
Information Processing
and

Digital Systems

Objectives
In this lesson, some basic concepts regarding information processing and

representation are clarified. These include:

1. “Analog” versus “Digital” parameters and systems.

2. Digitization of “Analog” signals.

3. Digital representation of information.

4. Effect of noise on the reliability and choice of digital system

representation.

Digital versus Analog
• We live in an “Analog” world.

• “Analog” means Continuous

• We use the word “Analog” to express phenomena or parameters that have

smooth gradual change or movement.

• For example, earth’s movement around the sun is continuous or “Analog”.

• Temperature is an “Analog” parameter. In making a cup of tea, the

temperature of the tea kettle increases gradually or smoothly.

• In an “Analog” system, parameters have a continuous range of values

just like a mathematical function which is “Continuous” ; in other words,

the function has no discontinuity points

• The word “Digital”, however, means just the opposite.

• In Digital Systems, parameters have a limited set of “Discrete” Values

that they can assume.

• In Other words, digital parameters don’t have a “Continuous” range.

• This means that, digital parameters change their values by “Jumping”

from one allowed value to another.

• As an example, the day of the month is a parameter that may only assume

one value out of a set of limited discrete values {1, 2, 3, …., 31}.

• Thus, the day of the month is a parameter may not assume a value of 2.5

for example, but it rather jumps from a value of 2 to a value of 3 then to 4

and so on with no intermediate values!!!

To Summarize:

• Analog Systems deal with Continuous Range of values.

• Digital Systems deal with a Discrete set of values.

• Q. Which is easier to design digital systems or analog ones?

• A. Digital systems are easier to design since dealing with a limited set of

values rather than an infinite (or indefinitely large) continuous range of

values is significantly simpler.

Digitization/Quantization of Analog Signals
• Since the world around us is analog, and processing of digital parameters

is much easier, is it is fairly common to convert analog parameters (or

signals) into a digital form in order to allow for efficient transmission and

processing of these parameters (or signals)

• To convert an Analog signal into a digital one, some loss of accuracy is

inevitable since digital systems can only represent a finite discrete set of

values.

• The process of conversion is known as Digitization or Quantization.

• Analog-to-digital-converters (ADC) are used to produce a digitized

version of analog signals.

• Digital-to-analog-converters (DAC) are used to regenerate analog signals

from their digitized form.

• A typical system consists of an ADC to convert analog signals into digital

ones to be processed by a digital system which produces results in digital

form which is then transformed back to analog form through a DAC.

• In this course, we will only be studying digital hardware design concepts,

where both the input and output signals are digital signals.

Digitization Example
• As an example, consider digitizing the shown voltage signal assuming that

the digitized version allowed set of discrete voltages is {V1, V2, V3, V4}.

• Analog signal values are mapped to the closest allowed discrete voltage ∈

{V1, V2, V3, V4} as shown in Figure.

The Resulting Digitized Waveform

Information Representation
How Do Computers Represent Values (e.g. V1, V2, V3, V4) ?

1. Using Electrical Voltages (Semiconductor Processor, or Memory)

2. Using Magnetism (Hard Disks, Floppies, etc.)

3. Using Optical Means (Laser Disks, e.g. CD’s)

Consider the case where values are represented by voltage signals:

• Each signal represents a digit in some Number System

• If the Decimal Number System is used, each signal should be capable

of representing one of 10 possible digits (0-to-9)

• If the Binary Number System is used, each signal should be capable of

representing only one of 2 possible digits (0 or 1).

• Digital computers, typically use low power supply voltages to power

internal signals, e.g. 5 volts, 3.3 volts, 2.5 volts, etc.

• The voltage level of a signal may be anywhere between the 0 voltage

level (Ground) and the power supply voltage level (5 volts, 3.3 volts,

2.5 volts, etc.)

• Thus, for a power supply voltage of 5 volts, internal voltage signals

may have any voltage value between 0 and 5 volts.

• Using a decimal number system would mean that each signal should

be capable of representing 10 possible digits (0-to-9).

• With 5 volt range signals, the 10 digits of the decimal system are

represented with each digit having a range of only 0.5 a volt

• If, however, a binary number system is used only 2 digits {0, 1} need

to be represented by a signal, allowing much higher Voltage range of

5 volts between the 2 binary digits.

The Noise Factor
• Typically, lots of noise signals exist in most environments.

• Noise may cause the voltage level of a signal (which represents some

digit value) to be changed (either higher or lower) which leads to

misinterpretation of the value this signal represents.

• Good designs should guard against noisy environments to prevent

misinterpretation of the signal information.

• Q. Which is more reliable for data transmission; binary signals or

decimal signals ?

• A. Binary Signals are more reliable.

• Q. Why?

• A. The Larger the gap between voltage levels, the more reliable the

system is. Thus, a signal representing a binary digit will be

transmitted more reliably compared to a signal which represents a

decimal digit.

• For example, with 0.25 volts noise level using a decimal system at 5

volts power supply is totally unreliable

Conclusions
• Information can be represented either in an analog form or in a digital

form.

• Due to noise, it is more reliable to transmit information in a digital

form rather than an analog one.

• Processing of digitally represented information is much more reliable,

flexible and powerful.

• Today’s powerful computers use digital techniques and circuitry.

• Because of its high reliability and simplicity, the binary representation

of information is most commonly used.

• The coming lessons in this chapter will discuss how numbers are

represented and manipulated in digital system.

Number Systems

Introduction & Objectives:
• Before the inception of digital computers, the only number system

that was in common use is the decimal number system (النظام العشري)

which has a total of 10 digits (0 to 9).

• As discussed in the previous lesson, signals in digital computers may

represent a digit in some number system. It was also found that the

binary number system is more reliable to use compared to the more

familiar decimal system

• In this lesson, you will learn:

 What is meant by a weighted number system.

 Basic features of weighted number systems.

 Commonly used number systems, e.g. decimal, binary, octal and

hexadecimal.

 Important properties of these systems.

Weighted Number Systems:

• A number D consists of n digits with each digit has a particular position.

D = dn-1 dn-2 …….. d2 d1 d0

• Every digit position is associated with a fixed weight.

• If the weight associated with the ith. position is wi, then the value of D is

given by:

D = dn-1 wn-1 + dn-2 wn-2 +…+ d2 w2 + d1 w1 + d0 w0

Example of Weighted Number Systems:
• The Decimal number system)النظام العشري(is a weighted system.

• For Integer decimal numbers, the weight of the rightmost digit (at position

0) is 1, the weight of position 1 digit is 10, that of position 2 digit is 100,

position 3 is 1000, etc.

Position
0

Position
1

Position
2

Position
n-1

Thus,

 w0 = 1, w1 = 10, w2=100, w3 = 1000, etc.

Example Show how the value of the decimal number 9375 is estimated

 Position 3 2 1

0

 Number 9 3 7 5

 Weight 1000 100 10 1

 Value 9 x 1000 3x100 7x10 5x1

 Value 9000 + 300 + 70 + 5

The Radix (Base)

1. For digit position i, most weighted number systems use weights (wi)

that are powers of some constant value called the radix (r) or the

base such that wi = ri.

2. A number system of radix r, typically has a set of r allowed digits ∈

{0,1, …,(r-1)} See the next example

3. The leftmost digit has the highest weight Most Significant Digit

(MSD) See the next example

4. The rightmost digit has the lowest weight Least Significant Digit

(LSD) See the next example

First Position Index

First Position
Index (0)

Example Decimal Number System

1. Radix (Base) = Ten

2. Since wi = ri., then

 w0 = 100 = 1,

 w1 = 101 = 10,

 w2= 102 = 100,

 w3 = 103 = 1000, etc.

3. Number of Allowed Digits is Ten {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Thus:

 9375 = 5x100 + 7x101 + 3x102 + 9x103

 = 5x1 + 7x10 + 3x100 + 9x 1000

Position 3 2 1 0

 1000 100 10 1
Weight = 103 = 102 = 101 = 100

The Radix Point
Consider a number system of radix r,

 A number D of n integral digits and m fractional digits is

represented as shown

LSD MSD

 Digits to the left of the radix point (integral digits) have positive

position indices, while digits to the right of the radix point (fractional

digits) have negative position indices

 Position indices of digits to the left of the radix point (the

integral part of D) start with a 0 and are incremented as we move

lefts (dn-1dn-2…..d2d1d0 .)

 Position indices of digits to the right of the radix point (the fractional

part of D) are negative starting with –1 and are decremented as we

move rights (d-1d -2…..d-m).

 The weight associated with digit position i is given by wi = ri ,

where i is the position index
 ∀i= -m, -m+1, …, -2, -1, 0, 1, ……, n-1

 The Value of D is Computed as :

rd i
n

mi
iD ∑

−

−=

=
1

Example Show how the value of the following decimal number is

estimated

D = 5 2 . 9 4 6

Number 5 2 . 9 4 6

Position 1 0 . -1 -2 -3

Weight
101
=
10

 100
=
1

.

10-1
=

0.1

10-2

=
0.01

10-3

=
0.001

Value
5
x

10

2
x
1

.

9
x

0.1

2
x

0.01

6
x

0.001

Value 50 + 2 + 0.9 +0.02 +0.006

D = 5x101 + 2x100 + 9x10-1 + 4x10-2 + 6x10-3

Notation
• Let (D)r denotes a number D expressed in a number system of radix r.

Note: In this notation, r will be expressed in decimal

Example:

– (29)10 Represents a decimal value of 29. The radix “10” here means ten.

– (100)16 is a Hexadecimal number since r = “16” here means sixteen. This

number is equivalent to a decimal value of 162.

– (100)2 is a Binary number (radix =2, i.e. two) which is equivalent to a

decimal value of 22 = 4.

. d-3 d1 d0 d-2d-1

Important Number Systems
The Decimal System
– r = 10 (ten Radix is not a Power of 2)

– Ten Possible Digits {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

The Binary System

 r = 2

 Two Allowed Digits {0, 1}

 A Binary Digit is referred to as Bit

 The leftmost bit has the highest weight Most Significant Bit

(MSB)

 The rightmost bit has the lowest weight Least Significant Bit

(LSB)

Examples

Find the decimal value of the two Binary numbers (101)2 and (1.101)2

• (1 0 1)2 = 1x20 + 0x21 + 1x22

• = 1x1 + 0x2 + 1x 4

• = (5)10

 (1 . 1 0 1)2 = 1x20 + 1x2-1 + 0x2-2 + 1x2-3

 = 1 + 0.5 + 0 + 0.125

 = (1 . 6 2 5)10

LSB MSB

LSB MSB

Octal System:

• r = 8 (Eight = 23)

– Eight Allowed Digits {0, 1, 2, 3, 4, 5, 6, 7}

Examples

Find the decimal value of the two Octal numbers (375)8 and (2.746)8

 (375)8 = 5x80 + 7x81 + 3x82

 = 5x1 + 7x8 + 3x64

 = (253)10

 (2.746)8 = 2x80 + 7x8-1 + 4x8-2 + 6x8-3

 = (2.94921875)10

Hexadecimal System:
 r = 16 (Sixteen = 24)

 Sixteen Allowed Digits {0-to-9 and A, B, C, D, E, F}

o Where: A = ten, B = Eleven, C = Twelve,
 D = Thirteen, E = Fourteen & F = Fifteen.

• Q: Why is the digit following 9 assigned the character A and not “10”?

• A: What we need is a single digit whose value is ten, but “10” is actually

two digits not one.

o Thus, in Hexadecimal system the 2-digit number (10)16 actually

represents a value of sixteen not ten {(10)16 = 0x160 +

1x161.=(16)10}.

LSD MSD

LSD MSD

Examples

Find the decimal value of the two Hexadecimal numbers (9E1)16 and

(3B.C)16

 (9E1)16 = 1x160 + Ex161 + 9x162

 = 1x1 + 14x16 + 9x256

 = (2529)10

 (3B.C)16 = Cx16-1 + Bx160 + 3x161

 = 12x16-1 + 11x160 + 3x16

 = (59.75)10

Important Properties
1. The number of possible digits in any number system with radix r equals

r. (Give examples in decimal, binary, octal and hexadecimal)

2. The smallest digit is 0 and the largest possible digit has a value = (r-1)

3. The Largest value that can be expressed in n integral digits is (rn-1)

Prove (Hint add 1 to the LSD position of the largest number)

4. The Largest value that can be expressed in m fractional digits is (1-r -m)

 Prove (Hint add 1 to the LSD position of the largest number)

5. The Largest value that can be expressed in n integral digits and m

fractional digits is (rn -r -m) Prove (Hint- add results of properties 3 &4

above)

6. Total number of values (patterns) representable in n digits is rn

LSD MSD

LSD MSD

Clarification (a)

Q. What is the result of adding 1 to the largest digit of some number

system??

A.

 For the decimal number system, (1)10 + (9)10 = (10)10

 For the octal number system, (1)8 + (7)8 = (10)8 = (8)10

 For the hex number system, (1)16 + (F)16 = (10)16 = (16)10

 For the binary number system, (1)2 + (1)2 = (10)2 = (2)10

Conclusion. Adding 1 to the largest digit in any number system always has

a result of (10) in that number system.

• This is easy to prove since the largest digit in a number system of

radix r has a value of (r-1). Adding 1 to this value the result is r which

is always equal to (10)r = 0x r0 + 1x r1=(r)10

Clarification (b)

Q. What is the largest value representable in 3-integral digits?

A. The largest value results when all 3 positions are filled with the largest

digit in the number system.

 For the decimal system, it is (999)10

 For the octal system, it is (777)8

 For the hex system, it is (FFF)16

 For the binary system, it is (111)2

Clarification (c)

Q. What is the result of adding 1 to the largest 3-digit number?

?

A.

 For the decimal system, (1)10 + (999)10 = (1000)10 = (103)10

 For the octal system, (1)8 + (777)8 = (1000)8 = (83)10

 For the hex system, (1)16 + (FFF)16 = (1000)16 = (163)16

 For the binary system, (1)2 + (111)2 = (1000)2 = (23)10

In general, for a number system of radix r, adding 1 to the largest n-digit

number = r n

Accordingly, the value of largest n-digit number = r n -1

Conclusions.

1. In any number system of radix r, the result of adding 1 to the largest

n-digit number equals r n.

2. Thus, the value of the largest n-digit number is equal to (r n -1)

3. Thus, n digits can represent r n different values (digit combinations)

starting from a 0 value up to the largest value of r n -1.

 1

Appendix A. Summary of Number Systems Properties
The following table summarizes the basic features of the Decimal, Octal, Binary, and
Hexadecimal number systems as well as a number system with a general radix r

General
r

Hexadeci
mal
16

Binary
2

Octal
8

Decimal
10

{ 0 - R}
where R = (r-1)

{0-9, A-F} {0-1} {0-7} {0-9} Allowed
Digits

an-1rn-1+…+ a2r2 + a1r1

+ a0r0 + a-1r-1 + a-2r-2

+….+a-mr-m

ai ∈{0 - (r-1)}

 an-12n-1+…+
a222+a121+a020+a-12-1+
a-22-2+….+a-m2-m

ai ∈ {0,1}

an-18n-1+…+
a282+a181+a080+a-18-1+
a-28-2+….+a-m8-m

ai ∈ {0-7}

an-1x10n-1 + an-2x10n-2

+...+ a2x102 + a1x101+
a0 x 100 + a-1 x 10-1 +
a-2 x10-2 +..+ a-mx10-m
ai ∈ {0-9}
i=-m,…., 0, 1, …, n-1

Value of
an-1… a2 a1 a0.
a-1a-2….a-m

000…..0 000…..0 000…..0 000…..0 000…..0 Smallest n-
digit number

RR…..R = rn –1 FF…….F =
16n –1

11…..1 =
2n –1

77…..7 =
8n –1

999……9 =
10n –1

Largest n-
digit number

0 – (rn –1) 0- (16n -1) 0- (2n-1) 0- (8n-1) 0 - (10n-1) Range of n-
digit integers

rn 16n 2n 8n 10n # of Possible
Combinations
of n-digits

1-r-m 1-16-m 1-2-m 1-8-m 1-10-m Max Value of
m Fractional
Digits

 2

Appendix B. First 16 Binary Numbers & Their Decimal Equivalent
(All Possible Binary Combinations in 4-Bits)

Decimal

Bin. Equivelent

Decimal

Bin. Equivelent

0 0000 8 1000
1 0001 9 1001
2 0010 10 1010
3 0011 11 1011
4 0100 12 1100
5 0101 13 1101
6 0110 14 1110
7 0111 15 1111

 3

Appendix C. Decimal Values of the First 10 Powers of 2

 One Kilo is defined as 1000.
 For example, one Kilogram is 1000 grams. A kilometer is

1000 meters.

 In the Binary system, the power of 2 value closest to 1000 is
210 which equals 1024. This is referred to as one Kilo (or in
short 1K) in binary systems.

 Thus, one Kilo (or 1K) in Binary systems is not exactly 1000

but rather equals 1024 or 210

 Thus, in binary systems 2K= 2 x 1024 = 2048, 4K=4 x
1024= 4096, and so on

 Similarly, a one Meg (one million) in binary systems is 220
which equals 1,048,576.

Powers

of 2

Decimal.

Value
20 1
21 2
22 4
23 8
24 16
25 32
26 64
27 128
28 256
29 512
210 1024

1 Kilo = 1K
2K = 2048
4K = 4096

 1

Number Systems Arithmetic

Objectives

 In this lesson, we will study basic arithmetic operations in various

number systems with a particular stress on the binary system.

Approach

 Arithmetic in the Binary number system (addition, subtraction and

multiplication).

 Arithmetic in other number systems

Binary Addition

0 + 0 = 0

1 + 0 = 1

0 + 1 = 1

1 + 1 = 2

1 + 1 = (10)2

(3)10 + (7) 10 = (ten)10

(3)10 + (7) 10 = (10)10

2 is not an allowed
digit in binary

t

 2

Example

Show the result of adding:

(27)10 + (43) 10

Carry 1

1st Number 2 7

2nd Number 4 3 +

Result 7 0

Position i+1 i

weight r(i+1) w= r i

Digit 1 D1

Digit 2 D2 +

Result DCarry DSum

Position 1 i=0

weight w= 101 =10 w= 100 =1

Digit 1 5

Digit 2 7 +

Result 1 2

 Likewise, in case of the binary system, if the weight of the sum bit

is 2i, then the weight of the carry bit is 2i+1.

1x10 2x1

 3

 Thus, adding 1 + 1 in the binary system results in a Sum bit of 0 and

a carry bit of 1.

 The shown table summarizes the Sum and Carry results for binary

addition

Binary Addition Table

 Carry Sum

Weight 21 20

0 + 0 0 0

0 + 1 0 1

1 + 0 0 1
1 + 1 1 0

Example

 5 4 3 2 1 0

+ 1 1 1 1

 1 0 1 1 0 1

 1 0 0 1 1 1 +

1 0 1 0 1 0 0

≡ 0x20≡1x21

≡ +2

Carries

Result of Binary
Addition (SUM)

 4

Binary Subtraction

1 - 0 = 1

1 - 1 = 0

0 - 0 = 0

0 - 1 = ?

Position 1 0

weight 10 1

1st Number 7 5

2nd Number 8 -

Result ? ?

Position 1 0

weight 10 1

1st Number 7 5

2nd Number 8 -

Result 6 7

(5)10 – (8)10 = (7)10 Borrow 1

 For Binary subtraction

0 - 1 = 1 Borrow 1

 In general, the result of subtracting two digits each of weight w is

two digits. One is the “Difference” digit and the other is the

“Borrow” digit.

6 15

 5

 The difference digit has the same weight w as the operand digits.

 The borrow digit is considered negative and has the weight of the

next higher digit (wr).

Q. What is 1 – 1 – 1 = ?

A. The answer is 1 borrow 1.

Explanation: We perform the operation in 2 steps:

• 1 – 1 = 0

• We then subtract 1 from the above result, i.e. 0 – 1 which is 1

borrow 1.

Q. What is 0 – 1 – 1 = ?

A. The answer is 0 borrow 1.

 Borrow Difference

Weight -21 +20

0 - 0 0 0

1 - 1 0 0

1 - 0 0 1

0 - 1 1 1

≡ +1x20≡ 1x(-21)

≡ -1

 6

Explanation: We perform the operation in 2 steps:

• 0 - 1= 1 borrow 1

• We then subtract 1 from the above result, which yields 0

borrow 1.

Subtraction Example

 5 4 3 2 1 0

- 0 1 1 1

 1 0 1 1 0 0

 1 0 0 1 1 1 -

 0 0 0 1 0 1

Binary Multiplication (example)

Multiplicand 1 0 1 1

Multiplier 1 0 1 x

 1 0 1 1

 0 0 0 0 +

 1 0 1 1 +

 1 1 0 1 1 1

Borrows

Result of Binary
Subtraction (Difference)

Col #

 7

Arith. With Bases Other Than 10

Example: Base 5 Digit Set= {0, 1, 2, 3, 4}

(2)5 + (3)5 = (5)10

= (?)5

= (10)5

Addition Table

+ 0 1 2 3 4

0 0

1 1 2

2 2 3 4

3 3 4 10 11

4 4 10 11 12 13

Multiplication Table

* 0 1 2 3 4

0 0

1 0 1

2 0 2 4

3 0 3 11 14

4 0 4 13 22 31

=6= 1x50 + 1x51

=9= 4x50 + 1x51

=16= 1x50 + 3x51

=6= 1x50 + 1x51

=8= 3x50 + 1x51

=5= 0x50 + 1x51

 1

Number Base Conversion

Objectives
Given the representation of some number (XB) in a number system of radix

B, this lesson will show how to obtain the representation of the same

number (X) in another number system of radix A, i.e. (XA).

Converting Whole (Integer) Numbers

Assuming X to be an Integer,

1. Assume that XB has n digits (bn-1………..b2 b1 b0)B ,

where bi is a digit in radix B system,

i.e. bi ∈ {0, 1, ….., “B-1”}

2. Assume that XA has m digits (am-1………..a2 a1 a0)A

where ai is a digit in radix A system,

i.e. ai ∈ {0, 1, ….., “A-1”}

XB =(bn-1………..b2 b1 b0)B (am-1………..a2 a1 a0)A

XB = am-1*Am-1+……+ a2*A2 + a1*A1 + a0*A0

Knowns

Not Divisible by ADivisible by A

Unknowns

 2

Where ai ∈ {0-(A-1)}

Accordingly, dividing XB by A, the remainder will be a0.
In other words, we can write

XB = Q0.A+a0

Where, Q0 = am-1*Am-2 +…+ a2*A1 + a1*A0

Q0 = Q1A+a1 Dividing Q0 by

Q0 = Q1A+a1

Q1 = Q2A+a2

…………..……………….

Qm-3=Qm-2A+am-2

Qm-2=am-1 < A (not divisible by A)

 =Qm-1A+am-1

Where Qm-1 = 0

 This division procedure can be used to convert an integer value from

some radix number system to any other radix number system

 An important point to remember is the first digit we get using the

division process is a0, then a1, then a2, till am-1

Not Divisible by ADivisible by A

 3

 In other words, we get the digits of the integer number starting from the

radix point and moving lefts

Example :

Convert (53) 10 (?)2

Division Step Quotient Remainder
53 ÷ 2 Q0 =26 1 = a0 LSB
26 ÷ 2 Q1 =13 0 = a1
13 ÷ 2 Q2 =6 1 = a2
6 ÷ 2 Q3 =3 0 = a3
3 ÷ 2 Q4 =1 1 = a4
1 ÷ 2 0 1 = a5 MSB

Thus (53)10=(110101.)2

Since we always divide by the radix, and the quotient is re-divided again by

the radix, the solution table may be compacted into 2 columns only as

shown:

51 53
25 1 a0 26 1 LSB
12 1 13 0
6 0 6 1
3 0 3 0
1 1 1 1
0 1 am 0 1 MSB

Stopping Point

Binary Point

 4

(51)10=(110011.)2

(53)10=(110101.)2

Example :

Convert (755)10 (?)8

Division Step Quotient Remainder
755 ÷ 8 Q0 =94 3 = a0 LSB
94 ÷ 8 Q1 =11 6 = a1
11 ÷ 8 Q2 =1 3 = a2
1 ÷ 8 0 1 = a3 MSB

Thus, (755)10 (1363.)8

The above method can be more compactly coded as follows:

755

94 3

11 6

1 3

0 1

Example :

Convert (1606)10 (?)12

For radix twelve, the allowed digit set is:

 {0-9, A, B}

 5

1606 ÷12

133 ÷12 10 = A LSB

11 ÷12 1

0 11 = B MSB

(1606)10 (B1A.)12

Converting Fractions
Assuming X to be a fraction (< 1),

1. Assume that XB has n digits

XB = (0.b-1 b-2 b-3…….b-n)B

2. Assume that XA has m digits

XA = (0.a-1 a-2 a-3… …a-m)A

Thus, XB =(0.b-1 b-2 b-3…….b-n)B (0.a-1 a-2 a-3… …a-m)A

XB = a-1*A-1+a-2*A-2+………a-m*A-m

XB*A = a-1 + XB1

Knowns

Unknowns

Integer Fraction

 6

Repeating:

XB1*A = a-2 + XB2

………………….

XBm-2*A = a-m-1 + XBm-1

XBm-1*A = a-m

Example :

Convert (0.731) 10 (?)2

0.731*2=1.462

0.462*2=0.924

0.924*2=1.848

0.848*2=1.696

0.696*2=1.392

0.392*2=0.784

0.784*2=1.568

 (0.731) 10 = (.1011101)2

Binary Point

 7

Example :

Convert (0.731) 10 (?)8

8*0.731 =5.848

8*0.848 = 6.784

8*0.784 = 6.272

8*0.272 = 2.176

(0.731) 10 =(0.5662) 8

 Example :

Convert (0.357) 10 (?)12

• For radix twelve, the allowed digit set is:

 {0-9, A, B}

12*0.357 =4.284

12*0.284 = 3.408

12*0. 408= 4.896

12*0. 896= 10.752 A=10

(0.357) 10 (0.434A)12

Octal Point

System Point

=A

 8

IMPORTANT NOTE

For a number that has both integral and fractional parts, conversion is done

separately for both parts, and then the result is put together with a system

point in between both parts.

Conversion From Bases Other Than 10

Example

()7 ()5

()9 ()12

2 Approaches

Perform arith. in original base system
(in the above example bases 7 & 9)

1. Convert to Decimal
2. Convert from Decimal to new base

(in the above example bases 5&12)

 9

Binary To Octal Conversion

(bn….. b5 b4 b3 b2 b1 b0 . b-1 b-2 b-3 b-4 b-5…….)2 (?)8

(bn…. b5 b4 b3 b2 b1 b0 . b-1 b-2 b-3 b-4 b-5…)2

Group of 3 Binary Bits
bi+2 bi+1 bi

Octal
Equivalent

0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

Example :

Convert (1110010101.1011011)2 ino Octal.

We first partition the Binary number into groups of 3 bits

 001__110__010__101_._101__101__100

 1 4

3-
bits

3-
bits

3-
bits

3-
bits

Starting Point

5 55 2 6

 10

 001__110__010__101_._101__101__100 = (1625.554)8

Binary To Hexadecimal Conversion

(bn….. b5 b4 b3 b2 b1 b0 . b-1 b-2 b-3 b-4 b-5…….)2 (?)16

(bn….. b5 b4 b3 b2 b1 b0 . b-1 b-2 b-3 b-4 b-5)2

Group of 4 Binary Bits
bi+3 bi+2 bi+1 bi

Hexadecimal
Equivalent

0 0 0 0 0
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 0 0 0 8
1 0 0 1 9
1 0 1 0 A
1 0 1 1 B
1 1 0 0 C
1 1 0 1 D
1 1 1 0 E
1 1 1 1 F

Starting Point

4-
bits

4-
bits

4-
bits

 11

Example :

Convert (1110010101.1011011)2 into Hexadecimal.

 0011__1001__0101_._1011__0110

= (395.B6)16

To Convert Between Octal && Hexadecimal Convert to Binary as an

Intermediate Step

6 B5 9 3

 1

Machine Representation of Numbers

Objectives
• In this lesson, you will learn how signed numbers (positive or negative)

are represented in digital computers.

• You will learn the 2 main methods for signed number representation:

a. The signed-magnitude method, and

b. The complement method.

Registers
 Digital computers store numbers in special digital electronic devices called

Registers

 Registers consist of a fixed number n of storage elements.

 Each storage element is capable of storing one bit of data (either 0 or 1}.

 The register size is the number of storage bits in this register (n).

 Thus, registers are capable of holding n-bit binary numbers

 Register size (n) is typically a power of 2, e.g. 8, 16, 32, 64, etc.

 An n-bit register can represent (store) one of 2n Distinct Values.
 Numbers stored in registers may be either unsigned or signed numbers. For

example, 13 is an unsigned number but +13 and –13 are signed numbers.

Unsigned Number Representation

bit 0bit 1bit 2bit n-2bit n-1

LSBMSB

N-Bit Register holding an n-Bit Unsigned Number

.

• A register of n-bits, can store any unsigned number that has n-bits or less.

 2

• Typically, the rightmost bit of the register is designated to be the least

significant bit (LSB), while the leftmost bit is designated to be the most-

significant bit (MSB).

• When representing an integer number , this n-bit register can hold values

from 0 up to (2n – 1).

Example

Show how the value (13)10 (or D in Hexadecimal) is stored in a 4-bit register

and in an 8-bit register

Signed Number Representation

 The n-bits of the register holding an unsigned number need only represent

the value (magnitude) of the number. No sign information needs to be

represented in this case.

 In the case of a signed number, the n-bits of the register should represent

both the magnitude of the number and its sign as well.

 Two major techniques are used to represent signed numbers:

1. Signed Magnitude Representation

2. Complement method

• Radix (R’s) Complement (2’s Complement)

• Diminished Radix (R-1’s) Complement (1’s Complement)

11 01

4-Bit Register Storing 13

LSBMSB

0000 1011

8-Bit Register Storing 13

LSBMSB

 3

Signed Magnitude Number Representation

bit 0bit 1bit 2bit n-2

LSBMSB

Signed-Magnitude Number Representation
in n-Bit Register

.Sign
Bit

0 +ive1 -ive Magnitude

 Independent Representation of The Sign and The Magnitude

 The leftmost bit is used as a Sign Bit.

 The Sign Bit :

o = 0 +ive number

o = 1 -ive number.

 The remaining (n-1) bits are used to represent the magnitude of the number.

 Thus, the largest representable magnitude, in this method, is (2n-1-1)

Example

Show the signed-magnitude representations of +6, -6, +13 and –13 using a 4-Bit

register and an 8-Bit register

Solution

 For a 4-bit register, the leftmost bit is a sign bit, which leaves 3 bits only to

represent the magnitude.

 The largest magnitude representable in 3-bits is 7. Accordingly, we cannot

use a 4-bit register to represent +13 or –13.

01 10

Signed-Magnitude
Representation of +6

01 11

Signed-Magnitude
Representation of -6

 4

 For an 8-bit register, the leftmost bit is a sign bit, which leaves 7 bits to

represent the magnitude.

