
Number Systems

Introduction & Objectives:

- Before the inception of *digital* computers, the only number system that was in common use is the *decimal* number system (النظام العشري) which has a total of 10 digits (0 to 9).
- As discussed in the previous lesson, signals in *digital* computers may represent a digit in some number system. It was also found that the binary number system is more reliable to use compared to the more familiar decimal system
- In this lesson, you will learn:
 - ➤ What is meant by a weighted number system.
 - Basic features of weighted number systems.
 - Commonly used number systems, e.g. decimal, binary, octal and hexadecimal.
 - Important properties of these systems.

Weighted Number Systems:

• A number **D** consists of *n* digits with each digit has a particular *position*.

- Every digit *position* is associated with a *fixed weight*.
- If the weight associated with the *i*th position is w_i, then the value of **D** is given by:

$$\mathbf{D} = \mathbf{d}_{n-1} \mathbf{w}_{n-1} + \mathbf{d}_{n-2} \mathbf{w}_{n-2} + \ldots + \mathbf{d}_2 \mathbf{w}_2 + \mathbf{d}_1 \mathbf{w}_1 + \mathbf{d}_0 \mathbf{w}_0$$

Example of Weighted Number Systems:

- The Decimal number system (النظام العشري) is a weighted system.
- For Integer decimal numbers, the weight of the rightmost digit (*at position* 0) is 1, the weight of *position 1* digit is 10, that of *position 2* digit is 100, *position 3* is 1000, etc.

Thus,

 $w_0 = 1$, $w_1 = 10$, $w_2 = 100$, $w_3 = 1000$, etc.

Example Show how the value of the decimal number 9375 is estimated

	First Position Index					
Position	3	2	1	0 ←	-	First Position Index (0)
Number	9	3	7	5		
Weight	1000	100	10	1		
Value	9 x 1000	3 x100	7x10	5x1		
Value	9000 +	300 +	70 +	5		

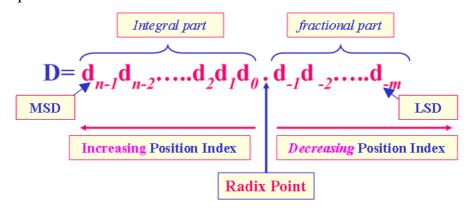
The Radix (Base)

- For *digit position i*, most weighted number systems use weights (w_i) that are *powers of some constant valu*e called the <u>radix</u> (r) or the <u>base</u> such that w_i = rⁱ.
- 2. A number system of radix *r*, typically has a set of *r* allowed digits \in {0,1, ...,(r-1)} \rightarrow See the next example
- 3. The leftmost digit has the highest weight → Most Significant Digit
 (MSD) → See the next example
- 4. The rightmost digit has the lowest weight → Least Significant Digit
 (LSD) → See the next example

Example Decimal Number System

- 1. Radix (Base) = Ten
- 2. Since $\mathbf{w}_i = \mathbf{r}^i$, then
 - > $w_0 = 10^0 = 1$, > $w_1 = 10^1 = 10$, > $w_2 = 10^2 = 100$, > $w_3 = 10^3 = 1000$, etc.
- 3. Number of Allowed Digits is Ten $\rightarrow \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Thus:


$$\begin{array}{rcl}
\text{MSD} & \text{LSD} \\
9375 &= 5x10^{0} + 7x10^{1} + 3x10^{2} + 9x10^{3} \\
&= 5x1 + 7x10 + 3x100 + 9x 1000
\end{array}$$

Position	3	2	1	0
	1000	100	10	1
Weight	$=10^{3}$	$=10^{2}$	= 10 ¹	= 10 ⁰

The Radix Point

Consider a number system of radix r,

 \succ A number D of *n* integral digits and *m* fractional digits is represented as shown

