gt_b, a_eq_b, a_lt_b); -- No Generic Map…
END iterative;

• Exclusion of GENERIC Map from instances leaves all

parameters OPEN Declared Component Default

Generic Parameter Values are used.

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

3. Assigning Fixed Values to Generic Parameters

ARCHITECTURE fixed_delay OF bit_comparator IS

Component n1 is
Generic (tplh, tphl : Time); Port (i1: in Bit; o1: out Bit);
END Component;

Component n2 is
Generic (tplh, tphl : Time); Port (i1, i2: in Bit; o1: out Bit);
END Component;

Component n3 is
Generic (tplh, tphl : Time); Port (i1, i2, i3: in Bit; o1: out Bit);
END Component;

FOR ALL : n1 USE ENTITY WORK.inv_t (average_delay);
FOR ALL : n2 USE ENTITY WORK.nand2_t (average_delay);
FOR ALL : n3 USE ENTITY WORK.nand3_t (average_delay);

-- Intermediate signals
SIGNAL im1,im2, im3, im4, im5, im6, im7, im8, im9, im10 : BIT;

BEGIN
-- a_gt_b output
g0 : n1 Generic Map (2 NS, 4 NS) Port Map (a, im1);
g1 : n1 Generic Map (2 NS, 4 NS) Port Map (b, im2);
g2 : n2 Generic Map (3 NS, 5 NS) Port Map (a, im2, im3);
g3 : n2 Generic Map (3 NS, 5 NS) Port Map P (a, gt, im4);
g4 : n2 Generic Map (3 NS, 5 NS) Port Map (im2, gt, im5);
g5 : n3 Generic Map (4 NS, 6 NS) Port Map (im3, im4, im5,
a_gt_b);

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

-- a_eq_b output
g6 : n3 Generic Map (4 NS, 6 NS) Port Map (im1, im2, eq, im6);

-- a_lt_b output
g9 : n2 Generic Map (3 NS, 5 NS) Port Map (im1, b, im8);

END fixed_delay;

• Component declarations contain GENERICs

• Component instantiation contain GENERIC MAP Values

• GENERIC MAP specified Values overwrite default

values

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

4. Passing_Values From Higher Level Specs

ENTITY bit_comparator_t IS
 GENERIC (tplh1, tplh2, tplh3, tphl1, tphl2, tphl3 : TIME);
 PORT (a, b, gt, eq, lt : IN BIT; a_gt_b, a_eq_b,
 a_lt_b : OUT BIT);
END bit_comparator_t;

• To pass values, higher level units must contain

GENERICs

• A timed bit_comparator is developed

ARCHITECTURE passed_delay OF bit_comparator_t IS

Component n1is
Generic (tplh, tphl : Time); Port (i1: in Bit; o1: out Bit);
END Component;

Component n2 is
Generic (tplh, tphl : Time); Port (i1, i2: in Bit; o1: out Bit);
END Component;

Component n3 is
Generic (tplh, tphl : Time); Port (i1, i2, i3: in Bit; o1: out Bit);
END Component;

No Generics Specified in
Component Declarations
Generic Parameters To be
Passed to Lower Instances

Higher Level Entity

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

FOR ALL : n1 USE ENTITY WORK.inv_t (average_delay);
FOR ALL : n2 USE ENTITY WORK.nand2_t (average_delay);
FOR ALL : n3 USE ENTITY WORK.nand3_t (average_delay);

-- Intermediate signals
SIGNAL im1,im2, im3, im4, im5, im6, im7, im8, im9, im10 : Bit;

BEGIN

-- a_gt_b output
g0 : n1 Generic Map (tplh1, tphl1) Port Map (a, im1);
g1 : n1 Generic Map (tplh1, tphl1) Port Map (b, im2);
g2 : n2 Generic Map (tplh2, tphl2) Port Map (a, im2, im3);
g3 : n2 Generic Map (tplh2, tphl2) Port Map (a, gt, im4);
g4 : n2 Generic Map (tplh2, tphl2) Port Map (im2, gt, im5);
g5 : n3 Generic Map (tplh3, tphl3) Port Map (im3, im4, im5,
 a_gt_b);

-- a_eq_b output
g6 : n3 Generic Map (tplh3, tphl3) Port Map (im1, im2, eq, im6);

-- a_lt_b output
g9 : n2 Generic Map (tplh2, tphl2) Port Map (im1, b, im8);

END passed_delay;

• Component declarations include GENERICs

• Component instantiations include passed values

• GENERIC maps are required

Passed Parameters

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

5. Summary

Entity

Generic
Component

Generic
Instance
Generic

Map

√ X X Default Entity Generic
Values

√ √ X Default Component
Generic Values

√ √ √ As Specified by
Instance Generic Map

Constant
Values

Parameters
Passed from
Top Level

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

6. Combining Parameter with Default Values (Association
with OPEN) & Passing Values to Other Parameter

Alternative 1: (Generics Map Positional Association

OPEN Keyword)

ARCHITECTURE iterative OF nibble_comparator IS
BEGIN
c0: comp1

 GENERIC MAP (Open, Open, 8 NS, Open, Open, 10 NS)

 PORT MAP (a(0), b(0), gt, eq, lt, im(0), im(1), im(2));
………………….
END iterative;

Alternative 2: (Generic Map Named Association)

ARCHITECTURE iterative OF nibble_comparator IS
………………….
BEGIN
c0: comp1

GENERIC MAP (tplh3 => 8 NS, tphl3 => 10 NS)

PORT MAP (a(0), b(0), gt, eq, lt, im(0), im(1), im(2));

……………………
END iterative;

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

• A GENERIC Map May specify only some of the

parameters

• Using OPEN causes use of default Component Values

• Alternatively, association by name can be used

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

Design Libraries

• A Design Library is A Set of Pre-Compiled Pre-Analyzed
Design Units.

• Design Units:
o Entities,
o Architecture Bodies,
o Package Declarations,
o Package Bodies, and
o Configurations

Two Types of Libraries:

1. Working Library (WORK) {A Predefined library into which a

Design Unit is Placed after Compilation.},

2. Resource Libraries {Contain design units that can be referenced

within the design unit being compiled}.

o Only one library can be the Working Library

o Any number of Resource Libraries May be Used by a Design

Entity

o There is a Number of Predefined Resource Libraries

o The Library Clause is Used To Make A Given Library

Visible

o The Use-Clause Causes Package Declarations Within a

Library to be Visible

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

o Library Management Tasks, e.g. Creation or Deletion, are

not Part of the VHDL Language Standard Tool

Dependent

Predifined Libraries:
o The STD Library Contains 2 Packages Standard

and Textio (See Appendix F in the Textbook).
o The Standard Package Contains All the Predefined

Data Types, e.g. BIT, BIT_Vector, Character,
Integer, Boolean, etc.

o The Textio Package Contains some Utilities for
reading and writing of Data into Files

o By Default, Every Design Unit is Assumed to
Contain the Following Declarations:

LIBRARY STD , work ;
USE STD.Standard.All ;

o Another Standard Library is the IEEE Library which
Contains the Standard Package Std_Logic_1164
which is becoming a De Facto Standard for all
Synthesis Tools (See Appendix G in the Textbook).

o The Std_Logic_1164 Package Defines a new Logic
System consisting of 9-Valued Data Type and
Related Utility Functions and Procedures For This 9-
Vlued System.

o Subtypes of this 9-Valued Are Also Defined
Together with Overloaded Functions and Operations
on these Subtypes

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

 LIBRARY IEEE ;
 USE IEEE.STD_Logic_1164.All ;

STD_LOGIC_1164 9-Valued Logic System

TYPE std_ulogic IS (

'U', -- Uninitialized {Important For Sequential Systems}

'X', -- Forcing Unknown {Contention}

'0', -- Forcing 0

'1', -- Forcing 1

'Z', -- High Impedance

'W', -- Weak Unknown

'L', -- Weak 0 {,e.g. Logic 0 Held Dynamically on a Capacitor}

'H', -- Weak 1 {,e.g. Logic1 Held Dynamically on a Capacitor}

'-' -- Don't care{Used To Optimize Synthesis}

);
TYPE std_ulogic_vector IS Array (Natural Range <>) OF

std_ulogic ;

Resolving Multiple Values on the Same Signal Driver:

1. Strong Dominates Weak

2. Weak Dominates Z

3. Conflicts of Equal Strength is Unknown at That Strength

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

TYPE stdlogic_table IS ARRAY(std_ulogic, std_ulogic) OF std_ulogic ;

-- resolution function

CONSTANT resolution_table : stdlogic_table
 := (
 --
-- | U X 0 1 Z W L H - | |
 --
 ('U', 'U', 'U', 'U', 'U', 'U', 'U', 'U', 'U'), -- | U |
 ('U', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X'), -- | X |
 ('U', 'X', '0', 'X', '0', '0', '0', '0', 'X'), -- | 0 |
 ('U', 'X', 'X', '1', '1', '1', '1', '1', 'X'), -- | 1 |
 ('U', 'X', '0', '1', 'Z', 'W', 'L', 'H', 'X'), -- | Z |
 ('U', 'X', '0', '1', 'W', 'W', 'W', 'W', 'X'), -- | W |
 ('U', 'X', '0', '1', 'L', 'W', 'L', 'W', 'X'), -- | L |
 ('U', 'X', '0', '1', 'H', 'W', 'W', 'H', 'X'), -- | H |
 ('U', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X') -- | - |
);

U

X

1 0

W

H L

Z

Strongest

Weakest

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

• std_ulogic is the base type defined in the 1164 standard

o This is an unresolved type

o std_ulogic cannot have multiple drivers

• Std_logic is the resolved subtype of std_ulogic

• A resolved type is always a subtype of another unresolved

type

SUBTYPE std_logic IS resolved std_ulogic ;
TYPE std_logic_vector Is Array (Natural Range <>) OF

std_logic ;

FUNCTION resolved (s : std_ulogic_vector) RETURN
std_ulogic IS

 VARIABLE result : std_ulogic := 'Z'; -- weakest state default
 BEGIN
 IF (s'LENGTH = 1) THEN RETURN s(s'LOW); ELSE
 FOR i IN s'RANGE LOOP
 result := resolution_table (result, s(i));
 END LOOP;
 END IF;
 RETURN result;
 END resolved;

 You should use std_ulogic and std_ulogic_vector for signals
that only require one driver

– accidental connections between signals that should only
have one driver can be detected by the compiler

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

Illustrative Examples

Signal ta,tb : bit;
begin

ta <= transport '1' after 2 ns;
tb <= transport '1' after 3 ns;

p1:process
begin

tb <= transport '0' after 5 ns;
wait;

end process p1;
.
.
.

--ERROR: Nonresolved Signal tb

'tb' has multiple drivers

Signal tb : std_logic;
begin
-- 'tb' has multiple drivers

tb <= transport '1' after 3 ns; -- DRV0
p1:process
begin

tb <= transport ‘L' after 5 ns; -- DRV1
wait;

end process p1;
tb <= transport ‘X’ after 10 ns; -- DRV 2

end;

What does the waveform of signal tb look like?

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

Signal tc : std_logic := ‘Z’;
begin
-- 'tc' has multiple drivers

tc <= transport '1' after 3 ns; -- DRV0
p1:process
begin

tc <= transport ‘L' after 5 ns; -- DRV1
wait;

end process p1;
tc <= transport ‘X’ after 10 ns; -- DRV 2

end;

What does the waveform of signal tc look like?

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

Signal td : std_logic := ‘Z’;
begin
-- emulates a pullup resistor using ‘H’ drive
td <= ‘H’; -- DRV0

 -- DRV1
td <= transport ‘0' after 2 ns, ‘Z’ after 4 ns;

 -- DRV2
td <= transport ‘0' after 5 ns, ‘Z’ after 7 ns;

 -- DRV3
td <= transport ‘0' after 6 ns,‘Z’ after 10 ns;
end;

What does the waveform of signal td look like?

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

Function resolved (s : std_ulogic_vector) RETURN std_ulogic is
-- ‘S’ is a list of all driver values for the signal to be resolved.
 VARIABLE result : std_ulogic := 'Z'; -- weakest state default
 BEGIN
 IF (s'LENGTH = 1) THEN RETURN s(s'LOW); ELSE
 FOR i IN s'RANGE LOOP
 result := resolution_table (result, s(i));
 END LOOP;
 END IF;
 RETURN result;
 END resolved;

SUBTYPE std_logic IS resolved std_ulogic ;

Type std_logic_vector Is Array (Natural Range <>) of std_logic ;

 std_ulogic is an Unresolved 9-Valued System
 The resolved function resolves std_ulogic Values
 The std_logic and std_logic_vector are de-facto industry
standard

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

What Else in the 1164 Package?