 The largest magnitude representable in 7-bits is 127 (= 27-1).

Notes

1. Signed magnitude method has Two representations for 0 {+0 , -0}

nuisance for implementation.

2. Signed magnitude method has a symmetric range of representation {-(2n-1

-1) : +(2n-1- 1)}

3. Harder to implement addition/subtraction.

a) The sign and magnitude parts have to be processed independently.

b) Sign bits of the operands have to be examined to determine the actual

operation (addition or subtraction).

c) Separate circuits are required to perform the addition and subtraction

operations.

4. Multiplication & division are less problematic.

0001 0110

Signed-Magnitude
Representation of -6

0000 0110

Signed-Magnitude
Representation of +6

0000 1011

Signed-Magnitude
Representation of +13

0001 1011

Signed-Magnitude
Representation of -13

 5

Complement Representation

 Positive numbers (+N) are represented in exactly the same way as in signed

magnitude system

 Negative numbers (-N) are represented by the complement of N (N’)

Define the Complement N’ of some number N as:

N’ = M -N where, M = Some Constant

 Applying a negative sign to a number (N -N) is equivalent to

Complementing that number (N N’)

 Thus, given the representation of some number N, the representation of –N

is equivalent to the representation of the complement N’.

Important Property:

 The Complement of the Complement of some number N is the original

number N.

N’ =M-N

(N’)’ = M- (M-N) = N

 This is a required property to match the negation process since a number

negated twice must yield the original number {- (-N) = N}

Why Use the Complement Method ?

Through the proper choice of the constant M, the complement operation can be

fairly simple and quite fast. A simple complement process allows:

i. Simplified arithmetic operations since. subtraction can be totally replaced

by addition and complementing.

ii. Lower cost, since no subtractor circuitry will be required and only an

adder is needed.

Complement Arithmetic

Basic Rules

 6

1. Negation is replaced by complementing (- N N’)

2. Subtraction is replaced by addition to the complement.

• Thus, (X – Y) is replaced by (X + Y')

Choice of M

The value of M should be chosen such that:

1. It simplifies the computation of the complement of a number.

2. It results in simplified arithmetic operations.

 Consider the operation

Z = X – Y,
where both X and Y are positive numbers

 In complement arithmetic, Z is computed by adding X to the
complement of Y

Z = X + Y’
Consider the following two possible cases:

First case Y > X (Negative Result)
 The result Z is –ive, where

Z = – (Y-X)

 Being –ive, Z should be represented in the complement form as M-(Y-X)

 Using the complement method:

Z = X - Y

Z = X + Y’

 = X + (M-Y)

 = M - (Y-X)

 = Correct Answer in the Complement Form

 Thus, in the case of a negative result, any value of M may be used.

 7

Second case Y < X (Positive Result)

The result Z is +ive where,

Z = +(X-Y).

Using complement arithmetic we get:

 Z = X-Y

 Z = X + Y’

 = X + (M-Y)

 Z = M + (X-Y)

• which is different from the expected correct result of +(X-Y)

 In this case, a correction step is required for the final result.

 The choice of the value of M affects the complexity of this correction step.

To summarize,

There are two constraints on the choice of M

1. Simple and fast complement operation.

2. Elimination or simplification of the correction step.

R’s and (R-1)’s Complements
 Two complement methods have generally been used.

 The two methods differ in the choice of the value of M.

1. The diminished radix complement method {(R-1)’s Complement }, and
2. The radix complement method (R’s Complement).

 Consider the number X, with n integral digits and m fractional digits,

where

m Fractional Digits n Integral Digits

 8

X = Xn-1 Xn-2 X1 X0 . X-1 X-2 .…. X-m

 Next, we will show how to compute the (R-1)’s and the R’s complements

of X

The Diminished Radix Complement (R-1)’s Complement:

MR-1 = r n - r -m

where; r n = 1 000…00 . 00…000

and; r -m = 000…00 . 00…001

 Note that, if X is integer, then m=0 and r -m =1.

Thus; r –m = 000…00 . 00…001

 = Unit (one) in Least Position (ulp)

OR MR-1 = r n - ulp

where; ulp = Unit (one) in Least Position = r -m

Important Notes:

• The (R-1)’s complement of X will be denoted by X r
'

1− .

• (rn - r-m) is the largest number representable in n integral digits and m

fractional digits.

• X r
'

1− = L – X, where L is largest number representable in n integral

digits and m fractional digits

m Positionsn Positions

m digitsn digits (n+1)th
Position

 9

The shown table shows how to compute the (r-1)’s complement of X for various

number systems

Number

System

(R-1)’s

Complement

Complement of X

(X’r-1)

Decimal 9’s

Complement
X’9 =(10

n
-10

-m
)-X

 = 99...9.99…9-X

Binary 1’s

Complement
X’1 =(2

n
 -2

-m
) -X

 = 11…1.111...1-X

Octal 7’s

Complement
X’7 =(8

n
 -8

-m
) -X

 = 77…7.77…7-X

Hexadec

imal

F’s

Complement
X’F =(16

n
 -16

-m)-X

 = FF…F. FF…F-X

Radix Complement (R’s Complement):

MR = r n

Note that r
n = 1000…00.000

Notes:

1. The R’s complement of X will be denoted by X r
' .

2. MR depends only on the number of integral digits (n), but is independent of

the number of fractional digits (m).

3. XX rn
r −='

4. XulpX rn
r −−=−)('

1

n-integral digits

m-fractional digits

n Positions(n+1)th
Position

 10

5. Thus, ulpXX rr += −
'

1
'

, i.e R's complement =(R-1)'s complement +

ulp

The shown table summarizes the radix complement computation of X for

various number systems

Number

System

R’s Complement Complement

of X (X’r)

Decimal 10’s Complement X’10=10
n
 -X

Binary 2’s Complement X’2 =2
n
 -X

Octal 8’s Complement X’8 =8
n
 -X

Hexa-

decimal

16’s Complement X’16=16
n
 -X

Examples
Find the 9’s and the 10’s complement of the following decimal numbers:

a- 2357

b- 2895.786

Solution:

a- X = 2357 n=4,

• X’9=(104 –ulp) –2357

= 9999 – 2357 = 7642

• X’10=104 –2357 = 7643;

• Alternatively, X’10= X’9 + 0001= 7643

b- X = 2895.786 n=4, m=3

• X’9=(104 – ulp) –2895.786

= 9999.999 – 2895.786= 7104.213

 11

• X’10=104 – 2895.786= 7104.214;

• Alternatively, X’10 = X’9 + 0000.001= 7104.214

Example

Find the 1’s and the 2’s complement of the following binary numbers:

a- 110101010

b- 1010011011

c- 1010.001

Solution:

a- X = 110101010 n=9,

• X’1=(29 – ulp) –110101010 = 111111111 – 110101010

 = 001010101

• X’2=29 – 110101010 = 1000000000 – 110101010

 = 001010110

• Alternatively, X’2= X’1 + ulp = 001010101 + 000000001

 = 001010110

b- X = 1010011011 n=10,

• X’1=(210 –ULP) –101001101 = 1111111111 – 101001101

 = 010110010

• X’2=210 – 101001101 = 10000000000 –

101001101 = 010110011

• Alternatively, X’2= X’1 + ulp = 010110010+ 0000000001

 = 010110011

c- X = 1010.001 n=4, m=3

• X’1=(24 –ULP) –1010.001 = 1111.111 – 1010.001

 = 0101.110

• X’2 = 24 – 1010.001 = 10000 – 1010.001

 = 0101.111

 12

• Alternatively, X’2= X’1 + ulp = 0101.110+ 0000.001

 = 0101.111

Important Notes:
1. The 1's complement of a number can be directly obtained by bitwise

complementing of each bit, i.e. each 1 is replaced by a 0 and each 0 is

replaced by a 1.

• Example: X = 1 1 0 0 1 0 1 0 0 1

• X1' = 0 0 1 1 0 1 0 1 1 0

2. The 2's complement of a number can be visually obtained as follows:

• Scan the binary number from right to left.

• 0's are replaced by 0's till the first 1 is encountered.

• The first encountered 1 is replaced by a 1 but from this point onwards

each bit is complemented replacing each 1 by a 0 and each 0 by a 1

• Example: X = 1 1 0 0 1 0 1 0 0

• X2' = 0 0 1 1 0 1 1 0 0

Example

Find the 7’s and the 8’s complement of the following octal numbers:

a- 6770

b- 541.736

Solution:

a- X = 6770 n=4,

• X’7=(8 4 –ULP) –6770 = 7777 – 6770

 = 1007

• X’8=8 4 – 6770 = 10000 – 6770 = 1010

• Alternatively, X’8= X’7 + ulp = 1007+ 0001= 1010

b- X = 541.736 n=3, m=4

• X’7=(83 –ULP) –541.736 = 777.7777 – 541.736= 236.041

 13

• X’8=83 – 541.736 = 1000 – 541.736 = 236.042

• Alternatively, X’8= X’7 + ulp = 236.041+ 0.001 = 236.042

Example

Find the F’s and the 16’s complement of the following HEX numbers:

a- 3FA9

b- 9B1.C70

Solution:

a- X = 3FA9 n=4,

• X’F=(16 4 –ULP) –3FA9 = FFFF – 3FA9 = C056

• X’16=16 4 – 3FA9 = 10000 – 3FA9 = C057

• Alternatively, X’16= X’F + ulp = C056+ 0001 = C057

b- X = 9B1 . C70 n=3, m=3

• X’F=(163 –ULP) –9B1 . C70 = FFF . FFF – 9B1 . C70= 64E.38F

• X’16=163 – 9B1 . C70 = 1000 – 9B1 . C70 = 64E . 390

• Alternatively, X’16= X’F + ulp = 64E . 38F + 000 . 001= 64E . 390

Example

Show how the numbers +53 and -53 are represented in 8-bit registers using

signed-magnitude, 1's complement and 2's complement representations.

 +53 -53

Signed Magnitude 00110101 10110101

1's Complement 00110101 11001010

2's Complement 00110101 11001011

Important Notes:

1. In all signed number representation methods, the leftmost bit indicates

the sign of the number, i.e. it is considered as a sign bit

2. If the sign bit (leftmost) is 1, then the number is negative and if it is 0

the number is positive.

 14

Comparison:

 Signed
Magnitude

1's
Complement

2's
Complement

No. of 0’s
2

(± 0)

2

(± 0)

1

(+ 0)

Symmetric yes yes no

Largest
+ive value +(2n-1-1) +(2n-1-1) +(2n-1-1)

Smallest
–ive Value - (2n-1-1) -(2n-1-1) - 2n-1

 15

Quiz:

For the shown 4-bit numbers, write the corresponding decimal values in the

indicated representation.

X
Un-

signed

Signed

Magnitude

1's Comp

(X1’)

2's Comp

(X2’)

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

End of Lessons Exercises

1. Find the binary representation in signed magnitude, 1's complement, and 2's

complement for the following decimal numbers: +13, -13, +39, -39, +1, -1,

+73 and -73. For all numbers, show the required representation for 6-bit and

8-bit registers

2. Indicate the decimal value corresponding to all 5-bit binary patterns if the

binary pattern is interpreted as a number in the signed magnitude, 1's

complement, and 2's complement representations.

Complement Arithmetic

Objectives
In this lesson, you will learn:

 How additions and subtractions are performed using the complement representation,

 What is the Overflow condition, and

 How to perform arithmetic shifts.

Summary of the Last Lesson
Basic Rules

1. Negation is replaced by complementing (- N N’)

2. Subtraction is replaced by addition to the complement.

• Thus, (X – Y) is replaced by (X + Y')

3. For some number N, its complement N’ is computed as N’ = M –N, where

 M = r n for R’s complement representation, where n is the number of integral digits of

the register holding the number.

 M = (r n – ulp) for (R-1)’s complement representation

4. The operation Z= X–Y, where both X and Y are positive numbers (computed as X + Y’)

yields two different results depending on the relative magnitudes of X & Y. (Review page

12 of the previous lesson).

a) First case Y > X (Negative Result)
 The result Z is –ive, where

Z = – (Y-X)

 Being –ive, Z should be represented in the complement form as

 Z = M-(Y-X) (1)

Expected
Correct Result

 Using the complement method:

Z = X + Y’

 = X + (M-Y), i.e.

 Z = M - (Y-X) (2)

 = Correct Answer in the Complement Form

 In this case, any value of M gives correct result.

Note In this case the result fits in the n-digits of the operands. In other words, there is no end

carry irrespective of the value of M.

Second case Y < X (Positive Result)

The result Z is +ive where,

Z = +(X-Y).

Using complement arithmetic we get:

 Z = X + Y’

 = X + (M-Y)

 Z = M + (X-Y) (3)

• which is different from the expected correct result of

 Z = +(X-Y) (4)

 In this case, a correction step is required for the final result.

 The correction step depends on the value of M.

Computed Result

Computed
Result

Expected
Correct Result

Correction Step for R’s and (R-1)’s Complements

The previous analysis shows that computing Z = (X-Y) using complement arithmetic gives:

 The correct complement representation of the answer if the result is negative, that is M

- (Y-X).

 Alternatively, if the result is positive it gives an answer of M + (X-Y) which is different

from the correct answer of +(X-Y) requiring a correction step.

 The correction step depends on the value of M

For the R’s Complement

Note that MR = r n = 1000…00.000

Thus, the computed result (M + (X-Y)) is given by

Z = r n + (X-Y)

Since (X-Y) is positive, the computed Z value {r n + (X-Y)} requires (n + 1) integral digits to be

expressed as shown in Figure.

digit 0digit 1digit 2digit n-11

(n+1)-digits required to hold computed Z value = rn + (X-Y)

.

n-digits holding the value of (X-Y)

rn

(n+1)th digit

n Positions(n+1)th
Position

In this case, it is clear that Z = r n + (X-Y) consists of the digit 1 in the (n+1)th digit position

while the least significant n digits will hold the expected correct result of (X-Y).

Since X, Y, and the result Z are stored in registers of n digits, the correct result (X- Y) is simply

obtained by neglecting the 1 in the (n+1)th digit.

The 1 in the (n+1)th digit is typically referred to as “end carry”.

Conclusion:

 For the R’s complement method;

i. If the computed result has no end carry. This result is the correct answer.

ii. In case the computed result has an end carry, this end carry is DISACRDED and the

remaining digits represent the correct answer.

For the (R-1)’s Complement

 MR-1 = r n- ulp

Thus, the computed result (M + (X-Y)) is given by

Z = (r n – ulp) + (X-Y)

For a positive value of (X-Y), the computed Z value {(r n – ulp)+ (X-Y)} requires (n + 1)

integral digits for its representation.

Again, r n represents a 1 in the (n+1)th digit position (i.e. an end carry) while the least

significant n digits will hold the value (X-Y-ulp).

Since the expected correct answer is (X-Y), the correct result is obtained by adding a ulp to the

least significant digit position.

Q. What does the computed result represent in case X=Y ?

Conclusion:

 For the (R-1)’s complement method;

a. If the computed result has no end carry. This result is the correct answer.

b. In case the computed result has an end carry, this end carry is added to the least

significant position (i.e., as ulp).

Important Note:

• The previous conclusions are valid irrespective of the signs of X or Y and for both

addition and subtraction operations.

Add/Subtract Procedure

It is desired to compute Z = X ± Y, where X, Y and Z:

(a) are signed numbers represented in one of the complement representation methods.

(b) have n integral digits including the sign digit.

The procedure for computing the value of Z depends on the used complement representation

method:

R’s Complement Arithmetic

1. If the operation to be performed is addition compute Z = X + Y, otherwise if it is

subtraction, Z = X – Y, compute Z = X + Y’ instead.

2. If the result has no end carry, the obtained value is the correct answer.

3. If the result has an end carry, discard it and the value in the remaining digits is the

correct answer.

(R-1)’s Complement Arithmetic

1. If the operation to be performed is addition compute Z = X + Y, otherwise if it is

subtraction, Z = X – Y, compute Z = X + Y’ instead.

2. If the result has no end carry, the obtained value is the correct answer.

3. If the result has an end carry, this end carry should be added to the least significant digit

(ulp) to obtain the final correct answer.

Examples

RADIX COMPLEMENT

Compute (M-N) and (N-M), where M=(072532)10 N=(003250)10

Both M & N must have the same # of Digits (Pad with 0`s if needed).

COMPUTING (M – N)

Regular Subtraction

M 0 7 2 5 3 2

N ─ 0 0 3 2 5 0

 0 6 9 2 8 2

Complement Method

Compute (M+N’)

M 0 7 2 5 3 2

N’ + 9 9 6 7 5 0

 1 0 6 9 2 8 2

Correct Result

Discard
End Carry

COMPUTING (N – M)

Regular Subtraction

N 0 0 3 2 5 0

M ─ 0 7 2 5 3 2

 ─ 0 6 9 2 8 2

Complement Method

Compute (N + M’)

N 0 0 3 2 5 0

M’ + 9 2 7 4 6 8

 9 3 0 7 1 8

-ive sign
Equivalent Results
The –ive Result is
Represented by the
10’s Complement

No End Carry

This is the 10’s complement representation of
a –ive number, i.e. the result (930718)
represents the number (-069282)

Example : (2`s Comp) M=(01010100)2 N=(01000100)2

Note: Both M & N are positive 8-bit numbers

COMPUTING (M – N)

Regular Subtraction

M 0 1 0 1 0 1 0 0

N ─ 0 1 0 0 0 1 0 0

 0 0 0 1 0 0 0 0

Complement Method

Compute (M+N’)

M 0 1 0 1 0 1 0 0

N’ + 1 0 1 1 1 1 0 0

 1 0 0 0 1 0 0 0 0

Discard
Carry Out

Correct Result

Sign Bit

COMPUTING (N – M)

Regular Subtraction

N 0 1 0 0 0 1 0 0

M ─ 0 1 0 1 0 1 0 0

 ─ 0 0 0 1 0 0 0 0

Complement Method

Compute (N + M’)

N 0 1 0 0 0 1 0 0

M’ + 1 0 1 0 1 1 0 0

 1 1 1 1 0 0 0 0

-ive sign

No End Carry

This is the 2’s complement representation of a
–ive number, i.e. the result (11110000)
represents the number (-00010000)

Sign Bit

Equivalent Results
The –ive Result is
Represented by the
2’s Complement

DIMINISHED / (R-1)’s RADIX COMPLEMENT

Compute (M-N) and (N-M), where M=(072532)10 N=(003250)10

Both M & N must have the same # of Digits (Pad with 0`s if needed).

COMPUTING (M – N)

Regular Subtraction

M 0 7 2 5 3 2

N ─ 0 0 3 2 5 0

 0 6 9 2 8 2

Complement Method

Compute (M+N’)

M 0 7 2 5 3 2

N’ + 9 9 6 7 4 9

 1 0 6 9 2 8 1

 + 1
 0 6 9 2 8 2

Correct Result

End Carry

COMPUTING (N – M)

Regular Subtraction

N 0 0 3 2 5 0

M ─ 0 7 2 5 3 2

 ─ 0 6 9 2 8 2

Complement Method

Compute (N + M’)

N 0 0 3 2 5 0

M’ + 9 2 7 4 6 7

 9 3 0 7 1 7

-ive sign

Equivalent Results
The –ive Result is
Represented by the
9’s Complement

No End Carry

This is the 9’s complement representation of a
–ive number, i.e. the result (930717)
represents the number (-069282)

Example : (1`s Comp) M=(01010100)2 N=(01000100)2

Note: Both M & N are positive 8-bit numbers

COMPUTING (M – N)

Regular Subtraction

M 0 1 0 1 0 1 0 0

N ─ 0 1 0 0 0 1 0 0

 0 0 0 1 0 0 0 0

Complement Method

Compute (M+N’)

M 0 1 0 1 0 1 0 0

N’ + 1 0 1 1 1 0 1 1

 1 0 0 0 0 1 1 1 1

 1
 0 0 0 1 0 0 0 0

Correct ResultSign Bit

End Carry

COMPUTING (N – M)

Regular Subtraction

N 0 1 0 0 0 1 0 0

M ─ 0 1 0 1 0 1 0 0

 ─ 0 0 0 1 0 0 0 0

Complement Method

Compute (N + M’)

N 0 1 0 0 0 1 0 0

M’ + 1 0 1 0 1 0 1 1

 1 1 1 0 1 1 1 1

-ive sign

No End Carry

This is the 1’s complement representation of a
–ive number, i.e. the result (11101111)
represents the number (-00010000)

Sign Bit

Equivalent Results
The –ive Result is
Represented by the
1’s Complement

Overflow Condition

 If adding two n-digit unsigned numbers results in an n+1 digit sum, this represents an

overflow condition.

 In digital computers, overflow represents a problem since register sizes are fixed,

accordingly a result of n+1 bits cannot fit into an n-bit register and the most significant bit

will be lost.

 Overflow condition is a problem whether the added numbers are signed or unsigned.

 In case of signed numbers, overflow may occur only if the two numbers being added have

the same sign, i.e. either both numbers are positive or both are negative.

 For 2’s complement represented numbers, the sign bit is treated as part of the number and

an end carry does not necessarily indicate an overflow.

 In 2’s complement system, an overflow condition always changes the sign of the result and

gives an erroneous n-bit answer. Two cases are possible:

1. Both operands are positive (sign bits=0). In this case, an overflow will result from a carry

of 1 into the sign bit column; causing the sum to be interpreted as a negative number.

2. Both operands are negative (sign bits=1). In this case, an overflow will result when no

carry is received at the sign bit column causing the two sign bits to be added resulting in a

0 in the sign bit column and a carry out in the (n+1)th. bit position which will be

discarded. This causes the sum to be interpreted as a positive number.

 Accordingly, an overflow condition is detected if one of the two following conditions

occurs:

(a) There is a carry into the sign bit column but no carry out of that column.

(b) There is a carry out of the sign bit column but no carry into that column.

Example:

 Consider the case of adding the binary values corresponding to (+5)10 and (+6) 10 where the

correct result should be (+11).

 Even though the operands (+5)10 & (+6)10 can be represented in 4-bits, the result (+11)10

cannot be represented in 4-bits.

 Accordingly, the 4-bit result will be erroneous due to “overflow”.

Add (+5) to (+6) using 4-bit registers and 2’s complement representation.

(+5)10 (0101)2

(+6)10 (0110)2

 0 1 0 1
+ 0 1 1 0

 1 0 1 1

 If this overflow condition is not detected, the resulting sum would be erroneously

interpreted as a negative number (1011) which equals (-5)10.

Example:

Add (-5) to (-6) using 4-bit registers and 2’s complement representation.

(-5)10 (1011)2

(-6)10 (1010)2

 1 0 1 1
+ 1 0 1 0

 0 1 0 1

 If this overflow condition is not detected, the resulting sum would be erroneously

interpreted as a positive number (0101) which equals (+5)10.

1

Sign Bit

1

Sign Bit

There is a carry into the
sign bit column but no
carry out of it

There is a carry out of
the sign bit column but
no carry into it.

Example:

Using 8-bit registers, show the binary number representation of the decimal numbers (37), (-37),
(54), and (-54) using the following systems:

 Signed magnitude
system

Signed 1’s complement
System

Signed 2’s complement
system

37 00100101 00100101 00100101
-37 10100101 11011010 11011011
54 00110110 00110110 00110110
-54 10110110 11001001 11001010

Compute the result of the following operations in
the signed 2’s complement system.

I. (+37) – (+54)

Subtraction is turned into addition to the complement, i.e.

(+37) – (+54) (+37) + (+54)’

 0 0 1 0 0 1 0 1
 +
 1 1 0 0 1 0 1 0
 1 1 1 0 1 1 1 1

= (-17)10

II. (-37) – (+54)

Subtraction is turned into addition to the complement, i.e.

(-37) – (+54) (-37) + (+54)’

 1 1 0 1 1 0 1 1
 +
 1 1 0 0 1 0 1 0
 1 1 0 1 0 0 1 0 1

= -(01011011) =- (91)10

III. (54) + (-37)

 0 0 1 1 0 1 1 0
 +
 1 1 0 1 1 0 1 1
 1 0 0 0 1 0 0 0 1

= + (17)10

Discard End
Carry

Discard End
Carry

Range Extension of 2’s Complement Numbers
 To extend the representation of some 2’s complement number X from n-bits to n`-bits

where n` > n.

1. If X is +ive pad with 0`s to the right of fractional part and/or to the left of the

integral part.

2. If X is -ive pad with 0`s to the right of fractional part and/or with 1`s to the left of

the integral part.

In General

 Pad with 0`s to the right of fractional part and/or extend sign bit to the left of the integral

part (Sign Bit Extension).

xn-1 xn-2 x2 x1 x0 x-1 x-2 x-m…. ….

X- Before Extending its Range

xn-2 x2 x1 x0 x-1 x-2 x-m… … 0 0 0…xn-1 xn-1xn-1xn-1 …

Sign Extension Pad with 0's

Sign Bit

X- After Extending its Range

(0’s Padded to the Right of Fractional Part and the Sign is Extended to the Left of the

Integral Part)

Example:

Show how the numbers (+5)10 and (−5)10 are represented in 2’s complemenr using 4-bit registers

then extend this representation to 8-bit registers.

1 1 1 1 1 0 1 11 0 1 1 Extend
To 8-bits

Sign Bit Sign bit extension

(-5)10 (-5)10

0 0 0 0 0 1 0 10 1 0 1 Extend
To 8-bits

Sign Bit Sign bit extension

(+5)10 (+5)10

Arithmetic Shifts
Effect of 1-Digit Shift

 Left Shift Multiply by radix r

 Right Shift Divide by radix r

(a) Shifting Unsigned Numbers

 Shift-in 0`s (for both Left & Right Shifts)

(b) Shifting 2’s Complement Numbers

 Left Shifts: 0`s are shifted-in

 Right Shifts: Sign Bit Extended

Example:

 +1 000001 -1 111111

 +2 000010 -2 111110

 +4 000100 -4 111100

 +8 001000 -8 111000

 +16 010000 -16 110000

Shift Right Shift Right

Shift Left

 1

Binary Codes

Objectives
In this lesson, you will study:

1. Several binary codes including

 Binary Coded Decimal (BCD),

 Error detection codes,

 Character codes

2. Coding versus binary conversion.

Binary Codes for Decimal Digits

 Internally, digital computers operate on binary numbers.

 When interfacing to humans, digital processors, e.g. pocket calculators, communication is

decimal-based.

 Input is done in decimal then converted to binary for internal processing.

 For output, the result has to be converted from its internal binary representation to a decimal

form.

 To be handled by digital processors, the decimal input (output) must be coded in binary in a

digit by digit manner.

 For example, to input the decimal number 957, each digit of the number is individually

coded and the number is stored as 1001_0101_0111.

 Thus, we need a specific code for each of the 10 decimal digits. There is a variety of such

decimal binary codes.

 The shown table gives several common such codes.

 One commonly used code is the Binary Coded Decimal (BCD) code which corresponds to

the first 10 binary representations of the decimal digits 0-9.

 The BCD code requires 4 bits to represent the 10 decimal digits.

 Since 4 bits may have up to 16 different binary combinations, a total of 6 combinations will

be unused.

 The position weights of the BCD code are 8, 4, 2, 1.

 Other codes (shown in the table) use position weights of 8, 4, -2, -1 and 2, 4, 2, 1.

 An example of a non-weighted code is the excess-3 code where digit codes is obtained from

their binary equivalent after adding 3. Thus the code of a decimal 0 is 0011, that of 6 is

1001, etc.

 2

BCD Decimal

Digit 8 4 2 1 8 4 -2 -1 2 4 2 1 Excess-3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 0 0

2 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 1

3 0 0 1 1 0 1 0 1 0 0 1 1 0 1 1 0

4 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1

5 0 1 0 1 1 0 1 1 1 0 1 1 1 0 0 0

6 0 1 1 0 1 0 1 0 1 1 0 0 1 0 0 1

7 0 1 1 1 1 0 0 1 1 1 0 1 1 0 1 0

8 1 0 0 0 1 0 0 0 1 1 1 0 1 0 1 1

9 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0

U 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0

N 1 0 1 1 0 0 1 0 0 1 1 0 0 0 0 1

U 1 1 0 0 0 0 1 1 0 1 1 1 0 0 1 0

S 1 1 0 1 1 1 0 0 1 0 0 0 1 1 0 1

E 1 1 1 0 1 1 0 1 1 0 0 1 1 1 1 0

D 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1

Number Conversion versus Coding

 Converting a decimal number into binary is done by repeated division (multiplication) by 2

for integers (fractions) (see lesson 4).

 Coding a decimal number into its BCD code is done by replacing each decimal digit of the

number by its equivalent 4 bit BCD code.

Example Converting (13)10 into binary, we get 1101, coding the same number into BCD, we

obtain 00010011.

Exercise: Convert (95)10 into its binary

equivalent value and give its BCD code as

well.

Answer {(1011111)2, and 10010101}

 3

Error-Detection Codes
 Binary information may be transmitted through some communication medium, e.g. using

wires or wireless media.

 A corrupted bit will have its value changed

from 0 to 1 or vice versa.

 To be able to detect errors at the receiver end, the sender sends an extra bit (parity bit) with

the original binary message.

SENDER Reciever

Binary
Message

Error
Detecting Bit
(Parity Bit)

 A parity bit is an extra bit included with the n-bit binary message to make the total number

of 1’s in this message (including the parity bit) either odd or even.

 If the parity bit makes the total number of 1’s an odd (even) number, it is called odd (even)

parity.

 The table shows the required odd (even) parity for a 3-bit message.

 At the receiver end, an error is detected if the message does not match have the proper

parity (odd/even).

 Parity bits can detect the occurrence 1, 3, 5 or any odd number of errors in the transmitted

message.

 Three-Bit Message Odd Parity Bit Even Parity Bit

X Y Z P P

0 0 0 1 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 0 1

 4

 No error is detectable if the transmitted message has 2 bits in error since the total number of

1’s will remain even (or odd) as in the original message.

 In general, a transmitted message with even number of errors cannot be detected by the

parity bit.

Error-Detection Codes
 Binary information may be transmitted through some communication medium, e.g. using

wires or wireless media.

 Noise in the transmission medium may cause the transmitted binary message to be

corrupted by changing a bit from 0 to 1 or vice versa.

 To be able to detect errors at the receiver end, the sender sends an extra bit (parity bit).

Gray Code
 The Gray code consist of 16 4-bit code words to represent the decimal Numbers 0 to 15.

 For Gray code, successive code words differ by only one bit from one to the next as shown

in the table and further illustrated in the Figure.

0000

0011

0010

0110

1001

1011

1010

0111

00011000

0101

0100
1100

1101

1111

1110

0
15

14

13

12

11

10

1

2

3

4

5

6

7
8

9

Character Codes
ASCII Character Code

 ASCII code is a 7-bit code. Thus, it represents a total of 128

characters.