- Digits to the left of the radix point (*integral digits*) have positive position indices, while digits to the right of the radix point (*fractional digits*) have negative position indices
- ➢ Position *indices* of digits to the *left* of the *radix point* (the integral part of **D**) start with a **0** and are incremented **as we move** lefts $(d_{n-1}d_{n-2}....d_2d_1d_0.)$
- Position *indices* of digits to the *right* of the *radix point* (*the fractional part of D*) are *negative* starting with -1 and are decremented as we move rights (d₋₁d₋₂....d_{-m}).
- The *weight* associated with digit position *i* is given by $\mathbf{w}_i = \mathbf{r}^i$, where *i* is the position index

$$\blacktriangleright \forall i = -m, -m+1, ..., -2, -1, 0, 1, ..., n-1$$

> The Value of **D** is Computed as :

$$D = \sum_{i=-m}^{n-1} d_{i} \mathcal{r}^{i}$$

Example Show how the value of the following decimal number is estimated

57 016

				J	D :	\mathbf{d}_{θ}	2.94	
Number	5	2	•	9	4	6		
Position	1	0	•	-1	-2	-3		
Weight	10 ¹ = 10	10 ⁰ = 1	•	10 ⁻¹ = 0.1	10 ⁻² = 0.01	10 ⁻³ = 0.001		
Value	5 x 10	2 x 1	•	9 x 0.1	2 x 0.01	6 x 0.001		
Value	50 +	2	+	0.9 +	0.02 +	0.006		

n

 $\mathbf{D} = 5\mathbf{x}\mathbf{10}^1 + 2\mathbf{x}\mathbf{10}^0 + 9\mathbf{x}\mathbf{10}^{-1} + 4\mathbf{x}\mathbf{10}^{-2} + 6\mathbf{x}\mathbf{10}^{-3}$

Notation

• Let $(D)_r$ denotes a number D expressed in a number system of radix r.

<u>Note</u>: *In this notation, r will be expressed in decimal*

Example:

- $(29)_{10}$ Represents a decimal value of 29. The radix "10" here means ten.
- $(100)_{16}$ is a Hexadecimal number since r = "16" here means sixteen. This number is equivalent to a decimal value of 16^2 .
- $(100)_2$ is a Binary number (radix =2, i.e. two) which is equivalent to a decimal value of $2^2 = 4$.

Important Number Systems

The Decimal System

- r = 10 (ten \rightarrow Radix is not a Power of 2)

- **Ten** Possible Digits {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

The Binary System

$$ightarrow \mathbf{r} = 2$$

- > Two Allowed Digits $\{0, 1\}$
- \rightarrow A <u>B</u>inary Dig<u>it</u> is referred to as <u>Bit</u>
- ➤ The leftmost bit has the highest weight → Most Significant Bit (MSB)
- ➤ The rightmost bit has the lowest weight → Least Significant Bit (LSB)