 Boolean functions (AND, OR, etc)
 Subtypes with restricted members (X01, X01Z, UX01,
UX01Z)

– conversion functions to/from vector types to these types
– useful in models where you do not want to deal with the

full range of types
 Vectorized conversion functions
 Misc functions

 rising_edge, falling_edge, is_X
 Overloading logical operators
 Vectorized operators are overloaded
 Vectorized operators are for resolved and unresolved
types

 Conversion functions for common logic value systems
 Conversion to systems without strength (Strength
Strippers)

Subsets of the std_logic Data Type

SUBTYPE X01 IS resolved std_ulogic RANGE 'X' TO '1';

 -- ('X','0','1')

SUBTYPE X01Z IS resolved std_ulogic RANGE 'X' TO 'Z';

--('X','0','1','Z')

SUBTYPE UX01 IS resolved std_ulogic RANGE 'U' TO '1';

-- (‘U’,'X','0','1')

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

SUBTYPE UX01Z IS resolved std_ulogic RANGE 'U' TO 'Z';

-- (‘U’,'X','0','1', ‘Z’)

• Subtypes provide mapping to common value systems
without Strength X01, X01Z, UX01, UX01Z

• The std_logic is a Superset of most common value systems

-- Overloaded Logical Operators

FUNCTION "and" (l : std_ulogic; r : std_ulogic) RETURN UX01;
FUNCTION "nand" (l : std_ulogic; r : std_ulogic) RETURN UX01;
FUNCTION "or" (l : std_ulogic; r : std_ulogic) RETURN UX01;
FUNCTION "nor" (l : std_ulogic; r : std_ulogic) RETURN UX01;
FUNCTION "xor" (l : std_ulogic; r : std_ulogic) RETURN UX01;
FUNCTION "xnor" (l : std_ulogic; r : std_ulogic) return ux01;
FUNCTION "not" (l : std_ulogic) RETURN UX01;

-- Vectorized Overloaded Logical Operators

FUNCTION "and" (l, r : std_logic_vector) RETURN
std_logic_vector;
FUNCTION "and" (l, r : std_ulogic_vector) RETURN
std_ulogic_vector;

FUNCTION "nand" (l, r : std_logic_vector) RETURN
std_logic_vector;
FUNCTION "nand" (l, r : std_ulogic_vector) RETURN
std_ulogic_vector;

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

FUNCTION "or" (l, r : std_logic_vector) RETURN
std_logic_vector;
FUNCTION "or" (l, r : std_ulogic_vector) RETURN
std_ulogic_vector;

FUNCTION "nor" (l, r : std_logic_vector) RETURN
std_logic_vector;
FUNCTION "nor" (l, r : std_ulogic_vector) RETURN
std_ulogic_vector;

FUNCTION "xor" (l, r : std_logic_vector) RETURN
std_logic_vector;
FUNCTION "xor" (l, r : std_ulogic_vector) RETURN
std_ulogic_vector;

Function "xnor" (l, r : std_logic_vector) return
std_logic_vector;
Function "xnor" (l, r : std_ulogic_vector) return
std_ulogic_vector;

FUNCTION "not" (l : std_logic_vector) RETURN
std_logic_vector;
FUNCTION "not" (l : std_ulogic_vector) RETURN
std_ulogic_vector;

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

-- Conversion Functions

FUNCTION To_bit (s : std_ulogic; xmap : BIT := '0')
RETURN BIT;
FUNCTION To_bitvector (s : std_logic_vector ; xmap : BIT
:= '0') RETURN BIT_VECTOR;

FUNCTION To_bitvector (s : std_ulogic_vector; xmap :
BIT := '0') RETURN BIT_VECTOR;

FUNCTION To_StdULogic (b : BIT) RETURN std_ulogic;

FUNCTION To_StdLogicVector (b : BIT_VECTOR)
RETURN std_logic_vector;

FUNCTION To_StdLogicVector (s : std_ulogic_vector)
RETURN std_logic_vector;

FUNCTION To_StdULogicVector (b : BIT_VECTOR)
RETURN std_ulogic_vector;

FUNCTION To_StdULogicVector (s : std_logic_vector)
RETURN std_ulogic_vector;

-- strength strippers and type convertors

FUNCTION To_X01 (s : std_logic_vector) RETURN
std_logic_vector;

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

FUNCTION To_X01 (s : std_ulogic_vector) RETURN
std_ulogic_vector;

FUNCTION To_X01 (s : std_ulogic) RETURN X01;

FUNCTION To_X01 (b : BIT_VECTOR) RETURN
std_logic_vector;
FUNCTION To_X01 (b : BIT_VECTOR) RETURN
std_ulogic_vector;
FUNCTION To_X01 (b : BIT) RETURN X01;

FUNCTION To_X01Z (s : std_logic_vector) RETURN
std_logic_vector;

FUNCTION To_X01Z (s : std_ulogic_vector) RETURN
std_ulogic_vector;

FUNCTION To_X01Z (s : std_ulogic) RETURN X01Z;

FUNCTION To_X01Z (b : BIT_VECTOR) RETURN
std_logic_vector;

FUNCTION To_X01Z (b : BIT_VECTOR) RETURN
std_ulogic_vector;

FUNCTION To_X01Z (b : BIT) RETURN X01Z;

FUNCTION To_UX01 (s : std_logic_vector) RETURN
std_logic_vector;

FUNCTION To_UX01 (s : std_ulogic_vector) RETURN
std_ulogic_vector;

FUNCTION To_UX01 (s : std_ulogic) RETURN
UX01;

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

FUNCTION To_UX01 (b : BIT_VECTOR) RETURN
std_logic_vector;

FUNCTION To_UX01 (b : BIT_VECTOR) RETURN
std_ulogic_vector;
FUNCTION To_UX01 (b : BIT) RETURN UX01;

-- Edge Detection

FUNCTION rising_edge (SIGNAL s : std_ulogic) RETURN
BOOLEAN;

FUNCTION falling_edge (SIGNAL s : std_ulogic) RETURN
BOOLEAN;

-- object contains an unknown

FUNCTION Is_X (s : std_ulogic_vector) RETURN
BOOLEAN;

FUNCTION Is_X (s : std_logic_vector) RETURN
BOOLEAN;

FUNCTION Is_X (s : std_ulogic) RETURN BOOLEAN;

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

IEEE Library: "Numeric_Std" Package

 The numeric_std package is in the IEEE Library
o defines the unsigned and signed types based on the

std_logic type
o Defines numeric operations such as +, -, *, /, abs, etc.

for these types
 Use the numeric_std package when need to perform
arithmetic operations (or synthesize arithmetic operators)
on std_logic types

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

Signed vs. Unsigned

 Unsigned is an unsigned binary integer with the MSB as
the left-most bit.

 Signed is defined as a 2’s complement value with the
most significant bit as the left-most bit.

 Need signed & unsigned types because arithmetic results
of operations can be different depending on the types.

type UNSIGNED is array (NATURAL range <>) of STD_LOGIC;

type SIGNED is array (NATURAL range <>) of STD_LOGIC;

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

Main Operations

 Abs, unary –

 +, -, *, / (division), rem, mod

 >, <, <=, >=, =, /=

 Shift_left, shift_right, rotate_left, rotate_right

Operate on Unsigned.

 XSll, xsrl, xsra, xrol, xror Shift & Rotate Ops. For

"Std_logic_vector"

 Resize Unsigned and signed to specified vector size

 To_integer, to_unsigned, to_signed

 Not, and, or, nand, nor, xor, xnor

 Std_match

 To_01

Metalogical & Z Values

 A metalogical value is defined as ‘X’, ‘W’, ‘U’, or ‘-’
 A high impedance value is ‘Z’
 If any bit in an operand to a numeric_std function
contains a metalogical or high impedance value (‘Z’), the
result is returned with all bits set to ‘X’

 One exception, the ‘std_match’ function
 A value is well-defined if it contains no metalogical or
high impedance values.

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

Conversions

 Std_ulogic_vector, std_logic_vector, unsigned, signed are
all closely related types (subtypes of std_ulogic).

 Use explicit type casts when assigning one type to
another

Example
 signal a_us, b_us: unsigned(7 downto 0);
 signal a_s, b_s: signed(7 downto 0);
 signal a, b: std_logic_vector(7 downto 0);
 a <= std_logic_vector(a_s);
 a_s <= signed(a_us);
 a_us <= unsigned(a);
 b_s <= signed(b);

Integer Conversion

function To_Integer (ARG: UNSIGNED) return NATURAL;
function To_Integer (ARG: SIGNED) return INTEGER;
function To_Unsigned (arg, size: Natural) return Unsigned;
function To_Signed(Arg: Integer; Size: Natural) Return
Signed;

 Basically the same functions as in the std_logic_1164
package.

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

Different Forms of +

 function "+" (L, R: UNSIGNED) return UNSIGNED;
 function "+" (L, R: SIGNED) return SIGNED;
 function "+" (L: UNSIGNED; R: NATURAL) return
UNSIGNED;

 function "+" (L: NATURAL; R: UNSIGNED) return
UNSIGNED;

 function "+" (L: INTEGER; R: SIGNED) return
SIGNED;

 function "+" (L: SIGNED; R: INTEGER) return
SIGNED;

 Note different combinations of allowable operands.
 For synthesis, there is a problem – do not have access to
carry-in, or carry-out which would be very useful. Would
have to use operands with 2-extra bits to get access to
both carry-in and carry-out.

Mixed Signed / Unsigned Operands

 The defined forms of ‘+’ do not have mixed
unsigned/signed operands

 Must do explicit conversions to perform mixed
unsigned/signed operands

 This allows the user to decide how the sign bit is handled.

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

Resize

BR 1/02 10

function RESIZE (ARG: SIGNED; NEW_SIZE: natural)
return SIGNED;
-- Result subtype: SIGNED(NEW_SIZE-1 downto 0)

function RESIZE (ARG: UNSIGNED; New_Size: natural)
return UNSIGNED;
-- Result subtype: UNSIGNED(NEW_SIZE-1 downto 0)

 Changing size of an input vector larger than old, then sign

extend the operand for signed numbers, else fill with

zeros.

 If size decreases, for signed case keep sign bit but drop

leftmost part. For unsigned case, just drop leftmost part.

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

ENTITY parity IS

Port (A : In Bit_Vector (7 Downto 0); Odd, Even : Out Bit);
END parity;
--

ARCHITECTURE iterative OF parity IS

Component X2 Port (I1, I2: In Bit; O1: Out Bit); End Component;
Component N1 Port (I1: In Bit; O1: Out Bit); End Component;

SIGNAL im : BIT_VECTOR (0 TO 6);

BEGIN

first: x2 PORT MAP (a(0), a(1), im(0));
middle: FOR i IN 1 TO 6 GENERATE

m: x2 PORT MAP (im(i-1), a(i+1), im(i));
 END GENERATE;

last: odd <= im(6);
inv: n1 PORT MAP (im(6), even);

END iterative;

© Dr. Alaaeldin Amin

© Dr. Alaaeldin Amin

CONFIGURATION parity_binding OF parity IS
FOR iterative

FOR first : x2
USE ENTITY WORK.xor2_t (average_delay)
GENERIC MAP (5 NS, 5 NS);

END FOR;
FOR middle(1 TO 5)

FOR m : x2
USE ENTITY WORK.xor2_t (average_delay)
GENERIC MAP (5 NS, 5 NS);

END FOR;
END FOR;
FOR middle (6)

FOR m : x2
USE ENTITY WORK.xor2_t (average_delay)
GENERIC MAP (6 NS, 7 NS);

END FOR;
END FOR;
FOR inv : n1

USE ENTITY WORK.inv_t (average_delay) GENERIC
MAP (5 NS, 5 NS);

END FOR;
END FOR;
END parity_binding;

• Due to fanout, last gate has a higher delay
• Element 6 of Generate statement specifies 6 NS, 7 NS delays
• Other generated elements use 5 NS, 5 NS
• Generate Index Value May be Used to Bind different instances

of the Generate Statement to Different Entities/Architectures
• Can use OTHERS for indexing all other instantiations

7-1

Dr. Alaaeldin Amin

OutLine

• Signal Resolution Function

• Declaring Resolved Signals

• Data Flow Models
* Signal Assignment Statement

* Block Construct

• Guard Condition & Guarded Signals

• Use of Nested Blocks & Example

• Resolution of Guarded/Non-Guarded Signals
* BUS & Register Signal Kinds

• Data Flow FSM Model & Examples

• Disconnection of BUS Signals

Signal Resolution

and

Data Flow Models

Dr. Alaaeldin Amin

7-2

Dr. Alaaeldin Amin

Signal Resolution Function

• Each Signal Assignment Statement Defines a Signal
Driver (Source)

Example:

S <= a After T ;

• Multiple Concurrent Assignment Statements To The
Same Signal Defines Multiple Drivers (Signal Sources).

• Such Multi-Driver Signals Are Commonly Encountered
in Buses with Multiple Drivers

• Electrically, Tri-State or Open-Collector Drivers Are
Used to Resolve Conflicts of the Different Drivers

• VHDL Model Requires the Definition of a Resolution
Function To Resolve Values Being Assigned to the
Common Signal By All Its Drivers

 a S
Driver

 a1

 a2

 an

Resolution
Function

 S

7-3

Dr. Alaaeldin Amin

Signal Resolution Function
7-4

Dr. Alaaeldin Amin

7-5

Dr. Alaaeldin Amin

DATA FLOW MODEL

• Represents Register Transfer operations

• There is Direct Mapping between Data Flow

Statements && Register Structural Model

– Implied Module Connectivity

– Implied Muxes & Buses

Main Data Flow VHDL Constructs:

1. Concurrent Signal Assignment Statements

2. Block Statement

7-6

Dr. Alaaeldin Amin

Signal Assignment

Unconditional Both Sequential & Concurrent

Conditional Only Concurrent Conditions Must Be
Boolean, May Overlap and Need Not Be Exhaustive

Selected Only Concurrent Cases Must Not Overlap and
Must Be Exhaustive)

[Label:]
With Expression Select

target <= [Guarded] [Transport]
Wave1 when Choice1 ,
Wave2 when Choice2 ,
……………………………
Waven-1 when Choicen-1 ,
Waven when OTHERS ;

[Label:] target <= [Guarded] [Transport]

Wave1 when Cond1 Else

Wave2 when Cond2 Else

……………………………..

Waven-1 when Condn-1 Else

Waven ; -- Mandatory Wave

Optional

Conditional
Signal
Assignment

Selected
Signal
Assignment

VHDL-93 Any Wavei Can Be Replaced By the
Keyword UNAFFECTED (Which Doesn’t Schedule
Any Transactions on the Target Signal.)

7-7

Dr. Alaaeldin Amin

Examples

Ex 4-Phase Clock Generator

Signal Phi4 : Bit_Vector(1 To 4) := “0000”;

…………………………………………

ClkGen: With Phi4 Select

Phi4 <= “1000” after T When “0000” ,
“0100” after T When “1000” ,

“0010” after T When “0100” ,

“0001” after T When “0010” ,

“1000” after T When “0001” ,

“0000” When Others ; -- Exhaustive

Ex A 2x4 Decoder
Signal D : Bit_Vector(1 To 4) := “0000”;
Signal S0, S1 : Bit;
…………………………………………
Decoder: D <= “0001” after T When S1=‘0’ and S0=‘0’ else

“0010” after T When S1=‘0’ else
“0100” after T When S0=‘0’ else
“1000” ;

7-8

Dr. Alaaeldin Amin

Block Statement

• Block Statement is a Concurrent VHDL Construct
Which is Used Within an Architectural Body to Group
(Bind) a Set of Concurrent Statements.

Required Optional

Block_Label: Block(Guard_Condition)

Block_Declarations;

Begin

Concurrent_Statements;

END Block Block_Label ;

• A Guard Condition May be Associated with a Block
Statement to Allow Enabling/Disabling of Certain Signal
Assignment Statements.

• The Guard Condition Defines an Implicit Signal Called
GUARD.

• In the Simplest Case, Binding (Packing !) Statements
Within A Block Has No Effect On the Model.

• Blocks Can Be Nested.

Optional

7-9

Dr. Alaaeldin Amin

Example :

Architecture DF of D_Latch is
Begin

B : Block (Clk = '1')
Signal I_State :Bit;
Begin

I_State <= Guarded D ;
Q <= I_State after 5 ns;
QB <= not I_State after 5 ns;

END Block B ;
END DF ;

Notes

1. If Guard Condition (Clk='1') is TRUE, Guarded

Statements within block are Enabled (Made Active)

2. Drivers of Guarded Signals are Enabled when Guard
condition is TRUE New Signal Transaction is
scheduled

3. Drivers of Guarded Signals are Turned OFF when

Guard condition is False No Signal Transaction is

scheduled even if signals on RHS change value.