Gray Code Decimal

Equivalent

0 0 0 0 0

0 0 0 1 1

0 0 1 1 2

0 0 1 0 3

0 1 1 0 4

0 1 1 1 5

0 1 0 1 6

0 1 0 0 7

1 1 0 0 8

1 1 0 1 9

1 1 1 1 10

1 1 1 0 11

1 0 1 0 12

1 0 1 1 13

1 0 0 1 14

1 0 0 0 15

 5

 Out of the 128 characters, there are 94 printable characters and 34 control (non- printable)

characters.

 The printable characters include the upper and lower case letters (2*26), the 10 numerals (0-9), and

32 special characters, e.g. @, %, $, etc.

 For example, “A” is at (41)16, while “a” is at (61))16.

 To convert upper case letters to lower case letters, add (20)16. Thus “a” is at (41)16 + (20)16 = (61)16.

 The code of the character “9” at position (39)16 is different from the binary number 9 (0001001). To

convert ASCII code of a numeral to its binary number value, subtract (30)16.

Unicode Character Code

 Unicode is a 16-bit character code that accommodates characters of various languages of the

world.

Binary Logic and Gates

Introduction

 Our objective is to learn how to design digital circuits.

 These circuits use binary systems.

 Signals in such binary systems may represent only one of 2 possible values

0 or 1

 Physically, these signals are electrical voltage signals

 These signals may assume either a high or a Low voltage value.

 The high voltage value typically equals the voltage of the power supply (e.g.

5 volts or 3.3 volts), and the Low voltage value is typically 0 volts (or

Ground).

 When a signal is at the High voltage value, we say that the signal has a

Logic 1 value.

 When a signal is at the Low voltage value, we say that the signal has a Logic 0

value.

 Hence, the physical value of a signal is the actual voltage value it carries,

while its Logic value is either 1 (High) or 0 (Low).

 Digital circuits process (or manipulate) input binary signals and produce the

required output binary signals as shown in Figure 1

Figure 1 A Digital Circuit with n Input Signals and m Output Signals

m Output
Binary Signals

Digital
Circuit.

x1
x2

xn

Z1

Zm

 n Input
Binary Signals

 Generally, the circuit will have a number of input signals (say n of them) as

shown in the Figure x1, x2, up to xn, and a number of output signals (say m)

Z1, Z2, up to Zm.

 The value assumed by the ith output signal Zi depends on the values of the

input signals x1, x2, up to xn.

 In other words, we can say that Zi is a function of the n input signals x1, x2, up

to xn . Or we can write:

Zi = Fi (x1, x2, ……, xn) for i = 1, 2, 3, ….m

 The m output functions (Fi) are functions of binary signals and produce a

single binary output signal.

 Thus, these functions are binary functions and require binary logic algebra for

their derivation and manipulation. This binary system algebra is commonly

referred to as Boolean Algebra after the mathematician George Boole. The

functions are known as Boolean functions while the binary signals are

represented by Boolean variables.

 To be able to design a digital circuit, we must learn how to derive the Boolean

function implemented by this circuit.

Notes:

1. The two values of binary variables may be equivalently referred to as 0 and 1

or False (0) and True (1)or as Low (0) and High(1).

2. Whether we use 0 and 1 or False and True or Low and High, all these are

referred to as Logic Values.

3. Systems manipulating Binary Logic Signals are commonly referred to as

Binary Logic systems.

4. Digital circuits implementing a particular Binary (Boolean) function are

commonly known as Logic Circuits.

CHAPTER OBJECTIVES
 Learn Binary Logic and BOOLEAN Algebra

 Learn How to Map a Boolean Expressions into Logic Circuit

Implementations

 Learn How To Manipulate Boolean Expressions and Simplify Them

Elements of Boolean Algebra (Binary Logic)
As in standard algebra, Boolean algebra has 3 main elements:

1. Constants,

2. Variables, and

3. Operators.

Logically

 Constant Values are either 0 or 1Binary Variables ∈{ 0, 1}

 3 Possible Operators The AND operator, the OR operator, and the

NOT operator

Physically

 Constants ⇒ Power Supply Voltage (Logic 1)

⇒ Ground Voltage (Logic 0)

 Variables ⇒ Signals (High = 1, Low = 0)

 Operators ⇒ Electronic Devices (Logic Gates)

1. • AND - Gate

2. • OR - Gate

3. • NOT - Gate (Inverter)

Logic Gates & Logic Operations

The AND Operation

 If X and Y are two binary variables, the result of the operation X AND Y is 1

if and only if both X = 1 and Y = 1, and is 0 otherwise.

 In Boolean expressions, the AND operation is represented either by a “dot” or

by the absence of an operator. Thus, X AND Y is written as X.Y or just XY

 This is summarized in the following table (commonly called truth table):

 The electronic device which performs the AND operation is called the AND

gate. Figure 2 shows the symbol of a 2-input AND gate which has two inputs

(X and Y) and gives one output Z=XY

X

Y
Z = XY

AND gate Symbol

Figure 2 Two-Input AND gate

 The AND logic can be further illustrated using what is known as the Venn

diagram

 AND gates may have more than 2 inputs. Figure 3 shows a 3-input AND gate.

X

Y

Z = WXY

3-Input AND gate

W

Figure 3 Three-Input AND gate

Table 1 Truth Table of the

AND operation

 Z = X AND Y

X Y Z=XY

F F F

F T F

T F F

T T T

Table 1 Truth Table of the

AND operation

 Z = X AND Y

X Y Z=XY

0 0 0

0 1 0

1 0 0

1 1 1

 The truth table of the output variable Z=WXY of the 3-input AND gate is

given in Table 2

Notes

 The output of an AND gate is 1 if and only if ALL its input signals are 1’s,

otherwise it is 0.

 A function of two input binary variables will have a truth table of 4 rows since

each variable may assume any one of two possible values (0 or 1).

 A function of three input variables will have a truth table of 8 rows since each

variable may assume any one of two possible values (0 or 1).

 In general, n input variables have 2n possible combinations. Accordingly, a

function of n input variables, will have a truth table of 2n rows.

The OR Operation

 If X and Y are two binary variables, the result of the operation X OR Y is 1 if

and only if either X = 1 or Y = 1 or both X & Y are 1’s, but it is 0

otherwise.

 In other words, X OR Y is 0 if and only if both X = 0 and Y = 0, but is 1

otherwise.

 In Boolean expressions, the OR operation is represented by a “plus” sign.

Thus, X OR Y is written as X+Y

 This is summarized in the Table 3.

Table 2 Truth Table of

3-Input AND gate

W X Y Z=WXY

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

 The electronic device which performs the OR operation is called the OR gate.

Figure 4 shows the symbol of a 2-input OR gate which has two inputs (X and

Y) and gives one output Z=X+Y

X

Y
Z = X+Y

OR gate Symbol

Figure 4 Two-Input OR gate

 The OR logic can be further illustrated using the Venn diagram

 OR gates may have more than 2 inputs. Figure 5 shows a 3-input OR gate.

X

Y

Z = W+X+Y

3-Input OR gate

W

Figure 5 Three-Input OR gate

 The truth table of a 3 input OR gate Z=W+X+Y is given in Table 4

Table 3 Truth Table of the

OR operation

 Z = X OR Y

X Y Z=X+Y

0 0 0

0 1 1

1 0 1

1 1 1

 In general, the output of an OR gate is 1 unless ALL its input signals are 0’s.

The NOT Operation

 NOT is a “unary” operator.

 IF Z = NOT X, then the value of Z will always be the complement of the value

of X. In other words, if X = 0 then Z = 1, and if X = 1 then Z =0.

 In Boolean expressions, the NOT operation is represented by either a bar on

top of the variable (e.g. XZ =) or a prime (e.g. 'XZ =).

 This is summarized in Table 5.

 The electronic device which performs the NOT operation is called the NOT

gate, or simply INVERTER. Figure 5 shows the inverter symbol.

Table 4 Truth Table of

3-Input OR gate

W X Y Z=WXY

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

Table 5 Truth Table of the

NOT operation

X Z=X’

0 1

1 0

X

Inverter Symbol

Z = X

Figure 5 An Inverter

 If XZ = , Z is commonly referred to as the Complement of X. Alternatively,

we say that Z equals X-complemented

 The NOT operation can be further illustrated using the Venn diagram

Boolean Algebra
Logic Circuits and Boolean Expressions

 A Boolean expression (or a Boolean function) is a combination of Boolean

variables, AND-operators, OR-operators, and NOT operators.

 • Boolean Expressions (Functions) are fully defined by their truth tablesEach

Boolean function (expression) can be implemented by a digital logic circuit

which consists of logic gates.

o Variables of the function correspond to signals in the logic circuit,

o Operators of the function are converted into corresponding logic gates

in the logic circuit.

Example

Consider the expression).(ZYXF += The diagram of the logic circuit

corresponding to this function is shown in Figure 6

X

Y

Z

Y

(Y.Z)

F = X + Y. Z

Figure 6 Logic Circuit Diagram of).(ZYXF +=

The truth table of this function is shown in Table 6

Table .6 Truth Table of).(ZYXF +=

X

Y

Z

Y`

Y`Z

F= X + Y`Z

0 0 0 1 0 0
0 0 1 1 1 1
0 1 0 0 0 0
0 1 1 0 0 0
1 0 0 1 0 1
1 0 1 1 1 1
1 1 0 0 0 1
1 1 1 0 0 1

 Since F is function of 3 variables (X, Y, Z), the truth table has 23 or 8

rows.

Basic Identities of Boolean Algebra

AND Identities

From the truth table of the AND operation, shown here for

reference, we can derive some basic identities. These identities

can be easily verified by showing that they are valid for both

possible values of X (0 and 1).

1. 0 . X = 0

2. 1 . X = X

3. X . X = X

AND Truth Table

X Y Z=XY

0 0 0

0 1 0

1 0 0

1 1 1

AND Truth Table

X Y Z=XY

0 0 0

0 1 0

1 0 0

1 1 1

AND Truth Table

X Y Z=XY

0 0 0

0 1 0

1 0 0

1 1 1

AND Truth Table

X Y Z=XY

0 0 0

0 1 0

1 0 0

1 1 1

4. 0. =XX

OR Identities

From the truth table of the OR operation, shown here for reference, we can derive

some basic identities. These identities can be easily verified by showing that they are

valid for both possible values of X (0 and 1).

1. 1 + X = 1

2. 0 + X = X

AND Truth Table

X Y Z=XY

0 0 0

0 1 0

1 0 0

1 1 1

OR Truth Table

X Y Z=X+Y

0 0 0

0 1 1

1 0 1

1 1 1

OR Truth Table

X Y Z=X+Y

0 0 0

0 1 1

1 0 1

1 1 1

3. X + X = X

4. 1=+ XX

Summary of the basic identity

AND Identities

1. 0 . X = 0

2. 1 . X = X

3. X . X = X

4. 0. =XX

OR Identities

5. 1 + X = 1

6. 0 + X = X

7. X + X = X

8. 1=+ XX

OR Truth Table

X Y Z=X+Y

0 0 0

0 1 1

1 0 1

1 1 1

OR Truth Table

X Y Z=X+Y

0 0 0

0 1 1

1 0 1

1 1 1

Duality Principle

 Given a Boolean expression, its dual is obtained by replacing each 1 with a 0,

each 0 with a 1, each AND (.) with an OR (+), and each OR (+) with an

AND(.).

 The dual of an identity is also an identity. This is known as the duality

principle.

It can be easily shown that the AND basic identities and the OR basic identities are

duals as shown in Table 7

Table 7 Duality of the AND and OR Basic Identities

AND Identities

Dual Identities
(OR Udentities)

0 . X = 0

0 1

. +

1 + X = 1

1 . X = X

1 0

. +

0 + X = X

X . X = X

. +

X + X = X

X . X = 0

0 1

. +

X + X = 1

Another Important Identity

() XX =

 This can be simply proven from the truth table of the NOT

operation as shown.

NOT operation

Truth Table

X X ()X

0 1 0

1 0 1

Operator Precedence

Given the Boolean expression X.Y + W.Z the order of applying the operators will
affect the final value of the expression.

X.Y + W.Z

AND Higher Priority

1. Compute X AND Y

2. Compute W AND Z

3. OR the previousle
 computed two values

((X.Y) + (W.Z))

OR Higher Priority

1. Compute Y OR W

2. AND the result with X

3. AND the result with Z

X . (Y + W) . Z

For Boolean Algebra, the precedence rules for various operators are given below , in a

decreasing order of priority:

1- Parentheses Highest Priority

2- Not operator (Complement)

3- AND operator,

4- OR operator Lowest Priority

Properties of Boolean Algebra
Important properties of Boolean Algebra are shown in Table

Property

Dual Property

1

Commutative

X + Y = Y + X

X . Y = Y . X

2

Distributive

X.(Y + Z) = X.Y + X.Z

X+(Y.Z) = (X+Y).(X+Z)

3

DeMorgan

 (X + Y) ` = X`.Y`

 (X.Y) ` = X` + Y`

4
Extended
DeMorgan

(A+B+C+ ….+Z) ` =
A`.B`.C`…..Z`

(A.B.C….Z) ` =
A`+B`+C`+….+Z`

5

Generalized
DeMorgan

 [F(x1,x2,…,xn,0,1,+,.)] `=F(x`1,x`2,…,x`n,1,0,.,+)
Notes

 The above properties can be easily proved using truth tables.

 The only difference between the dual of an expression and the complement of

that expression is that in the dual variables are not complemented while in the

complement expression, all variables are complemented.

 Using the above properties, complex Boolean expressions can be manipulated

into a simpler forms resulting in simpler logic circuit implementations.

 Simpler expressions are generally implemented by simpler logic circuits

which are both faster and less expensive. This represents a great advantage

since cost and speed are prime factors in the success and profitability of any

product.

Algebraic Manipulation
 The objective here is to acquire some skills in manipulating Boolean

expressions into simpler forms for more efficient implementations.

 Properties of Boolean algebra will be utilized for this purpose.

Example Prove that X + XY = X

Proof: X + XY = X..(1 + Y) = X.1 = X

Example Prove that X + X`Y = X + Y This an important identity that is

useful in simplifying more complex expressions

Proof: This will be proved in two ways

 (1) X + X`Y = (X+ X`) (X + Y)

= 1.(X + Y)

= X + Y

 (2) X + X`Y = X.1 + X`Y =

= X.(1+Y) + X`Y

= X + XY + X`Y

= X + (XY +X`Y)

= X + Y(X +X`)

= X + Y

= 1 = X

= 1

= 1

Example ``Consensus Theory``

Show that XY + X`Z + YZ = XY + X`Z

Proof:

LHS = XY + X`Z + YZ

= XY + X`Z + YZ . 1

= XY + X`Z + YZ . (X +X`)

= XY + X`Z + YZX + YZX`

= XY + YZX + X`Z + YZX`

= XY(1 + Z) + X`Z(1 + Y)

= XY . 1 + X`Z . 1= XY + X`Z = LHS

= 1

= 1 = 1

Example

Simplify the following function

)(1 BABAF ++=)(BCCAAB ++
Solution:

 F1 =)(BABA ++)(BCCAAB ++

Using De-Morgan theorem

)(BABA ++ = A` . B. (A` + B) = A` . B + A` . B = A`. B

)(BCCAAB ++ = (A` + B`).(A + C`).(B` + C`)

 F1 =)(BABA ++)(BCCAAB ++

 = A`. B. (A` + B`).(A + C`).(B` + C`)

Since X= X.X=X.X.X, we can rewrite the previous expression as follows

 F1 = (A`.B). (A`. B). (A`. B). (A` + B).(A + C`).(B` + C`)

 = (A`.B). (A` + B`). (A`. B) .(A + C`). (A`. B). (B` + C`)

 = (A`.B + 0) . (0 + A`. B.C`) . (A`.B + A`.B.C`)

 = (A`.B) . (A`. B.C`) . (A`.B)

 = A`. B.C`

Example

Simplify the following function

i. G =

 ++++ ACDDCABCBA)(.)(

Solution:

()ACDDCABCBAG ++++=)(.)(

()()() ACDDCABCBA ..)(++++=

()() ACDDCABACDCBA ...)(++++=

)()(ACDBACDBBACDACD +++=

ACDBACD+=

ACD=

Standard & Canonical Forms

CHAPTER OBJECTIVES

 Learn Binary Logic and BOOLEAN AlgebraLearn How to Map a Boolean

Expression into Logic Circuit Implementation Learn How To Manipulate

Boolean Expressions and Simplify ThemLesson OjectivesLearn how

to derive a Boolean expression of a function defined by its truth table. The

derived expressions may be in one of two possible standard forms: The Sum

of Min-terms or the Product of Max-Terms.

2. Learn how to map these expressions into logic circuit implementations (2-

Level Implementations).

MinTerms
 Consider a system of 3 input signals (variables) x, y, & z.

 A term which ANDs all input variables, either in the true or complement form,

is called a minterm.

 Thus, the considered 3-input system has 8 minterms, namely:

zyxzyxzyxzyxzyxzyxzyxzyx &,,,,,,

 Each minterm equals 1 at exactly one particular input combination and is

equal to 0 at all other combinations

 Thus, for example, zyx is always equal to 0 except for the input

combination xyz = 000, where it is equal to 1.

 Accordingly, the minterm zyx is referred to as m0.

 In general, minterms are designated mi, where i corresponds the input

combination at which this minterm is equal to 1.

 For the 3-input system under consideration, the number of possible input

combinations is 23, or 8. This means that the system has a total of 8 minterms

as follows:

 m0 = zyx =1 IFF xyz = 000, otherwise it equals 0

 m1 = zyx =1 IFF xyz = 001, otherwise it equals 0

 m2 = zyx =1 IFF xyz = 010, otherwise it equals 0

 m3 = yzx =1 IFF xyz = 011, otherwise it equals 0

 m4 = zyx =1 IFF xyz = 100, otherwise it equals 0

 m5 = zyx =1 IFF xyz = 101, otherwise it equals 0

 m6 = zxy =1 IFF xyz = 110, otherwise it equals 0

 m7 = xyz =1 IFF xyz = 111, otherwise it equals 0

In general,

 For n-input variables, the number of minterms = the total number of possible

input combinations = 2n.

 A minterm = 0 at all input combinations except one where the minterm = 1.

MaxTerms
 Consider a circuit of 3 input signals (variables) x, y, & z.

 A term which ORs all input variables, either in the true or complement form,

is called a Maxterm.

 With 3-input variables, the system under consideration has a total of 8

Maxterms, namely:

)(&)(,)(,)(),(,)(,)(),(zyxzyxzyxzyxzyxzyxzyxzyx ++++++++++++++++

 Each Maxterm equals 0 at exactly one of the 8 possible input combinations

and is equal to 1 at all other combinations.

 For example,)(zyx ++ equals 1 at all input combinations except for the

combination xyz = 000, where it is equal to 0.

 Accordingly, the Maxterm)(zyx ++ is referred to as M0.

 In general, Maxterms are designated Mi, where i corresponds to the input

combination at which this Maxterm is equal to 0.

 For the 3-input system, the number of possible input combinations is 23, or 8.

This means that the system has a total of 8 Maxterms as follows:

 M0 =)(zyx ++ =0 IFF xyz = 000, otherwise it equals 1

 M1 =)(zyx ++ = 0 IFF xyz = 001, otherwise it equals 1

 M2 =)(zyx ++ = 0 IFF xyz = 010, otherwise it equals 1

 M3 =)(zyx ++ = 0 IFF xyz = 011, otherwise it equals 1

 M4 =)(zyx ++ = 0 IFF xyz = 100, otherwise it equals 1

 M5 =)(zyx ++ = 0 IFF xyz = 101, otherwise it equals 1

 M6 =)(zyx ++ = 0 IFF xyz = 110, otherwise it equals 1

 M7 =)(zyx ++ = 0 IFF xyz = 111, otherwise it equals 1

In general,

 For n-input variables, the number of Maxterms = the total number of possible

input combinations = 2n.

 A Maxterm = 1 at all input combinations except one where the Maxterm = 0.

Imprtant Result

Using De-Morgan’s theorem, or truth tables, it can be easily shown that:

)(.....,,,, 12210 −=∀= n
ii

imM

Expressing Functions as a Sum of Minterms and Product of
Maxterms
Example: Consider the function F defined by the shown truth table

Now let’s rewrite the table, with few added columns.

 A column i indicating the input combination

 Four columns of minterms m2, m4, m5 and m7

 One last column OR-ing the above minterms (m2 + m4 + m5

+ m7)

x y z

F

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

i

x y z

 F

m2

m4

m5

m7

m2+ m4+ m5+ m7

0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0
2 0 1 0 1 1 0 0 0 1
3 0 1 1 0 0 0 0 0 0
4 1 0 0 1 0 1 0 0 1
5 1 0 1 1 0 0 1 0 1
6 1 1 0 0 0 0 0 0 0
7 1 1 1 1 0 0 0 1 1

 From this table, we can clearly see that F = m2 + m4 + m5 + m7

 This is logical since F = 1, only at input combinations i= 2, 4, 5 and 7

 Thus, by ORing minterm m2 (which has a value of 1 only at input combination

i= 2) with minterm m4 (which has a value of 1 only at input combination i= 4)

with minterm m5 (which has a value of 1 only at input combination i= 5) with

minterm m7 (which has a value of 1 only at input combination i= 7) the

resulting function will equal F.

 In general, Any function can be expressed by OR-ing all minterms (mi)

corresponding to input combinations (i) at which the function has a value of 1.

 The resulting expression is commonly referred to as the SUM of minterms and

is typically expressed as F = ∑(2, 4, 5, 7), where ∑ indicates OR-ing of the

indicated minterms. Thus, F = ∑(2, 4, 5, 7) = (m2 + m4 + m5 + m7)

Example:

 Consider the function F of the previous example.
 We will, first, derive the sum of minterms expression for the

complement function F`.

The truth table of F` shows that F` equals 1 at i = 0, 1, 3 and 6, then,

F` = m0 + m1 + m3 + m6, i.e

F` = ∑(0, 1, 3, 6), (1)

F = ∑(2, 4, 5, 7) (2)

• Obviously, the sum of minterms expression of F` contains all

minterms that do not appear in the sum of minterms expression of F.

i

x y z

F

F`

0 0 0 0 0 1
1 0 0 1 0 1
2 0 1 0 1 0
3 0 1 1 0 1
4 1 0 0 1 0
5 1 0 1 1 0
6 1 1 0 0 1
7 1 1 1 1 0

Using De-Morgan theorem on equation (2),

() 754275427542 MMMMmmmmmmmmF ==+++=

This form is designated as the Product of Maxterms and is expressed using the ∏

symbol, which is used to designate product in regular algebra, but is used to designate

AND-ing in Boolean algebra.

Thus,

F` = ∏ (2, 4, 5, 7) = M2. M4. M5. M7 (3)

From equations (1) and (3) we get,

F` = ∑(0, 1, 3, 6) = ∏ (2, 4, 5, 7)

In general, any function can be expressed both as a sum of minterms and as a product

of maxterms. Consider the derivation of F back from F` given in equation (3):

MMMMmmmmmmmmFF 631063106310 ==+++==

F = ∑(2, 4, 5, 7) = ∏ (0, 1, 3, 6)

F` = ∏ (2, 4, 5, 7) = ∑ (0, 1, 3, 6)

Conclusions:

• Any function can be expressed both as a sum of minterms (∑ mi) and as a

product of maxterms. The product of maxterms expression (∏ Mj) expression

of F contains all maxterms Mj (∀ j ≠ i) that do not appear in the sum of

minterms expression of F.

• The sum of minterms expression of F` contains all minterms that do not

appear in the sum of minterms expression of F.

• This is true for all complementary functions. Thus, each of the 2n minterms

will appear either in the sum of minterms expression of F or the sum of

minterms expression of F but not both.

• The product of maxterms expression of F` contains all maxterms that do

not appear in the product of maxterms expression of F.

• This is true for all complementary functions. Thus, each of the 2n maxterms

will appear either in the product of maxterms expression of F or the product of

maxterms expression of F but not both.

Example:

Given that F (a, b, c, d) = ∑(0, 1, 2, 4, 5, 7), derive the product of maxterms

expression of F and the 2 standard form expressions of F`.

Since the system has 4 input variables (a, b, c & d) The number of minterms and

Maxterms = 24= 16

F (a, b, c, d) = ∑(0, 1, 2, 4, 5, 7)

F = ∏ (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15).

F = ∏ (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15).

F = ∏ (3, 6, 8, 9, 10, 11, 12, 13, 14, 15).

Similarly, obtain both canonical form expressions for F`

F` = ∑ (3, 6, 8, 9, 10, 11, 12, 13, 14, 15).

F` = ∏ (0, 1, 2, 4, 5, 7)

1. List all maxterms in
the Product of
maxterms expression

2. Cross out maxterms
corresponding to input
combinations of the
minterms appearing in
the sum of minterms
expression

Canonical Forms:
The sum of minterms and the product of maxterms forms of Boolean expressions are

known as the canonical forms (الصيغ القانونية) of a function.

Standard Forms:
• A product term is a term with ANDed literals*. Thus, AB, A’B, A’CD are all

product terms.

• A minterm is a special case of a product term where all input variables appear

in the product term either in the true or complement form.

• A sum term is a term with ORed literals*. Thus, (A+B), (A’+B), (A’+C+D) are

all sum terms.

• A maxterm is a special case of a sum term where all input variables, either in

the true or complement form, are ORed together.

• Boolean functions can generally be expressed in the form of a Sum of

Products (SOP) or in the form of a Product of Sums (POS).

• The sum of minterms form is a special case of the SOP form where all product

terms are minterms.

• The product of maxterms form is a special case of the POS form where all

sum terms are maxterms.

• The SOP and POS forms are Standard forms for representing Boolean

functions.

* A Boolean variable in the true or complement forms

Two-Level Implementations of Standard Forms

Sum of Products Expression (SOP):

• Any SOP expression can be implemented in 2-levels of gates.

• The first level consists of a number of AND gates which equals the number of

product terms in the expression. Each AND gate implements one of the

product terms in the expression.

• The second level consists of a SINGLE OR gate whose number of inputs

equals the number of product terms in the expression.

Example Implement the following SOP function

 F = XZ + Y`Z + X`YZ

F

X

Y`

Z

X`
Y
Z

Z

Level 1

Level 2

Two-Level Implementation (F = XZ + Y`Z + X`YZ)

Level-1: AND-Gates ; Level-2: One OR-Gate

Product of Sums Expression (POS):

• Any POS expression can be implemented in 2-levels of gates

• The first level consists of a number of OR gates which equals the number of

sum terms in the expression, each gate implements one of the sum terms in the

expression.

• The second level consists of a SINGLE AND gate whose number of inputs

equals the number of sum terms.

Example Implement the following SOP function

F = (X+Z)(Y`+Z)(X`+Y+Z)

Level 1

Level 2

F

X

Y`

Z

X`
Y
Z

Z

Two-Level Implementation {F = (X+Z)(Y`+Z)(X`+Y+Z)}

Level-1: OR-Gates ; Level-2: One AND-Gate

Practical Aspects Of Logic Gates

Introduction & Objectives

 Logic gates are physically implemented as Integrated Circuits (IC).

 Integrated circuits are implemented in several technologies.

 Two landmark IC technologies are the TTL and the CMOS technologies.

 Major physical properties of a digital IC depend on the implementation technology.

 In this lesson, the following major properties of digital IC’s are described:

1. Allowed physical range of voltages for logic 0 and logic 1,

2. Gate propagation delay/ speed,

3. The fanin and fanout of a gate,

4. The use of buffers, and

5. Tri-State drivers

Allowed Voltage Levels

 Practically, logic 0 is represented by a certain

RANGE of Voltages rather than by a single voltage

level.

 .In other words, if the voltage level of a signal falls

in this range, the signal has a logic 0 value.

 Likewise, logic 1 is represented by a different

RANGE of valid voltages.

 The range of voltages between the highest logic 0

voltage level and the lowest logic 1 voltage level is

an “Illegal Voltage Range”.

 No signal is allowed to assume a voltage value in this range.

Input & Output Voltage Ranges
 Inputs and outputs of IC’s do not have the same allowed range of voltages neither for

logic 0 nor for logic 1.

 VIL is the maximum input voltage that considered a Logic 0.

 VOL is the maximum output voltage that considered a Logic 0.

 VOL must be lower than VIL to guard against noise disturbance.

Valid Logic 0
Voltages

Valid Logic 1
Voltages

Invalid Range

Of Voltages

Why is VIL > VOL ?
 Consider the case of connecting the

output of gate A to the input of

another gate B:

• The logic 0 output of A must

be within the range of

acceptable logic 0 voltages of gate B inputs.

• Voltage level at the input of B = Voltage level at the output of A + Noise

Voltage

• If the highest logic 0 output voltage of A (VOL) is equal to the highest logic 0

input voltage of B (VIL), then the noise signal can cause the actual voltage at

the input of B to fall in the invalid range of voltages.

 0

Valid Logic 1
Voltages

Invalid Range

Of Voltages

Input Voltages
Valid Logic 0

Valid Logic 0
Output Voltages

Maximum
Tolerable noise

VOL

VIL

 Accordingly, VOL is designed to be lower than VIL to allow for some noise margin.

 The difference (VIL - VOL) is thus known as the noise margin for logic 0 (NM0).

 VIH is the minimum input voltage that considered a Logic 1.

 VOH is the minimum output voltage that considered a Logic 1.

 VOH must be higher than VIH to guard against noise signals.

Why is VOH > VIH ?

VOH=2.4v

VIH=2v

Allowed Noise
Margin of 0.4v

…
….
….
….

A
B

 Consider the case of connecting the output of gate A to the input of another gate B:

• The logic 1 output of A must accepted as logic 1 by the input of gate B.

• Thus, the logic 1 output of A must be within the range of voltages which are

acceptable as logic 1 input for gate B.

• If the lowest logic 1 output voltage of A (VOH) is equal to the lowest logic 1

input voltage of B (VIH), then noise signals can cause the actual voltage at the

input of B to fall in the invalid range of input voltages.

V IH

V OH

 0

Valid Logic 1

Invalid Range

Of Voltages

Input Voltages
Valid Logic 0

Maximum
Tolerable noise

Input Voltages

Valid Logic 1
Output Voltages

 Accordingly, VOH is designed to be higher than VIH to allow for some noise margin.

 The difference (VOH - VIH) is thus known as the noise margin for logic 1 (NM1).

Definition
 Noise margin is the maximum noise voltage that can be added to the input signal of a

digital circuit without causing an undesirable change in the circuit output..

Valid Logic 0
Voltages

Valid Logic 1
Voltages

VIL

VIH

INPUT VOLTAGES

Valid Logic 0
Voltages

Valid Logic 1
Voltages

VOL

VOH

OUTPUT VOLTAGES

NM1

NM0

Propagation Delay
Consider the shown inverter with input X and

output Z.

 A change in the input (X) from 0 to 1

causes the inverter output (Z) to change

from 1 to 0.

 The change in the output (Z), however is

not instantaneous. Rather, it occurs slightly after the input change.

 This delay between an input signal change and the corresponding output

signal change is what is known as the propagation delay.