Examples

MSB

Find the decimal value of the two Binary numbers $(101)_2$ and $(1.101)_2$

•
$$(1 \ 0 \ 1)_2 = 1x2^0 + 0x2^1 + 1x2^2$$

LSB

•
$$= 1x1 + 0x2 + 1x4$$

•
$$=(5)_{10}$$

MSB

$$(1 \cdot 1 \circ 1)_2 = 1x2^0 + 1x2^{-1} + 0x2^{-2} + 1x2^{-3}$$

 $(1 \cdot 1 \circ 1)_2 = 1x2^0 + 1x2^{-1} + 0x2^{-2} + 1x2^{-3}$
 $(1 \cdot 1 \circ 1)_2 = 1x2^0 + 1x2^{-1} + 0x2^{-2} + 1x2^{-3}$
 $(1 \cdot 1 \circ 1)_2 = 1x2^0 + 1x2^{-1} + 0x2^{-2} + 1x2^{-3}$
 $(1 \cdot 1 \circ 1)_2 = 1x2^0 + 1x2^{-1} + 0x2^{-2} + 1x2^{-3}$
 $(1 \cdot 1 \circ 1)_2 = 1x2^0 + 1x2^{-1} + 0x2^{-2} + 1x2^{-3}$
 $(1 \cdot 1 \circ 1)_2 = 1x2^0 + 1x2^{-1} + 0x2^{-2} + 1x2^{-3}$
 $(1 \cdot 1 \circ 1)_2 = 1x2^0 + 1x2^{-1} + 0x2^{-2} + 1x2^{-3}$
 $(1 \cdot 1 \circ 1)_2 = 1x2^0 + 1x2^{-1} + 0x2^{-2} + 1x2^{-3}$
 $(1 \cdot 1 \circ 1)_2 = 1x2^0 + 1x2^{-1} + 0x2^{-2} + 1x2^{-3}$
 $(1 \cdot 1 \circ 1)_2 = 1x2^0 + 1x2^{-1} + 0x2^{-2} + 1x2^{-3}$
 $(1 \cdot 1 \circ 1)_2 = 1x2^0 + 1x2^{-1} + 0x2^{-2} + 1x2^{-3}$

Octal System:

- r = 8 (*Eight* = 2^3)
 - **Eight** Allowed Digits {0, 1, 2, 3, 4, 5, 6, 7}

Examples

Find the decimal value of the two Octal numbers $(375)_8$ and $(2.746)_8$

MSD LSD
(375)₈ =
$$5x8^{0} + 7x8^{1} + 3x8^{2}$$

= $5x1 + 7x8 + 3x64$
= (253)₁₀
MSD LSD
(2.746)₈ = $2x8^{0} + 7x8^{-1} + 4x8^{-2} + 6x8^{-3}$

$$=(2.94921875)_{10}$$

Hexadecimal System:

- \succ r = 16 (*Sixteen* = 2^4)
- Sixteen Allowed Digits {0-to-9 and A, B, C, D, E, F}

0	Where:	A = ten,	B = Eleven,	C = Twelve,
		D = Thirteen,	E = Fourteen &	F = Fifteen.

- Q: Why is the digit following 9 assigned the character A and not "10"?
- A: What we need is a *single* digit whose value is <u>ten</u>, but "10" is actually <u>two digits</u> not one.
 - Thus, in Hexadecimal system the 2-digit number $(10)_{16}$ actually represents a value of <u>sixteen</u> not <u>ten</u> { $(10)_{16} = 0x16^{0} + 1x16^{1} = (16)_{10}$ }.

Examples

Find the decimal value of the two Hexadecimal numbers $(9E1)_{16}$ and $(3B.C)_{16}$

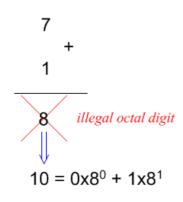
MSD LSD

$$(9E1)_{16} = 1x16^{0} + Ex16^{1} + 9x16^{2}$$

 $= 1x1 + 14x16 + 9x256$
 $= (2529)_{10}$
MSD LSD
 $(3B.C)_{16} = Cx16^{-1} + Bx16^{0} + 3x16^{1}$
 $= 12x16^{-1} + 11x16^{0} + 3x16$
 $= (59.75)_{10}$

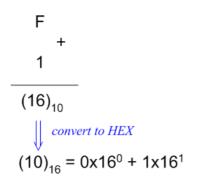
Important Properties

- The number of possible digits in any number system with radix *r* equals
 r. (*Give examples in decimal, binary, octal and hexadecimal*)
- 2. The smallest digit is 0 and the largest possible digit has a value = (r-1)
- 3. The Largest value that can be expressed in *n integral* digits is (rⁿ-1) →
 Prove (Hint add 1 to the LSD position of the largest number)
- 4. The Largest value that can be expressed in *m fractional* digits is (1-r^{-m})
 → Prove (Hint add 1 to the LSD position of the largest number)
- 5. The Largest value that can be expressed in *n integral* digits and *m fractional* digits is (rⁿ -r^{-m}) → Prove (Hint- add results of properties 3 &4 above)
- 6. Total number of values (patterns) representable in *n* digits is r^n


Clarification (a)

Q. What is the result of adding 1 to the largest digit of some number system??

A.