4. UnGuarded Signal Targets (e.g., Q, QB) are

independent of the Guard Condition

Guard
Condition

Block Local
Signal

7-10

Dr. Alaaeldin Amin

Examples

Arch 1
Architecture DF1_NO_Block of DFF is

Signal I_State: Bit:='1';

begin

I_State <= D when (Clk='1' and
Clk'Event) else I_state;

Q <= I_state after TDel ;

QB <= not I_state after TDel ;

End DF1_NO_Block ;

+ive Edge-Triggered D-FF
Entity DFF is

Generic(TDel: Time:= 5 NS);
Port(D, Clk: Bit; Q, QB: out Bit);

End DFF;

Works Fine

We will show several dataflow architectures of D-FF
with and without Block statement
Will show why some of these architectures do not work

7-11

Dr. Alaaeldin Amin

Examples

Arch 1
Architecture DF1_NO_Block of DFF is

Signal I_State: Bit:='1';

begin

I_State <= D when (Clk='1' and
Clk'Event) else I_state;

Q <= I_state after TDel;

QB <= not I_state after TDel;

End DF1_NO_Block ;

Clk='1' and Clk'Event

CLK

Signal Evaluated here

(Clk='1' and Clk'Event)

= TRUE

Signal Evaluated here

(Clk='1' and Clk'Event)

= FALSE

Signal Evaluated 2-Times Per Clock Cycle

• Clk ↑ True Correct Value is scheduled on I_State

• Clk ↓ False Current Value to I_State

is scheduled on I_State (i.e., No Change)

Works Fine 7-12

Dr. Alaaeldin Amin

Examples

Arch 2
Architecture DF2_NO_Block of DFF is
Signal I_State: Bit:='1';
begin

I_State <= D after TDel when (Clk='1'
and (not(Clk'Stable))) else I_state;
Q <= I_state;
QB <= not I_state;

End DF2_NO_Block ;

Doesn’t Work

Clk='1' and not(Clk‘Stable)

CLK

Signal Evaluated here

(Clk='1' and not
Clk‘Stable)= TRUE

Signal Evaluated here

(Clk='1' and not
Clk‘Stable)= FALSE

Clk‘Stable

δ δ

Signal Evaluated 4-Times Per Clock Cycle

• Clk ↑ True correct value scheduled on I_State after TDel

• Clk ↑+ δ False Wrong Value scheduled on I_State
Overwrites the Previously Scheduled Correct Value

• Clk ↓ False Schedules the now incorrectly assigned
value

• Clk ↓ + δ False Recent assigned incorrect value

7-13

Dr. Alaaeldin Amin

Examples

Arch 3
Architecture DF3_NO_Block of DFF is

Signal I_State: Bit:='1';

begin

I_State <= D when (Clk='1' and
(not(Clk'Stable))) else I_state;

Q <= I_state after TDel;

QB <= not I_state after TDel;

End DF3_NO_Block ;

Clk='1' and not(Clk‘Stable)

CLK

Signal Evaluated here

(Clk='1' and not
Clk‘Stable)= TRUE

Signal Evaluated here

(Clk='1' and not
Clk‘Stable)= FALSE

Clk‘Stable

δ δ

Signal Evaluated 4-Times Per Clock Cycle

• Clk ↑ True correct value scheduled on I_State after δ

• Clk ↑+ δ False Just assigned Correct Value scheduled on
I_State

• Clk ↓ False Schedules the now correctly assigned
value

• Clk ↓ + δ False Recent assigned correct value rescheduled

Works Fine
7-14

Dr. Alaaeldin Amin

Examples

Arch4
Architecture DF1_Block of DFF is
Signal I_State: Bit:='1';
begin
D_Blk: Block(Clk='1' and Clk'Event)

Begin
Q <= Guarded D after Tdel;
QB <= Guarded not D after Tdel;
End Block;

End DF1_Block ;

Doesn’t Work

Signal Evaluated Continuously while Clk = ‘1’ !!!

GUARD <= Clk='1' and Clk'Event

TRUE FALSE

Guard Signal

7-15

Dr. Alaaeldin Amin

Examples

Arch5
Architecture DF2_Block of DFF is

Signal I_State: Bit:='1';

begin

D_Blk: Block(Clk='1' and not
Clk'Stable)

Begin

Q <= Guarded D after Tdel;

QB <= Guarded not D after Tdel;

End Block;

End DF2_Block ;

Works Fine

GUARD <= Clk='1' and not Clk‘Stable

TRUE FALSEδ

Signal Evaluated Once Per Clock Cycle

(At Rising Edge of the Clock)

CLK

Guard

7-16

Dr. Alaaeldin Amin

example ''Nested Blocks''

Architecture Block_Structure of Demo is
begin
A: Block -- 1

Outer Block Declarative Section;
Begin

Concurrent Statements of Outer Block;

B:Block -- 1.1
Inner Block ''A'' Declarative Section;

begin
Concurrent Statements of Inner Block ''A'';

..................................
end Block B;

C:Block -- 1.2
Inner Block ''B'' Declarative Section;

begin
Concurrent Statements of Inner Block ''B'';

..................................
end Block C;

end Block A;

D: Block -- 2
..................................

end Block D;

end Block_Structure;

7-17

Dr. Alaaeldin Amin

Use of Nested Blocks For Composite Enabling
Conditions

ARCHITECTURE guarding OF DFF IS

BEGIN

edge: BLOCK (CLK = '1' and not CLK 'STABLE)

BEGIN

gate: BLOCK (En = '1' AND GUARD)

BEGIN

q <= GUARDED d AFTER delay1;

qb <= GUARDED NOT d AFTER delay2;

END BLOCK gate;

END BLOCK edge;

END guarding;

1

• Blocks Can be Nested

• Implicit GUARD signals in each block

•Combining guard expressions must be done explicitly

• Inner Guard Signal <= (En= '1') AND (CLK = '1' and not
CLK 'STABLE)

7-18

Dr. Alaaeldin Amin

EXAMPLE

• Model A System with 2 8-Bit Registers R1 and R2, a 2-Bit
Command signal “COM” and an external 8-Bit Input “INP”

• When Com= “00” R1 is Loaded with External Input
• When Com= “01” R2 is Loaded with External Input
• When Com= “10” R1 is Loaded with R1+R2
• When Com= “11” R1 is Loaded with R1-R2

Use Work.Utils_Pkg.ALL
Entity DF_Ex is

Port (Clk: Bit; Com: Bit_Vector (1 DownTo 0);
Input: Bit_vector(7 DownTo 0));

End DF_Ex;
--
Architecture DF of DF_Ex is
Signal Mux_R1, R1, R2, R2C, R2TC, Mux_Add,

Sum: Bit_Vector(7 DownTo 0);
Signal D00, D01, D10, D11, LD_R1: Bit;
Begin

D00 <= not Com(0) and not Com(1); -- Decoder
D01 <= not Com(0) and Com(1); -- Decoder
D10 <= Com(0) and not Com(1); -- Decoder
D11 <= Com(0) and Com(1); -- Decoder

- -

7-19

Dr. Alaaeldin Amin

EXAMPLE

R2C <= not R2;

R2TC <= INC(R2C); -- Increment Function Defined
-- in the Package

Mux_Add <=R2TC when D11 = ‘1’ Else

R2 ;

Sum <= ADD(R1, Mux_Add); -- ADD Function

-- Defined in Package

Mux_R1 <= INP when D00 = ‘1’ Else

Sum;

R1E <= D00 OR D10 OR D11;

Rising Edge: BLOCK(Clk=‘1’ and not Clk’Stable)

R1_Reg: BLOCK(R1E=‘1’ AND GUARD)

R1 <= Guarded Mux_R1 ;

End Block R1_Reg ;

R2_Reg: BLOCK(D01=‘1’ AND GUARD)

R2 <= Guarded INP ;

End Block R2_Reg ;

End Block Rising Edge;

7-20

Dr. Alaaeldin Amin

Non-Resolved (1-Driver) & Guarded Signals

• (GUARD = False) LHS Signal is Disconnected from its
Driver Signals on the RHS

• No New Transactions May Be Placed on the LHS Signal
Driver

• Pending Transactions on the PWFM of the Signal
Continue to Affect the Signal Value as they Expire.

• (GUARD = True) LHS Signal is Connected to its

Driver on the RHS

• New Transactions are Placed on the LHS Signal Driver as
dictated by the RHS.

Projected Waveform

T1

V1

T2

V2

….

….

T3

V3

0RHS

Driving Value

Guard

7-21

Dr. Alaaeldin Amin

Resolution of Non-Guarded Signals
(More than 1 Driver)

• Signal Drivers are ALWAYS Enabled (Connected)

•Resolved Non-Guarded LHS Signal Values Are
Determined by The Resolution Function from CVs of
ALL Driver Signals on the RHS

•Expired Transactions on Any of the Signal Driver,
Activate the RF to Determine the new value of the
output signal

•Pending Transactions on the PWFM of the Signal
Continue to Affect the Signal Value (Through RF) as
they Expire.

T1

V1

T2

V2

….

….

T3

V3

0

Driving Value

T1

V1

T2

V2

….

….

T3

V3

0

RF

Driver 1

Driver n

7-22

Dr. Alaaeldin Amin

Resolution of Guarded Signals

•Only Enabled Drivers (with GUARD = True)
Participate in Determining Value of Target Signal (i.e.
not ALL Drivers)

•If a Driver is Disabled (GUARD = False) It is
Considered Turned-Off (DISCONNECTED)

• Possible to have ALL Drivers Disconnected
•A Resolved Guarded Signal Must be Declared of either
REGISTER kind or BUS Kind.

•Register Signal drivers DO NOT Invoke the RF in Case All
Drivers Are Turned Off Signal Retains its Previous
Value.

•Signals of BUS Kind Invoke the RF is in case All Signal
Drivers Are Turned Off RF is Invoked with a NULL input

Default Value is Returned.

Driving Value
RF

Driver 1

Driver n

T1

V1

T2

V2

….

….

T3

V3

0
Guard1

RHS1

T1

V1

T2

V2

….

….

T3

V3

0
Guard2

RHS2

Guard1

Guar
d2

7-23

Dr. Alaaeldin Amin

Types of resolved Signals
1. Non-Guarded Resolved Signals
• Resolved-value of the signal is determined by the RF based

on all values of its drivers, i.e. ALL DRIVERS ARE ACTIVE.

2. Guarded Resolved Signals (Guarded Signal
Assignments within Guarded Blocks)

• Resolved-value of the signal is determined by the RF based
on all values of its CONNECTED drivers, i.e. ONLY
DRIVERS with TRUE Guard Conditions ARE Considered
ACTIVE.

• IF ALL Drivers are DISCONNECTED from the SIGNAL
(All Guard Conditions Are False). VHDL allows 3 possible
scenarios in this case:

i. Signals of the “BUS” kind: Signal value is determined
by the RF assuming a NULL input, i.e. the signal will
assume default value of the RF.

ii. Signals of the “REGISTER” kind: No CALL is made
to the RF upon the Disconnection, i.e. the signal
maintains its last value before disconnection.

iii. Signal with NO specific kind: In this case, a FALSE
GUARD VALUEs DO NOT DISCONNECT the signal
Driver and the signal value is determined by the RF
assuming ALL DRIVERS TO BE ACTIVE. This is not
recommended for use.

7-24

Dr. Alaaeldin Amin

Syntax

Signal <sig_name> : <resolved sig_subtype> [kind] [:=Initial_Value] ;

Signal_kind ::= BUS | Register

Examples:

Signal x : Wired_MVL4 BUS ;

Signal y : Wired_MVL4 Register ;

Note:

1. Only Signals of Kind BUS May be Specified

as Port Signals

2. Signals of Register Kind May NOT be Specified

as Port Signals)

Example

Entity ex is

Port(s1, s2 : in MVL4;

Z: out wired_MVL4 BUS) ;

End ex;

7-25

Dr. Alaaeldin Amin

Example MOS (PTL) Multiplexer

7-26

Dr. Alaaeldin Amin

TYPE qit IS (‘0’ , ‘1’ , ‘Z’ , ‘X’);

Type qit_2d is Array (qit, qit) of qit;
Type qit_Vector is Array (Natural Range <>) of qit;

FUNCTION wire (a, b : qit) RETURN qit IS

CONSTANT qit_and_table : qit_2d := (

('0','X','0','X'),

('X','1','1','X'),

('0','1','Z','X'),

('X','X','X','X'));

BEGIN

RETURN qit_and_table (a, b);

END wire;

Example MOS (PTL) Multiplexer

7-27

Dr. Alaaeldin Amin

FUNCTION wiring (drivers : qit_vector) Return qit IS

Variable accumulate : qit := 'Z'; -- Default

BEGIN

FOR i IN drivers'RANGE LOOP

accumulate := wire (accumulate, drivers(i));

END LOOP;

RETURN accumulate;

END wiring;

SUBTYPE wired_qit IS wiring qit;

TYPE wired_qit_vector IS Array (Natural Range <>)
OF wired_qit;

Example MOS (PTL) Multiplexer

7-28

Dr. Alaaeldin Amin

USE WORK.basic_utilities.ALL;
-- FROM PACKAGE USE: wired_qit

Architecture multiple_guarded_assignments OF
mux_8_to_1 IS

SIGNAL t : Wired_qit BUS;
BEGIN
b7: Block (s7 = '1') Begin t <= Guarded i7; End Block;
b6: Block (s6 = '1') Begin t <= Guarded i6; End Block ;
b5: Block (s5 = '1') Begin t <= Guarded i5; End Block ;
b4: Block (s4 = '1') Begin t <= Guarded i4; End Block ;
b3: Block (s3 = '1') Begin t <= Guarded i3; End Block ;
b2: Block (s2 = '1') Begin t <= Guarded i2; End Block ;
b1: Block (s1 = '1') Begin t <= Guarded i1; End Block ;
b0: Block (s0 = '1') Begin t <= Guarded i0; End Block ;
--

z <= not t after 1 NS;
END multiple_guarded_assignments;

• Disconnection is realized by block statements

• If all drivers are disconnected
Hardware returns to 'Z’ Modeling This Requires
Using BUS Signal Kind.