In general,

 A signal change on the input of some IC takes a finite amount of time to

cause a corresponding change on the output.

 This finite delay time is known as Propagation Delay.

 Faster circuits are characterized by smaller propagation delays.

 Higher performance systems require higher speeds (smaller propagation

delays).

X Z = X

ZX
τ

Propagation
Delay = τ

Timing Diagrams
 A timing diagram shows the logic values of signals in a circuit versus

time.

 A signal shape versus time is typically referred to as Waveform.

Example

The figure shows the timing diagram of a 2-input AND gate. The gate is

assumed to have a propagation delay of τ.

X

Y
ZPropagation

Delay =τ

 The timing diagram shown Figure illustrates the waveforms of signals X,

Y, and Z.

 Note how the output Z is delayed from changes of the input signals X &

Y by the amount of the gate Propagation Delay τ.

τ τ τ τ

X

Y

Z

t
Time

Fanin Limitations
 The fanin of a gate is the number of inputs of this gate.

 Thus, a 4-input AND gate is said to have a fanin of 4.

 A physical gate cannot have a large number of inputs (fanin).

 •For CMOS technology, the more inputs a gate has the slower it is (larger

propagation delay). For example, a 4-input AND gate is slower than a 2-

input one.

 In CMOS technology, no more than 4-input gates are typically built since

more than 4 inputs makes the devices too slow.

 TTL gates can have more inputs (e.g, 8 input NAND 7430).

Fanout Limitations
 If the output of some gate A is

connected to the input of another gate B,

gate A is said to be driving gate, while

gate B is said to be the load gate.

 As the Figure shows, a driver gate

may have more than one load gate.

 There is a limit to the number of gate

inputs that a single output can drive.

 The fanout of a gate is the largest

number of gate inputs this gate can

drive.

 For TTL, the fanout limit is based on

CURRENT.

 A TTL output can supply a maximum current IOL = 16 mA (milliamps)

 A TTL input requires a current of IIL =1.6mA.

 Thus, the fanout for TTL is 16mA/1.6 mA = 10 loads.

 For CMOS, the limit is based on SPEED/propagation delay.

 A CMOS input resembles a capacitive load (≈10 pf - picofarads).

 The more inputs tied to a single output, the higher the capacitive load.

 The HIGHER the capacitive load, the SLOWER the propagation delay.

1

n

2

Driver Gate

Load Gates

 Typically, it is advisable to avoid loads much higher than about 8 loads.

Q. What is meant by the DRIVE of a gate?

A. It is the “CURRENT” driving-ability of a gate. In other words, it is the

amount of current the gate can deliver to its load devices.

 A gate with high-drive is capable of driving more load gates than

another with low-drive.

Q. How to drive a number of load gates that is larger than the fanout of the

driver gate?

A. In this case, we can use one of two methods:

1. Use high drive buffers

2. Use multiple drivers.

Use of High-Drive Buffers:

 A buffer is a single input, single output

gate where the logic value of the output

equals that of the input.

 The logic symbol of the buffer is shown in the Figure.

 The buffer provides the necessary drive capability which allows driving

larger loads.

 Note that the symbol of the buffer resembles the inverter symbol except

that it does not have the inverting circle that the inverter symbol has.

 The figure shows how the buffer is

used to drive the large load.

Use of Multiple Drivers:

 The Figure shows the case of 2

identical drivers driving the load

gates.

 In general, the large number of load

x Z = x

Buffer Symbol

1

n

2

Driver
Gate

Load Gates
n> fanout (D)

D

High Drive
Buffer

gates is divided among

more than one driver such

that each of the identical

drivers is driving no more

than the fanout.

 The multiple driver gates

(D1, D2) are of identical

type and should be

connected to the same

input signals

Tri-State Outputs

Q. Can the outputs of 2 ICs, or 2 gates, be directly connected?

A. Generally, Nooooooooooo!!! This is only possible if special types of

gates are used.

Q. Why cann’t the outputs of 2 normal gates be directly connected?

A. Because this causes a short Circuit that results in huge current flow with

a subsequent potential for damaging the circuit.

 This is obvious since one output may be at logic 1 (High voltage),

while the other output may be at logic 0 (Low voltage).

 Furthermore, the common voltage level of the shorted outputs will

most likely fall in the invalid range of voltage levels.

0

10

1

Huge
Current

Short Circuit

Load Gates
n> fanout

1

m

2

Driver Gate 1

D1

m+1

n

m+2

Driver Gate 2

D2

Q. What are the types of IC output pins that can be directly connected?

A. These are pins/gates with special output drivers. The two main types are:

 Open-Collector outputs this will not be discussed in this course.

 Outputs with Tri-State capability.

Gates with Tri-State Outputs

 These gates can be in one of 2 possible states:

1. An enabled state where the output may assume one of two possible

values:

 Logic 0 value (low voltage)

 Logic 1 value (high voltage)

2. A disabled state where the gate output is in a the Hi-impedance

(Hi-Z) state. In this case, the gate output is disconnected (open-

circuit) from the wire it is driving.

 An enable input (E) is used to control the gate into either the enabled or

disabled state.

 The enable input (E) may be either active high or active low.

 Any gate or IC output may be provided

with tri-state capability.

Output State Illustrations

 A generalized output driver can be simply

modeled using 2 switches S1 and S0 as

shown in Figure.

 The output state is defined by the state of

the 2 switches (closed -open)

 If S1 is closed and S0 is open, the output is

high (logic 1) since it is connected to the

power supply (VDD).

S1

Output

Power Supply
VDD

GND

S0

 If S1 is open and S0 is closed, the output

is low (logic 0) since it is connected to

the ground voltage (0 volt).

 If, however, both S1 is and S0 are open,

then the output is neither connected to

ground nor to the power supply. In

this case, the output node is floating

or is in the Hi-Impedance (Hi-Z)

state.

Examples

a) Tri-State Inverter with active high

enable

Logic

Symbol x

Tri-State Inverter
with active-high enable

Z

E

G1

Truth
Table

E x Z
1 0 1
1 1 0
0 0 Hi-Z
0 1 Hi-Z

S1

Output = High = Logic1

Power Supply
VDD

GND

S0

Closed

Open

S1

Output = Low = Logic 0

Power Supply
VDD

GND

S0 Closed

Open

S1

Output = Hi-Impedance
(Hi-Z)

Power Supply
VDD

GND

S0 Open

Open

Enabled

State

x

E =1

Tri-State Inverter
with active-high enable

Z = x
G2G1

x

E =0

Z

Tri-State Inverter
with active-high enable

Open Circuit
(Hi-Impedance)

G2G1

Floating Line
Disconnected

from G1

Dis-

abled

State

x

E =0

G2

Floating Line
Disconnected

from G1

In Hi-Z State G1 is
Open Circuit

(Disconnected from
Output line)

b) Tri-State Inverter with active low enable

Logic

Symbol
x

Tri-State Inverter
with active-low enable

Z

E

G1

Enabled

State
x Z = x

G2

Tri-State Inverter
with active-low enable

G1

E = 0

x Z

Tri-State Inverter
with active-low enable

Open Circuit
(Hi-Impedance)

E =1

G2

Floating Line
Disconnected

from G1

G1

Dis-

abled

State

x G2

Floating Line
Disconnected

from G1

In Hi-Z State G1 is
Open Circuit

(Disconnected from
Output line)

E =1

Truth

Table

E x Z

0 0 1

0 1 0

1 0 Hi-Z

1 1 Hi-Z

Condition for Connecting Outputs of Tri-State Gates

 Two or more tri-state outputs may be connected provided that at most one

of these outputs is enabled while all others are in the Hi-Z state.

 This avoids conflict situations where one gate output is high while

another is low.

Circuit Examples

 The shown circuit has tri-state

inverters with active high enable

inputs.

 The outputs of these 2 inverters

are shorted together as a

common output signal Z

 The 2 gates are NEVER enabled

at the same time.

 G1 is enabled when E=1, while

G2 is enabled when E=0

 The circuit performs the function: yExEZ +=

K-Map 1

Lesson Objectives:
Even though Boolean expressions can be simplified by algebraic manipulation, such
an approach lacks clear regular rules for each succeeding step and it is difficult to
determine whether the simplest expression has been achieved.

In contrast, Karnaugh map (K-map) method provides a straightforward procedure for
simplifying Boolean functions.

K-maps of up to 4 variables are very common to use. Maps of 5 and 6 variables can
be made as well, but are more cumbersome to use.

Simplified expressions produced by K-maps are always either in the SOP or the POS
form.

The map provides the same information contained in a Truth Table but in a different
format.

The objectives of this lesson are to learn:
1. How to build a 2, 3, or 4 variables K-map.
2. How to obtain a minimized SOP function using K-maps.

Code Distance:
Let’s first define the concept of Code Distance. The distance between two binary
code-words is the number of bit positions in which the two code-words have different
values.

For example, the distance between the code words 1001 and 0001 is 1 while the
distance between the code-words 0011 and 0100 is 3.

This definition of code distance is commonly known as the Hamming distance
between two codes.

Two-Variable K-Maps:
The 2-variable map is a table of 2 rows by 2 columns. The 2 rows represent the two
values of the first input variable A, while the two columns represent the two values of
the second input variable B.

Thus, all entries (squares) in the first row correspond to input variable A=0, while
entries (squares) of the second row correspond to A=1.

Likewise, all entries of the first column correspond to input variable B = 0, while
entries of the second column correspond to B=1.

Thus, each map entry (or square) corresponds to a unique value for the input variables
A and B.

For example, the top left square corresponds to input combination AB=00. In other
words, this square represents minterm m0.

Likewise, the top right square corresponds to input combination AB=01, or minterm
m1 and the bottom left square corresponds to input combination AB=10, or minterm
m2. Finally, the bottom right square corresponds to input combination AB=11, or
minterm m3.

In general, each map entry (or square) corresponds to a particular input combination
(or minterm).

Since, Boolean functions of two-variables have four minterms, a 2-variable K-map
can represent any 2-variable function by plugging the function value for each input
combination in the corresponding square.

Definitions/Notations:
Two K-map squares are considered adjacent if the input codes they represent have a
Hamming distance of 1.

A K-map square with a function value of 1 will be referred to as a 1-Square.
A K-map square with a function value of 0 will be referred to as a 0-Square.

The simplification procedure is summarized below:

Step 1: Draw the map according to the number of input variables of the function.
Step 2: Fill “1’s” in the squares for which the function is true.
Step 3: Form as big group of adjacent 1-squares as possible. There are some rules for
this which you will learn with bigger maps.
Step 4: Find the common literals for each group and write the simplified expression
in SOP.

Example:
Consider the given truth table of two variable function. Obtain the simplified function
using K-map.

A B F
0 0 0
0 1 0
1 0 1
1 1 1

First draw a 2-variable K-map. The function F is true when AB’ (m2) is true and when
AB (m3) is true, so a 1 is placed inside the square that belongs to m2 and a 1 is placed
inside the square that belongs to m3.

Since both of the 1-squares have different values for variable B but the same value for
variable A, which is 1, i.e., wherever A = 1 then F = 1 thus F = A.

This simplification is justified by algebraic manipulation as follows:
F = m2 + m3 = AB’ + AB = A (B’ + B) = A

To understand how combining squares simplifies Boolean functions, the basic
property possessed by the adjacent squares must be recognized.

In the above example, the two 1-squares are adjacent with the same value for variable
A (A=1) but different values for variable B (one square has B=0, while the other has
B=1).

This reduction is possible since both squares are adjacent and the net expression is
that of the common variable (A).

Generally, this is true for any 2 codes of Hamming distance 1 (adjacent). For an n-
variable K-map, let the codes of two adjacent squares (distance of 1) have the same
value for all variables except the ith variable. Thus,

Code of 1st Square: nii XXXXX 1121 +− iX
Code of 2nd Square: nii XXXXX 1121 +− iX

Combining these two squares in a group will eliminate the different variable Xi and
the combined expression will be

nii XXXXX 1121 +−
since:
()++− nii XXXXX 1121 iX ()nii XXXXX 1121 +− iX

()nii XXXXX 1121 +−= (+iX)iX
()nii XXXXX 1121 +−=

The variable in difference is dropped.

Another Example:
Simplify the given function using K-map method:
F = ∑ (1, 2, 3)

In this example:
F = m1 + m2 + m3 = m1 + m2 + (m3 + m3)
F = (m1 + m3) + (m2 + m3) = A + B

 Rule: A 1-square can be member of more than one group.

If we exchange the places of A and B, then minterm positions will also change. Thus,
m1 and m2 will be exchanged as well.

In an n-variable map each square is adjacent to “n” other squares, e.g., in a 2-variable
map each square is adjacent to two other squares as shown below:

Examples of non-adjacent squares are shown below:

Three-Variable K-Maps:
There are eight minterms for a Boolean function with three-variables. Hence, a three-
variable map consists of 8 squares.

All entries (squares) in the first row correspond to input variable A=0, while entries
(squares) of the second row correspond to A=1.

Likewise, all entries of the first column correspond to input variable B = 0, C = 0, all
entries of the second column correspond to input variable B = 0, C = 1, all entries of
the third column correspond to input variable B = 1, C = 1, while entries of the fourth
column correspond to B=1, C = 0.

To maintain adjacent columns physically adjacent on the map, the column coordinates
do not follow the binary count sequence. This choice yields unit distance between
codes of one column to the next (00 – 01—11 – 10), like Grey Code.

Variations of Three-Variable Map:
The figure shows variations of the three-variable map. Note that the minterm
corresponding to each square can be obtained by substituting the values of variables
ABC in order.

Examples: (see authorware version)

There are cases where two squares in the map are considered to be adjacent even
though they do not physically touch each other.

In the figure of 3-variable map, m0 is adjacent to m2 and m4 is adjacent to m6 because
the minterms differ by only one variable. This can be verified algebraically:
m0 + m2 = A’B’C’ + A’BC’ = A’C’ (B’ + B) = A’C’
m4 + m6 = AB’C’ + ABC’ = AC’ (B’ + B) = AC’

 Rule: Groups may only consist of 2, 4, 8, 16,… squares (always power of 2). For

example, groups may not consist of 3, 6 or 12 squares.

 Rule: Members of a group must have a closed loop adjacency, i.e., L-Shaped 4
squares do not form a valid group.

 Notes:

1. Each square is adjacent to 3 other squares.
2. One square is represented by a minterm (i.e. a product term containing all 3

literals).
3. A group of 2 adjacent squares is represented by a product term containing only 2

literals, i.e., 1 literal is dropped.
4. A group of 4 adjacent squares is represented by a product term containing only 1

literal, i.e., 2 literals are dropped.

Four-Variable K-Maps:

There are 16 minterms for a Boolean function with four-variables. Hence, four-
variable map consists of 16 squares.

 Notes:
1.
2.
3.
4.
5.

Each square is adjacent to 4 other squares.
One square is represented by a minterm (a product of all 4-literals).
Combining 2 squares drops 1-literal.
Combining 4 squares drops 2-literals.
Combining 8 squares drops 3-literals.

Examples: (see authorware version)

 Rule: The combination of squares that can be chosen during the simplification
process in the n-variable map are as follows:
A group of 2n squares produces a function that always equal to logic 1.
A group of 2n-1 squares represents a product term of one literal.
A group of 2n-2 squares represents a product term of two literals and so on.
One square represents a minterm of n literals.

K-Map 2

Lesson Objectives:

In this lesson you will learn:

1. The difference between prime implicants and essential prime implicants.
2. How to get a minimized POS function using a K-map.
3. How to minimize a combinational circuit that is not completely specified (has don't
care conditions).
4. How to make a 5 and 6 variable K-map given a truth table or a SOP representation.

Definitions/Notations:
A product term of a function is said to be an implicant.

A Prime Implicant (PI) is a product term obtained by combining the maximum
possible number of adjacent 1-squares in the map.

If a minterm is covered only by one prime implicant then this prime implicant is said
to be an Essential Prime Implicant (EPI).

Examples: (see authorware version)

POS Simplification:

Until now we have derived simplified Boolean functions from the maps in SOP form.
Procedure for deriving simplified Boolean functions POS is slightly different. Instead
of making groups of 1’s, make the groups of 0’s.

Since the simplified expression obtained by making group of 1’s of the function (say
F) is always in SOP form. Then the simplified function obtained by making group of
0’s of the function will be the complement of the function (i.e., F’) in SOP form.

Applying DeMorgan’s theorem to F’ (in SOP) will give F in POS form.

Examples: (see authorware version)

Don’t Care Conditions:

In some cases, the function is not specified for certain combinations of input variables
as 1 or 0.

There are two cases in which it occurs:
1. The input combination never occurs.
2. The input combination occurs but we do not care what the outputs are in response
to these inputs.

In both cases, the outputs are called as unspecified and the functions having them are
called as incompletely specified functions.

In most applications, we simply do not care what value is assumed by the function for
unspecified minterms.

Unspecified minterms of a function are called as don’t care conditions. They provide
further simplification of the function, and they are denoted by X’s to distinguish them
from 1’s and 0’s.

In choosing adjacent squares to simplify the function in a map, the don’t care
minterms can be assumed either 1 or 0, depending on which combination gives the
simplest expression.

A don’t care minterm need not be chosen at all if it does not contribute to produce a
larger implicant.

Five-Variable K-Maps:

There are 32 minterms for a Boolean function with five-variables. Hence, Five-
variable map consists of 32 squares.

It consists of 2 four-variable maps. Variable A distinguishes between the two maps, as
indicated on the top of the diagram. The left-hand four-variable map represents the 16
squares where A=0, and the other four-variable map represents the squares where
A=1.

Minterms 0 through 15 belong to the four-variable map with A=0 and minterms 16
through 31 belong to the four-variable map with A=1.

Each four-variable map retains the previously defined adjacency when taken
separately. In addition, each square in the A=0 map is adjacent to the corresponding
square in the A=1 map. For example, minterm 4 is adjacent to minterm 20 and
minterm 15 to 31.

The best way to visualize this new rule for adjacent squares is to consider the two half
maps as being one on top of the other. Any two squares that fall one over the other are
considered adjacent.

Six-Variable K-Maps:

There are 64 minterms for a Boolean function with six-variables. Hence, Six-variable
map consists of 64 squares.

By following the procedure used for the five-variable map, it is possible to construct a
six-variable map with 4 four-variable maps to obtain the required 64 squares.

Universal Gates

Lesson Objectives:
In addition to AND, OR, and NOT gates, other logic gates like NAND and NOR are
also used in the design of digital circuits.

The NOT circuit inverts the logic sense of a binary signal.

The small circle (bubble) at the output of the graphic symbol of a NOT gate is
formally called a negation indicator and designates the logical complement.

The objectives of this lesson are to learn about:
1. Universal gates - NAND and NOR.
2. How to implement NOT, AND, and OR gate using NAND gates only.
3. How to implement NOT, AND, and OR gate using NOR gates only.
4. Equivalent gates.
5. Two-level digital circuit implementations using universal gates only.
6. Two-level digital circuit implementations using other gates.

NAND Gate:
The NAND gate represents the complement of the AND operation. Its name is an
abbreviation of NOT AND.

The graphic symbol for the NAND gate consists of an AND symbol with a bubble on
the output, denoting that a complement operation is performed on the output of the
AND gate.

The truth table and the graphic symbol of NAND gate is shown in the figure.

The truth table clearly shows that the NAND operation is the complement of the
AND.

NOR Gate:
The NOR gate represents the complement of the OR operation. Its name is an
abbreviation of NOT OR.

The graphic symbol for the NOR gate consists of an OR symbol with a bubble on the
output, denoting that a complement operation is performed on the output of the OR
gate.

The truth table and the graphic symbol of NOR gate is shown in the figure.

The truth table clearly shows that the NOR operation is the complement of the OR.

Universal Gates:
A universal gate is a gate which can implement any Boolean function without need to
use any other gate type.

The NAND and NOR gates are universal gates.

In practice, this is advantageous since NAND and NOR gates are economical and
easier to fabricate and are the basic gates used in all IC digital logic families.

In fact, an AND gate is typically implemented as a NAND gate followed by an
inverter not the other way around!!

Likewise, an OR gate is typically implemented as a NOR gate followed by an inverter
not the other way around!!

NAND Gate is a Universal Gate:
To prove that any Boolean function can be implemented using only NAND gates, we
will show that the AND, OR, and NOT operations can be performed using only these
gates.

Implementing an Inverter Using only NAND Gate
The figure shows two ways in which a NAND gate can be used as an inverter (NOT
gate).

1. All NAND input pins connect to the input signal A gives an output A’.

2. One NAND input pin is connected to the input signal A while all other input pins
are connected to logic 1. The output will be A’.

Implementing AND Using only NAND Gates
An AND gate can be replaced by NAND gates as shown in the figure (The AND is
replaced by a NAND gate with its output complemented by a NAND gate inverter).

Implementing OR Using only NAND Gates
An OR gate can be replaced by NAND gates as shown in the figure (The OR gate is
replaced by a NAND gate with all its inputs complemented by NAND gate inverters).

Thus, the NAND gate is a universal gate since it can implement the AND, OR
and NOT functions.

NAND Gate is a Universal Gate:
To prove that any Boolean function can be implemented using only NOR gates, we
will show that the AND, OR, and NOT operations can be performed using only these
gates.

Implementing an Inverter Using only NOR Gate
The figure shows two ways in which a NOR gate can be used as an inverter (NOT
gate).

1. All NOR input pins connect to the input signal A gives an output A’.

2. One NOR input pin is connected to the input signal A while all other input pins are
connected to logic 0. The output will be A’.

Implementing OR Using only NOR Gates

An OR gate can be replaced by NOR gates as shown in the figure (The OR is
replaced by a NOR gate with its output complemented by a NOR gate inverter)

Implementing AND Using only NOR Gates

An AND gate can be replaced by NOR gates as shown in the figure (The AND gate is
replaced by a NOR gate with all its inputs complemented by NOR gate inverters)

Thus, the NOR gate is a universal gate since it can implement the AND, OR and
NOT functions.

Equivalent Gates:
The shown figure summarizes important cases of gate equivalence. Note that bubbles
indicate a complement operation (inverter).

A NAND gate is equivalent to an inverted-input OR gate.

An AND gate is equivalent to an inverted-input NOR gate.

A NOR gate is equivalent to an inverted-input AND gate.

An OR gate is equivalent to an inverted-input NAND gate.

Two NOT gates in series are same as a buffer because they cancel each other as A’’ =
A.

Two-Level Implementations:
We have seen before that Boolean functions in either SOP or POS forms can be
implemented using 2-Level implementations.

For SOP forms AND gates will be in the first level and a single OR gate will be in the
second level.

For POS forms OR gates will be in the first level and a single AND gate will be in the
second level.

Note that using inverters to complement input variables is not counted as a level.

We will show that SOP forms can be implemented using only NAND gates, while
POS forms can be implemented using only NOR gates.

This is best explained through examples.

Example 1: Implement the following SOP function

F = XZ + Y’Z + X’YZ
Being an SOP expression, it is implemented in 2-levels as shown in the figure.

Introducing two successive inverters at the inputs of the OR gate results in the shown
equivalent implementation. Since two successive inverters on the same line will not
have an overall effect on the logic as it is shown before.
(see animation in authorware version)
By associating one of the inverters with the output of the first level AND gate and the
other with the input of the OR gate, it is clear that this implementation is reducible to
2-level implementation where both levels are NAND gates as shown in Figure.

Example 2: Implement the following POS function

F = (X+Z) (Y’+Z) (X’+Y+Z)
Being a POS expression, it is implemented in 2-levels as shown in the figure.

Introducing two successive inverters at the inputs of the AND gate results in the
shown equivalent implementation. Since two successive inverters on the same line
will not have an overall effect on the logic as it is shown before.

(see animation in authorware version)
By associating one of the inverters with the output of the first level OR gates and the
other with the input of the AND gate, it is clear that this implementation is reducible
to 2-level implementation where both levels are NOR gates as shown in Figure.

There are some other types of 2-level combinational circuits which are

• NAND-AND
• AND-NOR,
• NOR-OR,
• OR-NAND

These are explained by examples.

AND-NOR functions:
Example 3: Implement the following function

YZXZYXZF ++= or
YZXZYXZF ++=

Since F’ is in SOP form, it can be implemented by using NAND-NAND circuit.
By complementing the output we can get F, or by using NAND-AND circuit as
shown in the figure.

It can also be implemented using AND-NOR circuit as it is equivalent to NAND-
AND circuit as shown in the figure. (see animation in authorware version)

OR-NAND functions:
Example 4: Implement the following function

)).().((ZYXZYZXF ++++= or
))()((ZYXZYZXF ++++=

Since F’ is in POS form, it can be implemented by using NOR-NOR circuit.
By complementing the output we can get F, or by using NOR-OR circuit as shown in
the figure.

It can also be implemented using OR-NAND circuit as it is equivalent to NOR-OR
circuit as shown in the figure. (see animation in authorware version)

XOR - XNOR Gates

Lesson Objectives:
In addition to AND, OR, NOT, NAND and NOR gates, exclusive-OR (XOR) and
exclusive-NOR (XNOR) gates are also used in the design of digital circuits.
These have special functions and applications. These gates are particularly useful in
arithmetic operations as well as error-detection and correction circuits.

XOR and XNOR gates are usually found as 2-input gates. No multiple-input
XOR/XNOR gates are available since they are complex to fabricate with hardware.

The objectives of this lesson are to learn about:

1. XOR gates and XNOR gates
2. Their properties of operation and basic identities
3. Odd function and Even function
4. Parity generation and checking.

XOR Gate:
The exclusive-OR (XOR), operator uses the symbol ⊕, and it performs the following
logic operation:
X ⊕ Y = X Y’ + X’ Y

The graphic symbol and truth table of XOR gate is shown in the figure.

The result is 1 only when either X is equal to 1 or Y is equal to 1, but not when both X
and Y are equal to 1.

XNOR Gate:
The exclusive-NOR (XNOR), operator uses the symbol , and it performs the following
logic operation
X Y = X Y + X’ Y’ = (X ⊕ Y)’
The graphic symbol and truth table of XNOR (Equivalence) gate is shown in the figure.

The result is 1 when either both X and Y are 0’s or when both are 1’s. That is why this
gate is often referred to as the Equivalence gate.

The truth tables clearly show that the exclusive-NOR operation is the complement of the
exclusive-OR.

This can also be shown by algebraic manipulation as follows:
(X ⊕ Y)’ = (X Y’ + X’ Y)’

 = (X Y’)’ (X’ Y)’ = (X’ + Y) (X + Y’)
 = (XY + X’Y’)
 = X Y

Properties of XOR/XNOR Operations:
1- Commutativity
• A ⊕ B = B ⊕ A, and
• A B = B A

2- Associativity
• A ⊕ (B ⊕ C) = (A ⊕ B) ⊕ C, and
• A (B C) = (A B) C

Basic Identities of XOR Operation:
Any of the following identities can be proven using either truth tables or algebraically by
replacing the ⊕ operation by its equivalent Boolean expression:
• X ⊕ 0 = X
• X ⊕ 1 = X’
• X ⊕ X = 0
• X ⊕ X’ = 1
• X ⊕ Y’ = X’ ⊕ Y = (X ⊕ Y)’ = X Y

The figure provides a graphical presentation of important XOR/XNOR rules and gate
equivalence.

Example:
Show that (A B) ⊕ (C D) = A ⊕ B ⊕ C ⊕ D

Proving the above identity is easier done using graphical equivalence between gates as
specified by the previous figure.

The following figure shows a step-by-step approach starting by the logic circuit
corresponding to the left-hand-side of the identity and performing equivalent gate
transformations till a circuit is reached that corresponds to the right-hand-side of the
identity.

ODD Function:
As shown in the K-map, X ⊕ Y ⊕ Z = 1, IFF (if and only if) the number of 1’s in the
input combination is odd.

Likewise, A ⊕ B ⊕ C ⊕ D = 1, IFF the number of 1’s in the input combination is odd.

In general, an exclusive-OR function of n-variables is an odd function which has a value
of 1 IFF the number of 1’s in the input combination is odd, otherwise it has a value of 0.

Since XOR gates are only designed with 2 inputs, the 3-input XOR function is
implemented by means of two 2-input XOR gates, as shown in figure.

EVEN Function:
The complement of an odd function is an even function. The even function is equal to 1
when the number of 1’s in the input combination is even.

The complement of an odd function (an even function) is obtained by replacing the
output gate with an exclusive-NOR gate, as shown in figure.

Parity Generation and Checking:
Exclusive-OR functions are very useful in systems using parity bits for error-detection.

A parity bit is used for the purpose of detecting errors during transmission of binary
information.

A parity bit is an extra bit included with a binary message to make the total number of
1’s in this message (including the parity bit) either odd or even.

The message, including the parity bit, is transmitted and then checked at the receiving
end for errors. An error is detected if the checked parity does not correspond with the one
transmitted.

The circuit that generates the parity bit at the transmitter side is called a parity generator.
The circuit that checks the parity at the receiver side is called a parity checker.

As an example, consider a 3-bit message to be transmitted together with an even parity
bit. The table shows the truth table for the even parity generator.

The three bits, X, Y, and Z, constitute the message and are the inputs to the even parity
generator circuit whose output is the parity bit P.

For even parity, whenever the message bits (X, Y& Z) have an odd number of 1’s, the
parity bit P must be 1. Otherwise, P must be 0.
Therefore, P can be expressed as a three-variable exclusive-OR function:
P = X ⊕ Y ⊕ Z

The logic diagram for the even parity generator circuit is shown in the figure.

The 4 bits (X, Y, Z & P) are transmitted to their destination, where they are applied to a
parity-checker circuit to check for possible errors in the transmission.

Since the information was transmitted with even parity, the received four bits must have
an even number of 1’s.

The parity checker generates an error signal (C = 1), whenever the received four bits have
an odd number of 1’s.

The table below shows the truth table for the even-parity checker.

Obviously, the parity checker error output signal C is given by the following expression:
C = X ⊕ Y ⊕ Z ⊕ P

The logic diagram of the even-parity checker is shown in the figure.

It is worth noting that the parity generator can also be implemented with the circuit of this
figure if the input P is connected to logic-0 and the output is marked with P. This is
because Z ⊕ 0 = Z, causing the value of Z to pass through the gate unchanged.

The advantage of this is that the same circuit can be used for both parity generation and
checking.

Combinational Logic

Lesson Objectives
In this lesson, you will learn about

• What are combinational circuits
• Design procedure of combinational circuits
• Examples of combinational circuit design

Combinational Circuits
Logic circuit can be classified into two types. Combinational circuit, which consists of
logic gates whose outputs at any time are determined by combining the values of the
applied inputs using logic operations, and sequential circuits, which will be studied later.

In combinational circuits, the output at any time is a direct function of the applied external
inputs (Figure 1). In other words,

Z = F(X)

That is, the outputs depend only on present inputs. A combinational circuit can be
specified by a truth table.