- > For the decimal number system, $(1)_{10} + (9)_{10} = (10)_{10}$
- ▶ For the octal number system, $(1)_8 + (7)_8 = (10)_8 = (8)_{10}$

OCTAL System

> For the hex number system, $(1)_{16} + (F)_{16} = (10)_{16} = (16)_{10}$

HEX System

▶ For the binary number system, $(1)_2 + (1)_2 = (10)_2 = (2)_{10}$

Conclusion. Adding 1 to the largest digit in any number system always has a result of (10) in that number system.

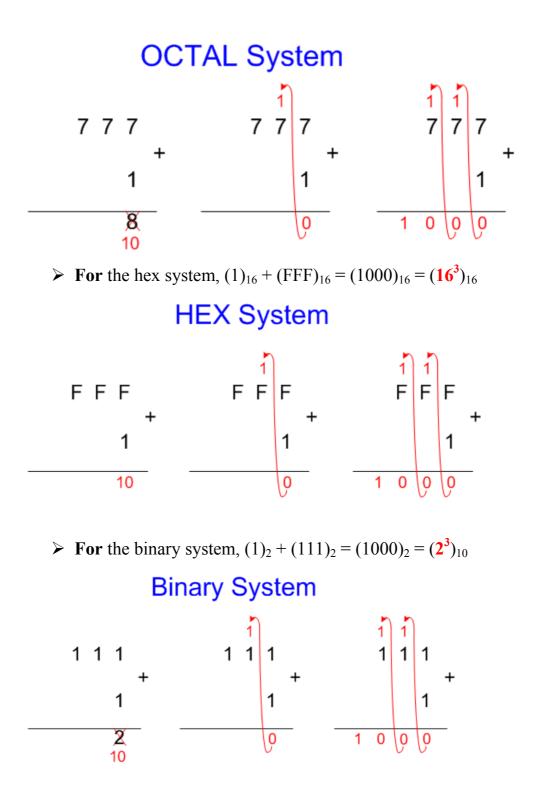
This is easy to prove since the largest digit in a number system of radix *r* has a value of (*r*-1). Adding 1 to this value the result is *r* <u>which</u> <u>is always equal to</u> (10)_r = 0x r⁰ + 1x r¹=(r)₁₀

Clarification (b)

Q. What is the largest value representable in 3-integral digits?

A. The largest value results when all 3 positions are filled with the largest digit in the number system.

- > For the decimal system, it is $(999)_{10}$
- > For the octal system, it is $(777)_8$
- \succ For the hex system, it is (FFF)₁₆
- > For the binary system, it is $(111)_2$


Clarification (c)

Q. What is the result of adding 1 to the largest 3-digit number?

?

A.

- ▶ For the decimal system, $(1)_{10} + (999)_{10} = (1000)_{10} = (10^3)_{10}$
- ▶ For the octal system, $(1)_8 + (777)_8 = (1000)_8 = (8^3)_{10}$

In general, for a number system of radix **r**, adding 1 to the largest *n*-digit number = \mathbf{r}^{n}

Accordingly, the value of largest *n*-digit number = \mathbf{r}^{n} -1

Conclusions.

- In any number system of radix *r*, the result of adding 1 to the *largest n-digit* number equals *rⁿ*.
- 2. Thus, the value of the *largest n-digit* number is equal to $(r^n I)$
- 3. Thus, *n* digits can represent r^n different values (digit combinations) starting from a 0 value up to the largest value of r^n -1.