Example MOS (PTL) Multiplexer
Model 1 (BUS Signal Kind)

7-29

Dr. Alaaeldin Amin

USE WORK.basic_utilities.ALL;
-- FROM PACKAGE USE: wired_qit

Architecture multiple_guarded_assignments OF mux_8_to_1 IS

SIGNAL t : Wired_qit REGISTER ;
BEGIN
b7: Block (s7 = '1') Begin t <= Guarded i7; End Block;
b6: Block (s6 = '1') Begin t <= Guarded i6; End Block ;
b5: Block (s5 = '1') Begin t <= Guarded i5; End Block ;
b4: Block (s4 = '1') Begin t <= Guarded i4; End Block ;
b3: Block (s3 = '1') Begin t <= Guarded i3; End Block ;
b2: Block (s2 = '1') Begin t <= Guarded i2; End Block ;
b1: Block (s1 = '1') Begin t <= Guarded i1; End Block ;
b0: Block (s0 = '1') Begin t <= Guarded i0; End Block ;
--

z <= not t after 1 NS;
END multiple_guarded_assignments;

• Disconnection is realized by block statements
• If all drivers are disconnected Real hardware

Maintains State for few milliseconds (As Charge on
the Capacitance of Node “t”.

• Use Register to implement this behavior

Example MOS (PTL) Multiplexer
Model 2 (Register Signal Kind)

7-30

Dr. Alaaeldin Amin

Guard
Signal

Mealy Machine Example
Using Block Statements

entity Mealy_Mc is
Port(Clk, X: in Bit;

Z : out Bit);
end Mealy_Mc;

Architecture Mealy_Block of Mealy_Mc is
Type State is (St0, St1, St2);
Type St_Vector is array (Natural range <>) of State ;

Function State_RF (Signal X: St_Vector) Return
State is

Begin
Return X(X'Left);

End State_RF ;

Signal Pstate: State_RF State REGISTER := St0;

Begin

B1: Block(not Clk’STABLE and Clk = ‘1’)

begin

S0:Block((Pstate = St0) and Guard)
begin

Pstate <= Guarded St1 when X='0'
else St2;

end block S0;

X F2

F1

Z

Register

Pstate

D

7-31

Dr. Alaaeldin Amin

S1:Block((Pstate = St1) and Guard)
begin

Pstate <= Guarded St2 when X='0'
else St0;

end block S1;

S2:Block((Pstate = St2) and Guard)
begin

Pstate <= Guarded St1 when X='1'
else St2;

end block S2;

End Block B1;

Z <= '1' when Pstate =St1 and X='0' else
'0' when Pstate =St1 and X='1' else
'0' when Pstate =St2 and X='0' else
'1' when Pstate =St2 and X='1' else
'0' ;

End Mealy_Block;

Notes:
• Since there are 3 concurrent Signal assignments to the

Signal Pstate , it is declared as a Resolved Signal with
the RF being ''State_RF''.

7-32

Dr. Alaaeldin Amin

• Signal Pstate is also declared to be of REGISTER kind.
This Means that the Signal is Guarded and Resolved and
that the RF is not Invoked in Case All its Drivers Are
Turned Off (e.g. when CLK = ‘0’) in which case the
Signal Retains its Previous Value.

• The Outer Block Statement “B1” Defines an IMPLICIT
Guard Signal Which is TRUE only On the Rising Edge
of the Clock.

• The Implicit Guard Signal ANDed with the Present
State Define the Guard Condition for the Nested Block
Statements.

• ONE Inner Block Statement is Assigned to Each Possible
Present State

• The State Machine Model Used Allows only One Driver
of the Resolved Signal Pstate to be Active at any Given
Time. Thus the ‘Left Attribute is Used in the RF to
Derive the Signal Value Forced By this Driver.

7-33

Dr. Alaaeldin Amin

Sequence Detector Example
Overlapped Detection of the Sequence

“1011”

•A simple 1011 Mealy Sequence Detector

•Single Input x and A single Output z

•For x= 011011011011110111

z= 000001001001000010
Entity detector IS

PORT (x, clk : IN Bit; z : out Bit);

END detector;

Initial / Reset State

7-34

Dr. Alaaeldin Amin

Architecture Singular_state_machine OF Detector IS

TYPE State IS (Reset, Got1, Got10, Got101);

Type State_vector Is Array (Natural Range <>) Of State;

Function One_of (Sources : State_vector) Return State Is

BEGIN

RETURN Sources(Sources’Left);

End One_of;

Signal Pstate : One_of State Register := Reset;

Begin

Clocking : BLOCK (Clk = '1' AND NOT Clk‘Stable)

Begin

S1: BLOCK (Pstate = Reset AND GUARD)

BEGIN

Pstate <= GUARDED Got1 When X = '1' Else Reset;

End Block S1;

S2: Block (Pstate = Got1 And Guard)

Begin

Pstate <= GUARDED Got10 When X = '0' Else Got1;

End Block S2;

S3: Block (Pstate = Got10 And Guard)

Begin

Pstate <= Guarded Got101 When X = '1' Else Reset;

End Block S3;

7-35

Dr. Alaaeldin Amin

S4: Block (Pstate = Got101 And Guard)

Begin

Pstate <= Guarded Got1 When X = '1' Else Got10;

End Block S4;

End Block Clocking;

--

Z <= '1' When (Pstate = Got101 And X = '1') Else '0';

--

End Singular_state_machine;

• Pstate receives four concurrent assignments

• Pstate must be resolved; use one_of as an RF

7-36

Dr. Alaaeldin Amin

Multiplier Design

Design a Multiplier Circuit Which Multiplies 2
Unsigned n-Bit Numbers A (multiplicand) & B
(multiplier).

The Product (P) is Evaluated by Repeated Additions
of the Multiplicand (B) to itself a Number of
Times Equals the Multiplier (A) Value.

Example

1. A=3, B=4 P = 4 + 4 +4

2. A=0, B=4 P = 0

3. A=3, B=0 P = 0 + 0 + 0

Required Data Path Modules:

1. A-Register (n-Bits) AR

2. B-Register (n-Bits) BR

3. P-Register (2n-Bits) PR

4. Adder

S0

S1

Start

Start

AR A

BR B

PR 0

AR > 0

AR = 0

7-37

Dr. Alaaeldin Amin

Architecture DF of CPath_Mult is

Type States is (Initial, Iterative);

Type State_Vector is Array (Natural Range <>) of States;

Function RF(V:State_Vector) Return States is

Begin

Return V(V'Left);

end RF;

--__

Signal Pstate: RF States Register := Initial;

Begin

edge: Block(Clk='1' and not Clk'Stable)

Begin

S0: Block(Pstate= Initial and Guard)

Begin

Pstate <= Guarded Iterative when Start='1' Else Initial;

end Block S0;

Controller Model

7-38

Dr. Alaaeldin Amin

S1: Block(Pstate= Iterative and Guard)

Begin

Pstate <= Guarded Iterative when Zero /='1' Else Initial;

end Block S1;

-- --------------

LD_AR <= '1' when Pstate= Initial and Start='1' else '0';

LD_BR <= '1' when Pstate= Initial and Start='1' else '0';

Clr_PR <= '1' when Pstate= Initial and Start='1' else '0';

LD_PR <= '1' when Pstate=Iterative and Zero /= '1' else '0';

DEC_AR <= '1' when Pstate=Iterative and Zero /= '1' else '0';

End Block edge;

End DF;

7-39

Dr. Alaaeldin Amin

PR

BR

n

2n

n
0

2n
CLR_PR

LD_PR

LD_BR

n
B

AR

n

LD_AR
n

A

DEC_AR

Zero
(AR=0)

Data Path Design

7-40

Dr. Alaaeldin Amin

Entity DPath_Mult is

Generic(N: Positive:= 8);

Port(LD_AR, LD_BR, CLR_PR, LD_PR,Dec_AR, Clk: Bit ;
A, B: in Bit_Vector(N-1 DownTo 0); Zero: out Bit :='0';

P: out Bit _Vector(2*N-1 DownTo 0));

End DPath_Mult ;
-- ---------------------

Architecture DF of DPath_Mult is

Signal AR, BR : Bit _Vector(N-1 DownTo 0);

Signal PR : Bit _Vector(2*N-1 DownTo 0);

Signal ARE,BRE,PRE : Boolean:=False ;
-- --------------------

Begin

ARE <= LD_AR='1' or DEC_AR='1' ;

BRE <= LD_BR='1' ; -- Inner Block (Register) Enable Signals

PRE <= LD_PR='1' or CLR_PR='1' ;

--

Data Path Model

7-41

Dr. Alaaeldin Amin

edge: Block(Clk='1' and not Clk'Stable)

Begin

AReg: Block(ARE and Guard)

Begin

AR <= Guarded A when LD_AR='1' Else
Int2Bin(Int_Val(AR)-1 , AR'Length)

when Int_Val(AR)> 0 else

Unaffected;

Zero <= '1' when (Int_Val(AR)=0) else '0';

end Block AReg;

BReg: Block(BRE and Guard)

Begin

BR <= Guarded B;

end Block BReg;

PReg: Block(PRE and Guard)

Begin

PR <= Guarded Int2Bin((Int_Val(PR)+ Int_Val(BR)),

PR'Length) when LD_PR='1' Else Int2Bin(0, 2*N);

end Block PReg;

End Block edge;

P <= PR ;

End DF;

Data Path Model
7-42

Dr. Alaaeldin Amin

Disconnection of BUS Signals

• Guarded Resolved Signal assignment can specify disconnection
delay. The DISCONNECTION statement is placed in the
declarative part of the Architecture and applies to all
assignments to this signal. Architecture DF of Ex is

EXAMPLE

Architecture DF of Example is

Signal X : WX_Vector(7 downTo 0) BUS ;

DISCONNECT X : WX_Vector after 50 ns ;

Begin

B1: Block(Ph1='1')
Signal P1_S : WX_Vector(7 downTo 0) ;

Begin
P1_S <= ….
X <= Guarded P1_S after 75 ns;

End Block B1 ;

B2: Block(Ph2='1')
Signal P2_S : WX_Vector(7 downTo 0) ;

Begin
P2_S <= ….
X <= Guarded P2_S after 60 ns;

End Block B2 ;

END DF ;

7-43

Dr. Alaaeldin Amin

Disconnection of BUS Signals

75
ns

50 ns 50 ns
60 ns

P1_S

PH1

P2_S

PH2

X

7-44

Dr. Alaaeldin Amin

Example
“Register Signals”

+ive Edge-Triggered Shift Register with
Parallel Load

Register INPUTS In Order of Priority

1. Ena : If Ena=0, The register Cannot not Change its
state.

2. LD : IF LD = 1, Data on the parallel inputs (Din) are
Loaded into the Register independent of the Clock
Signal (Asynchronous Load)

3. Dir : Determines the Direction of the Shift or Rotate
Operation. Dir=0 indicates a Left shift/Rotate while
Dir = 1, indicates a Right Shift /Rotate.

4. Shift Mode Signals M1 & M2

M1M2 : 00 A 0 is Shifted-In

M1M2 : 01 A 1 is Shifted-In

M1M2 : 10 The Sin input is Shifted-In

M1M2 : 11 Rotate Operation.

7-45

Dr. Alaaeldin Amin

Type MVL4 is (‘X’, ‘0’, ‘1’, ‘Z’);

Type MVL4_Vec is Array(Natural range <>) of MVL4 ;

Type MVL4_Tab is array(MVL4 , MVL4) of MVL4;

Constant Tab_X : MVL4_Tab :=
-- 'x', '0', '1', 'Z'

(('x', 'x', 'x', 'x'), -- 'x'
('x', '0', 'x', '0'), -- '0'
('x', 'x', '1', '1'), -- '1'
('x', '0', '1', 'z')); -- 'z'

Function WiredX (INP : MVL4_Vec) Return MVL4 is

Variable Result: MVL4:='z';-- Initialize
Begin

For i in INP'Range Loop
Result:= TAB_X(Result , INP(i));

End Loop;
Return Result;

end WiredX ;

SubType WX is WiredX MVL4 ;

Type WX_Vector is Array(Natural range <>) of WX ;

Example

RF
Function

7-46

Dr. Alaaeldin Amin

Entity ShiftReg is
Port (Ena, Ld, Clk, Dir, M1, M2 : in Bit;

Sin : in MVL4 ;
Din : in WX_Vector(7 downto 0);
Q : Out WX_Vector(7 downto 0));

END ShiftReg ;

Architecture Wrong_DF of ShiftReg is
Signal I_State : WX_Vector(7 downto 0); -- Guarded Resolved

-- Should have its “Kind” Specified
Begin
Load: Block(Ena=‘1’ and Ld=‘1’)

begin
I_State <= Guarded Din;

end block Load;
Shift: Block(Ena=‘1’ and Ld=‘0’ and Clk=‘1’ and not

Clk'Stable))
Signal tmp: Bit_Vector() to 2);
begin

tmp <= Dir & M1 & M2 ;
With tmp Select
I_State <= Guarded

I_State(6 downto 0) & ‘0’ When “000” ,
I_State(6 downto 0) & ‘1’ When “001” ,
I_State(6 downto 0) & Sin When “010” ,
I_State(6 downto 0) & I_State(7) When “011” ,
‘0’ & I_State(7 downto 1) When “100” ,
‘1’ & I_State(7 downto 1) When “101” ,
Sin & I_State(7 downto 1) When “110” ,
I_State(0)& I_State(7 downto 1) When “111”;

end block Shift;
Q <= I_State After 5 ns ;

End Wrong_DF ;

7-47

Dr. Alaaeldin Amin

Architecture Correct_DF of ShiftReg is
Signal I_State : WX_Vector(7 downto 0) Register; -- Guarded

-- Resolved with “Kind”= Register

Begi
Load: Block(Ena=‘1’ and Ld=‘1’)

begin
I_State <= Guarded Din;

end block Load;
Shift: Block(Ena=‘1’ and Ld=‘0’ and Clk=‘1’ and not

Clk'Stable))
Signal tmp: Bit_Vector(0 to 2);
begin

tmp <= Dir & M1 & M2 ;
With tmp Select

I_State <= Guarded
I_State(6 downto 0) & ‘0’ When “000” ,
I_State(6 downto 0) & ‘1’ When “001” ,
I_State(6 downto 0) & Sin When “010” ,
I_State(6 downto 0) & I_State(7) When “011” ,
‘0’ & I_State(7 downto 1) When “100” ,
‘1’ & I_State(7 downto 1) When “101” ,
Sin & I_State(7 downto 1) When “110” ,
I_State(0)& I_State(7 downto 1) When “111”;

end block Shift;
Q <= I_State After 5 ns ;

End Correct _DF ;

6-1

COE 405
VHDL Coding for Synthesis

Dr. Alaaeldin A. Amin
Computer Engineering Department

E-mail: amin@ccse.kfupm.edu.sa

Home Page : http://www.ccse.kfupm.edu.sa/~amin

Outline…

Synthesis overview
Synthesis of primary VHDL constructs
Combinational circuit synthesis

Multiplexor, Decoder, Priority encoder, Adder, Tri-state buffer,
Bi-directional buffer

Sequential circuit synthesis
Latch
Flip-flop with asynchronous reset
Flip-flop with synchronous reset
Loadable register
Shift register
Register with tri-state output
Finite state machine

Efficient coding styles for synthesis

6-3

General Overview of Synthesis…

Synthesis is the process of translating from an abstract description

of a hardware device into an optimized, technology specific

implementation.