Figure 1: Combinational Circuit
Design procedure

The design of a combinational circuit starts from the specification of the problem, which
leads to the truth table. Using the output values in the truth table, the logic equation for
output function is found and simplified using K maps, or Algebraic manipulation or
computer base tools. The equation of the output functions, the corresponding circuit is
found. The process is shown in Figure

 Circuit Specification

 Truth Table

 K-maps, Algebraic Manipulation. Computer based tools

 Logic Diagram

Figure 2: Design Procedure

Combinational
circuit Inputs X Outputs Z

Let us state these steps formally.

1) The first step is to find the truth table from circuit specification. This involves two sub-
steps.

• The first is to determine the required number of inputs and outputs from the
specification or verbal description of the problem. Then, assign a letter symbol to
each input.

• Then, derive the truth table that defines the required relationship between inputs
and outputs

2) Using the truth table, obtain the simplified Boolean expression for each output as a
function of the input variables. The simplified equations can then be obtained using
algebraic manipulation, K-maps, or computer-based tools.

3) Once the simplified equations are found, the corresponding logic diagram can be
derived.

A practical design must consider constraints such as:

• Number of gates used.
• Number of gate inputs (Fan-in).
• Maximum number of gates an output signal can drive (Fan-out).
• Speed (propagation delay) requirements.

Example 1

Design a combinational circuit that has 3-bit input number and a single output (F). The
output signal F is specified as follows:

• F = 1 when the input number is less than (3)10
• F = 0 otherwise.
• Implement F using only NAND gates

Let the three inputs be called X, Y, and Z. X is the most significant variable and Z is the
least significant variable. The output F goes high, that is, the output produces logic 1 value
if the input is less than 011, equivalent to a decimal value of three. This means that the
output will be logic one for input combinations 000, 001, and 010. For other input
combinations, which are 011 upto 111, the output is logic zero (see table 1).

Table 1: Inputs and outputs for example 1

Since SOP expressions are directly implementable as 2-Level implementation of NAND
gates, we consider the 1’s of the function as shown in the K-map.

 F = X’ Y’ + X’ Z’

X’

F

X’

Y’

Z’

Figure 3: NAND-NAND- implementation for F = X’ Y’ + X’ Z’

Code Converters

� Code converters are circuits which translate information from one binary code to

another.

� The inputs to the circuit provide the bit combination belonging to the first code,

while the outputs constitute the corresponding combination belonging to the second
code.

� The combinational circuit performs the transformation from one code to another.

Dec. # X Y Z F
0 0 0 0 1
1 0 0 1 1

2 0 1 0 1

3 0 1 1 0

4 1 0 0 0

5 1 0 1 0

6 1 1 0 0

7 1 1 1 0

1 1 0 1

0 0 0 0

0

1

X
YZ 00 01 11 10

Figure 4: Code converter

Figure 4 shows the general structure of a code converter, containing the inputs, the code
converter circuit, and the outputs. Consider, for example, a binary BCD to Excess-3 code
converter

Example 2: BCD to excess-3 Code Converter

In this problem, the input is a BCD codeword. Since this is a 4-bit code that represents a
decimal digit (0-to-9), there will be 4 input bits which will be represented by four input
variables A,B,C, and D. Output is a 4-bit excess-3 code (W, X, Y ,Z)

Having defined the inputs and outputs, we proceed to build the truth table for this code
converter. The truth table, lists the values of the output (that is the excess-3 code) for all
possible combinations of the binary code. Note that, these codes are codes for decimal
digits 0-9. In other words, even though the 4 bits of the input can represent up to 16
different combinations, ONLY 10 combinations are used to represent the 10 decimal
digits.
Thus, a total of 6 input combinations are not likely to occur. Since these inputs will never
occur, we use Don’t cares for the corresponding output codes.

 BCD input Ex-3 output

Decimal # A B C D W X Y Z
0 0 0 0 0 0 0 1 1
1 0 0 0 1 0 1 0 0
2 0 0 1 0 0 1 0 1
3 0 0 1 1 0 1 1 0
4 0 1 0 0 0 1 1 1
5 0 1 1 0 1 0 0 1
6 0 1 1 1 1 0 1 0
7 1 0 0 0 1 0 1 1
8 1 0 0 1 1 1 0 0
9 0 1 1 0 1 0 0 1

10 - 15 All other inputs X X X X

Table 2: truth table for BCD to excess-3 code converter

Follow implementation procedure
As the procedure for simplification of a Boolean function suggests, we will minimize the
four output functions using K-maps. Thus we will be having four K-maps, one for each
output function. Each of these K-maps and the circuit are given in figure 5

Code Converter
Inputs Outputs

A

B

C

D

W

X

Y

Z

Figure 5: K-maps and circuit for example 2

Example 3: BCD to 7-segment display controller

Let’s take another example. We will design a BCD to seven-segment decoder. Before
proceeding, let’s first understand what a 7-segment display is?

You might have noticed a digital watch, where the digits from 0 to 9 are displayed (see
figure 6). These digits can be displayed using seven Light emitting diode segments (or
LED’s) arranged to look like digit 8 as shown in the figure. By controlling which
segment is ON and which is OFF we can display illuminated patterns that correspond to
the 10 decimal digits 0 to 9. For example, digit 8 can be displayed by illuminating all the
segments.

Figure 6: Numbers displayed in a digital watch

The objective is to design a circuit that will take a BCD number as input, and produces the
control signals C0 to C6 which allow illuminating the corresponding segments in the 7-
segment display, as shown in figure 7.

Figure 5: Design for example 3

c0 c1 c2 c3 c4 c5 c6

c1c5

c2c4 c6

c0

c3

BCD to 7–segment

 decoder

A B C D

c0 c1 c2 c3 c4 c5 c6

Thus, the input is a 4-bit BCD digit A,B,C, and D; A being the most significant while D
being the least significant.

The seven segments, which are actually seven output signals, are numbered C0 to C6 that
control the illumination of the 7-segment display.

Each of the segment is a Light-Emitting Diode (LED) which is illuminated if current
passes through it or dimmed if no current passes through it. For example, digit zero can be
displayed by illuminating all the segments except segment C6. Digit 1 can be displayed by
ONLY illuminating segments C1 and C2.

Having defined the format of inputs and outputs, let us find out the truth table for this
circuit. In the truth table, each input BCD code and its corresponding 7-segment output is
shown. The truth table assumes that a logic-1 illuminates a segment while a logic-0 turns
the segment off.

 BCD input Outputs for 7-segments
Decimal

A B C D C0 C1 C2 C3 C4 C5 C6

0 0 0 0 0 1 1 1 1 1 1 0
1 0 0 0 1 0 1 1 0 0 0 0
2 0 0 1 0 1 1 0 1 1 0 1
3 0 0 1 1 1 1 1 1 0 0 1
4 0 1 0 0 0 1 1 0 0 1 1
5 0 1 0 1 1 0 1 1 0 1 1
6 0 1 1 0 1 0 1 1 1 1 1
7 0 1 1 1 1 1 1 0 0 0 0
8 1 0 0 0 1 1 1 1 1 1 1
9 1 0 0 1 1 1 1 0 0 1 1

10 -15 All other inputs 0 0 0 0 0 0 0

Table 3: Truth table for BCD to 7-segment display converter

Even though the 4 bits of the input can represent up to 16 different combinations, ONLY
10 input combinations representing the 10 decimal digits are considered Valid.

We will design the controller such that the Invalid Input combinations would turn-off all
segments. Thus all 7 segments are turned off for input codes beyond 1001.

Now we are ready to build the seven K-maps, one for each output segment, as shown
below

AB
CD

00

11

01

10

 00 01 11 10

1 0 1 1

0 1 1 1

0 0 0 0

1 1 0 0

C0 = A’ C + A’ B D +B’ C’ D’ + A B’ C’

C2 = A’ B + B’ C’ + A’ C’ + A’ D

1 0 1 1

0 1 0 1

0 0 0 0

1 1 0 0

AB
CD

00

11

01

10

 00 01 11 10

C3 = A’ C D’ + A’ B’ C + B’ C’ D’ + A B’ C’ + A’ B C’ D

1 1 1 0

1 1 1 1

0 0 0 0

1 1 0 0

AB
CD

00

11

01

10

 00 01 11 10

1 1 1 1

1 0 1 0

0 0 0 0

1 1 0 0

C1 = A’ B’ + B’ C’ + A’ C’ D’ + A’ C D

AB
CD

00

11

01

10

 00 01 11 10

1 0 0 1

0 0 0 1

0 0 0 0

1 0 0 0

C4 = A’ C D’ + B’ C’ D’

AB
CD

00

11

01

10

 00 01 11 10 1 0 0 0

1 1 0 1

0 0 0 0

1 1 0 0

C5 = A’ B C’ + A’ C’ D’ + A’ B D’ + A B’ C’

AB
CD

00

11

01

10

 00 01 11 10

0 0 1 1

1 1 0 1

0 0 0 0

1 1 0 0

C6 = A’ C D’ + A’ B’ C+ A’ B C’ + A B’ C’

AB
CD

00

11

01

10

 00 01 11 10

Adders - Subtractors

Lesson Objectives:
The objectives of this lesson are to learn about:
1. Half adder circuit.
2. Full adder circuit.
3. Binary parallel adder circuit.
4. Half subtractor circuit.
5. Full subtractor circuit.

Half Adder:
A half adder (HA) is an arithmetic circuit that is used to add two bits. The block
diagram of HA is shown. It has two inputs and two outputs.

The inputs of the HA are the 2 bits to be added; the augend, and addend. The output is
the result of this addition, i.e. a sum bit (S) and a carry bit (C).

INPUTS OUTPUTS
X Y C S
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

The truth table of HA is shown. The Boolean functions for the two outputs can be
obtained from the truth table which are:

YXYXYXS ⊕=+=)(
XYC =

Thus, the HA can be implemented using one XOR gate and one AND gate as shown
in the Figure.

Full Adder:
A full adder (FA) is an arithmetic circuit that is used to add three bits. The block
diagram of FA is shown. It has three inputs and two outputs.

The inputs of the FA are the 3 bits to be added; the augend, addend, and carry from
previous lower significant position. The output is the result of this addition, i.e. a sum
bit (S) and a carry bit (C).

INPUTS OUTPUTS
X Y Z C S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

The truth table of FA is shown. The simplified Boolean functions for the two outputs
can be obtained from the truth table, which are:

ZYX
XYZZYXZYXZYXS

⊕⊕=
+++=

YZXZXYC ++=

The Boolean functions for the two outputs can be manipulated to simplify the circuit,
as shown below: (see animation in authorware version)

ZYX
ZYX

XYZZYXZYXZYXS

⊕⊕=
⊕⊕=

+++=

)(

)(
)(

YXZXY
YXYXZXY

YZXZYXXYC

⊕+=
++=

++=

Thus the full adder can be implemented using two half adders and an OR gate as
shown in the Figure.

Binary Parallel Adder:
An n-bit adder is a circuit which adds two n-bits numbers, say, A and B.

In addition, an n-bit adder will have another single-bit input which is added to the two
numbers called the carry-in (Cin).

The output of the n-bit adder is an n-bit sum (S) and a carry-out (Cout) bit. The block
diagram of the n-bit adder is shown.

If all input bits of the two numbers (A & B) are applied simultaneously in parallel, the
adder is termed a Parallel Adder.

Consider the problem of designing a 4-bit binary parallel adder.

The total number of inputs is 9, since the two numbers have 4-bits each in addition to
the Cin bit. Using conventional techniques for design would require a truth table of
29=512 rows.

This causes the conventional design procedure to be unacceptable in this case.

Alternatively, the 4-bit binary parallel adder can be designed using 4 full adders
connected in-cascade as shown in the figure.

That is the carry-out bit of one full adder stage is used as carry-in input to the next
stage.

In general, an n-bit binary parallel adder can be built out of n full adders connected in
cascade.

Since a carry of 1 may appear near the least significant bit of the adder and yet
propagate through many full adders to the most significant bit, just as a wave ripples
outward from a pebble dropped in a pond. That is why this parallel adder is also
called as ripple carry adder.

The disadvantage of the ripple-carry adder is that it can get very slow when one needs
to add many bits.

The propagation delay of this adder is fairly long since under worst case conditions,
the carry has to propagate through all the stages as shown in the figure by red colored
path.

This propagation delay is a limiting factor on the adder speed.

The signal from the input carry to the output carry propagates through an AND gate
and OR gate, which constitute two gate levels. If there are four full adders, the output
carry would have 2 x 4 = 8 levels from C0 to C4.

The total propagation time in this 4-bit adder would be the propagation time in one
half adder (which is the first half adder) plus eight gate levels.
(see animation in authorware version)

Assuming that all the different types of gates have same propagation delay, say T, the
propagation delay of adder can be generalized as (2n + 1) T, where n is the number of
stages. In this example, n = 4, so the delay is (2 x 4 + 1) T = 9T

Since all other arithematic operations are implemented by successive additions, the
time consumed during addition process is very critical.

For fast applications, a better design is required. The carry-look-ahead adder solves
this problem by calculating the carry signals in advance, based on the input signals.

It is expalined in the next lesson.

Appendix:

Half Subtractor:
A half subtractor is an arithmetic circuit that subtracts two bits and produces their
difference.

The block diagram of half subtractor is shown. The circuit has two inputs minuend
(X) and subtrahend (Y) and two output bits, one is the difference bit (D) and the other
is the borrow bit (B).

It performs the operation X – Y.

It should be noted that the weight of the output borrow bit is -2, while the weight of
the output difference bit is +1.

INPUTS OUTPUTS
X Y B D
0 0 0 0
0 1 1 1
1 0 0 1
1 1 0 0

The truth table of the half subtractor is shown. The Boolean functions for the two
outputs can be obtained directly from the truth table as:

YXYXYXD ⊕=+=)(

YXB =

Full Subtractor:
A full subtractor is a combinational circuit that performs a subtraction between two
bits, taking into account that a 1 may have been borrowed by a lower significant bit.

The block diagram of full subtractor is shown. The circuit has three inputs and two
outputs.

Input variables are minuend (X), subtrahend (Y), and previous borrow (Z); output
variables are difference (D) and output borrow (B).
It performs the operation X – Y – Z.

It should be noted that the weight of the output borrow bit is -2, while the weight of
the output difference bit is +1.

The truth table of the full subtractor is shown.

INPUTS OUTPUTS
X Y Z B D
0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 1 0
1 0 0 0 1
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

The simplified Boolean functions for the two outputs are:

ZYX
XYZZYXZYXZYXD

⊕⊕=
+++=

YZZXYXB ++=

Carry Look Ahead Adders

Lesson Objectives:
The objectives of this lesson are to learn about:
1. Carry Look Ahead Adder circuit.
2. Binary Parallel Adder/Subtractor circuit.
3. BCD adder circuit.
4. Binary mutiplier circuit.

Carry Look Ahead Adder:
In ripple carry adders, the carry propagation time is the major speed limiting factor as
seen in the previous lesson.

Most other arithmetic operations, e.g. multiplication and division are implemented using
several add/subtract steps. Thus, improving the speed of addition will improve the speed
of all other arithmetic operations.

Accordingly, reducing the carry propagation delay of adders is of great importance.
Different logic design approaches have been employed to overcome the carry
propagation problem.

One widely used approach employs the principle of carry look-ahead solves this problem
by calculating the carry signals in advance, based on the input signals.

This type of adder circuit is called as carry look-ahead adder (CLA adder). It is based on
the fact that a carry signal will be generated in two cases:

(1) when both bits Ai and Bi are 1, or
(2) when one of the two bits is 1 and the carry-in (carry of the previous stage) is 1.

To understand the carry propagation problem, let’s consider the case of adding two n-bit
numbers A and B.

The Figure shows the full adder circuit used to add the operand bits in the ith column;
namely Ai & Bi and the carry bit coming from the previous column (Ci).

In this circuit, the 2 internal signals Pi and Gi are given by:

iii BAP ⊕= ……………………..(1)

iii BAG = ……………….……(2)

The output sum and carry can be defined as :

iii CPS ⊕= ……………………(3)

iiii CPGC +=+1 …………(4)

Gi is known as the carry Generate signal since a carry (Ci+1) is generated whenever Gi
=1, regardless of the input carry (Ci).

Pi is known as the carry propagate signal since whenever Pi =1, the input carry is
propagated to the output carry, i.e., Ci+1. = Ci (note that whenever Pi =1, Gi =0).

Computing the values of Pi and Gi only depend on the input operand bits (Ai & Bi) as
clear from the Figure and equations.

Thus, these signals settle to their steady-state value after the propagation through their
respective gates.

Computed values of all the Pi’s are valid one XOR-gate delay after the operands A and B
are made valid.

Computed values of all the Gi’s are valid one AND-gate delay after the operands A and B
are made valid.

The Boolean expression of the carry outputs of various stages can be written as follows:

C1 = G0 + P0C0
C2 = G1 + P1C1 = G1 + P1 (G0 + P0C0)
 = G1 + P1G0 + P1P0C0
C3 = G2 + P2C2 = G2 + P2G1 + P2P1G0 + P2P1P0C0
C4 = G3 + P3C3
 = G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0C0

In general, the ith. carry output is expressed in the form Ci = Fi (P’s, G’s , C0).

In other words, each carry signal is expressed as a direct SOP function of C0 rather than
its preceding carry signal.

Since the Boolean expression for each output carry is expressed in SOP form, it can be
implemented in two-level circuits.

The 2-level implementation of the carry signals has a propagation delay of 2 gates, i.e.,
2τ.

The 4-bit carry look-ahead (CLA) adder consists of 3 levels of logic:

First level: Generates all the P & G signals. Four sets of P & G logic (each consists of an
XOR gate and an AND gate). Output signals of this level (P’s & G’s) will be valid after
1τ.

Second level: The Carry Look-Ahead (CLA) logic block which consists of four 2-level
implementation logic circuits. It generates the carry signals (C1, C2, C3, and C4) as
defined by the above expressions. Output signals of this level (C1, C2, C3, and C4) will be
valid after 3τ.

Third level: Four XOR gates which generate the sum signals (Si) (Si = Pi ⊕ Ci). Output
signals of this level (S0, S1, S2, and S3) will be valid after 4τ.

Thus, the 4 Sum signals (S0, S1, S2 & S3) will all be valid after a total delay of 4τ
compared to a delay of (2n+1)τ for Ripple Carry adders.

For a 4-bit adder (n = 4), the Ripple Carry adder delay is 9τ.

The disadvantage of the CLA adders is that the carry expressions (and hence logic)
become quite complex for more than 4 bits.

Thus, CLA adders are usually implemented as 4-bit modules that are used to build larger
size adders.

Binary Parallel Adder/Subtractor:
The addition and subtraction operations can be done using an Adder-Subtractor circuit.
The figure shows the logic diagram of a 4-bit Adder-Subtractor circuit.

FA

S0

A0

C1 C0
FA

S1

A1

C2
FA

S2

A2

C3
FA

S3

A3

C4

B0B1B2B3

M

The circuit has a mode control signal M which determines if the circuit is to operate as an
adder or a subtractor.

Each XOR gate receives input M and one of the inputs of B, i.e., Bi. To understand the
behavior of XOR gate consider its truth table given below. If one input of XOR gate is
zero then the output of XOR will be same as the second input. While if one input of
XOR gate is one then the output of XOR will be complement of the second input.

A B XOR
0 0 0
0 1 1
1 0 1
1 1 0

(see animation in authorware)

So when M = 0, the output of XOR gate will be Bi ⊕ 0 = Bi. If the full adders receive the
value of B, and the input carry C0 is 0, the circuit performs A plus B.

When M = 1, the output of XOR gate will be Bi ⊕ 1 = Bi

’. If the full adders receive the
value of B’, and the input carry C0 is 1, the circuit performs A plus 1’s complement of B
plus 1, which is equal to A minus B.

BCD Adder:
If two BCD digits are added then their sum result will not always be in BCD.
Consider the two given examples.

 0110 = 6
+0011 = +3
 1001 = 9

Correct: Result
is in BCD.

 0101 = 5
+0111 = + 7
 1100 = 12

Wrong: Result is
not in BCD.

In the first example, result is in BCD while in the second example it is not in BCD.

Four bits are needed to represent all BCD digits (0 – 9). But with four bits we can
represent up to 16 values (0000 through 1111). The extra six values (1010 through 1111)
are not valid BCD digits.

Whenever the sum result is > 9, it will not be in BCD and will require correction to get a
valid BCD result.

Z3 Z2 Z1 Z0 F
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 1
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

Correction is done through the addition of 6 to the result to skip the six invalid values as
shown in the truth table by yellow color.

Consider the given examples of non-BCD sum result and its correction.

 0101 = 5
 +0111 = + 7
 1100 = 12
 +0110 = +6

BCD correction

Non-BCD

In BCD 1 0010 = 1 2

 1001 = 9
 +0110 = + 6
 1111 = 15
 +0110 = +6

BCD correction

Non-BCD

In BCD 1 0101 = 1 5

 1001 = 9
 +1001 = + 9
 1 0010 = 18
 +0110 = +6

BCD correction

Non-BCD

In BCD 1 1000 = 1 8

A BCD adder is a circuit that adds two BCD digits in parallel and produces a sum BCD
digit and a carry out bit.

The maximum sum result of a BCD input adder can be 19. As maximum number in BCD
is 9 and may be there will be a carry from previous stage also, so 9 + 9 + 1 = 19

The following truth table shows all the possible sum results when two BCD digits are
added.

Dec CO Z3 Z2 Z1 Z0 F
0 0 0 0 0 0 0
1 0 0 0 0 1 0
2 0 0 0 1 0 0
3 0 0 0 1 1 0
4 0 0 1 0 0 0
5 0 0 1 0 1 0
6 0 0 1 1 0 0
7 0 0 1 1 1 0
8 0 1 0 0 0 0
9 0 1 0 0 1 0
10 0 1 0 1 0 1
11 0 1 0 1 1 1
12 0 1 1 0 0 1
13 0 1 1 0 1 1
14 0 1 1 1 0 1
15 0 1 1 1 1 1
16 1 0 0 0 0 1
17 1 0 0 0 1 1
18 1 0 0 1 0 1
19 1 0 0 1 1 1

The logic circuit that checks the necessary BCD correction can be derived by detecting
the condition where the resulting binary sum is 01010 through 10011 (decimal 10
through 19).

It can be done by considering the shown truth table, in which the function F is true when
the digit is not a valid BCD digit. It can be simplified using a 5-variable K-map.

But detecting values 1010 through 1111 (decimal 10 through 15) can also be done by
using a 4-variable K-map as shown in the figure.

Values greater than 1111, i.e., from 10000 through 10011 (decimal 16 through 19) can be
detected by the carry out (CO) which equals 1 only for these output values. So, F = CO =
1 for these values. Hence, F is true when CO is true OR when (Z3 Z2 + Z3 Z1) is true.
Thus, the correction step (adding 0110) is performed if the following function equals 1:

F = CO + Z3 Z2 + Z3 Z1

The circuit of the BCD adder will be as shown in the figure.

Addend Augend

4-bit binary
adder

Carry
out CO Carry

in

Output
carry

0

Z0Z3 Z2 Z1

S0S3 S2 S1

4-bit binary
adder

Addition result
in binary

Detection
Circuit

Correction
factor

0 6

The two BCD digits, together with the input carry, are first added in the top 4-bit binary
adder to produce the binary sum. The bottom 4-bit binary adder is used to add the
correction factor to the binary result of the top binary adder.

 Note:
 When the Output carry is equal to zero, the correction factor equals zero.
 When the Output carry is equal to one, the correction factor is 0110.

The output carry generated from the bottom binary adder is ignored, since it supplies
information already available at the output-carry terminal.

A decimal parallel adder that adds n decimal digits needs n BCD adder stages. The
output carry from one stage must be connected to the input carry of the next higher-order
stage.

Binary Multiplier:
Multiplication of binary numbers is performed in the same way as with decimal numbers.

The multiplicand is multiplied by each bit of the multiplier, starting from the least
significant bit.

The result of each such multiplication forms a partial product. Successive partial products
are shifted one bit to the left.

The product is obtained by adding these shifted partial products.

Example 1: Consider an example of multiplication of two numbers, say A and B (2 bits
each), C = A x B.

The first partial product is formed by multiplying the B1B0 by A0. The multiplication of
two bits such as A0 and B0 produces a 1 if both bits are 1; otherwise it produces a 0 like
an AND operation. So the partial products can be implemented with AND gates.

The second partial product is formed by multiplying the B1B0 by A1 and is shifted one
position to the left.

(see animation in authorware)

The two partial products are added with two half adders (HA). Usually there are more
bits in the partial products, and then it will be necessary to use FAs.

The least significant bit of the product does not have to go through an adder, since it is
formed by the output of the first AND gate as shown in the Figure.

A binary multiplier with more bits can be constructed in a similar manner.

Example 2: Consider the example of multiplying two numbers, say A (3-bit number) and
B (4-bit number).

Each bit of A (the multiplier) is ANDed with each bit of B (the multipcand) as shown in
the Figure.

The binary output in each level of AND gates is added in parallel with the partial product
of the previous level to form a new partial product. The last level produces the final
product.

Since J = 3 and K = 4, 12 (J x K) AND gates and two 4-bit ((J - 1) K-bit) adders are
needed to produce a product of seven (J + K) bits. Its circuit is shown in the Figure.

Note that 0 is applied at the most significant bit of augend of first 4-bit adder because the
least significant bit of the product does not have to go through an adder.

Decoders and Encoders

Lesson Objectives
In this lesson, we will learn about
o Decoders
o Expansion of decoders
o Combinational circuit implementation with decoders
o Some examples of decoders
o Encoders
o Major limitations of encoders
o Priority encoders
o Some examples of ecnoders

Decoders
As its name indicates, a decoder is a circuit component that decodes an input code. Given
a binary code of n-bits, a decoder will tell which code is this out of the 2n possible codes
(See Figure 1(a)).

n Inputs
n-to-2n

Decoder

0
1

2n-1

Figure 1(a): A typical decoder

Thus, a decoder has n- inputs and 2n outputs. Each of the 2n outputs corresponds to one of
the possible 2n input combinations.

n Inputs
n-to-2n

Decoder 2n Outputs

Enable
Figure 1(b): A typical decoder

Figure 1(b) shows the block diagram of a typical decoder, which has n input lines, and m
output lines, where m is equal to 2n. The decoder is called n-to-m decoder. Apart from
this, there is also a single line connected to the decoder called enable line. The operations
of the enable line will be discussed in the flowing text.

o In general, output i equals 1 if and only if the input binary code has a value of i.

o Thus, each output line equals 1 at only one input combination but is equal to 0 at

all other combinations.

o In other words, each decoder output corresponds to a minterm of the n input

variables.

o Thus, the decoder generates all of the 2n minterms of n input variables.

Example: 2-to-4 decoders
Let us discuss the operation and combinational circuit design of a decoder by taking the
specific example of a 2-to-4 decoder. It contains two inputs denoted by A1 and A0 and
four outputs denoted by D0, D1, D2, and D3 as shown in figure 2. Also note that A1 is the
MSB while A0 is the LSB.

A0 2-to-4
DecoderA1

D0 = A1A0

D1 = A1A0

D2 = A1A0

D3 = A1A0

Figure 2: A 2-to-4 decoder without enable

Decimal # Input Output

 A1 A0 D0 D1 D2 D3
0 0 0 1 0 0 0
1 0 1 0 1 0 0
2 1 0 0 0 1 0
3 1 1 0 0 0 1

Table 1: Truth table for 2-to-4 decoder

As we see in the truth table (table 1), for each input combination, one output line is
activated, that is, the output line corresponding to the input combination becomes 1,
while other lines remain inactive. For example, an input of 00 at the input will activate
line D0. 01 at the input will activate line D1, and so on.

o Notice that, each output of the decoder is actually a minterm resulting from a
certain combination of the inputs, that is
o D0 =A1 A0, (minterm m0) which corresponds to input 00
o D1 =A1 A0, (minterm m1) which corresponds to input 01
o D2 =A1 A0, (minterm m2) which corresponds to input 10
o D3 =A1 A0, (minterm m3) which corresponds to input 11

o This is depicted in Figures 2 where we see that each input combination will

inovke the corresponding output, where each output is minterm corresponding to
the input combination.

A1
A0

D0 = A1A0

D1 = A1A0

D2 = A1A0

D3 = A1A0

Figure 3: Implementation 2-to-4 decoder

The circuit is implemented with AND gates, as shown in figure 3. In this circuit we see
that the logic equation for D0 is A1

/ A0
/. D0 is A1

/ A0, and so on. These are in fact the
minterms being implemented. Thus, each output of the decoder generates a minterm
corresponding to the input combination.

The “enable” input in decoders

Generally, decoders have the “enable” input .The enable input perroms no logical
operation, but is only responsible for making the decoder ACTIVE or INACTIVE.
o If the enable “E”

o is zero, then all outputs are zero regardless of the input values.
o is one, then the decoder performs its normal operation.

For example, consider the 2-to-4 decoder with the enable input (Figure 4). The enable
input is only responsible for making the decoder active or inactive. If Enable E is zero,
then all outputs of the decoder will be zeros, regardless of the values of A1 and A0.
However, if E is 1, then the decoder will perform its normal operation, as is shown in the

truth table (table 2). In this table we see that as long as E is zero, the outputs D0 to D3
will remain zero, no matter whatever value you provide at the inputs A1 A0, depicted by
two don’t cares. When E becomes 1, then we see the same behavior as we saw in the case
of 2-to-4 decoder discussed earlier.

D1

D2

D3

A1
A0

D0

E

Figure 4: Implementation 2-to-4 decoder with enable

Decimal
value

Enable Inputs Outputs

 E A1 A0 D0 D1 D2 D3
 0 X X 0 0 0 0
0 1 0 0 1 0 0 0
1 1 0 1 0 1 0 0
2 1 1 0 0 0 1 0
3 1 1 1 0 0 0 1

Table 2: Truth table of 2-to-4 decoder with enable

Example: 3-to-8 decoders
In a three to eight decoder, there are three inputs and eight outputs, as shown in figure 5.
A0 is the least significant variable, while A2 is the most significant variable.

The three inputs are decoded into eight outputs. That is, binary values at the input form a
combination, and based on this combination, the corresponding output line is activated.

A0 3-to-8
Decoder

Enable

A1

A2

D0 = A2A1A0

D1 = A2A1A0

D2 = A2A1A0

D3 = A2A1A0

D4 = A2A1A0

D5 = A2A1A0
D6 = A2A1A0
D7 = A2A1A0

Figure 5: A 3-to-8 decoder with enable

Each output represents one minterm .
o For example, for input combination A2A1A0 = 001, output line D1 equals 1 while all

other output lines equal 0’s
o It should be noted that at any given instance of time, one and only one output line

can be activated. It is also obvious from the fact that only one combination is
possible at the input at a time, so the corresponding output line is activated.