Appendix A. Summary of Number Systems Properties

The following table summarizes the basic features of the Decimal, Octal, Binary, and Hexadecimal number systems as well as a number system with a general radix r

	Decimal	Octal	Binary	Hexadeci	General
	10	8	2	mal	r
	10	U	-	16	•
Allowed	{0-9}	{0-7}	{0-1}	{0-9, A-F}	{ 0 - R}
Digits				(,)	where $R = (r-1)$
Value of	$a_{n-1}x10^{n-1} + a_{n-2}x10^{n-2}$	$a_{n-1}8^{n-1}+\ldots+$	$a_{n-1}2^{n-1}+\ldots+$		$a_{n-1}r^{n-1}+\ldots+a_2r^2+a_1r^1$
$a_{n-1}a_2 a_1 a_0.$	$++a_2x10^2+a_1x10^1+$	$a_28^2 + a_18^1 + a_08^0 + a_{-1}8^{-1} +$	$a_2 2^2 + a_1 2^1 + a_0 2^0 + a_{-1} 2^{-1} +$		$+a_0r^0+a_{-1}r^{-1}+a_{-2}r^{-2}$
$a_{-1}a_{-2}a_{-m}$	$a_0 \ge 10^0 + a_{-1} \ge 10^{-1} + a_{-1} \ge 10^{-1} + a_{-1} \ge 10^{-1} + 10^{$	$a_{-2}8^{-2}+\ldots+a_{-m}8^{-m}$	$a_{-2}2^{-2}+\ldots+a_{-m}2^{-m}$		$++a_{-m}r^{-m}$
	$a_{-2} \times 10^{-2} + + a_{-m} \times 10^{-m}$				
	$a_i \in \{0-9\}$	$a_i \in \{0-7\}$	$a_i \in \{0,1\}$		$a_i \in \{0 - (r-1)\}$
	<i>i</i> =-m,, 0, 1,, n-1				
Smallest n-	0000	0000	0000	0000	0000
digit number					
Largest n-	9999 =	777 =	111 =	FFF =	$RRR = r^n - 1$
digit number	$10^{n} - 1$	$8^{n}-1$	$2^{n}-1$	$16^{n} - 1$	
Range of n-	$0 - (10^{n} - 1)$	$0 - (8^{n} - 1)$	$0-(2^{n}-1)$	$0 - (16^n - 1)$	$0 - (r^{n} - 1)$
digit integers			, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,
# of Possible	10^{n}	8^n	2^n	16 ⁿ	r^n
Combinations					
of n-digits					
Max Value of	1-10 ^{-m}	1-8 ^{-m}	1-2 ^{-m}	1-16 ^{-m}	1 - r ^{-m}
m Fractional					
Digits					

1

Appendix B. First 16 Binary Numbers & Their Decimal Equivalent (All Possible Binary Combinations in 4-Bits)

Decimal	Bin. Equivelent	Decimal	Bin. Equivelent
0	0000	8	1000
1	0001	9	1001
2	0010	10	1010
3	0011	11	1011
4	0100	12	1100
5	0101	13	1101
6	0110	14	1110
7	0111	15	1111

2

Appendix C. Decimal Values of the First 10 Powers of 2

- One Kilo is defined as 1000.
- For example, one Kilogram is 1000 grams. A kilometer is 1000 meters.
- In the Binary system, the power of 2 value closest to 1000 is 2¹⁰ which equals 1024. This is referred to as one Kilo (or in short 1K) in binary systems.
- Thus, one Kilo (or 1K) in Binary systems is not exactly 1000 but rather equals 1024 or 2¹⁰
- Thus, in binary systems $2K=2 \times 1024 = 2048$, $4K=4 \times 1024 = 4096$, and so on
- Similarly, a one Meg (one million) in binary systems is 2²⁰ which equals 1,048,576.

Powers of 2	Decimal. Value
2 ⁰	1
2 ¹	2
2 ²	4
2 ³	8
2 ⁴	16
2 ⁵	32
2 ⁶	64
2 ⁷	128
2 ⁸	256
2 ⁹	512
2 ¹⁰	1024