Synthesis may occur at many different levels of abstraction

Behavioral synthesis

Register Transfer Level (RTL) synthesis

Boolean equations descriptions, netlists, block diagrams,

truth tables, state tables, etc.

RTL synthesis implements the register usage, the data flow, the

control flow, and the machine states as defined by the syntax &

semantics of the HDL.

6-4

…General Overview of Synthesis

Factors Affecting the synthesis algorithm
HDL coding style

Should be technology independent.
Determines the initial starting point for the synthesis
algorithms & plays a key role in generating the final
synthesized hardware.

Design constraints
Timing goals
Area goals
Power management goals
Design-For-Test rules

Target technology
Target library design rules

6-5

VHDL Synthesis Subset
VHDL is a complex language but only a subset of it is synthesizable.

Primary VDHL constructs used for synthesis:

Constant definition

Port map statement

Signal assignment: A <= B

Comparisons: = (equal), /= (not equal), > (greater than), <
(less than), >= (greater than or equal), <= (less than or equal)

Logical operators: AND, OR, NAND, NOR, XOR, XNOR, NOT

'if' statement
if (presentstate = CHECK_CAR) then

end if | elsif

'for' statement (used for looping in creating arrays of elements)

Other constructs are ‘with’, ’when’, 'when else', 'case' , 'wait
'. Also ":=" for variable assignment.

6-6

Synthesis of Combinational Logic

Constant Definition…
library ieee;
use ieee.std_logic_1164.all;
entity constant_ex is

port (in1 : in std_logic_vector (7 downto 0);
out1 : out std_logic_vector (7 downto 0));

end constant_ex;
architecture constant_ex_a of constant_ex is

constant A : std_logic_vector (7 downto 0) := "00000000";
constant B : std_logic_vector (7 downto 0) := "11111111";

constant C : std_logic_vector (7 downto 0) := "00001111";
begin

out1 <= A when in1 = B else C;
end constant_ex_a;

6-7

…Constant Definition

6-8

Port Map Statement…

library ieee;
use ieee.std_logic_1164.all;
entity sub is

port (a, b : in std_logic; c : out std_logic);
end sub;
architecture sub_a of sub is
begin

c <= a and b;
end sub_a;

6-9

…Port Map Statement…

library ieee;
use ieee.std_logic_1164.all;
entity portmap_ex is

port (in1, in2, in3 : in std_logic; out1 : out std_logic);
end portmap_ex;
architecture portmap_ex_a of portmap_ex is

component sub
port (a, b : in std_logic; c : out std_logic);

end component;
signal temp : std_logic;

6-10

…Port Map Statement…
begin

u0 : sub port map (in1, in2, temp);
u1 : sub port map (temp, in3, out1);

end portmap_ex_a;
use work.all;
configuration portmap_ex_c of portmap_ex is

for portmap_ex_a
for u0,u1 : sub use entity sub (sub_a);
end for;

end for;
end portmap_ex_c;

6-11

When Statement

library ieee;
use ieee.std_logic_1164.all;
entity when_ex is

port (in1, in2 : in std_logic; out1 : out std_logic);
end when_ex;
architecture when_ex_a of when_ex is
begin

out1 <= '1' when in1 = '1' and in2 = '1' else '0';
end when_ex_a;

6-12

With Statement

library ieee;
use ieee.std_logic_1164.all;
entity with_ex is

port (in1, in2 : in std_logic; out1 : out std_logic);
end with_ex;
architecture with_ex_a of with_ex is
begin

with in1 select out1 <= in2 when '1',
'0' when others;

end with_ex_a;

6-13

Case Statement…
library ieee;
use ieee.std_logic_1164.all;
entity case_ex is

port (in1, in2 : in std_logic; out1,out2 : out std_logic);
end case_ex;
architecture case_ex_a of case_ex is

signal b : std_logic_vector (1 downto 0);
begin

process (b)
begin

case b is
when "00"|"11" => out1 <= '0'; out2 <= '1';
when others => out1 <= '1'; out2 <= '0';

end case;
end process;
b <= in1 & in2;

end case_ex_a;

6-14

For Statement…
library ieee;
use ieee.std_logic_1164.all;
entity for_ex is

port (in1 : in std_logic_vector (3 downto 0); out1 : out
std_logic_vector (3 downto 0));

end for_ex;
architecture for_ex_a of for_ex is
begin

process (in1)
begin

for0 : for i in 0 to 3 loop
out1 (i) <= not in1(i);

end loop;
end process;

end for_ex_a;

6-15

Generate Statement

Signal A,B: Bit_Vector (3 Downto 0);

Signal C: Bit_Vector(7 Downto 0);

Signal X:BIT;

. . .

Gen_label:

For I In 3 Downto 0 Generate

C(2*I+1) <= A(I) Nor X;

C(2*I) <= B(I) Nor X;

End Generate Gen_label ;

6-16

If Statement
library ieee;
use ieee.std_logic_1164.all;
entity if_ex is

port (in1, in2 : in std_logic; out1 : out std_logic);
end if_ex;
architecture if_ex_a of if_ex is

begin
process (in1, in2)
begin

if in1 = '1' and in2 = '1' then out1 <= '1';
else out1 <= '0';
end if;

end process;
end if_ex_a;

6-17

Variable Definition…

library ieee;
use ieee.std_logic_1164.all;
entity variable_ex is

port (a : in std_logic_vector (3
downto 0); b : in std_logic_vector (3
downto 0); c : out std_logic_vector (3
downto 0));

end variable_ex;
architecture variable_ex_a of variable_ex

is
begin

process (a,b)
variable carry : std_logic_vector

(4 downto 0);
variable sum : std_logic_vector

(3 downto 0);

begin
carry (0) := '0';
for i in 0 to 3 loop

sum (i) := a(i) xor b(i)
xor carry(i);

carry (i+1) := (a(i) and
b(i)) or (b(i) and

carry (i)) or
(carry (i) and a(i));

end loop;
c <= sum;
end process;

end variable_ex_a;

6-18

…Variable Definition

6-19

Multiplexor Synthesis…

library ieee;
use ieee.std_logic_1164.all;
entity mux is

port (in1, in2, ctrl : in std_logic; out1 : out std_logic);
end mux;
architecture mux_a of mux is
begin

process (in1, in2, ctrl)
begin

if ctrl = '0' then out1 <= in1;
else out1 <= in2;
end if;

end process;
end mux_a;

6-20

…Multiplexor Synthesis

entity mux2to1_8 is
port (signal s : in std_logic; signal zero,one: in std_logic_vector(7
downto 0); signal y: out std_logic_vector(7 downto 0));

end mux2to1_8;
architecture behavior of mux2to1 is
begin

y <= one when (s = '1') else zero;
end behavior;

6-21

2x1 Multiplexor using Booleans
architecture boolean_mux of mux2to1_8 is

signal temp: std_logic_vector(7 downto 0);
begin

temp <= (others => s);
y <= (temp and one) or (not temp and zero);

end boolean_mux;

• The s signal cannot be used in a Boolean operation with
the one or zero signals because of type mismatch (s is a
std_logic type, one/zero are std_logic_vector types)

• An internal signal of type std_logic_vector called temp
is declared. The temp signal will be used in
the Boolean operation against the zero/one signals.

• Every bit of temp is set equal to the s signal value.

6-22

2x1 Multiplexor using a Process

architecture process_mux of mux2to1_8 is
begin

comb: process (s, zero, one)
begin

y <= zero;
if (s = '1') then

y <= one;
end if;

end process comb;
end process_mux ;

6-23

Decoder Synthesis…

library ieee;
use ieee.std_logic_1164.all;
entity decoder is

port (in1, in2 : in std_logic; out00, out01, out10, out11 : out std_logic);
end decoder;
architecture decoder_a of decoder is
begin

process (in1, in2)
begin

if in1 = '0' and in2 = '0' then out00 <= '1';
else out00 <= '0';
end if;
if in1 = '0' and in2 = '1' then out01 <= '1';
else out01 <= '0';
end if;

6-24

…Decoder Synthesis

if in1 = '1' and in2 = '0' then out10 <= '1';

else out10 <= '0';
end if;
if in1 = '1' and in2 = '1' then out11 <= '1';
else out11 <= '0';
end if;

end process;
end decoder_a;

6-25

entity dec3to8 is
port (sel: in std_logic_vector(2 downto 0); en: in std_logic;

y: out std_logic_vector(7 downto 0))
end dec3to8;
architecture behavior of dec3to8 is
begin

process (sel, en)
begin

variable yv: Std_logic_vector(7 downto 0);
yv := “1111111”;
if (en = ‘1’) then

case sel is
when “000” => yv(0) := ‘0’; when “001” => yv(1) := ‘0’;
when “010” => yv(2) := ‘0’; when “011” => yv(3) := ‘0’;
when “100” => yv(4) := ‘0’; when “101” => yv(5) := ‘0’;
when “110” => yv(6) := ‘0’; when “111” => yv(7) := ‘0’;

end case;
end if;
y <= yv;

end process;
end behavior;

3-to-8 Decoder Example…

6-26

Architecture of Generic Decoder

architecture behavior of generic_decoder is
begin

process (sel, en)
begin

y <= (others => '1') ;
for i in y 'range loop

if (en = '1' and bvtoi(To_Bitvector(sel)) = i) then
y(i) <= '0' ;

end if ;
end loop;

end process;
end behavior;

bvtoi is a function to convert
from bit_vector to integer

6-27

A Common Error in Process
Statements…

When using processes, a common error is to forget to
assign an output a default value.

ALL outputs should have DEFAULT values

If there is a logical path in the model such that an
output is not assigned any value

the synthesizer will assume that the output must retain its
current value
a latch will be generated.

Example: In dec3to8.vhd do not assign 'y' the default
value of B"11111111"

If en is 0, then 'y' will not be assigned a value
In the new synthesized logic, all 'y' outputs are latched

6-28

…A Common Error in Process
Statements…

entity dec3to8 is
port (signal sel: in std_logic_vector(3 downto 0); signal en: in std_logic; signal
y: out std_logic_vector(7 downto 0))

end dec3to8;
architecture behavior of dec3to8 is
begin

process (sel, en)
-- y <= “1111111”;

if (en = ‘1’) then
case sel is
when “000” => y(0) <= ‘0’; when “001” => y(1) <= ‘0’;
when “010” => y(2) <= ‘0’; when “011” => y(3) <= ‘0’;
when “100” => y(4) <= ‘0’; when “101” => y(5) <= ‘0’;
when “110” => y(6) <= ‘0’; when “111” => y(7) <= ‘0’;

end case;
end if;

end process;
end behavior;

No default value
assigned to y!!

6-29

…A Common Error in Process
Statements

6-30

Another Incorrect Latch Insertion
Example…

entity case_example is
port (in1, in2 : in std_logic; out1, out2 : out std_logic);

end case_example;
architecture case_latch of case_example is

signal b : std_logic_vector (1 downto 0);
begin

process (b)
begin

case b is
when "01" => out1 <= '0'; out2 <= '1';
when "10" => out1 <= '1'; out2 <= '0';
when others => out1 <= '1';

end case;
end process;
b <= in1 & in2;

end case_latch; out2 has not been
assigned a value for
others condition!!

6-31

…Another Incorrect Latch Insertion
Example

6-32

Avoiding Incorrect Latch Insertion

architecture case_nolatch of case_example is
signal b : std_logic_vector (1 downto 0);

begin
process (b)
begin

case b is
when "01" => out1 <= '0'; out2 <= '1';
when "10" => out1 <= '1'; out2 <= '0';
when others => out1 <= '1'; out2 <= '0';

end case;
end process;
b <= in1 & in2;

end case_nolatch;

6-33

Eight-Level Priority Encoder…

Entity priority is
Port (Signal y1, y2, y3, y4, y5, y6, y7: in std_logic;

Signal vec: out std_logic_vector(2 downto 0));
End priority;
Architecture behavior of priority is
Begin

Process(y1, y2, y3, y4, y5, y6, y7)
begin

if (y7 = ‘1’) then vec <= “111”; elsif (y6 = ‘1’) then vec <= “110”;
elsif (y5 = ‘1’) then vec <= “101”; elsif (y4 = ‘1’) then vec <= “100”;
elsif (y3 = ‘1’) then vec <= “011”; elsif (y2 = ‘1’) then vec <= “010”;
elsif (y1= ‘1’) then vec <= “001”; else vec <= “000”;
end if;

end process;
End behavior;

6-34

…Eight-Level Priority Encoder…

6-35

Eight-Level Priority Encoder…

Architecture behavior2 of priority is
Begin

Process(y1, y2, y3, y4, y5, y6, y7)
begin

vec <= “000”;
if (y1 = ‘1’) then vec <= “001”; end if;
if (y2 = ‘1’) then vec <= “010”; end if;
if (y3 = ‘1’) then vec <= “011”; end if;
if (y4 = ‘1’) then vec <= “100”; end if;
if (y5 = ‘1’) then vec <= “101”; end if;
if (y6 = ‘1’) then vec <= “110”; end if;
if (y7= ‘1’) then vec <= “111”; end if;

end process;
End behavior2; Equivalent 8-level

priority encoder.

6-36

Ripple Carry Adder…

library ieee;
use ieee.std_logic_1164.all;
entity adder4 is

port (Signal a, b: in std_logic_vector (3 downto 0);
Signal cin : in std_logic_vector;
Signal sum: out std_logic_vector (3 downto 0);
Signal cout : out std_logic_vector);

end adder4;
architecture behavior of adder4 is
Signal c: std_logic_vector (4 downto 0);
begin

C is a temporary signal
to hold the carries.

6-37

…Ripple Carry Adder…

process (a, b, cin, c)
begin

c(0) <= cin;
for I in 0 to 3 loop

sum(I) <= a(I) xor b(I) xor c(I);
c(I+1) <= (a(I) and b(I)) or (c(I) and (a(I) or b(I)));

end loop;
end process;
cout <= c(4);

End behavior;

6-38

…Ripple Carry Adder

6-39

Tri-State Buffer Synthesis

library ieee;
use ieee.std_logic_1164.all;
entity tri_ex is

port (in1, control : in std_logic; out1 : out std_logic);
end tri_ex;
architecture tri_ex_a of tri_ex is
begin

out1 <= in1 when control = '1' else 'Z';
end tri_ex_a;

6-40

Bi-directional Buffer Synthesis

library ieee;
use ieee.std_logic_1164.all;
entity inout_ex is

port (io1, io2 : inout std_logic; ctrl : in std_logic);
end inout_ex;
architecture inout_ex_a of inout_ex is
begin

io1 <= io2 when ctrl = '1' else 'Z';
io2 <= io1 when ctrl = '0' else 'Z';

end inout_ex_a;

6-41

Eefficient Coding Style
Sequential Circuits

Sequential circuits consist of both combinational logic and
storage elements.