Dec. Inputs Outputs
Code A2 A1 A0 D0 D1 D2 D3 D4 D5 D6 D7

0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 1 0 1 0 0 0 0 0 0
2 0 1 0 0 0 1 0 0 0 0 0
3 0 1 1 0 0 0 1 0 0 0 0
4 1 0 0 0 0 0 0 1 0 0 0
5 1 0 1 0 0 0 0 0 1 0 0
6 1 1 0 0 0 0 0 0 0 1 0
7 1 1 1 0 0 0 0 0 0 0 1

Table 3: Truth table of 3-to-8 decoder

Since each input combination represents one minterm, the truth table (table 3) contains
eight output functions, from D0 to D7 seven, where each function represents one and only
one minterm. Thus function D0 is A2

/ A1
/ A0

/. Similarly function D7 is A2A1A0. The
corresponding circuit is given in Figure 6. In this figure, the three inverters provide
complement of the inputs, and each one of the AND gates generates one of the minterms.
It is also possible to add an Enable input to this decoder.

Figure 6: Implementation of a 3-to-8 decoder without enable

Decoder Expansion

o It is possible to build larger decoders using two or more smaller ones.

o For example, a 6-to-64 decoder can be designed with four 4-to-16 decoders and one

2-to-4 line decoder.

Example: Construct a 3-to-8 decoder using two 2-to-4 deocders with enable
inputs.
Figure 7 shows how decoders with enable inputs can be connected to form a larger
decoder. Two 2-to-4 line decoders are combined to build a 3-to-8 line decoder.

o The two least signifncat bits (i.e. A1 and A0) are connected to both decoders

o Most signifcant bit (A2) is connected to the enable input of one decoder.
o The complement of most significant bit (A2) is connected to the enable of the

other decoder.
o When A2 = 0, upper decoder is enabled, while the lower is disabled. Thus, the

outputs of the upper decoder correspond to minterms D0 through D3.
o When A2 = 1, upper decoder is disabled, while the lower is enabled. Thus, the

outputs of the lower decoder correspond to minterms D4 through D7.

Figure 7: Implementing a 3-to-8 decoder with two 2-to-4 decoders

Decoder design with NAND gates

o Some decoders are constructed with NAND rather than AND gates.

o In this case, all decoder outputs will be 1’s except the one corresponding to the input

code which will be 0.

Decimal # Input Output
 A1 A0 D0’ D1’ D2’ D3’
0 0 0 0 1 1 1
1 0 1 1 0 1 1
2 1 1 1 1 0 1
3 1 1 1 1 1 0

Table 4: Truth table of 2-to-4 decoder with NAND gates

This decoder can be constructed without enable, similar to what we have seen in the
design of decoder with AND gates, without enable. The truth table and corresponding
minters are given in table 4. Notice that the minters are in the complemented form.

Figure 8: A 2-to-4 decoder with Enable constructed with NAND gates.

Decimal
value

Enable Inputs Outputs

 E’ A1 A0 D0’ D1’ D2’ D3’
 1 X X 1 1 1 1
0 0 0 0 0 1 1 1
1 0 0 1 1 0 1 1
2 0 1 1 1 1 0 1
3 0 1 1 1 1 1 0

Table 5: Truth table of 2-to-4 decoder with Enable using NAND gates

A 2-to-4 line decoder with an enable input constructed with NAND gates is shown in
figure 8. The circuit operates with complemented outputs and enable input E’ is also
complemented to match the outputs of the NAND gate decoder. The decoder is enabled
when E’ is equal to zero. As indicated by the truth table, only one output can be equal to
zero at any given time, all other outputs being equal to one. The output with the value of
zero represents the minterm selected by inputs A1 and A0. The circuit is disabled when E’
is equal to one, regardless of the values of the other two inputs. When the circuit is
disabled, none of the outputs are equal to zero, and none of the minterms are selected.
The corresponding logic equations are also given in table 5.

Combinational circuit implementation using decoder

o As known, a decoder provides the 2n minterms of n input variables
o Since any boolean functions can be expressed as a sum of minterms, one can use a

decoder to implement any function of n variables.
o In this case, the decoder is used to generate the 2n minterms and an additional OR

gate is used to generate the sum of the required minterms.
o In this way, any combinational circuit with n inputs and m outputs can be

implemented using an n-to-2n decoder in addition to m OR gates.

? Remember, that
o The function need not be simplified since the decoder implements a function using

the minterms, not product terms.

o Any number of output functions can be implemented using a single decoder,

provided that all those outputs are functions of the same input variables.
Example: Decoder Implementation of a Full Adder

Let us look at the truth table (table 6) for the given problem. We have two outputs, called
S, which stands for sum, and C, which stands for carry. Both sum and carry are functions
of X, Y, and Z.

Decimal
value

Input Output

 X Y Z S C
0 0 0 0 0 0

1 0 0 1 1 0

2 0 1 0 1 0

3 0 1 1 0 1

4 1 0 0 1 0

5 1 0 1 0 1

6 1 1 0 0 1

7 1 1 1 1 1

Table 6: Truth table of the Full Adder

o The output functions S & C can be expressed in sum-of-minterms forms as follows:

o S (X,Y,Z) = m (1,2,4,7)
o C (X,Y,Z) = m (3,5,6,7)

Looking at the truth table and the functions in sum of minterms form, we observe that
there are three inputs, X, Y, and Z that correspond to eight minterms. This implies that a
3-to-8 decoder is needed to implement this function. This implementation is given in
Figure 9, where the sum S is implemented by taking minterms 1, 2, 4, and 7 and the OR
gates forms the logical sum of minterm for S. Similarly, carry C is implemented by
taking logical sum of minterms 3, 5, 6, and 7 from the same decoder.

Z
Y
X

3-to-8
Decoder

20

21

22

0

7

6

5

4

3

2

1 S

C

Figure 9: Decoder implementation of a Full Adder

Encoders
o An encoder performs the inverse operation of a decoder, as shown in Figure 10.
o It has 2n inputs, and n output lines.
o Only one input can be logic 1 at any given time (active input). All other inputs must

be 0’s.
o Output lines generate the binary code corresponding to the active input.

Figure 10: A typical Encoder

Example: Octal-to-binary encoder

We will use 8-to-3 encoder (Figure 11) for this problem, since we have eight inputs, one
for each of the octal digits, and three outputs that generate the corresponding binary
number. Thus, in the truth table, we see eight input variables on the left side of the
vertical lines, and three variables on the right side of the vertical line (table 7).

Inputs Outputs Decimal
Code

E7 E6 E5 E4 E3 E2 E1 E0 A2 A1 A0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 1
0 0 0 0 0 1 0 0 0 1 0 2
0 0 0 0 1 0 0 0 0 1 1 3
0 0 0 1 0 0 0 0 1 0 0 4
0 0 1 0 0 0 0 0 1 0 1 5
0 1 0 0 0 0 0 0 1 1 0 6
1 0 0 0 0 0 0 0 1 1 1 7

Table 7: Truth table of Octal-to-binary encoder

2n-to-n
Encoder

2n Inputs
n Outputs

Figure 11: Octal-to-binary encoder
o Note that not all input combinations are valid.
o Valid combinations are those which have exactly one input equal to logic 1 while all

other inputs are logic 0’s.
o Since, the number of inputs = 8, K-maps cannot be used to derive the output Boolean

expressions.
o The encoder implementation, however, can be directly derived from the truth table

o Since A0 = 1 if the input octal digit is 1 or 3 or 5 or 7, then we can write:
A0 = E1 + E3 + E5+ E7

o Likewise, A1 = E2 + E3 + E6+ E7, and similarly
o A2 = E4 + E5 + E6+ E7

o Thus, the encoder can be implemented using three 4- input OR gates.

Major Limitation of Encoders
o Exactly one input must be active at any given time.
o If the number of active inputs is less than one or more than one, the output will be

incorrect.
o For example, if E3 = E6 = 1, the output of the encoder A2A1A0 = 111, which implies

incorrect output.

Two Problems to Resolve.
1. If two or more inputs are active at the same time, what should the output be?
2. An output of all 0's is generated in 2 cases:

o when all inputs are 0
o when E0 is equal to 1.

How can this ambiguity be resolved?

Solution To Problem 1:
o Use a Priority Encoder which produces the output corresponding to the input with

higher priority.
o Inputs are assigned priorities according to their subscript value; e.g. higher subscript

inputs are assigned higher priority.
o In the previous example, if E3 = E6 = 1, the output corresponding to E6 will be

produced (A2A1A0 = 110) since E6 has higher priority than E3.

3 Outputs

A0

A1

A2

8-to-3
Encoder

8 Inputs

E0
E1
E2
E3
E4
E5
E6
E7

Solution To Problem 2:
o Provide one more output signal V to indicate validity of input data.
o V = 0 if none of the inputs equals 1, otherwise it is 1

Example: 4-to-2 Priority Encoders

o Sixteen input combinations
o Three output variables A1, A0, and V
o V is needed to take care of situation when all inputs are equal to zero.

Table 8: Truth table of 4-to-2 Priority Encoder

In the truth table (table 8), we have sixteen input combinations. In the output, we have
three variables. The variable V is needed to take care of the situation where all inputs
are zero. In that case V is kept at zero, regardless of the values of A1 and A0. This
combination is highlighted green. In all other cases, V is kept at 1, because at least one of
the inputs is one.

When E0 is 1, the output combination of A1 and A0 is 00. This combination is highlighted
blue.

Then we have two combinations highlighted yellow. In both these combinations, A1 and
A0 are 01. This is because in both these combinations E1 is 1, regardless of the value of
E0, and since E1 has higher subscript, the corresponding output value is 01.

This is followed by four input combinations in pink. In these four combinations, the
output A1A0 is 10, since E2 is 1 in all these combinations, and E2 has the highest

Inputs

E3 E2 E1 E0 A1 A0 V
0 0 0 0 X X 0
0 0 0 1 0 0 1
0 0 1 0 0 1 1
0 0 1 1 0 1 1
0 1 0 0 1 0 1
0 1 0 1 1 0 1
0 1 1 0 1 0 1
0 1 1 1 1 0 1
1 0 0 0 1 1 1
1 0 0 1 1 1 1
1 0 1 0 1 1 1
1 0 1 1 1 1 1
1 1 0 0 1 1 1
1 1 0 1 1 1 1
1 1 1 0 1 1 1
1 1 1 1 1 1 1

Outputs

Invalid
Input

precedence compared to E0 and E1. Although E0 and E1 are also having a value of one in
this set of four combinations, but they do not have the priority.

Finally we have the last eight input combinations, whose output is 11. This is because E3
is the highest priority input, and it is equal to 1. Though the other inputs with smaller
subscripts, namely, E2, E1, and E0 are also having values of one in some combinations,
but they do not have the priority.

The truth table can be rewritten in a more compact form using don’t care conditions for
inputs as shown below in table 9.

Table 9: Truth table of 4-to-2 priority encoder (compact form)

o With 4 Input variables, the truth table must have 16 rows, with each row

representing an input combination.

o With don’t care input conditions, the number of rows can be reduced since rows with

don’t care inputs will actually represent more than one input combination.

o Thus, for example, row # 3 represents 2 combinations since it represents the input

conditions E3E2E1E0=0010 and 0011.

o Likewise, row # 4 represents 4 combinations since it represents the input conditions

E3E2E1E0=0100, 0101, 0110 and 0111.

o Similarly, row # 5 represents 8 combinations.

o Thus, the total number of input combinations represented by the 5-row truth table =

1+ 1+ 2+ 4 + 8= 16 input combinations.

Boolean Expressions for V, A1 and A0 and the circuit:

See next page:

 E3 E2 E1 E0 A1 A0 V
1 0 0 0 0 X X 0
2 0 0 0 1 0 0 1
3 0 0 1 X 0 1 1
4 0 1 X X 1 0 1
5 1 X X X 1 1 1

Inputs Outputs

Figure 12: Equations and circuit for 4-to-2 priority encoder

Multiplexers and Demultiplexers

In this lesson, you will learn about:

1. Multiplexers
2. Combinational circuit implementation with multiplexers
3. Demultiplexers
4. Some examples

Multiplexer
A Multiplexer (see Figure 1) is a combinational circuit that selects one of the 2n input
signals (D0, D1, D2, ……, D2

n
-1) to be passed to the single output line Y.

Q. How to select the input line (out of the possible 2n input signals) to be passed to the
output line?

A. Selection of the particular input to be passed to the output is controlled by a set of n
input signals called “Select Inputs” (S0, S1, S2, ……., Sn-1).

Figure 1: Multiplexer

Example 1: 2x1 Mux
A 2x1 Mux has 2 input lines (D0 & D1) , one select input (S), and one output line (Y).
(see Figure 2)

IF S=0, then Y= D0
 Else (S=1) Y= D1

D0

D1

Y

S

MUX

Figure 2: A 2 X 1 Multiplexer

Thus, the output signal Y can be expressed as:

10 DSDSY +=

Example 2: 4x1 Mux
A 4x1 Mux has 4 input lines (D0, D1, D2, D3), two select inputs (S0 & S1), and one output
line Y. (see Figure 3)

IF S1S0=00, then Y= D0
IF S1S0=01, then Y= D1
IF S1S0=10, then Y= D2
IF S1S0=11, then Y= D3

Thus, the output signal Y can be expressed as:

 minterm minterm minterm minterm
 m0 m1 m2 m3
Obviously, the input selected to be passed to the output depends on the minterm
expressions of the select inputs.

Figure 3: A 4 X 1 Multiplexer

In General,
For MUXes with n select inputs, the output Y is given by

Y = m0D0 + m1D1 + m2D2 + .…+ m2 n-1D2

n
 –1

Where mi = ith minterm of the Select Inputs

Thus

∑
−

=

=
12

0

n

i
ii DmY

Example 3: Quad 2X1 Mux
Given two 4-bit numbers A and B, design a multiplexer that selects one of these 2
numbers based on some select signal S. Obviously, the output (Y) is a 4-bit number.

Quad 2-1
MUX

A0

A1

A2

A3

B0

B1

B2

B 3

Y0

Y1

Y 2

Y3

S
Figure 4: Quad 2 X 1 Multiplexer

The 4-bit output number Y is defined as follows:

Y = A IF S=0, otherwise Y = B

The circuit is implemented using four 2x1 Muxes, where the output of each of the Muxes
gives one of the outputs (Yi).

Combinational Circuit Implementation using Muxes
Problem Statement:
Given a function of n-variables, show how to use a MUX to implement this function.
This can be accomplished in one of 2 ways:
� Using a Mux with n-select inputs
� Using a Mux with n-1 select inputs

Method 1: Using a Mux with n-select inputs
n variables need to be connected to n select inputs. For a MUX with n select inputs, the
output Y is given by:

Y = m0D0 + m1D1 + m2 D2 + ... + m2
n

-1D2
n

–1
Alternatively,

∑
−

=

=
12

0

n

i
ii DmY

Where mi = ith minterm of the Select Inputs

The MUX output expression is a SUM of minterms expression for all minterms (mi)
which have their corresponding inputs (Di) equal to 1.

Thus, it is possible to implement any function of n-variables using a MUX with n-select
inputs by proper assignment of the input values (Di ∈ {0 , 1}).
Y(Sn-1 ….. S1S0) = ∑(minterms)

Example 4: Implement the function F (A, B, C) = ∑(1, 3, 5, 6) (see Figure 5)
Since number of variables n = 3, this requires a Mux with 3 select inputs, i.e. an 8x1 Mux

The most significant variable A is connected to the most significant select input S2 while
the least significant variable C is connected to the least significant select input S0 , thus:

S2 = A, S1 = B, and S0 = C
For the MUX output expression (sum of minterms) to include minterm 1 we assign D1 =1

Likewise, to include minterms 3, 5, and 6 in the sum of minterms expression while
excluding minterms 0, 2, 4, and 7, the following input (Di) assignments are made

D1 = D3 = D5 = D6 = 1
D0 = D2 = D4 = D7 = 0

D 0

D 1

Y

S 0

D 2

D 3

D 4

D 5

D 6

D 7 S 1S 2

0

1

0

1

0

1

0

1

A B C

∑

=
(1 ,3 ,5 ,6)

C)B ,F (A ,

Figure 5: Implementing function with Mux with n select inputs

Method 2: Using a Mux with (n-1) select inputs
Any n-variable logic function can be implemented using a Mux with only (n-1) select
inputs (e.g 4-to-1 mux to implement any 3 variable function)

This can be accomplished as follows:
� Express function in canonical sum-of-minterms form.
� Choose n-1 variables to be connected to the mux select lines.
� Construct the truth table of the function, but grouping the n-1 select input variables
together (e.g. by making the n-1 select variables as most significant inputs).
The values of Di (mux input line) will be 0, or 1, or nth variable or complement of nth
variable of value of function F, as will be clarified by the following example.

Example 5: Implement the function F (A, B, C) = ∑ (1, 2, 6, 7) (see figure 6)
This function can be implemented with a 4-to-1 line MUX.
A and B are applied to the select line, that is

A ⇒ S1, B ⇒ S0
The truth table of the function and the implementation are as shown:

Figure 6: Implementing function with Mux with n-1 select inputs

Example 6: Consider the function F(A,B,C,D)=∑(1,3,4,11,12,13,14,15)

This function can be implemented with an 8-to-1 line MUX (see Figure 7)
A, B, and C are applied to the select inputs as follows:

A ⇒ S2 , B ⇒ S1, C ⇒ S0
The truth table and implementation are shown.

Figure 7: Implementing function of Example 6

Demultiplexer
It is a digital function that performs inverse of the multiplexing operation.
It has one input line (E) and transmits it to one of 2n possible output lines (D0, D1, D2, …,
D2

n
-1). The selection of the specific output is controlled by the bit combination of n select

inputs.

D0
D1
D2
D3
D4
D5

D2
n

-1

E

Moving
Arm

Figure 8: A demultiplexer

Example 7: A 1-to-4 line Demux
The input E is directed to one of the outputs, as specified by the two select lines S1 and
S0.
D0 = E if S1S0 = 00 ⇒ D0 = S1’ S0’ E
D1 = E if S1S0 = 01 ⇒ D1 = S1’ S0 E
D2 = E if S1S0 = 10 ⇒ D2 = S1 S0’ E
D3 = E if S1S0 = 11 ⇒ D3 = S1 S0 E

A careful inspection of the Demux circuit shows that it is identical to a 2 to 4 decoder
with enable input.

D1

D2

D3

A1
A0

D0

E

Figure 8: A 1-to-4 line demultiplexer

�For the decoder, the inputs are A1 and A0, and the enable is input E. (see figure 9)
�For demux, input E provides the data, while other inputs accept the selection variables.
�Although the two circuits have different applications, their logic diagrams are exactly
the same.

Decimal
value

Enable Inputs Outputs

 E A1 A0 D0 D1 D2 D3
 0 X X 0 0 0 0
0 1 0 0 1 0 0 0
1 1 0 1 0 1 0 0
2 1 1 0 0 0 1 0
3 1 1 1 0 0 0 1

Figure 9: Table for 1-to-4 line demultiplexer

Magnitude Comparator

In this lesson you will learn about
1.Magnitude comparator
2.How to design a 4-bit comparator

Definition
A magnitude comparator is a combinational circuit that compares two numbers A & B to
determine whether:
� A > B, or
� A = B, or
� A < B

Inputs
First n-bit number A
Second n-bit number B
Outputs
3 output signals (GT, EQ, LT), where:
 1. GT = 1 IFF A > B
 2. EQ = 1 IFF A = B
 3. LT = 1 IFF A < B
Note: Exactly One of these 3 outputs equals 1, while the other 2 outputs are 0`s

4-bit magnitude comparator
Inputs: 8-bits (A ⇒ 4-bits , B ⇒ 4-bits)
A and B are two 4-bit numbers
� Let A = A3A2A1A0 , and
� Let B = B3B2B1B0
� Inputs have 28 (256) possible combinations
� Not easy to design using conventional techniques

The circuit possesses certain amount of regularity ⇒ can be designed algorithmically.

Design of the EQ output (A = B) in 4-bit magnitude comparator
Define Xi = (Ai Bi)+ (Ai

/ Bi
/)

Thus Xi = 1 IFF Ai = Bi ∀ i =0, 1, 2 and 3

Xi = 0 IFF Ai ≠ Bi

Condition for A= B
EQ=1 (i.e., A=B) IFF

1. A3=B3 → (X3 = 1), and
2. A2=B2 → (X2 = 1), and
3. A1=B1 → (X1 = 1), and
4. A0=B0 → (X0 = 1).

Thus, EQ=1 IFF X3 X2 X1 X0 = 1. In other words, EQ = X3 X2 X1 X0

Design of the GT output (A > B) 4-bit magnitude comparator
If A3 > B3, then A > B (GT=1) irrespective of the relative values of the other bits of A &
B. Consider, for example, A = 1000 and B = 0111 where A > B.
This can be stated as GT=1 if A3 B3

/ =1

If A3 = B3 (X3 = 1), we compare the next significant pair of bits (A2 & B2).

If A2 > B2 then A > B (GT=1) irrespective of the relative values of the other bits of A &
B. Consider, for example, A = 0100 and B = 0011 where A > B.
This can be stated as GT=1 if X3A2 B2

/ =1

If A3 = B3 (X3 = 1) and A2 = B2 (X2 = 1), we compare the next significant pair of bits (A1
& B1).

If A1 > B1 then A > B (GT=1) irrespective of the relative values of the remaining bits A0
& B0. Consider, for example, A = 0010 and B = 0001 where A > B
This can be stated as GT=1 if X3 X2A1 B1

/ =1

If A3 = B3 (X3 = 1) and A2 = B2 (X2 = 1) and A1 = B1 (X1 = 1), we compare the next pair
of bits (A0 & B0).
If A0 > B0 then A > B (GT=1). This can be stated as GT=1 if X3X2X1A0B0

/=1

To summarize, GT =1 (A > B) IFF:

1. A3 B3
/ =1, or

2. X3A2 B2
/ =1, or

3. X3 X2A1 B1
/ = 1, or

4. X3X2X1A0B0
/ =1

In other words, GT = A3 B3
/ + X3A2 B2

/ + X3 X2A1 B1
/ + X3X2X1A0B0

/

Design of the LT output (A < B) 4-bit magnitude comparator
In the same manner as above, we can derive the expression of the LT (A < B) output
LT = B3 A3

/ + X3B2 A2
/ + X3 X2B1 A1

/ + X3X2X1B0A0
/

The gate implementation of the three output variables (EQ, GT & LT) is shown in the
figure below.

A3

B3

A2

B2

A0

B0

A1

B1

A < B

A > B

A = B

Modification to the Design
The hardware in the comparator can be reduced by implementing only two outputs, and
the third output can be obtained using these two outputs.
For example, if we have the LT and GT outputs, then the EQ output can be obtained by
using only a NOR gate, as shown in the figure below.

Thus, when both the GT and LT outputs are zeros, then the 3rd one (i.e. EQ) is a ‘1’

MSI Design Examples

In this lesson, you will see some design examples using MSI devices. These examples
are:

• Designing a circuit that adds three 4-bit numbers.
• Design of a 4-to-16 Decoder using five 2-to-4 Decoders with enable inputs.
• Design of a circuit that takes 2 unsigned 4-bit numbers and outputs the larger of

both.
• Designing a 16-bit adder using four 4-bit adders.
• Designing a 3-bit excess-3 code converter using a Decoder and an Encoder.

Designing a circuit that adds three 4-bit numbers

Recall that a 4-bit binary adder adds two binary numbers, where each number is of 4 bits.
For adding three 4-bit numbers we have:
Inputs
� First 4-bit number X = X3X2X1X0
� Second 4-bit number Y = Y3Y2Y1Y0
� Third 4-bit number Z = Z3Z2Z1Z0

Outputs
The summation of X, Y, and Z. How many output lines are exactly needed will be
discussed as we proceed.

To design a circuit using MSI devices that adds three 4-bit numbers, we first have to
understand how the addition is done. In this case, the addition will take place in two
steps, that is, we will first add the first two numbers, and the resulting sum will be added
to the third number, thus giving us the complete addition.
Apparently it seems that we will have to use two 4-bit adders, and probably some extra
hardware as well. Let us analyze the steps involved in adding three 4-bit numbers.

Step 1: Addition of X and Y
A 4-bit adder is required. This addition will result in a sum and a possible carry, as
follows:

X3X2X1X0
Y3Y2Y1Y0

 C4 S3S2S1S0
Note that the input carry Cin = 0 in this 4-bit adder
Step 2: Addition of S and Z
This resulting partial sum (i.e. S3S2S1S0) will be added to the third 4-bit number Z3Z2Z1Z0
by using another 4-bit adder as follows, resulting in a final sum and a possible carry:

S3S2S1S0
 Z3Z2Z1Z0

 D4 F3F2F1F0

where F3F2F1F0 represents the final sum of the three inputs X, Y, and Z. Again, in this
step, the input carry to this second adder will also be zero.

Notice that in Step 1, a carry C4 was generated in bit position 4, while in Step 2, another
carry D4 was generated also in bit position 4. These two carries must be added together
to generate the final Sum bits of positions 4 and 5 (F4 and F5).
Adding C4 and D4 requires a half adder. Thus, the output from this circuit will be six bits,
namely F5 F4 F3F2F1F0 (See Figure 1)

Figure 1: Circuit for adding three 4-bit numbers

Design a 4-to-16 Decoder using five 2-to-4 Decoders with enable inputs
We have seen how can we construct a bigger decoder using smaller decoders, by taking
the specific example of designing a 3-to-8 decoder using two 2-to-4 decoders. Now we
will design a 4-to-16 decoder using five 2-to-4 decoders.

There are a total of sixteen possible input combinations, as shown in the table (Figure 2).
These sixteen combinations can be divided into four groups, each group containing four
combinations. Within each group, A3 and A2 remain constant, while A1 and A0 change
their values. Also, in each group, same combination is repeated for A1 and A0 (i.e.
00→01→10→11)

Figure 2: Combinations with 4 variables

Thus we can use a 2-to-4 decoder for each of the groups, giving us a total of four
decoders (since we have sixteen outputs; each decoder would give four outputs). To each
decoder, A1 and A0 will go as the input.

A fifth decoder will be used to select which of the four other decoders should be
activated. The inputs to this fifth decoder will be A3 and A2. Each of the four outputs of
this decoder will go to each enable of the other four decoders in the “proper order”.

This means that line 0 (representing A3A2 = 00) of decoder ‘5’ will go to the enable of
decoder ‘1’. Line 1 (representing A3A2 = 01) of decoder ‘5’ will go to the enable of
decoder ‘2’ and so on.

Thus a combination of A3 and A2 will decide which “group” (decoder) to select, while the
combination of A1 and A0 will decide which output line of that particular decoder is to be
selected.

Moreover, the enable input of decoder ‘5’ will be connected to logic switch, which will
provide logic 1 value to activate the decoder.

Figure 3: Constructing 4-to-16 decoder using 2-to-4 decoders

Decoder example: “Activate” line D2. The corresponding input combination that
would activate this line is 0010. Now apply 00 at input of decoder ‘5’. This activates line
‘0’ connected to enable of decoder ‘1’. Once decoder ‘1’ is activated, inputs at A1A0 =
10 activate line D2.
Thus we get the effect of a 4-16 decoder using this design, by applying input
combinations in two steps.

As another example, to “activate” the line D10: The corresponding input combination is
1010. Apply 10 at the input of decoder ‘5’. This activates line ‘2’ connected to enable of
decoder ‘3’. Once decoder ‘3’ is activated, the inputs at A1A0 = 10 activate line D10.

Given two 4-bit unsigned numbers A and B, design a circuit which outputs
the larger of the 2 numbers.

Here we will use Quad 2-1 Mux, and a 4-bit magnitude comparator. Both of these
devices have been discussed earlier. The circuit is given in the figure

Since we are to select one of the two 4-bit numbers A (A3A2A1A0) and B (B3B2B1B0), it
is obvious that we will need a quad 2-1 Mux.

The inputs to this Mux are the two 4-bit numbers A and B.

The select input of the Mux must be a signal which indicates the relative magnitude of
the two numbers A and B. This signal may be True if A<B or if A>B.

Such signal is easily obtained from a 4-bit magnitude comparator.

Figure 4: Circuit that outputs the larger of two numbers

By connecting the select input to the A<B output of the magnitude comparator, we must
connect A to the 0 input of the Mux and B to the 1 input of the Mux . Alternatively, if we
connect the select input to the A>B output of the magnitude comparator, we must connect
A to the 1 input of the Mux and B the 0 input of the Mux . In either case, the Mux output
will be the larger of the two numbers

Designing a 16-bit adder using four 4-bit adders
Adds two 16-bit numbers X (X0 to X15), and Y (Y0 to Y15) producing a 16-bit Sum S (S0
to S15) and a carry out C16 as the most significant position. Thus, four 4-bit adders are
connected in cascade.

Each adder takes four bits of each input (X and Y) and generates a 4-bit sum and a carry
that is fed into the next 4-bit adder as shown in Figure 5.

Figure 5: A 16-bit adder

Designing an Excess-3 code converter using a Decoder and an Encoder

In this example, the circuit takes a BCD number as input and generates the corresponding
Ex-3 code. The truth table for this circuit is given in figure 6.
The outputs 0000, 0001, 0010, 1101, 1110, and 1111 are never generated (Why?)

To design this circuit, a 4-to-16 decoder and a 16-to-4 encoder are required. The design is
given in figure 7. In this circuit, the decoder takes 4 bits as inputs, represented by
variables w, x, y, and z. Based on these four bits, the corresponding minterm output is
activated. This decoder output then goes to the input of encoder which is three greater
than the value generated by the decoder.

The encoder then encodes the value and sends the output bits at A, B, C, and D. For
example, suppose 0011 is sent as input. This will activate minterm 3 of the decoder. This

output is connected to input 6 of encoder. Thus the encoder will generate the
corresponding bit combination, which is 0110.

Figure 6: table for BCD to Ex-3 conversion

Figure 7: Circuit for BCD to Ex-3 conversion

Sequential Circuits
Objective

 In this lesson, you will learn about:

1. Sequential Circuits, Synchronous Sequential Circuits and Memory
Elements.

2. Clocked RS, D, JK, & T latches with their analysis.

3. Characteristic and excitation behavior of these latches.

Introduction

 This is an introductory lesson on sequential logic circuits.

 The general block diagram of a combinational circuit is shown in Figure 1.

 A Combinational logic circuit consists of input variables (X), logic gates
(Combinational Circuit), and output variables (Z).

Figure 1: General Block Diagram of a Combinational Circuit

 Unlike combinational circuits, sequential circuits include memory elements
(See Figure 2).

 The memory elements are circuits capable of storing binary information.

 The binary information stored in these memory elements at any given time

defines the state of the sequential circuit at that time.

 The outputs, Z, of a sequential circuit depends both on the present inputs, X,
and the present state Y (i.e., information stored in the memory elements).

 The next state of the memory elements also depends on the inputs X and the

present state Y.

Figure 2: General Block Diagram of a Sequential Circuit

Sequential Adder

 To best understand sequential circuits, let’s re-visit a known iterative circuit, a
4-bit combinational ripple carry adder (See Figure 3).

 The combinational circuit of a 4-bit ripple carry adder comprises 4-full adders.