Sequential circuits can be
Moore-type: outputs are a combinatorial function of Present State
signals.
Mealy-type: outputs are a combinatorial function of both Present
State signals and primary inputs.

Combinational
Logic

FFs
^

Primary
Inputs

Primary
Outputs

CLK

Present State Next State

6-42

Template Model for a Sequential
Circuit

entity model_name is
port (list of inputs and outputs);

end model_name;
architecture behavior of model_name is

internal signal declarations
begin

-- the state process defines the storage elements
state: process (sensitivity list -- clock, reset, next_state inputs)
begin

vhdl statements for state elements
end process state;
-- the comb process defines the combinational logic
comb: process (sensitivity list -- usually includes all inputs)
begin

vhdl statements which specify combinational logic
end process comb;

end behavior;

6-43

Latch Synthesis…
library ieee;
use ieee.std_logic_1164.all;
entity latch_ex is

port (clock, in1 : in std_logic; out1 : out std_logic);
end latch_ex;
architecture latch_ex_a of latch_ex is
begin

process (clock, in1)
begin

if (clock = '1') then
out1 <= in1;

end if;
end process;

end latch_ex_a;

6-44

Flip-Flop Synthesis with
Asynchronous Reset…

library ieee;
use ieee.std_logic_1164.all;
entity dff_asyn is

port(reset, clock, d: in std_logic; q: out std_logic);
end dff_asyn;
architecture dff_asyn_a of dff_asyn is
begin

process (reset , clock)
begin

if (reset = '1') then
q <= '0';

elsif rising_edge(clock) then
q <= d;

end if;
end process;

end dff_asyn_a; •Note that the reset input has precedence
over the clock in order to define the
asynchronous operation.

6-45

…Flip-Flop Synthesis with
Asynchronous Reset

6-46

Flip-Flop Synthesis with
Synchronous Reset…

library ieee;
use ieee.std_logic_1164.all;
entity dff_syn is

port(reset, clock, d: in std_logic; q: out std_logic);
end dff_syn;
architecture dff_syn_a of dff_syn is
begin

process (clock) – Only The clock needs to be in the sensitivity
list

begin
if rising_edge(clock) then

if (reset = '1') then q <= '0';
else q <= d;

d if

6-47

…Flip-Flop Synthesis with
Synchronous Reset

6-48

8-bit Loadable Register with
Asynchronous Clear…

library ieee;
use ieee.std_logic_1164.all;
entity reg8bit is

port(reset, clock, load: in std_logic;
din: in std_logic_vector(7 downto 0);
dout: out std_logic_vector(7 downto 0));

end reg8bit;
architecture behavior of reg8bit is

signal n_state, p_state: std_logic_vector(7 downto 0);
begin

dout <= p_state;
comb: process (p_state, load, din)
begin

n_state <= p_state;
if (load = '1') then n_state <= din end if;

end process comb;

6-49

…8-bit Loadable Register with
Asynchronous Clear…

state: process (clk, reset)
begin

if (reset = ‘0') then p_state <= (others => '0‘);
elsif rising_edge(clock) then

p_state <= n_state;
end if;

end process state;
End behavior;

• The state process defines a storage element
which is 8-bits wide, rising edge triggered, and
had a low true asynchronous reset.

•Note that the reset input has precedence over
the clock in order to define the
asynchronous operation.

6-50

…8-bit Loadable Register with
Asynchronous Clear

6-51

4-bit Shift Register…
library ieee;
use ieee.std_logic_1164.all;
entity shift4 is

port(reset, clock: in std_logic; din: in std_logic;
dout: out std_logic_vector(3 downto 0));

end shift4;
architecture behavior of shift4 is

signal n_state, p_state: std_logic_vector(3 downto 0);
begin

dout <= p_state;
state: process (clock, reset)
begin

if (reset = ‘0') then p_state <= (others => '0‘);
elsif rising_edge(clock) then

p_stateq <= n_state;
end if;

end process state;

6-52

…4-bit Shift Register…

comb: process (p_state, din)
begin

n_state(0) <= din;
for I in 3 downto 0 loop

n_state(I) <= p_state(I-1);
end loop;

end process comb;
End behavior;

• Serial input din is assigned to the D-input of the
first D-FF.

• For loop is used to connect the output of
previous flip-flop to the input of current flip-flop.

6-53

…4-bit Shift Register

6-54

Register with Tri-State Output…
library ieee;
use ieee.std_logic_1164.all;
entity tsreg8bit is

port(reset, clock, load, en: in std_logic;
signal din: in std_logic_vector(7 downto 0);
signal dout: out std_logic_vector(7 downto 0));

end tsreg8bit;
architecture behavior of tsreg8bit is

signal n_state, p_state: std_logic_vector(7 downto 0);
begin

dout <= p_state when (en=‘1’) else “ZZZZZZZZ”;

comb: process (p_state, load, din)

begin
n_state <= p_state;
if (load = '1') then n_state <= din end if;

end process comb;

• Z assignment used
to specify tri-state
capability.

6-55

…Register with Tri-State Output…

state: process (clock, reset)
begin

if (reset = ‘0') then p_state <= (others
=> '0‘);

elsif rising_edge(clock) then
p_state <= n_state;

end if;
end process state;

End behavior;

6-56

…Register with Tri-State Output

6-57

Finite State Machine Synthesis…

00 01

10 11

1/10

0/00

0/01

1/10

-/10

-/10Reset=0

• Mealy model

• Single input, two outputs

• Synchronous reset

6-58

…Finite State Machine Synthesis…
library ieee; use ieee.std_logic_1164.all;
entity state_ex is

port (in1, clock, reset : in std_logic; out1 :
out std_logic_vector (1 downto 0));

end state_ex;
architecture state_ex_a of state_ex is

signal cur_state, next_state : std_logic_vector (1 downto 0);
begin

process (clock, reset)
begin

if rising_edge(clock) then
if reset = '0' then cur_state <= "00";

else cur_state <= next_state;
end if;

end if;
end process;

6-59

…Finite State Machine Synthesis…

process (in1, cur_state)
begin

case cur_state is
when "00" => if in1 = '0' then next_state <= "10"; out1 <=

"00";
else next_state <= "01"; out1 <= "10";

end if;
when "01" => if in1 = '0' then next_state <= cur_state;

out1 <= "01";
else next_state <= "10“; out1 <= "10";

end if;
when "10" => next_state <= "11"; out1 <= "10";
when "11" => next_state <= "00"; out1 <= "10";
when others => null;

end case;
end process;

end Architecture state_ex_a;

6-60

…Finite State Machine Synthesis

6-61

Efficient Coding Styles

Key Synthesis Facts
Synthesis ignores the after clause in signal assignment

C <= A AND B after 10ns
May cause mismatch between pre-synthesis and post-
synthesis simulation if a non-zero value used
The preferred coding style is to write signal assignments
without the after clause.

If the process has a static sensitivity list, it is ignored by
the synthesis tool.
Sensitivity list must contain all read signals

Synthesis tool will generate a warning if this condition is
not satisfied
Results in mismatch between pre-synthesis and post-
synthesis simulation

6-62

Synthesis Static Sensitivity Rule

Original VHDL Code

Process(A, B)

Begin

D <= (A AND B) OR C;

End process;

Synthesis View of Original VHDL Code

Process(A, B, C)

Begin

D <= (A AND B) OR C;

End process;

A
B

C

D

A
B

C

D

Pre-Synthesis Simulation

Post-Synthesis Simulation

6-63

Impact of Coding Style on Synthesis
Execution Time

Inefficient Synthesis Execution Time

Process(Sel, A, B, C, D)

Begin

if Sel = “00 then Out <= A;

elsif Sel = “01” then Out<=B;

elsif Sel = “10” then Out<=C;

else Out<=D;

endif;

End process;

Efficient Synthesis Execution Time

Process (Sel, A, B, C, D)

Begin

case Sel is

when “00 => Out <= A;

when “01” Out<=B;

when “10” Out<=C;

when “11” Out<=D;

end case;

End process;

• Synthesis tool is capable of deducing that the if …elsif
conditions are mutually exclusive but precious CPU time is
required.

• In case statement, when conditions are mutually exclusive.

6-64

Synthesis Efficiency Via Vector
Operations

Inefficient Synthesis Execution Time

Process (Scalar_A, Vector_B)

Begin

for k in Vector_B`Range loop

Vector_C(k) <=Vector_B(k) and
Scalar_A;

end loop;

End process;

Efficient Synthesis Execution Time

Process(Scalar_A, Vector_B)

variable Temp:
std_logic_vector(Vector_B`Range);

Begin

Temp := (others => Scalar_A);

Vector_C <=Vector_B and Temp;

End process;

• Loop will be unrolled and analyzed by the synthesis tool.

• Vector operation is understood by synthesis and will be
efficiently synthesized.

6-65

Three-State Synthesis

A tri-state driver signal must be declared as an object of
type std_logic.
Assignment of ‘Z’ infers the usage of three-state drivers.
The std_logic_1164 resolution function, resolved, is
synthesized into a three-state driver.
Synthesis does not check for or resolve possible data
collisions on a synthesized three-state bus

It is the designer responsibility

Only one three-state driver is synthesized per signal per
process.

6-66

Example of the Three-State / Signal /
Process Rule

Process(B, Use_B, A, Use_A)

Begin

D_Out <= ‘Z’;

if Use_B = ‘1’ then

D_Out <= B;

end if;

if Use_A = ‘1’ then

D_Out <= A;

end if;

End process;

A

B

D_Out

Use_A

Use_B

•Last scheduled
assignment has priority

6-67

Latch Inference & Synthesis Rules…
A latch is inferred to satisfy the VHDL fact that signals
and process declared variables maintain their values
until assigned new ones.
Latches are synthesized from if statements if all the
following conditions are satisfied

Conditional expressions are not completely specified
e.g. An else clause is omitted

Objects conditionally assigned in an if statement are not
assigned a default value before entering this if statement
The VHDL attribute `EVENT is not present in the
conditional if expression `EVENT produces a FF

If latches are not desired, then a value must be assigned
to the target object under all conditions of an if
statement (without the `EVENT attribute).

6-68

…Latch Inference & Synthesis Rules

For a case statement, latches are synthesized when all
the following conditions are met:

One or more arms does not assigned value to a VHDL
object.
No default value assigned to this object before the case
statement is entered.

Latches are synthesized whenever a for…loop
statement satisfies all of the following conditions

for…loop contains a next statement
Objects assigned inside the for…loop are not assigned a
default value before entering the enclosing for…loop

6-69

For…Loop Statement Latch Example

Process(Data_In, Copy_Enable)

Begin

for k in 7 downto 0 loop

next when Copy_Enable(k)=‘0’ ;

Data_Out(k) <= Data_in(k);

end loop;

End process;

Data_In(k)

Copy_Enable(k)

Data_Out(k)

LATCH

Seven latches will be synthesized

6-70

Flip-Flop Inference & Synthesis
Rules…

Flip-flops are inferred by either
IF statement containing `EVENT
Wait until….

Wait on… is not supported by synthesis
Wait for… is not supported by synthesis

Synthesis accepts any of the following functionally
equivalent statements for inferring a FF

Wait until Clock=‘1’;
Wait until Clock`Event and Clock=‘1’;
Wait until (not Clock`Stable) and Clock=‘1’;

6-71

…Flip-Flop Inference & Synthesis
Rules

Synthesis does not support the following Asynchronous
description of set and reset signals

Wait until (clock=‘1’) or (Reset=‘1’) ;

Wait on Clock, Reset ;

When using a synthesizable wait statement only
synchronous set and reset can be used.

If statement containing the VHDL attribute `EVENT
cannot have an else or an elsif clause.

6-72

Alternative Efficient Coding Styles
for Synchronous FSMs

One process only
Handles both state transitions and outputs

Two processes
A synchronous process for updating the state register
A combinational process for conditionally deriving the next
state and updating the outputs

Three processes
A synchronous process for updating the state register
A combinational process for conditionally deriving the next
state
A combinational process for conditionally deriving the
outputs

6-73

Conclusions

To ensure a PROCESS is synthesizable, it has to be
one of following types:

Type 1: Purely Combinational: all outputs are
functions of only the current inputs (not the
previous inputs)
Type 2: Purely Synchronous: Each output changes
only on the rising or falling edge of a single clock
Type 3: Purely Synchronous with asynchronous set
or reset

General rules for synthesis
Every process must fall exactly into one of the
above categories
f d f b b k

6-74

Conclusions
Type 1: Purely Combinational Processes (RULES For

purely combinational processes

Rule 1: Every input that can affect the output(s) must be
in the sensitivity list.

Rule 2: Every output must be assigned a value for every
possible combination of the inputs (binary values only)

Example: The following code is synthesizable
Process (sel, A, B)

begin
if (sel = ‘0’) then Y <= A; else Y <= B; end if;

end process;

6-75

Conclusions
Example of VHDL that will not be synthesized

properly due to violation of rule 1
process (A, B)
begin
if (SEL = ‘0’) then Y <= A; else Y<= B;
end if;
end process;

Example of VHDL that will not be synthesized
properly due to violation of rule 2

process (SEL, A, B)
begin
if (SEL = ‘0’) then Y <= A;
end if;
end process;

6-76

Conclusions
Type 2: Purely Synchronous Sequential Processes
Rules for purely sequential processes

Rule 1: Only the clock should be in the sensitivity list
Rule 2: Only signals that change on the same edge of the
same clock should be part of the same process

process (CLK)
begin
if (CLK’event and CLK=‘1’) then

Z <= A and B;
end if;
end process;
• Note that the same logic circuit will result even when the if

statement is rewritten as
if (CLK=‘1’) then Z <= A and B;

6-77

Conclusions

Type 3: Purely Synchronous with Asynchronous
Set/Reset

Rules:
Rule 1: Sensitivity list includes clock and set/reset
signal
Rule 2: Must include the clk’event clause

Rule 3: Must assign either 0 or 1 inside the first part of

the if statement (i.e. the asynchronous condition is

decided first)

CPU Modeling
Case Study: PARWAN

OUTLINE

• The CPU

• Memory organization

• Instructions

• Addressing

• Utilities for VHDL description

• Interface

• Behavioral description

• Coding individual instructions

• Complete Behavioral Description

General description

• PARWAN; PAR_1; A Reduced Processor

• Simple 8-bit CPU

• 8-bit Data; 12-bit Address

• Primarily designed for educational purposes

• Includes most common instructions

General CPU description

• 12-Bit Address Bus (4-Bit Page Address + 8-Bit

Offset Within Page)

• Memory divided into pages (24 = 16 Page), Each

Page has 28 = 256 bytes

• 12-Bit Address (3 Hex Digits) One digit specifies

the page and 2 digits for the offset { X : YZ }
 (X = Page Number, YZ = Offeset Within Page)

• 8-Bit Data Bus 16 Pages 256 BYTES Each

• Uses memory mapped IO

Instruction Set

1. FULL Address Instructions (2-Byte

Instructions 12 bit Address + Op-Code

Can be Direct or Indirect)

LDA, AND, ADD, SUB, JMP, STA

2. PAGE Address Instructions ==>> (2-Byte

Instructions 8 bits offset + Op_Code Only

Direct Addressing)

JSR, BRA_V, BRA_C,

BRA_Z, BRA_N

3. NO Address Instructions 1-Byte Instructions

NOP, CLA, CMA, CMC,

ASL, ASR

Instruction Set Description.

• Load and store operations

• Arithmetic & logical operations

• jmp and branch instructions

Single Byte
Instructions

Instruction Set Description.

• CPU contains V C Z N flags
o V: Overflow
o C: Carry out
o Z: Zero
o N: Negative

• Instructions use and/or influence these flags

Status Register (Flags)

• Arithmetic instructions influence all flags

• Branch instructions use corresponding flags

• Shift instructions influence all flags

Full Addressing

• Full address instructions use two bytes

• Right hand side of first byte is Page #

• Second byte contains offset

• Bit 4 is Direct / Indirect indicator

Page Addressing

• Page address instructions use two bytes

• All of first byte is used by opcode

• Page part of address uses current page

• Second byte is the offset

Addressing Example

 Memory

5:0D 11110100 BRA_C

5:0E 6A 6A

5:0F

BRANCH TO 6A if Carry is set Else GoTo 5:0F

OpCode (Branch if C=1) = 1111_0100

c=0 : Next instruction from 5:0f
c=1 : Next instruction from 5:6A

• Branching is done within current page only

Addressing (JSR)

• Store jsr return address at tos
• Begin subroutine at tos+1
• Use indirect jmp to tos for return from

subroutine

Indirect Addressing

• Indirect addressing effects offset only

• Indirect Address = 6:35 This Memory Byte
Contains 1F

• Actual Address Accessed ==>> 6:1F

General CPU_Description

Uilities

Basic Utilities (Developed Before)

PACKAGE basic_utilities IS
TYPE integers IS ARRAY (0 TO 12) OF INTEGER;
FUNCTION fgl (w, x, gl : BIT) RETURN BIT;
FUNCTION feq (w, x, eq : BIT) RETURN BIT;
PROCEDURE bin2int (bin : IN BIT_VECTOR; int :
OUT INTEGER);
PROCEDURE int2bin (int : IN INTEGER; bin :
OUT BIT_VECTOR);
PROCEDURE apply_data (SIGNAL target : OUT
BIT_VECTOR (3 DOWNTO 0);
CONSTANT values : IN integers; CONSTANT
period : IN TIME);
END basic_utilities;

Par- Utilities

LIBRARY cmos;
USE cmos.basic_utilities.ALL;
--
PACKAGE par_utilities IS
FUNCTION "XOR" (a, b : qit) RETURN qit ;
--
FUNCTION "AND" (a, b : qit_vector) RETURN
qit_vector;

FUNCTION "OR" (a, b : qit_vector) RETURN
qit_vector;

FUNCTION "NOT" (a : qit_vector) RETURN
qit_vector;
--
SUBTYPE nibble IS qit_vector (3 DOWNTO 0);
SUBTYPE byte IS qit_vector (7 DOWNTO 0);
SUBTYPE twelve IS qit_vector (11 DOWNTO
0);
--
SUBTYPE wired_nibble IS wired_qit_vector (3
DOWNTO 0);
SUBTYPE wired_byte IS wired_qit_vector (7
DOWNTO 0);
SUBTYPE wired_twelve IS wired_qit_vector (11
DOWNTO 0);
--
SUBTYPE ored_nibble IS ored_qit_vector (3
DOWNTO 0);
SUBTYPE ored_byte IS ored_qit_vector (7
DOWNTO 0);
SUBTYPE ored_twelve IS ored_qit_vector (11
DOWNTO 0);
--

CONSTANT zero_4 : nibble := "0000";
CONSTANT zero_8 : byte := "00000000";
CONSTANT zero_12 : twelve := "000000000000";

--
FUNCTION add_cv (a, b : qit_vector; cin : qit)
RETURN qit_vector;
FUNCTION sub_cv (a, b : qit_vector; cin : qit)
RETURN qit_vector;
--
FUNCTION set_if_zero (a : qit_vector)
RETURN qit;
--

END par_utilities;

PACKAGE body par_utilities IS

FUNCTION "XOR" (a, b : qit) RETURN qit IS
CONSTANT qit_or_table : qit_2d :=
 (('0','1','1','X'),
 ('1','0','0','X'),
 ('1','0','0','X'),
 ('X','X','X','X'));
BEGIN
RETURN qit_or_table (a, b);
END "XOR";

FUNCTION "AND" (a,b : qit_vector) RETURN
qit_vector IS
VARIABLE r : qit_vector (a'RANGE);
BEGIN
 loop1: FOR i IN a'RANGE LOOP
 r(i) := a(i) AND b(i);
 END LOOP loop1;
RETURN r;
END "AND";
--

FUNCTION "OR" (a,b: qit_vector) RETURN
qit_vector IS
VARIABLE r: qit_vector (a'RANGE);
BEGIN
 loop1: FOR i IN a'RANGE LOOP
 r(i) := a(i) OR b(i);
 END LOOP loop1;
RETURN r;
END "OR";
--
FUNCTION "NOT" (a: qit_vector) RETURN
qit_vector IS
VARIABLE r: qit_vector (a'RANGE);

BEGIN
 loop1: FOR i IN a'RANGE LOOP
 r(i) := NOT a(i);
 END LOOP loop1;
RETURN r;
END "NOT";

FUNCTION add_cv (a, b : qit_vector; cin : qit)
RETURN qit_vector IS
--left bits are sign bit
VARIABLE r, c: qit_vector (a'LEFT + 2
DOWNTO 0);
-- two extra bits in r are: msb for overflow, next
carry
VARIABLE a_sign, b_sign: qit;
BEGIN
a_sign := a(a'LEFT); b_sign := b(b'LEFT);
r(0) := a(0) XOR b(0) XOR cin;
c(0) := ((a(0) XOR b(0)) AND cin) OR (a(0) AND
b(0));
FOR i IN 1 TO (a'LEFT) LOOP
r(i) := a(i) XOR b(i) XOR c(i-1);
c(i) := ((a(i) XOR b(i)) AND c(i-1)) OR (a(i) AND
b(i));
END LOOP;
r(a'LEFT+1) := c(a'LEFT);
IF a_sign = b_sign AND r(a'LEFT) /= a_sign
THEN r(a'LEFT+2) := '1'; --overflow
ELSE r(a'LEFT+2) := '0'; END IF;

RETURN r;
END add_cv;

FUNCTION sub_cv (a, b : qit_vector; cin : qit)
RETURN qit_vector IS
VARIABLE not_b : qit_vector (b'LEFT
DOWNTO 0);
VARIABLE not_c : qit;
VARIABLE r : qit_vector (a'LEFT + 2
DOWNTO 0);
BEGIN
not_b := NOT b; not_c := NOT cin;
r := add_cv (a, not_b, not_c);

RETURN r;
END sub_cv;

FUNCTION set_if_zero (a : qit_vector)
RETURN qit IS
VARIABLE zero : qit := '1';
BEGIN
FOR i IN a'RANGE LOOP
IF a(i) /= '0' THEN zero := '0'; EXIT;
END IF;
END LOOP; RETURN zero;
END set_if_zero;

END par_utilities;

• add_cv adds its operands creates c and v bits
r = a + b + Cin

• Put overflow in leftmost result bit
• Put carry to the right of overflow

• Sub_Cv performs the Subtraction ==>> r = a - (b +
Cin)

Op-Code Definitions

LIBRARY cmos;
USE cmos.basic_utilities.ALL;
--

PACKAGE par_parameters IS
CONSTANT single_byte_instructions : qit_vector

(3 DOWNTO 0) := "1110";
CONSTANT cla : qit_vector (3 DownTo 0) := "0001";
CONSTANT cma : qit_vector (3 DownTo 0) := "0010";
CONSTANT cmc : qit_vector (3 DownTo 0) := "0100";
CONSTANT asl : qit_vector (3 DownTo 0) := "1000";
CONSTANT asr : qit_vector (3 DownTo 0) := "1001";
CONSTANT jsr : qit_vector (2 DownTo 0) := "110";
CONSTANT bra : qit_vector (3 DownTo 0) := "1111";
CONSTANT indirect : qit := '1';
CONSTANT jmp : qit_vector (2 DownTo 0) := "100";
CONSTANT sta : qit_vector (2 DownTo 0) := "101";
CONSTANT lda : qit_vector (2 DownTo 0) := "000";
CONSTANT ann : qit_vector (2 DownTo 0) := "001";
CONSTANT add : qit_vector (2 DownTo 0) := "010";
CONSTANT sbb : qit_vector (2 DownTo 0) := "011";
END par_parameters;

• Assign appropriate names to opcodes

• par_parameters is used for readability

General CPU Description
1. Libraries
2. Interface
3. Architecture

Interface Description

• Use a Single Process to Describe General Machine

Operation

LIBRARY cmos;
USE cmos.basic_utilities.ALL;
LIBRARY par_library;
USE par_library.par_utilities.ALL;
USE par_library.par_parameters.ALL;
--

ENTITY par_central_processing_unit IS
GENERIC (read_high_time, read_low_time,

 write_high_time, write_low_time
: TIME := 2 US;

 cycle_time : TIME := 4 US;
 run_time : TIME := 140 US);

PORT (clk : IN qit;
interrupt : IN qit;
read_mem, write_mem : OUT qit;
databus : INOUT wired_byte BUS :=

"ZZZZZZZZ";
adbus : OUT twelve);

END par_central_processing_unit;

• Make packages visible

• Databus can be driven by Parwan and Memory

• Use wiring resolution function

• Generic parameters specify relative read/write

cycle time

• Pseudo Code is First Used To Behaviorally

Describe Architecture

Architecture behavioral of par_central_processing_unit IS
BEGIN
 PROCESS
 Declare necessary variables;
 BEGIN
 IF NOW > run_time THEN WAIT; END IF;
 IF interrupt = '1' THEN
 Handle interrupt;
 ELSE -- no interrupt Instruction Fetch
 Read first byte into byte1, increment pc;

 IF byte1 (7 Downto 4) =
single_byte_instructions THEN

 Execute single_byte instruction;
 ELSE -- two-byte instructions

 Read second byte into byte2,
 increment pc; -- 2nd Byte Fetch

IF byte1 (7 Downto 5) = jsr THEN
 Execute jsr instruction; -- byte2

 -- offset address
ELSIF byte1 (7 DOWNTO 4) = bra
THEN Execute bra instructions; -- byte2 has

-- offset address
 ELSE -- all other two-byte instructions

 IF byte1 (4) = indirect THEN
Use byte1 and byte2 to get address;

 END IF; -- ends indirect
 IF byte1 (7 DOWNTO 5) = jmp THEN
 Execute jmp instruction,
 ELSIF byte1 (7 DOWNTO 5) = sta THEN
 Execute sta instruction, write ac;
 ELSE -- read operand for lda, and, add, sub
 Read memory onto databus ;
 Execute lda, and, add, and sub;
 Disconnect memory from databus;

 END IF; -- jmp / sta / lda, and, add, sub
 END IF; -- jsr/bra /other double-byte instructions
 END IF; -- single-byte / double-byte

END IF; -- interrupt / otherwise
 END PROCESS;
END behavioral;

. Coding of Individual Instructions
-- Declaring necessary variables
VARIABLE pc : twelve;
VARIABLE ac, byte1, byte2 : byte;
VARIABLE v, c, z, n : qit;
VARIABLE temp : qit_vector (9 DOWNTO 0);

Handle interrupt
pc := zero_12; -- Interrupt Handling Routine is

-- Located at Memory Address 0

WAIT FOR cycle_time;

-- Read first byte into byte1; increment pc ;

adbus <= pc; -- Start A Memory Read Cycle

read_mem <= '1';

WAIT FOR read_high_time; -- Memory Access Delay

byte1 := byte (databus); -- databus is Type-Cast to byte

read_mem <= '0';

WAIT FOR read_low_time; -- Prevents OverWriting

pc := inc (pc);

Memory READ CYCLE
1. Put address on address bus
2. Wait half a clock cycle
3. Read data bus
4. Remove read request

Execute single_byte instructions
CASE byte1 (3 DOWNTO 0) IS

When cla => ac := zero_8; z := '1';

When cma => ac := NOT ac;

 IF ac = zero_8 Then z := '1'; End IF;
 n := ac (7);

When cmc => c := NOT c;

When asl => c := ac (7);

 ac := ac (6 DownTo 0) & '0';

 n := ac (7);

 IF c /= n THEN v := '1'; END IF;

When asr => ac := ac (7) & ac (7 DOWNTO 1);

 IF ac = zero_8 Then z := '1'; End IF;
 n := ac (7);
When OTHERS => NULL;

END CASE;

• Handing single_byte instructions, cla, cma, cmc, asl
and asr

• Negative flag may be set for cma, asl and asr
• Zero flag may be set for cma, asl and asr
• For asl, overflow occurs it bits 6 & 7 differ

Execute Two_byte instructions

Read second byte into byte2, increment pc

adbus <= pc;
read_mem <= '1';
WAIT FOR read_high_time;
byte2 := byte (databus);
read_mem <= '0';
WAIT FOR read_low_time;
pc := inc (pc);

• Reading byte from memory
• Read_memory stays high for half a clock
• Memory releases the bus in the second half
• Right half of byte1 has page for full address
• Byte2 now has the offset of address

Execute jsr instruction, byte2 has
address
databus <= wired_byte (pc (7 DOWNTO 0)); --
Offset Part of PC is

 --
Written to DATA Bus
adbus (7 DOWNTO 0) <= byte2; -- Offset Part of
Subroutine Address is

 -- Placed on Address Bus
(Page Address already there
Write_mem <= '1';

WAIT FOR write_high_time;
write_mem <= '0';

WAIT FOR write_low_time;
databus <= "ZZZZZZZZ";
pc (7 DOWNTO 0) := inc (byte2);

• Handling jsr
• Page part of adbus still points to the same

instruction page
• Write pc to page location pointed by byte2
• when writing is done, release the databus
• Load pc to start from byte2+1 (tos)