The inputs to the circuit are a single-bit carry-in (CIN) & two 4-bit numbers A
& B. This circuit produces a 4-bit sum S & a single-bit carry-out (COUT).

Figure 3: 4-bit Ripple-Carry Adder

 We can notice that all 4-bits of the sum are not computed at the same instance

of time. The 1st stage produces the LSB of the sum, S0, and an intermediate
carry C0 using CIN and the LSB of A & B (A0, B0).

 The 2nd stage, using the intermediate carry C0 along with A1 and B1, produces

the 2nd bit of the sum, S1. In this way, the intermediate carry propagates
through the stages of the adder & each stage, on the arrival of this carry,
produces its corresponding bit of final sum S.

 We observe that only one stage is active during the computation of the sum.

Based on this observation, we can make an n-bit adder using only one stage

full-adder as shown in Figure 4.

Figure 4: 4-bit Sequential Adder

 However, we need a single-bit memory element to temporarily store the value

of the intermediate carry.

 Two 4-bit memory elements are used to store bit-vectors A and B while a
single-bit memory element is used to store the intermediate carry.

 As we have only one full adder, it will take four instances of time to add the

corresponding bits of A and B.

 We notice here that the sequential adder has one memory element, which
stores the state of the circuit as carry. These states define the condition of
having a carry or no carry.

 In other words, to define 2-states (0 and 1) in a sequential circuit, we require 1

memory element. In general, for an n-state circuit we require log2n memory
elements.

 We also notice that to move from one state to another, we need a periodic

signal, which we called the Clock, to synchronize the activity.

Synchronous & Asynchronous Sequential Circuits

 There are two main types of sequential circuits. Their classification depends
on the timing of their signals.

 Synchronous sequential circuits are systems whose behaviors can be defined

from the knowledge of their signals at discrete instants of time.

 While the behavior of asynchronous sequential circuits depends upon the
order in which their input signals change at any instant of time.

 Synchronous sequential logic systems must employ signals that affect the
memory elements only at discrete instants of time.

 To achieve this goal, a timing device called a master-clock generator is used to

generate a periodic train of Clock pulses.

 These clock pulses are distributed throughout the system in such a way that
memory elements are affected only with arrival of the Clock pulse.

Memory Elements

 A basic memory element, as shown in Figure 5 (a), is the latch.

 A latch is a circuit capable of storing one bit of information.

 The latch circuit consists of two inverters; with the output of one connected to
the input of the other.

 The latch circuit has two outputs, one for the stored value (Q) and one for its

complement (Q').

 Figure 5 (b) shows the same latch circuit re-drawn to illustrate the two
complementary outputs.

 The problem with the latch formed by NOT gates is that we can't change the

stored value. For example, if the output of inverter B has logic 1, then it will
be latched forever; and there is no way to change this value.

Figure 5: Simple Latch

SR Latch

 Recall that a NOT gate can alternatively be expressed using NAND and NOR
gates as shown in Figure 6 (a).

 Using NOR gates, we can obtain the latch circuit shown in Figure 6 (b).

 This latch has two outputs, Q and Q', and two inputs S and R.

 This type of latches is sometimes called a cross-coupled SR latch or simply

SR latch.

Figure 6: (a) Alternative forms of NOT gate (b) Basic SR latch with NOR gates

Table 1: Functional Table of the Basic SR Latch with NOR Gates

S R Q Q’
1 0 1 0

0 0 1 0
Set State

0 1 0 1

0 0 0 1
Reset State

1 1 0 0 Undefined

 The SR latch has two main states: set and reset (See Table 1).

 When output Q=1 and Q'=0, the latch is said to be in the set state; and when
Q=0 and Q'=1, it is in the reset state.

 When the input S=0 and R=0, the SR latch remains in its current state (i.e. set

or reset). In this case, the values of Q and Q' are latched forever.

 When the SR latch is in the set state, we can change the state to the
reset state by making R=1.

 Similarly, the state of the SR latch can be changed from reset to set by making

S=1.

 If a 1 is applied to both inputs of the SR latch, both outputs go to 0.

 This produces an undefined state, because it violates the requirement that the

outputs be complement of each other.

 It also results in an indeterminate next state when both inputs return to 0
simultaneously as shown in the figure.

 In normal operation, these problems are avoided by making sure that 1's are

not applied to both inputs simultaneously.

SR Latch with NAND Gates

 The SR latch with two cross-coupled NAND gates is shown in Figure 7.

 It operates with both inputs normally at 1, unless the state of the latch has to
be changed (See Table 2).

 With both inputs at 1, applying 0 to the S input causes the output Q to go to 1

(i.e. set state).

 In the same way, applying 0 to the R input causes the output Q to go to 0 (i.e.
reset state).

 The condition that undefined for this NAND latch is when both inputs are

equal to 0 at the same time, which causes both outputs Q and Q’ to go to 1.

Figure 7: Basic SR LATCH with NAND Gates

Table 2: Functional Table of the Basic SR Latch with NAND Gates

S R Q Q’
0 1 1 0

1 1 1 0
Set State

1 0 0 1

1 1 0 1
Reset State

0 0 0 0 Undefined

Clocked SR Latch

The operation of the basic SR latch can be modified by providing an
additional control input (clock) that determines when the state of the latch can
be changed.

An SR latch with a control input C is shown in Figure 8.

It consists of the basic SR latch with two additional AND gates.

The control input C acts as an enable signal to the latch (See Table 3).

When C=0, the S and R inputs have no effect on the latch, so the latch will
remain in the same state regardless of the values of S and R.

When C=1, the S and R inputs will have the same effect as in the basic SR
latch.

Figure 8: Clocked SR Latch

Table 3: Functional Table of Clocked SR Latch

C S R Next State of Q
0 X X No Change

1 0 0 No Change

1 0 0 Q = 0; Reset State

1 1 0 Q = 0; Set State

1 1 1 Undefined

Characteristic Table of the SR Latch

The characteristic (behavior) of the sequential circuit defines its logical
property by specifying the next states when the inputs and the present states
are known. The characteristic of the RS latch is shown in Table 4.

The characteristic table can also be represented algebraically using what is
known as a characteristic equation.

The characteristic equation is derived using the K-Map as shown in Figure 9.

X’s mark the two indeterminate states in the map in Figure 9, since their
inputs are never allowed (Recall “Don’t Cares”).

Note that the condition S.R = 0 must also be included as both S and R cannot
simultaneously be 1.

The characteristic equations are used in the analysis of sequential circuits.

Table 4: Characteristic Table of SR Latch

Q(t) S R Q(t + 1)
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 Indeterminate
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 Indeterminate

Figure 9: Characteristic Equation of the SR Latch

Excitation Table of the SR Latch

 During the design process we usually know the transition from present state to
next state and wish to find the latch input conditions that will cause the
required transition.

 For this reason, we need a table that lists the required inputs for a given

change of state. Such a table is called an excitation table, and it specifies the
excitation behavior of the sequential circuits. These are used in the synthesis
(design) of sequential circuits, which we shall see later.

 The excitation of the SR latch is given in Table 5.

Table 5: Excitaion table of the SR latch

Q(t) Q(t+1) S R
0 0 0 X
0 1 1 0
1 0 0 1
1 1 X 0

Clocked D-Latch

 One way to eliminate the undesirable undefined state in the SR latch is to
ensure that the inputs S and R are never equal to 1 at the same time.

 This is done in the D latch shown in Figure 10.

 This latch has only two inputs D (Data) and C (Clock). Note that D is applied

directly to the set input S, and its complement is applied to the reset input R.

Figure 10: Clocked D Latch

 As long as the clock input C = 0, the SR latch has both inputs equal to 0 and it

can’t change its state regardless of the value of D (See Table 6).

 When C is 1, the latch is placed in the set or reset state based on the value of
D.

 If D = 1, the Q output goes to 1.

 If D = 0, the Q output goes to 0.

 The characteristic table and the characteristic equation of a D latch are
illustrated in Table 7 and Figure 11 respectively.

Table 6: Functional Table of the D-Latch

C D Next State of Q
0 X No Change

1 0 Q = 0; Reset State

1 1 Q = 1; Set State

Table 7: Characteristic Table of the D-Latch

Q(t) D Q(t + 1)
0 0 0
0 1 1
1 0 0
1 1 1

Figure 11: Characteristic Equation of the D-Latch

Clocked JK-Latch

The clocked JK latch is shown in Figure 12. Note the feedback path from the
outputs Q and Q’ to the AND gates at the input.

JK latch is an improvement over the SR latch in the sense that it does not have
any indeterminate states.

Inputs J and K behave like S and R of the SR latch. J and K set and clear the
state of the latch, respectively.

Figure 12: Clocked JK-Latch

The functional table of the clocked JK-Latch is illustrated in Table 8.

If both J and K are made high (recall that both S and R cannot be made high at
the same time) then the latch switches to its complement state, that is, if Q=1
then it switches to Q=0, and vice versa.

Output Q is ANDed with K and C inputs so that the latch is cleared during a
clock pulse only if Q was previously 1.

Similarly, Q’ is ANDed with J and C inputs so that the latch is set with a clock
pulse only if Q’ was previously 1.

The JK latch behaves exactly like the SR latch, except when both J and K are
1.

Characteristic table and characteristic equation of the JK-Latch are shown in
Table 8 and Figure 13 respectively.

Table 8: Functional Table of the Clocked JK-Latch

C J K Next State of Q

0 X X Q (No Change)

1 0 0 Q (No Change)

1 0 1 0 (Reset State)

1 1 0 1 (Set State)

1 1 1 Q’ (Complement)

Table 9: Characteristic Table of the JK-Latch

Q(t) J K Q(t + 1)

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

Figure 13: Characteristic Equation of the JK-Latch

Excitation table of the JK-Latch are illustrated in Table 9.

When both states, present and the next one are to be 0, then the J input must
remain at 0 and the K input can be either 0 or 1 (i.e., X).

Similarly, when both present state and the next state are 1, the K input must
remain at 0 while J input can be 0 or 1 (i.e., X).

If the latch is to have a transition from the 0-state to 1-state, J must be equal to
1 since the J input sets the latch. However, input K may be either 0 or 1.

Similarly, for a 1-to-0 transition, K must be set to 1 and J can be either 0 or a
1.

Table 10: Excitaion Table of the JK-Latch

Q(t) Q(t+1) J K

0 0 0 X

0 1 1 X

1 0 X 1

1 1 X 0

Clocked T-Latch

The T latch is a single-input version of the JK latch. It is obtained by tying
both the inputs J and K together as shown in Figure 14. The name comes from
the ability of the latch to “toggle” or change the state.

Figure 14: Clocked T-Latch

Observe that when T=1, regardless of the present state, the latch toggles or
changes to the complement state when the clock pulse occurs (See Table 11).

Table 11: Functional Table of the Clocked T-Latch

C T Next State of Q
0 X No Change

1 0 No Change

1 1 Q’

The toggling effect can be seen more clearly in the characteristic behavior of
the T-Latch (See Table 12 and Figure 15). Notice that when T = 0, the state of
the latch remains unchanged.

Table 12: Characteristic Table of the T-Latch

Q(t) T Q(t + 1)
0 0 0
0 1 1
1 0 1
1 1 0

Figure 15: Characteristic Equation of the T-Latch

The excitation table of the T-Latch is illustrated in Table 12.

Note that when the state of the latch must remain the same, the requirement is
that T = 0. When the state of the latch has to be complemented, T must equal
1, as summarized in the excitation table.

Table 13: Excitation Table of the T-Latch

Q(t) Q(t + 1) T
0 0 0
0 1 1
1 0 1
1 1 0

Problem with the Level Triggered JK and T latches

In JK latch, with J = 1 and K = 1 the state of the latch toggles. However, if the
clock signal remains at 1 (while J = K = 1), the output will go in repeated
transitions; this is an undesirable oscillating effect. And when clock goes to 0,
output will be latched to an unknown state.

To avoid this undesirable operation the clock pulse must have pulse duration,
which is shorter than the propagation delay of the signal through the latch.
This however is not at all acceptable since the operation of the circuit will then
depend on the width of the clock pulse and/or the delay through the latch.

For this reason, JK latches are never constructed as discussed above. The
restriction on the pulse width can be eliminated with a master-slave or edge-
triggered construction described in the next lesson. The same reasoning
applies to the T latch.

Flip-Flops

Objectives

 The objectives of this lesson are to study:

1. Latches versus Flip-Flops

2. Master-Slave Flip-Flops

3. Timing Analysis of Master-Slave Flip-Flops

4. Different Types of Master-Slave Flip-Flops

5. Propagation Delay

Problem with Latches

 A latch is a level sensitive device.

 Because of this the state of the latch may keep changing in circuits with feedback as long

as the clock pulse remains active.

 Thus, instead of having output change once in a clock cycle, the output may change a

number of times resulting in latching of unwanted input to the output.

 Due to this uncertainty, latches can not be reliably used as storage elements.

Solution to this Problem

 To overcome this problem of undesired toggling, we need to have a mechanism in which

we have higher degree of control on the output of the memory element when the clock
pulse changes.

 This is achieved by introducing a special clock-edge detection logic, such that the state of

the memory element is switched by a momentary change in the clock pulse (i.e. an edge).

 This is effective because the clock changes only once during a clock period.

 Such a memory element is "edge-sensitive", i.e., it changes its state at the rising or falling

edge of a clock.

 Edge-sensitive memory elements are called Flip-Flops.

 Figure 1 shows the standard graphic symbols for positive and negative edge triggered

Flip-Flops.

Figure 1: Graphic Symbols of Edge-Triggered Flip-Flops

Master-Slave Flip-Flops

 The simplest way to build a flip-flop is by using two latches in a ‘Master-Slave’

configuration as shown in Figure 2.

 In this configuration, one latch serves as the master receiving the external inputs and the

other as a slave, which takes its inputs from the master.

 When the clock pulse goes high, information at S and R inputs is transmitted to master.

 The slave flip-flop however remains isolated since its control input C is 0.

 Now when the clock pulse returns to ‘0’, the master gets disabled and blocks the external

inputs to get to its outputs whereas slave gets enabled and passes the latched information
to its outputs.

Figure 2: Block diagram of SR Master-Slave Flip-Flop

Timing Analysis of Master-Slave Flip-Flop

 Now let's view the operation of the master-slave flip-flop by analyzing its timing wave

forms (See Figure 3).

 Consider a master-slave flip-flop in the clear state (i.e. Y=0 and Q=0) prior to the

occurrence of a pulse.

 The inputs S=1 and R=0 are applied. So when the clock goes high, the output of the

master latch will change to the set state, while the slave latch remains disabled.

 When the clock returns to 0, the master latch is disabled and the slave latch is enabled.

 Thus, the data at the slave's input when the clock was high gets latched at the slave's

output.

Figure 3: Timing wave form of SR Master-Slave Flip-Flop

Different Types of Master-Slave Flip-Flops

Master-Slave JK-FF

 The SR flip-flop can be modified to a JK flip-flop to eliminate the undesirable condition

that leads to undefined outputs and indeterminate behavior.

 A Master-Slave JK Flip-Flop is shown in the Figure 4.

 Here, the output gets complemented when both J and K inputs are high.

Figure 4: JK Master-Slave Flip-Flop

D-Type Positive-Edge-Triggered FF

 The logic diagram of a positive edge triggered D-type flip-flop is shown in the Figure 5.

 This flip-flop takes exactly the form of a master-slave flip-flop, with the master a D latch

and the slave an SR latch. Also, an inverter is added to the clock input of the master latch.

 Because the master latch is a D latch, the flip-flop exhibits edge-triggered rather than
master-slave (pulse-triggered) behavior.

Figure 5: D-Type Positive-Edge-Triggered FF

Propagation Delay

 In digital logic, every gate has got some finite amount of delay because of which the

change in the output is not instantaneous to the change in the input.

 In simple terms, the times it takes for an input to appear at the output is called the

propagation delay.

 In Figure 6, tPHL, describes the time it takes for an input to cause the output to change

from logic-level-high to logic-level-low.

 Similarly, tPLH, refers to the delay associated when an input change causes the output to

change from logic-level-low to logic-level-high.

 The overall delay is average of these two delays.

Figure 6: Propagation Delay

Setup and Hold Times

 For correct operation of logic gates we need to satisfy some timing constrains regarding

application of inputs and collecting of their outputs.

 Setup time (Ts) refers to a constant duration for which the inputs must be held prior to the

arrival of the clock transition (See Figure 7).

 Once the inputs are properly set, it must be kept for some time for their proper reading-in

by the gate once the transition signal is triggered.

 Hold time (Th) refers to the duration for which the inputs must not change after the

arrival of the transition (See Figure 7).

 If the setup and hold times are violated, a gate may produce an unknown logic signal at its

output. This condition is called as meta-stability.

Figure 7: Setup and Hold Times

Propagation Delay

 To set or clear flip-flops asynchronously (i.e., without the use of clock and inputs) some

flip-flops have direct inputs usually called direct preset or direct clear.

 These inputs are needed to bring the flip-flops to a known initial state prior to the normal

clocked operation.

 A direct preset input, sets the output of a flip-flop to some known value, asynchronously,

for example logic-1 or logic-0.

 A direct clear switch clears or resets all the flip-flops to logic value-0.

 Figure 8 shows the graphical symbol of a negative-edge-triggered JK-flip-flop with a

direct clear.

Figure 8: Negative-edge-triggered JK Flip-Flop with Asynchronous Clear

Design of Synchronous Sequential Circuits

Objectives

1. Design of synchronous sequential circuits with an example.

2. Construction of state diagrams and state tables/

3. Translation of State transition table into excitation table.

4. Logic diagram construction of a synchronous sequential circuit

Sequential Circuit Design Steps

 The design of sequential circuit starts with verbal specifications of the problem (See

Figure 1).

Figure 1: Sequential Circuit Design Steps

 The next step is to derive the state table of the sequential circuit. A state table
represents the verbal specifications in a tabular form.

 In certain cases state table can be derived directly from verbal description of the

problem.

 In other cases, it is easier to first obtain a state diagram from the verbal description
and then obtain the state table from the state diagram.

 A state diagram is a graphical representation of the sequential circuit.

 In the next step, we proceed by simplifying the state table by minimizing the number

of states and obtain a reduced state table.

 1

 The states in the reduced state table are then assigned binary-codes. The resulting
table is called output and state transition table.

 From the state transition table and using flip-flop’s excitation tables, flip-flops input

equations are derived. Furthermore, the output equations can readily be derived as
well.

 Finally, the logic diagram of the sequential circuit is constructed.

 An example will be used to illustrate all these concepts.

Sequence Recognizer

 A sequence recognizer is to be designed to detect an input sequence of ‘1011’. The
sequence recognizer outputs a ‘1’ on the detection of this input sequence. The
sequential circuit is to be designed using JK and D type flip-flops.

 A sample input/output trace for the sequence detector is shown in Table 1.

Table 1: Sample Input/Output Trace

Input 0 1 1 0 1 0 1 1 0 1 1 1 0 1 0 1 1 1 0 0
Output 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0

 We will begin solving the problem by first forming a state diagram from the verbal
description.

 A state diagram consists of circles (which represent the states) and directed arcs that

connect the circles and represent the transitions between states.

 In a state diagram:

1. The number of circles is equal to the number of states. Every state is given a
label (or a binary encoding) written inside the corresponding circle.

2. The number of arcs leaving any circle is 2n

,
 where n is the number of inputs of

the sequential circuit.

3. The label of each arc has the notation x/y, where x is the input vector that
causes the state transition, and y is the value of the output during that present
state.

4. An arc may leave a state and end up in the same or any other state.

 2

 Before we begin our design, the following should be noted.

1. We do not have an idea about how many states the machine will have.

2. The states are used to “remember” something about the history of past inputs.

For the sequence 1011, in order to be able to produce the output value 1 when
the final 1 in the sequence is received, the circuit must be in a state that
“remembers” that the previous three inputs were 101.

3. There can be more than one possible state machine with the same behavior.

Deriving the State Diagram

Let us begin with an initial state (since a state machine must have at least one state)
and denote it with ‘S0’ as shown in Figure 2 (a).

Two arcs leave state ‘S0’ depending on the input (being a 0 or a 1). If the input is a 0,
then we return back to the same state. If the input is a 1, then we have to remember it
(recall that we are trying to detect a sequence of 1011). We remember that the last
input was a one by changing the state of the machine to a new state, say ‘S1’. This is
illustrated in Figure 2 (b).

‘S1’ represents a state when the last single bit of the sequence was one. Outputs for
both transitions are zero, since we have not detected what we are looking for.

Again in state ‘S1’, we have two outgoing arcs. If the input is a 1, then we return to
the same state and if the input is a 0, then we have to remember it (second number in
the sequence). We can do so by transiting to a new state, say ‘S2’. This is illustrated
in Figure 2 (c).

Note that if the input applied is ‘1’, the next state is still ‘S1’ and not the initial state
‘S0’. This is because we take this input 1 as the first digit of new sequence. The
output still remains 0 as we have not detected the sequence yet.

State ‘S2’ represents detection of ‘10’ as the last two bits of the sequence. If now the
input is a ‘1’, we have detected the third bit in our sequence and need to remember it.
We remember it by transiting to a new state, say ‘S3’ as shown in Figure 2 (d). If the
input is ‘0’ in state ‘S2’ then it breaks the sequence and we need to start all over
again. This is achieved by transiting to initial state ‘S0’. The outputs are still 0.

In state ‘S3’, we have detected input sequence ‘101’. Another input 1 completes our
detection sequence as shown in Figure 2 (e). This is signaled by an output 1. However
we transit to state ‘S1’ instead of ‘S0’ since this input 1 can be counted as first 1 of a
new sequence. Application of input 0 to state ‘S3’ means an input sequence of 1010.
This implies the last two bits in the sequence were 10 and we transit to a state that
remembers this input sequence, i.e. state ‘S2’. Output remains as zero.

 3

Figure 2: Deriving the State Diagram of the Sequence Recognizer

Deriving the State Table

A state table represents time sequence of inputs, outputs, and states in a tabular form.
The state table for the previous state diagram is shown in Table 2.

The state table can also be represented in an alternate form as shown in Table 3.

Here the present state and inputs are tabulated as inputs to the combinational circuit.
For every combination of present state and input, next state column is filled from the
state table.

The number of flip-flops required is equal to log2(number of states).

 4

Thus, the state machine given in the figure will require two flip-flops log2(4)=2. We
assign letters A and B to them.

Table 2: State Table of the Sequence Recognizer

Next State Output Present
State X=0 X=1 X=0 X=1

S0 S0 S1 0 0
S1 S2 S1 0 0
S2 S0 S3 0 0
S3 S2 S1 0 1

Table 3: Alternative Format of Table 2

Inputs of
Combinational Circuit
Present State Input

Next State Output

S0 0 S0 0
S0 1 S1 0
S1 0 S2 0
S1 1 S1 0
S2 0 S0 0
S2 1 S3 0
S3 0 S2 0
S3 1 S1 1

State Assignment

The states in the constructed state diagram have been assigned symbolic names rather
than binary codes.

It is necessary to replace these symbolic names with binary codes in order to proceed
with the design.

In general, if there are m states, then the codes must contain n bits, where 2n ≥ m, and
each state must be assigned a unique code.

There can be many possible assignments for our state machine. One possible
assignment is show in Table 4.

Table 4: State Assignment

State Assignment
S0 00
S1 01
S2 10
S3 11

The assignment of state codes to states results in state transition table as shown.

 5

It is important to mention here that the binary code of the present state at a given time
t represents the values stored in the flip-flops; and the next-state represents the values
of the flip-flops one clock period later, at time t+1.

Table 5: State Transition Table

Inputs of
Combinational Circuit
Present State Input

Next State Output

A B X A B Y
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 1 0 0
0 1 1 0 1 0
1 0 0 0 0 0
1 0 1 1 1 0
1 1 0 1 0 0
1 1 1 0 1 1

General Structure of Sequence Recognizer

The specifications required using JK and D type flip-flops.

Referring to the general structure of sequential circuit shown in Figure 3, our
synthesized circuit will look like that as shown in the figure. Observe the feedback
paths.

Figure 3: General Structure of the Sequenc Recognizer

What remains to be determined is the combinational circuit which specifies the
external outputs and the flip-flop inputs.

The state transition table as shown can now be expanded to construct the excitation
table for the circuit.

 6

Since we are designing the sequential circuit using JK and D type flip-flops, we need
to correlate the required transitions in state transition table with the excitation tables
of JK and D type-flip-flops.

The functionality of the required combinational logic is encapsulated in the excitation
table. Thus, the excitation table is next simplified using map or other simplification
methods to yield Boolean expressions for inputs of the used flip-flops as well as the
circuit outputs.

Deriving the Excitation Table

The excitation table (See Table 6) describes the behavior of the combinational portion
of sequential circuit.

Table 6: Excitation Table of the Sequence Recognizer

Present
State Input Flip-flops

 Inputs
A B X A B Y JA KA DB
0 0 0 0 0 0 0 X 0
0 0 1 0 1 0 0 X 1
0 1 0 1 0 0 1 X 0
0 1 1 0 1 0 0 X 1
1 0 0 0 0 0 X 1 0
1 0 1 1 1 0 X 0 1
1 1 0 1 0 0 X 0 0
1 1 1 0 1 1 X 1 1

For deriving the actual circuitry for the combinational circuit, we need to simplify the
excitation table in a similar way we used to simplify truth tables for purely
combinational circuits.

Whereas in combinational circuits, our concern were only circuit outputs; in
sequential circuits, the combinational circuitry is also feeding the flip-flops inputs.
Thus, we need to simplify the excitation table for both outputs as well as flip-flops
inputs.

We can simplify flip-flop inputs and output using K-maps as shown in Figure 4.

Finally the logic diagram of the sequential circuit can be made as shown in Figure 5.

 7

Figure 4: Input Equations of the Sequence Recognizer

Figure 5: Circuit Diagram of the Sequence Recognizer

 8

Analysis of Clocked Sequential Circuits
Objectives

The objectives of this lesson are as follows:

 Analysis of clocked sequential circuits with an example

 State Reduction with an example

 State assignment

 Design with unused states

 Unused state hazards

Figure 1: Sequential Circuit Design Steps

The behavior of a sequential circuit is determined from the inputs, outputs and states of its
flip-flops.

Both the outputs and the next state are a function of the inputs and the present state.

Recall from previous lesson that sequential circuit design involves the flow as shown.

 1

Analysis consists of obtaining a state-table or a state-diagram from a given sequential circuit
implementation. In other words analysis closes the loop by forming state-table from a given
circuit-implementation.

We will show the analysis procedure by deriving the state table of the example circuit we
considered in synthesis. The circuit is shown in Figure.

Figure 2: A Clocked sequential circuit

The circuit has

 Clock input, CP.
 One input x
 One output y
 One clocked JK flip-flop
 One clocked D flip-flop (the machine can be in maximum of 4 states)

A State table is representation of sequence of inputs, outputs, and flip-flop states in a tabular
form. Two forms of state tables are shown (In this lesson, the second form will be used).

Figure 3: State Table: Form 1

Analysis is the generation of state table from the given sequential circuit.

The number of rows in the state table is equal to 2 (number of flip-flops+ number of inputs). For the circuit
under consideration, number of rows = 2(2+1) = 2(3) = 8

 2

Figure 4: State Table - Form 2

In the present case there are two flip-flops and one input, thus a total of 8 rows as shown in
the table.

Figure 5: State Table

The analysis can start from any arbitrary state. Let us start deriving the state table from the
initial state 00.

As a first step, the input equations to the flip-flops and to the combinational circuit must be
obtained from the given logic diagram. These equations are:

JA = BX’
KA = BX + B’X’
DB = X
y = ABX

The first row of the state-table is obtained as follows:

When input X = 0; and present states A = 0 and B = 0 (as in the first row);

then, using the above equations we get:

y = 0, JA= 0, KA = 1, and DB = 0.

The resulting state table is exactly same from which we started our design example. Thus
analysis is opposite to design and combined they act as a closed loop.

 3

State Reduction
The problem of state reduction is to find ways of reducing the number of states in a
sequential circuit without altering the input-output relationships.

In other words, to reduce the number of states, redundant states should be eliminated. A
redundant state Si is a state which is equivalent to another state Sj.

Two states are said to be equivalent if, for each member of the set of inputs, they give exactly
the same output and send the circuit either to the same state or to an equivalent state.

Since ‘m’ flip-flops can describe a state machine of up to 2m states, reducing the number of
states may (or may not) result in a reduction in the number of flip-flops. For example, if the
number of states are reduced from 8 to 5, we still need 3 flip-flops.

However, state reduction will result in more don’t care states. The increased number of don’t
care states can help obtain a simplified circuit for the state machine.

Consider the shown state diagram.

Figure 6: State Diagram

The state reduction proceeds by first tabulating the information of the state diagram into its
equivalent state-table form (as shown in the table)

The problem of state reduction requires identifying equivalent states. Each N states is
replaced by 1 state.
Consider the following state table.

States ‘g’ and ‘e’ produce the same outputs, i.e. '1' and ‘0’, and take the state machine to
same next-states, ‘a’ and ‘f’, on inputs ‘0’ and ‘1’ respectively. Thus, states 'g' and 'e' are
equivalent states.

 4

We can now remove state ‘g’ and replace it with ‘e’ as shown.

We next note that the above change has caused the states ‘d’ and ‘f’ to be equivalent. Thus in
the next step, we remove state ‘f’ and replace it with ‘d’.

There are no more equivalent states remaining. The reduced state table results in the
following reduced state diagram.

Figure 7: State Table after reduction

States Assignment

When constructing a state diagram, variable names are used for states as the final number of
states is not known a priori.

Once the state diagram is constructed, prior to implementation (using gates and flip-flops),
we need to perform the step of 'state reduction'.

The step that follows state reduction is state assignment. In state assignment, binary patterns
are assigned to state variables.

Figure 8: Possible state assignments

For a given machine, there are several state assignments possible. Different state assignments
may result in different combinational circuits of varying complexities.

State assignment procedures try to assign binary values to states such that the cost
(complexity) of the combinational circuit is reduced. There are several heuristics that attempt
to choose good state assignments (also known as state encoding) that try to reduce the
required combinational logic complexity, and hence cost.

As mentioned earlier, for the reduced state machine obtained in the previous example, there
can be a number of possible assignments. As an example, three different state assignments
are shown in the table for the same machine.

We use ad-hoc state assignments in this lesson.

 5

Design with unused states

There are occasions when a sequential circuit, implemented using m flip-flops, may not
utilize all the possible 2m states

Figure 9: Reduced table with binary assignments

In the previous example of machine with 5 states, we need three flip-flops. Let us choose
assignment 1, which is binary assignment for our sequential machine example (shown in the
table).

The unspecified states can be used as don’t-cares and will therefore help in simplifying the
logic.

The excitation table of previous example is shown. There are three states, 000, 110, and 111
that are not listed in the table under present state and input.

Figure 10: Excitation Table

With the inclusion of input 1 or 0, we obtain six don’t-care minterms: 0, 1, 12, 13, 14, and 15.