Execute bra instructions, address in byte2
IF

(byte1 (3) = '1' AND v = '1') OR
(byte1 (2) = '1' AND c = '1') OR
(byte1 (1) = '1' AND z = '1') OR
(byte1 (0) = '1' AND n = '1')

THEN
pc (7 DOWNTO 0) := byte2;

END IF;

• Chock bits 3, 2, 1 and 0 against v, c, z, n flags

• Load pc with byte2 if match is found

• Page part of pc still holds some page

General.CPU_description.coding_individual_instructions

Use byte1 and byte2 to get address

adbus (11 DOWNTO 8) <= byte1 (3 Downto 0);
adbus (7 DOWNTO 0) <= byte2;
read_mem <= '1';
Wait For read_high_time;
byte2 := byte (databus);
read_mem <= '0';
Wait For read_low_time;

• Use page of byte1, offset of byte2
• Form an address to fetch offset of operand
• Now byte1 & byte2 contain full operand address

General.CPU_description.coding_individual_instructions

Execute jmp instruction
pc := byte1 (3 Downto 0) & byte2;

• Load pc with full 12-bit address
• Could use two assignments instead of &

General.CPU_description.coding_individual_instructions

Execute sta instruction, write ac
adbus <= byte1 (3 DOWNTO 0) & byte2;
databus <= wired_byte (ac);
write_mem <= '1'; WAIT FOR write_high_time;
write_mem <= '0'; WAIT FOR write_low_time;
databus <= "ZZZZZZZZ";

• Put full address on adbus

• Put ac on databus

• Issue write, when done, release databus

General.CPU_description.coding_individual_instructions

Read memory onto databus
adbus (11 DOWNTO 8) <= byte1 (3 DOWNTO 0);
adbus (7 DOWNTO 0) <= byte2;
read_mem <= '1';
WAIT FOR read_high_time;
CASE byte1 (7 DOWNTO 5) IS

When lda => ac := byte (databus);
When ann => ac := ac AND byte (databus);
When add => temp := add_cv(ac, byte(databus), c);

ac := temp (7 DOWNTO 0);
c := temp (8);
v := temp (9);

When sbb => temp := sub_cv(ac, byte(databus), c);
ac := temp (7 DOWNTO 0);
c := temp (8);
v := temp (9);

When OTHERS => NULL;
END CASE;
IF ac = zero_8 THEN z := '1'; END IF;
n := ac (7);
read_mem <= '0';
WAIT FOR read_low_time;

• Full address on adbus
• Issue read_mem
• Perform lda, ann, add and sbb
• Arithmetic operations set c and v flags
• All operations set z and n flags

General.CPU_description .complete_behavioral

ARCHITECTURE behavioral OF
par_central_processing_unit IS
BEGIN
PROCESS
VARIABLE pc : twelve;
VARIABLE ac, byte1, byte2 : byte;
VARIABLE v, c, z, n : qit;
VARIABLE temp : qit_vector (9 DOWNTO 0);
VARIABLE pc : twelve;
VARIABLE ac, byte1, byte2 : byte;
VARIABLE v, c, z, n : qit;
VARIABLE temp : qit_vector (9 DOWNTO 0);
BEGIN
IF NOW > run_time THEN WAIT; END IF;
IF interrupt = '1' THEN
pc := zero_12;
WAIT FOR cycle_time;
ELSE -- no interrupt
adbus <= pc;
read_mem <= '1'; WAIT FOR read_high_time;
byte1 := byte (databus);
read_mem <= '0'; WAIT FOR read_low_time;
pc := inc (pc);
IF byte1 (7 DOWNTO 4) =
single_byte_instructions THEN
CASE byte1 (3 DOWNTO 0) IS
WHEN cla =>
ac := zero_8;
WHEN cma =>
ac := NOT ac;
IF ac = zero_8 THEN z := '1'; END IF;

n := ac (7);
WHEN cmc =>
c := NOT c;
WHEN asl =>
c := ac (7);
ac := ac (6 DOWNTO 0) & '0';
n := ac (7);
IF c /= n THEN v := '1'; END IF;
WHEN asr =>
ac := ac (7) & ac (7 DOWNTO 1);
IF ac = zero_8 THEN z := '1'; END IF;
n := ac (7);
WHEN OTHERS => NULL;
END CASE;
ELSE -- two-byte instructions
adbus <= pc;
read_mem <= '1'; WAIT FOR read_high_time;
byte2 := byte (databus);
read_mem <= '0'; WAIT FOR read_low_time;
pc := inc (pc);

Complete Behavioral Description

IF byte1 (7 DOWNTO 5) = jsr THEN
databus <= wired_byte (pc (7 DOWNTO 0));
adbus (7 DOWNTO 0) <= byte2;
write_mem <= '1'; WAIT FOR write_high_time;
write_mem <= '0'; WAIT FOR write_low_time;
databus <= "ZZZZZZZZ";
pc (7 DOWNTO 0) := inc (byte2);
ELSIF byte1 (7 DOWNTO 4) = bra THEN
IF (byte1 (3) = '1' AND v = '1') OR (byte1 (2) =
'1' AND c = '1') OR
(byte1 (1) = '1' AND z = '1') OR (byte1 (0) = '1'
AND n = '1')
THEN
pc (7 DOWNTO 0) := byte2;
END IF;
ELSE -- all other two-byte instructions
IF byte1 (4) = indirect THEN
adbus (11 DOWNTO 8) <= byte1 (3 DOWNTO
0);
adbus (7 DOWNTO 0) <= byte2;
read_mem <= '1'; WAIT FOR read_high_time;
byte2 := byte (databus);
read_mem <= '0'; WAIT FOR read_low_time;
END IF; -- ends indirect
IF byte1 (7 DOWNTO 5) = jmp THEN
pc := byte1 (3 DOWNTO 0) & byte2;
ELSIF byte1 (7 DOWNTO 5) = sta THEN
adbus <= byte1 (3 DOWNTO 0) & byte2;
databus <= wired_byte (ac);
write_mem <= '1'; WAIT FOR write_high_time;

write_mem <= '0'; WAIT FOR write_low_time;
databus <= "ZZZZZZZZ";
ELSE -- read operand for lda, and, add, sub
adbus (11 DOWNTO 8) <= byte1 (3 DOWNTO
0);
adbus (7 DOWNTO 0) <= byte2;
read_mem <= '1'; WAIT FOR read_high_time;
CASE byte1 (7 DOWNTO 5) IS
WHEN lda =>
ac := byte (databus);
WHEN ann =>
ac := ac AND byte (databus);
WHEN add =>
temp := add_cv (ac, byte (databus), c);
ac := temp (7 DOWNTO 0); c := temp (8); v :=
temp (9);
WHEN sbb =>
temp := sub_cv (ac, byte (databus), c);
ac := temp (7 DOWNTO 0); c := temp (8); v :=
temp (9);
WHEN OTHERS => NULL;
END CASE;
IF ac = zero_8 THEN z := '1'; END IF;
n := ac (7);
read_mem <= '0'; WAIT FOR read_low_time;
END IF; -- jmp / sta / lda, and, add, sub
END IF; -- jsr / bra / other double-byte
instructions
END IF; -- single-byte / double-byte
END IF; -- interrupt / otherwise
END PROCESS;
END behavioral;

Entity Declaration:

ENTITY Entity_Name IS
 Generic (Entity Parameters);
 PORT (Definition of Input/Output Connectors);

END [Entity] Entity_Name;

Array Data Type Declaration Syntax

TYPE id Is Array (Range_Constraint) of Type;

Conditionals:

1. IF condition Then statements ; End IF;

2. IF condition Then statements; Else statements; End IF;

3. IF condition Then statements ; Elsif condition Then
statements ; Elsif condition Then statements ; ……
………… Elsif condition Then statements
[Else statements ;] End IF;

CASE -Statement

CASE Expression is
 when value => statements;
 when value1 | value2| ...|valuen => statements ;
 when discrete range of values => statements ;
 when others => statements ;
End CASE;

LOOPs

Loop_Label: LOOP
 statements;
 End LOOP Loop_Label;

Loop_Label: FOR Loop_Variable in range LOOP
 statements;

 End LOOP Loop_Label;

Loop_Label: WHILE Condition LOOP
 statements;
 End LOOP Loop_Label;

WAIT-Statement:

• WAIT;

• WAIT ON Signal_List;

• WAIT UNTIL Condition;

• WAIT FOR Time_Out_Expression;

• WAIT on Sig_List until Cond for Time_ Exp;

FUNCTIONS:

FUNCTION function_Name(Input Parameter_List)
RETURN type IS
 { Declarations}
Begin
 Function Algorithm;
 RETURN Expression;
End function_Name;

Procedures:

PEOCEDURE Proc_Name (Interface_List) IS
 { Declarations}
Begin
 Procedure Algorithm;
End Procedure_Name;

PROCESS:

[Process_Label:] PROCESS(Sensitivity_List)
 {Process_Declarations;}
 Begin
 Statements;
 END Process [Process_Label];

BLOCK:

Block_Label: Block (Guard_Condition)
 {Block_Declarations;}
 Begin
 Concurrent_Statements;

 END Block Block_Label;

Concurrent Signal Assignment: {Unaffected may
replace any Wavei}

Label: target <= [Guarded] [Transport]
 Wave1 when Cond1 Else
 Wave2 when Cond2 Else
 ……………………………….
 Waven-1 when Condn-1 Else
 Waven ;

With Expression Select
 target <= [Guarded] [Transport]
 Wave1 when Choice1 ,
 Wave2 when Choice2 ,
 ……………………………….
 Waven-1 when Choicen-1 ,
 Waven when OTHERS ;

Package:

Package Package_Name IS
 Declarations{Constants, Signals, Types,

Components & Subprograms};
End Package_Name;

Package Body Package_Name IS
 Subprogram_Bodies;
End Package_Name;

Required

Use Clause:

use Library_name.Package_Name.<ids | ALL> ;
Ex Use work.utils.all ;
 Use Compass_Lib. Packag1.ALL ;

Component Declaration:

Component Component_Name [IS]
 Generic (Component Parameters);
 PORT (Definition of Input/Output Connectors);
END Component;

Configuration Specification:

For <Instances_Specs> USE ENTITY entity binding ;
Ex: For u1,u7, u9 : AND2 Use Entity work.AND2(DF);
 For Others : AND2 Use Entity work.AND2(ALG);
 For ALL : OR2 Use Entity work.OR2(DF)
 Generic Map(T_entity => T_Compt)
 Port Map(entity_Port => Compt_Port) ;

Component Instantiation:

Label : <component_name>
 Generic Map(association_list)
 Port Map(association_list) ;
Note: <association list> : either positional, or named

named: (compt_Name => Instance_Name)

Generate Statement:

1. Label : For identifier in Range Generate
 Concurrent Statements;
 End Generate ;

2. Label : IF condition Generate
 Concurrent Statements;

 End Generate;

Assertion Statement:

Assert a_Should_be_Valid_Condition
Report “ Message if Condition Not True ”
Severity <severity_level ∈ {note warning, error, failure}>;

Entity entity_name Is
 Generic (Constant_Parameters);
 Port (Interface_List);
End [entity] entity_name ;

Architecture Arch_Type of entity_name Is

Declarations(Types, Objects, Components, Subprograms)

Begin

 Concurrent Statements / Constructs

End [architecture] Arch_Type ;

Declaring Resolved Signals

Alias Declaration:

Alias <new_name>: Subtype is <existing name of same
type and range> ;

Ex: Alias opcode : Bit_Vector (3 to 0) is Instr(7 downto4);
 Alias Sign_Bit : Bit is Accumulator(32) ;

Disconnect Statement:

Signal X : WX_Vector(7 downTo 0) BUS ;
DISCONNECT X : WX_Vector after 50 ns ;

Required

Required

	Preface
	Introduction
	Design & Modeling of Digital Systems
	Quick Overview
	Lexical Elements
	VHDL Reserved Words
	Identifiers
	Literals
	Numeric Literals

	Data Types & Objects
	Scalers
	Composite Data Types
	Array Referencing
	Records
	Subtypes & Operations

	Type Compatibility & Conversion
	Closely-Related Types
	Type Conversion
	Array Attributes
	Type Attributes

	VHDL Objects & Signals
	Objects
	Variables vs Signals
	Simulation Algorithm
	Signal Assignment
	Signal Transactions & Events
	Delta Delay
	Delay Types
	Sequential Placement of Transaction
	Signal Attributes

	Design Organization
	Subprograms...Functions
	Concurrent vs Sequential Statements
	Sequential Control Statements
	Subprograms...Procedures
	Packages
	Libraries
	Process & Wait Statements
	Generalized Mealy & Moore Models
	Generalized Moore Model
	Modeling Combinational Logic
	Modeling Sequential Logic

	Structural Models
	Ex: 4-Bit Comparator
	Structural Architectural Body
	Component Declarations
	Port Modes & Interface lists
	Generic & Interface Lists
	Component Instantiations
	Configuration Statements
	Binding Component Instances
	Port Map Association
	The Generate Statement
	Ex: 4-Bit Comparator
	For ...Generate
	IF ... Generate
	Uniform (Single) Generate
	Ex: Binding Schemes
	Port Map Association
	Default Binding

	Test Benches & File I/O
	Test Benches
	VHDL Files
	TEXTIO

	Sample Test Benchs (4-bit Multiplier)
	Design Org & Parameterization
	Test Bench Subprograms
	Design Parameterization
	Passing Values to Generics
	Default Generic Values
	Passing Values thr' Component Defaults
	Passing Const. Values to Generics
	Passing Values from Higher Level Specs
	OPEN Instance Parameters

	Design Libraries-Revisited
	IEEE std_logic_1164 Package
	IEEE numeric_Std

	Data Flow Models
	Resolution Functions
	Declaring Resolved Signals
	Concurrent Signal Assignment
	Block statement
	'Event versus 'Stable
	Nested Blocks & Composite Guard Condition
	Guarded/Resolved Signal
	Signal Kind
	Data Flow Models of Mealy & Moore Machines
	Disconnecting BUS Signals

	VHDL Synthesis
	Constant Definition
	Port Maps
	When & With STatements
	Case Statement
	For Statement
	Generate & IF Statements
	Variable Definition
	MUX Synthesis
	Decoder Synthesis
	Erroneous Latch Synthesis
	Priority Encoder Synthesis
	Tri-State Buffers
	Latch & FF Synthesis
	Register Synthesis
	Shift Register Synthesis
	FSM Synthesis
	Key Synthesis Facts
	Impact on Execution Time
	Latch Inference & Synthesis Rules
	FF Inference & Synthesis Rules

	CPU Modeling
	Syntax Brief