 6

Figure 11: K-Maps

The K-maps of SA and RA is shown in the figure. Other K-Maps can be obtained similarly
and the equations derived are shown in the figure.

The logic diagram thus obtained is shown in the figure.

 7

Figure 12: Logic Diagram

Figure 13: Equations

Note that the design of the sequential circuit is dependent on binary codes for states. A
different binary state codes set may have resulted in some different combinational circuit.

Unused States Hazard

Sequential circuits with unused states can cause the circuit to produce erroneous behavior.

This may happen when the circuit enters one of the unused states due to some reason, e.g. due
to power-on, and continues cycling between the invalid states.

 8

Thus, a circuit that is designed must be carefully analyzed to ensure that it converges to some
valid state.

Consider the circuit of the previous example that employed three unused states 000, 110 and
111. We will now investigate its behavior if it enters in any of these states.

The state diagram (from previous example) is shown in the figure. We will use the state
diagram to derive next state from each of the unused states and derive the state table.

Figure 14: State Diagram

For instance, the circuit enters unused state 000.

On application of input 0, ABCx = 0000, from the equations (figure), we see that this
minterm is not included in any function except for SC, i.e., the set input of flip-flop C and
output y.

Thus the circuit enters the state ABC = 001 from the unused state 000 when input 0 is
applied.

On the other hand, if the input applied is 1 then ABCx combination = 0001. The maps
indicate that this minterm is included in the functions for SB, RC and y.

Therefore B will be set and C gets cleared.

So the circuit enters next state ABC = 010 when input 1 is applied to unused state 000.

Note that both states 001 and 010 are valid states.

Similar analysis is carried out for all other unused states and the derived state diagram is
formed (shown in the figure).

 9

We note that the circuit converges into one of the valid states if it ever finds itself in one of
the invalid states 000, 110, and 111.

Such a circuit is said to be self-correcting, free from hazards due to unused states.

 10

Mealy and Moore Type Finite State Machines

Objectives

 There are two basic ways to design clocked sequential circuits. These are
using:

1. Mealy Machine, which we have seen so far.
2. Moore Machine.

 The objectives of this lesson are:
1. Study Mealy and Moore machines
2. Comparison of the two machine types
3. Timing diagram and state machines

Mealy Machine

 In a Mealy machine, the outputs are a function of the present state and the
value of the inputs as shown in Figure 1.

 Accordingly, the outputs may change asynchronously in response to any

change in the inputs.

Figure 1: Mealy Type Machine

Mealy Machine

 In a Moore machine the outputs depend only on the present state as shown in
Figure 2.

 A combinational logic block maps the inputs and the current state into the

necessary flip-flop inputs to store the appropriate next state just like Mealy
machine.

 However, the outputs are computed by a combinational logic block whose

inputs are only the flip-flops state outputs.

 1

 The outputs change synchronously with the state transition triggered by the
active clock edge.

Figure 2: Moore Type Machine

Comparison of the Two Machine Types

Consider a finite state machine that checks for a pattern of ‘10’ and asserts
logic high when it is detected.

The state diagram representations for the Mealy and Moore machines are
shown in Figure 3.

The state diagram of the Mealy machine lists the inputs with their associated
outputs on state transitions arcs.

The value stated on the arrows for Mealy machine is of the form Zi/Xi where
Zi represents input value and Xi represents output value.
A Moore machine produces a unique output for every state irrespective of
inputs.

Accordingly the state diagram of the Moore machine associates the output
with the state in the form state-notation/output-value.

The state transition arrows of Moore machine are labeled with the input value
that triggers such transition.

Since a Mealy machine associates outputs with transitions, an output sequence
can be generated in fewer states using Mealy machine as compared to Moore
machine. This was illustrated in the previous example.

 2

Figure 3: Mealy and Moore State Diagrams for '10' Sequence Detector

Timing Diagrams

To analyze Mealy and Moore machine timings, consider the following
problem. A state-machine outputs ‘1’ if the input is ‘1’ for three consecutive
clocks.

Figure 4: Mealy State Machine for '111' Sequence Detector

 3

Mealy State Machine

The Mealy machine state diagram is shown in Figure 4.

Note that there is no reset condition in the state machine that employs two flip-
flops. This means that the state machine can enter its unused state ‘11’ on start
up.

To make sure that machine gets resetted to a valid state, we use a ‘Reset’
signal.

The logic diagram for this state machine is shown in Figure 5. Note that
negative edge triggered flip-flops are used.

Figure 5: Mealy State Machine Circuit Implementation

Timing Diagram for the circuit is shown in Figure 6.

Since the output in Mealy model is a combination of present state and input
values, an unsynchronized input with triggering clock may result in invalid
output, as in the present case.

Consider the present case where input ‘x’ remains high for sometime after
state ‘AB = 10’ is reached. This results in ‘False Output’, also known as
‘Output Glitch’.

 4

Figure 6: Timing Diagram for Mealy Model Sequence Detector

Moore State Machine

The Moore machine state diagram for ‘111’ sequence detector is shown in
Figure 7.

The state diagram is converted into its equivalent state table (See Table 1).

The states are next encoded with binary values and we achieve a state
transition table (See Table 2).

Figure 7: Moore Machine State Diagram

 5

Table 1: State Table

Present Next State Output
Present Next State Output

State x = 0 x = 1 Z
Initial Initial Got-1 0
Got-1 Initial Got-11 0
Got-11 Initial Got-111 0

Got-111 Initial Got-111 1

Table 2: State Transition Table and Output Table

Present Next State Output
State x = 0 x = 1 Z
Initial Initial Got-1 0

Got-1 Initial Got-11 0

Got-11 Initial Got-111 0

Got-111 Initial Got-111 1

We will use JK and D flip-flops for the Moore circuit implementation. The
excitation tables for JK and D flip-flops (Table 3 & 4) are referenced to
tabulate excitation table (See Table 5).

Table 3: Excitation Table for JK flip-flop

Q(t) Q(t+1) J K

0 0 0 X

0 1 1 X

1 0 X 1

1 1 X 0

Table 4: Excitation Table for D flip-flop

Q(t) Q(t+1) D

0 0 0

0 1 1

1 0 0

1 1 1

 6

Table 5: Excitation Table for the Moore Implementation

Inputs of
Comb.Circuits

Outputs of
Comb.Circuit

Present
State Input

Next
State Flip-flop

Inputs

Output

A B X A B JA KA DB Z
0 0 0 0 0 0 X 0 0
0 0 1 0 1 0 X 1 0
0 1 0 0 0 0 X 0 0
0 1 1 1 0 1 X 0 0
1 0 0 0 0 X 1 0 0
1 0 1 1 1 X 0 1 0
1 1 0 0 0 X 1 0 1
1 1 1 1 1 X 0 1 1

Simplifying Table 5 using maps, we get the following equations:

o JA = X.B
o KA = X’
o DB =X(A + B)
o Z = A . B

Note that the output is a function of present state values only.

The circuit diagram for Moore machine circuit implementation is shown in
Figure 8.

The timing diagram for Moore machine model is also shown in Figure 9.

There is no false output in a Moore model, since the output depends only on
the state of the flop flops, which are synchronized with clock. The outputs
remain valid throughout the logic state in Moore model.

Figure 8: Moore Machine Circuit Implementation for Sequence Detector.

 7

Figure 9: Timing Diagram for Moore Model Sequence Detector.

 8

Registers
In this lesson, you will learn about

• Registers
• Registers with Parallel load
• Shift registers
• Shift registers with Parallel Load
• Bi-directional Shift Registers

 Register
A register is a circuit capable of storing data. In general, an n-bit register consists of n
FFs, together with some other logic that allows simple processing of the stored data.

All FFs are triggered synchronously by the same clock signal. In other words, new data
are latched into all FFs at the same time.

Figure 1 shows a 4-bit register constructed with four D-type FFs. In this figure we have:
� Inputs D0 to D3
� Clock
� Clear/
� Outputs Q0 to Q3

The Clock input is common to all the four D FFs. It triggers all FFs on the rising edge of
each clock pulse, and the binary data available at the four D inputs are latched into the
register.

Figure 1: 4-bit register with D flip-flops

• The Clear/ input is an active-low asynchronous input which clears the register
content to all 0’s when asserted low, independent of the clock pulse.

• During normal operation, Clear/ must be maintained at logic 1.
• The transfer of new information into a register is referred to as Loading
• The term Parallel Loading is used if all the input bits are transferred into the

register simultaneously, with the common clock pulse.

In most digital systems, a master clock generator supplies clock pulses to all parts of the
system, just as the heart that supplies a constant beat to all parts in the human system.
Because of this fact, the input values in the register are loaded when a clock pulse arrives.
This implies that, whenever a clock pulse arrives, it would load the register with new
values, thus overwriting the previously stored register data.

Because of this, a problem arises:
Problem: What if the contents of the register are to be left unchanged?
A Solution: The Clock may be prevented from reaching the clock input of the FFs of the
register.
⇒ A separate control signal is used
Another Solution: Inputs D0 to D3 may be prevented from changing their values.
⇒ A control signal is needed for this

Figure 2: Clock gating

This control can be provided by implementing the following function:

Cinputs = Load / + Clock

When Load = 0 ⇒ Cinputs = 1, causing no positive transitions to occur on Cinputs. Thus
contents of the register remain unchanged.

When Load = 1 ⇒ Cinputs = Clock, thus the register is clocked normally.

The above phenomenon is known as Clock gating (Figure 2).
Problem: Different stages of the register will be gated at different time. This may cause
loading of wrong information (known as clock skew).
Solution: Clock gating should be avoided.

Use register with Parallel Load. (Figure 3)
� No clock gating is used.

Figure 3: One stage of Register with Parallel Load

When Load = 1, the data on the input Di is transferred into the D flip-flop with the next
positive transition of clock pulse.
When Load = 0, the data input is blocked, and output Qi gets a path to the D input of the
flip-flop.

Why do we need feedback connection from output to input of D-FF?
� Because D-FF does not have a “no change” input condition. Having the feedback

will cause the next state of the FF (D input) to be equal to present state of the FF,
i.e. no change in state.

Note that there is no Clock gating. Load determines whether to accept new information in
the next clock pulse or not.

A 4-bit register with parallel load is shown.

Q: Can clocked latches be used instead of FFs to implement parallel-load registers?

Figure 4: Shift Registers
A shift register (Figure 4) is capable of transferring data from each FF to the next in one
or the other direction. Each clock pulse causes data shift from one FF to its immediate
neighbor.

The configuration consists of a chain of FFs in cascade, with the output of one FF
connected to the input of the next one.

All FFs receive a common pulse, which activates the shift operation from each stage to
the next.

The serial input SI is the input to the first (leftmost) FF of the chain.

The serial output SO is the output of the last (rightmost) FF of the chain.

The register discussed above is a “shift right” (MS to LS shifting) register. There is also a
“shift left” (LS to MS shifting) register. (Figure 4)

Q: Can clocked latches be used instead of FFs to implement shift registers?

Figure 5: One stage of a shift register with parallel load

A shift register with parallel load capability can be used to input the data bits in parallel
into the shift register and then take the data out in a serial fashion by applying the shift
operation.

Such a register can act as a parallel-to-serial converter, where data can be loaded in
parallel and shifted out serially (bit-by-bit)

It can also act as a serial-to-parallel converter, where data can be shifted in serially (bit-
by-bit) and the output made available in parallel after shifting is complete.

Figure 5 shows a typical stage of a shift register with parallel load. There are two control
signals: Shift and Load. A table showing the operation of the register with respect to the
Shift and Load inputs is also shown in the figure.

If Shift = 0 and Load = 0, red AND gate is enabled, causing the output of the flip-flop to
feed back to its D input.
� A positive transition in the clock loads this input value into the FF⇒ No Change state.

Load condition: If Shift = 0 and Load = 1, the green AND gate is enabled. This causes
the Di input to propagate to its input of the D flip-flop.
� A positive transition of the clock pulse transfers the input data into the FFs;

Shift condition: If Shift = 1 while Load = 0 or 1, the blue AND gate is enabled, while the

other two AND gates are disabled.
� A positive transition of the clock pulse causes the shift operation. That is, the blue

AND gate takes the input from output Qi-1 of previous flip-flop. This is true for all
stages except for the first stage, where, instead, serial input SI is provided

Bidirectional Shift Register (BDSR)

Design a 3-bit shift register which has 4 operating modes. The operating modes are
defined by the status of two select lines S1 and S0. The given table specifies the values of
S1 and S0 and its corresponding operating mode.

Table 1: Modes of BDSR

The design uses 3 stages, where each stage consists of a single multiplexer and a single
D-FF.

The output of each MUX is connected to the input of corresponding D FF.

The MUX select inputs are connected to S1 and S0 to pass the proper signal to the D-FF
input depending on the mode of operation.

When S1 S0 = 00, input 0 of the MUX is selected. This forms a path from the output of
the FF into its own input, which causes the same value to be loaded in the D FF when a
clock pulse is applied. This results in the NO CHANGE operation.

When S1 S0 = 01, input 1 of the MUX is selected. This forms a path from the lower
significant to higher significant bit, resulting in the SHIFT LEFT (i.e. LSB to MSB)
operation.
� The serial input SI is transferred into the rightmost bit in this case.

When S1 S0 = 10, input 2 of the MUX is selected. This forms a path from the higher
significant bit to lower significant bit, resulting in SHIFT RIGHT (i.e. MSB to LSB)
operation.
� The serial input SI is transferred into the leftmost bit (i.e. MSB) in this case.

Finally, when S1 S0 = 11, input 3 of the MUX is selected. On this input, the binary
information on the parallel input line Di is transferred into the FF, resulting in
PARALLEL LOAD operation.

Figure 6: Bi-directional shift register

Counters
In this lesson, the operation and design of Synchronous Binary Counters will be studied.

Synchronous Binary Counters (SBC)
Description and Operation
In its simplest form, a synchronous binary counter (SBC) receives a train of clock pulses
as input and outputs the pulse count (Qn-1 …. Q2 Q1 Q0).

An example is a 3-bit counter that counts from 000 upto 111. Each counter consists of a
number of FFs. (Figure 1)

Figure 1: 3-bit SBC

In synchronous counters, all FFs are triggered by the same input clock.

An n-bit counter has n-FFs with 2n distinct states, where each state corresponds to a
particular count.

Accordingly, the possible counts of an n-bit counter are 0 to (2n-1). Moreover an n-bit
counter has n output bits (Qn-1 …. Q2 Q1 Q0).

After reaching the maximum count of (2n-1), the following clock pulse resets the count
back to 0.

Thus, a 3-bit counter counts from 0 to 7 and back to 0. In other words, the output count
actually equals (Total # of input pulses Modulo 2n).

Accordingly, it is common to identify counters by the modulus 2n. For example, a 4-bit
counter provides a modulo 16 count, a 3-bit counter is a modulo 8 counter, etc.

Referring to the 3-bit counter mentioned earlier, each stage of the counter divides the
frequency by 2, where the last stage divides the frequency by 2n, n being the number of
bits. (Figure 2)

Figure 2: 3-bit SBC

Thus, if the frequency (i.e. no. of cycles/ sec) of clock is F, then the frequency of output
waveform of Q0 is F/2, Q1 is F/4, and so on. In general, for n-bit counter, we have F/2n.

Design of Binary Counters (SBC)

Design procedure is the same as for other synchronous circuits.

A counter may operate without an external input (except for the clock pulses!)

In this case, the output of the counter is taken from the outputs of the flip-flops without
any additional outputs from gates.
Thus, there are no columns for the input and outputs in the state table; we only see the
current state and next state…

Example Design a 4-bit SBC using JK flip-flops.

The counter has 4 FFs with a total of 16 states, (0000 to 1111) � 4 state variables Q3 Q2
Q1 Q0 are required.

 Figure 3: State table for the example

Notice that the next state equals the present state plus one.

To design this circuit, we derive the flip-flop input equations from the state transition
table. Recall that to find J & K values, we have to use:
� The present state,
� The next state, and
� The JK flip-flop excitation table.

When the count reaches 1111, it resets back to 0000, and the count cycle is repeated.

Once the J and K values are obtained, the next step is to find out the simplified input
equations by using K-maps, as shown in figure 4.

Figure 4: K-maps for the example

Notice that the maps for JQ0 and KQ0 are not drawn because the values in the table for
these two variables either contain 1’s or X’s. This will result in JQ0 = KQ0 = 1

Note that the Boolean equation for J input is the same as that of the K input for all the
FFs ⇒ Can use T-FFs instead of JK-FFs.

Count Enable Control
In many applications, controlling the counting operation is necessary ⇒ a count-enable
(En) is required.

If En= 1 then counting of incoming clock pulses is enabled Else if (En =0), no incoming
clock pulse is counted.

To accommodate the enable control, two approaches are possible.

1. Controlling the clock input of the counter
2. Controlling FF excitation inputs (JK, T, D, etc.).

Clock Control
Here, instead of applying the system clock to the counter directly, the clock is first
ANDed with the En signal.

Even though this approach is simple, it is not recommended to use particularly with
configurable logic, e.g. FPGA’s.

FF Input Control (Figure 5)
In this case, the En =0 causes the FF inputs to assume the no change value (SR=00,
JK=00, T=0, or Di=Qi).

To include En, analyze the stage when JQ1 = KQ1 = Q0, and then include En. Accordingly,
the FF input equations of the previous 4-bit counter example will be modified as follows:

JQ0 = KQ0 = 1. EN = En
JQ1 = KQ1 = Q0. En
JQ2 = KQ2 = Q1.Q0. En
JQ3 = KQ3 = Q2.Q1.Q0. En

Figure 5: FF input control in counter

Thus, when En = 0, all J and K inputs are equal to zero, and the flip flops remain in the
same state, even in the presence of clock pulses

When En = 1, the input equations are the same as equations of the previous example.

A carry output signal (CO) is generated when the counting cycle is complete, as seen in
the timing diagram.

The CO can be used to allow cascading of two counters while using the same clock for
both counters. In that case, the CO from the first counter becomes the En for the second
counter. For example, two modulo-16 counters can be cascaded to form a modulo-256
counter.

Up-Down Binary Counters
In addition to counting up, a SBC can be made to count down as well.

A control input, S is required to control the direction of count.

IF S= 1, the counter counts up, otherwise it counts down.

FF Input Control
Design a Modulo-8 up-down counter with control input S, such that if S= 1, the counter
counts up, otherwise it counts down. Show how to provide a count enable input and a
carry-out (CO) output. (See figures 6 & 7)

Figure 6: State diagram for FF input control example

Figure 7: State table for FF input control example

The equations are (see figure 8)
T0 = 1
T1 = Q0. S + Q/

0. S/
T2 = Q1.Q0. S + Q/

1. Q/
0. S/

The carry outputs for the next stage are: (see figure 8)
Cup = Q2.Q1.Q0 for upward counting.
Cdown = Q/

2.Q/
1.Q/

0 for downward counting.

The equations with En are (see figure 9)
T0 = En. 1
T1 = Q0. S. En + Q/

0. S/. En
T2 = Q1.Q0. S. En + Q/

1. Q/
0. S/. En

The carry outputs for the next stage, with En are (see figure 9):
Cup = Q2.Q1.Q0. En for counting up.
Cdown = Q/

2.Q/
1.Q/

0. En for counting down.

Figure 8: Circuit of up-down counter

 Figure 9: Circuit of up-down counter with En

More on Counters

In this lesson, you will learn

• some important counter control inputs:
o Parallel Load (Ld)
o Synchronous Clear
o Asynchronous Clear

• use of available counters to build counters of different count

Counter Control

We have seen how to include a count-enable control input to enable/disable counting in
the counter.

Now we show how to include important counter control inputs; namely:
� Parallel Load (Ld)
� Clear (Synchronous/Asynchronous)

The block diagram of a 4-bit counter with the above capabilities is shown in Figure 1.

Figure 1: A 4-bit counter

Let us now discuss the design of the counter. We will start with a typical stage of basic
counter, and will add the control signals to this stage in a step-wise approach. A positive
edge-triggered counter will be assumed.

Figure 2 shows a stage of the basic counter, where we see that the J and K inputs of flip-
flop at stage 1 are connected to an AND gate with Q0 and Count as inputs.

Figure 2: a stage of basic counter

Now let’s add the Load control input to this stage. Thus the operation would become as
shown in Table 1.

 Table 1: Operation of counter with Load signal added

Based on the above table, the stage will be modified as shown in Figure 3.

Figure 3: Modified stage of a counter

In this figure, when Count = 0 and Load = 0, J and K inputs in the flip flop will be equal
to 0 and 0 ⇒ NO CHANGE state is achieved. Notice that AND gate marked with pink
will also be generating an output of 0.

When Count = 0 or 1 (i.e. don’t care) and Load = 1, parallel load operation will take
place. The blue AND gate will propagate D while orange will propagate D/ to J and K
inputs respectively.

When Count = 1 and Load = 0, the circuit will operate as counter because JK =11. It is
the same behavior with respect to the tradition counter.

Now, the control signal Clear can be added to the stage. We will assume asynchronous
Clear in the design.

Table 2: Counter Operation with Count, Load, and Clear signals

The stage will be modified as given in Figure 4.

Figure 4: Addition of Clear signal to a counter stage

Designing counters with available counters

Binary counters with parallel load can be used to design different modulo-n counters. For
example, the 4-bit parallel load counter discussed in this lesson can be used to design any
counter of modulo n where 2≤ n ≤ 16.

Design of decade counter
The binary counter with parallel load can be converted into a synchronous DECADE
counter (without load input) by connecting an external AND gate to it, as shown in
Figure 5.

Figure 5: Decade counter

Connect all the D inputs to Ground (Logic 0). Make Count = 1. This will make the circuit
always operating in the counter mode.

The 2-input AND gate connected to the Load input of the counter takes Q0 and Q3 as its
inputs. As long as the Load input (connected to the output of the AND gate) is 0, the
counter is incremented by one with each clock pulse.

When the output count reaches 9 (1001), the output of AND gate will equal 1. This puts
the counter in the load mode (Load =1). Thus, the next clock pulse will load the data on
the D-inputs (0000) into the counter instead of incrementing the count.

Thus the counter counts from 0000 (decimal 0) to 1001 (decimal 9) then goes back to
0000 and so on. � Modulo 10 counting

Design of a counter that counts from 3 to 12.
The counter discussed above can be made to count from 0011 (decimal 3) to 1100
(decimal 12). Only small modifications are required, which are (see Figure 6):

• Connect the D inputs to 0011 (i.e. D3D2D1D0 = 0011). This will make the circuit

start counting from 3 whenever 12 has been counted.
• Connect the AND gate to Q3 and Q2. Thus, whenever the circuit reaches 12

(1100), Q3 = Q2 = 1, which will make the output of the AND gate equal to 1,
making Load active, so in the next clock transition the counter does not count, but
is loaded from its four inputs, with a value of 0011.

Figure 6: Counter for 3 to 12 counting

Thus the counter counts from 0011 (decimal 3) to 1100 (decimal 12), and back to 0011.
This is also a mod-10 counter, since it also counts ten numbers.

Some counters may have the “Clear” control input. With this capability, the counter can
be “cleared” at any time. The “Clear” signal can also be classified into two types:
Synchronous and Asynchronous.

The Synchronous Clear case
The Synchronous Clear input is activated in synchronization with the clock pulse.

To explain this behavior, consider a MOD-6 counter that counts from 000 (decimal 0) to
101 (decimal 5). The circuit is shown in the figure.

In this circuit, once the count of 5 (101) is detected by the AND gate, the counter is
cleared on the next clock pulse. Thus, the counter counts from 0 to 5 back to 0.

Assuming negative edge-triggered FFs, the timing diagram of this counter is shown in
Figure 7. Notice the delayed transitions of the counter outputs (Q’s) after the negative
clock edge due to gate propagation delays.

Figure 7: Timing diagram – Synchronous Clear

The timing diagram clarifies the case of Q2Q1Q0 = 101 where the Clear input becomes 1
causing the counter to clear on the next negative clock edge. The point to notice here is
that the effect of change in “Clear” is not immediately applied, but becomes effective in
the following clock pulse, because the “Clear” input is “Synchronous”, i.e. it only takes
effect at the next active clock edge.

The Asynchronous Clear case

If we use asynchronous clear rather than synchronous clear, as soon as the count Q2Q1Q0
reaches 101, “Clear”is activated and the FFs are cleared immediately without waiting for
the next active clock edge.

This causes the count Q2Q1Q0 = 101 to switch to 000 after a small delay. In other words
the count 101 does not last for a full clock period as other counts, but rather will appear
for a very short duration as a narrow pulse (glitch) as shown in Figure 8. Thus, it would
appear that the counter counts from 0 to 4, that is, from 000 to 100.

This happens because “Clear” is “Asynchronous”. It does not wait for the clock pulse to
come, and does the “clearing” operation immediately.

As a result, the output values become Q2Q1Q0 = 101 for a very short duration of time,
almost negligible, and then the contents become Q2Q1Q0 = 000 within the same clock
period.

Figure 8: Timing diagram – Asynchronous Clear

To have a MOD6 counter designed using the asynchronous clear, we should detect a
count of 6 (instead of 5) and use that to clear the counter asynchronously.
In this case, once the count reaches Q2Q1Q0 = 110, “Clear” is activated, you will not be
able to observe Q2Q1Q0 = 110, because it will be for very short duration. This is shown in
Figure 9.

It would seem to you that after Q2Q1Q0 = 101, the next state is Q2Q1Q0 = 000.

Figure 9: Timing diagram

Ripple and Arbitrary Counters
In this lesson, you will learn about:
� Ripple Counters
� Counters with arbitrary count sequence

Design of ripple Counters

Two types of counters are identifiable:

� Synchronous counters, which have been discussed earlier, and
� Ripple counters.

In ripple counters, flip-flop output transitions serve as a source for triggering other flip-
flops.

In other words, clock inputs of the flip-flops are triggered by output transitions of other
flip-flops, rather than a common clock signal.

Typically, T flip-flops are used to build ripple counters since they are capable of
complementing their content (See Figure 1).

The signal with the pulses to be counted, i.e.“Pulse”, is connected to the clock input of
the flip-flop that holds the LSB (FF # 1).

The output of each FF is connected to the clock input of the next flip-flop in sequence.

The flip-flops are negative edge triggered (bubbled clock inputs).

T=1 for all FFs (J = K= 1). This means that each flip-flop complements its value if C
input goes through a negative transition (1 � 0).

Figure 1: A ripple counter

The previous ripple up-counter can be converted into a down-counter in one of two ways:

� Replace the negative-edge triggered FFs by positive-edge triggered FFs, or
� Instead of connecting C input of FF Qi to the output of the preceding FF (Qi-1)

connect it to the complement output of that FF (Q/
i-1).

Advantages of Ripple Counters:
� simple hardware and design.

Disadvantages of Ripple Counters:
� They are asynchronous circuits, and can be unreliable and delay dependent, if

more logic is added.
� Large ripple counters are slow circuits due to the length of time required for the

ripple to occur.

Counters with Arbitrary Count Sequence:

Design a counter that follows the count sequence: 0, 1, 2, 4, 5, 6. This counter can be
designed with any flip-flop, but let’s use the JK flip-flop.

Notice that we have two “unused” states (3 and 7), which have to be dealt with (see
Figure 2). These will be marked by don’t cares in the state table (Refer to the design of
sequential circuits with unused states discussed earlier). The state diagram of this counter
is shown in Figure 2.

In this figure, the unused states can go to any of the valid states, and the circuit can
continue to count correctly. One possibility is to take state 7 (111) to 0 (000) and state 3
(011) to 4 (100).

Figure 2: State diagram for arbitrary counting sequence

The design approach is similar to that of synchronous circuits. The state transition table is
built as shown in Figure 3 and the equations for all J and K inputs are derived. Notice that
we have used don’t care for the unused state (although we could have used 100 as the
next state for 011, and 000 as the next state of 111).

Figure 3: State table for arbitrary counting sequence

The computed J and K input equations are as follows:
JA = B KA =B
JB = C KB =1

JC = B/ KC =1

Figure 4: Circuit for arbitrary counting sequence

Semiconductor Memories: RAMs and ROMs

Lesson Objectives:
In this lesson you will be introduced to:

 Different memory devices like, RAM, ROM, PROM, EPROM, EEPROM, etc.
 Different terms like: read, write, access time, nibble, byte, bus, word, word length,
address, volatile, non-volatile etc.

 How to implement combinational and sequential circuits using ROM.

Introduction:
The smallest unit of information a digital system can store is a bit, which can be stored in
a flip-flop or a 1-bit register.

To store m bits of data, an m-bit register with parallel load capability may be used. Data
available on the m-bit input lines (I0 to Im-1) may be stored/written into this register under
control of the clock by asserting the “Load” control input. The stored m bits of data may
be read from the register outputs (O0 to Om-1).

The m bits of data stored in a register make up a word. It is simply a number of bits
operated upon or considered by the hardware as a group. The number of bits in the word,
m, is called word length.

The m inputs of the register are provided through an m-bit input data bus and m outputs
by an m-bit output data bus.

A bus is a number of signal lines, grouped together because of similarity of function,
which connect two or more systems or subsystems.

A unit of 8-bits of information is referred to as a byte, while 4-bits of information is
referred to as a nibble.

A memory device can be looked at as consisting of a number of equally sized registers
sharing a common set of inputs, and a common set of outputs, as shown in the Figure.

Storing data in a memory register is referred to as a memory write operation and looking
up the contents of a memory register is referred to as a memory read operation.

In case of a write operation, the input data need to be written into one particular register
in the memory device.

Since the input data lines are common to all registers of the memory device, only the
selected register should have its load control signal asserted while the other registers
should not.

If the number of registers is 2n, n lines will be required to select the register to be written
into. The n-lines are used as an input to a decoder where the decoder’s 2n outputs may be
used as the load control inputs to the 2n registers.

The load control signal of a particular register is asserted by a unique combination of the
n-select lines. This unique combination is considered as the address for that particular
register.

Thus, a memory device can be thought of as a collection of addressable registers.

A read or a write operation into the memory device has to specify the address of the
particular register to be read or written into.

The capacity of the memory is specified in terms of the number of bits or the number of
words available in this memory device.

For a memory device with n-bit address lines and word (register) size of m-bits, the
memory has 2n words (storage locations/registers) each having m bits for a total capacity
of 2n x m bits.

For example, if n = 10 and m = 8, the memory is a “1024 x 8” bit memory. Alternatively,
it is said that the memory has 1K bytes.

A block diagram of the memory device is shown in the figure. The address inputs are
decoded by address decoder to select one, and only one, of the memory words
(registers), either for reading or writing.

The WRRD / line is a control signal that determines the type of operation to be
performed; a read operation or a write operation.

1/ =WRRD indicates a read operation, while 0/ =WRRD indicates a write operation.

To read the memory contents stored in a particular word, the address of this word is
applied, and logic 1 is applied to the WRRD / line that enables the output buffers of the
memory.

To write at a location, the address of the location to be written is provided at the address
inputs, data is provided at the data inputs, and logic 0 is applied to the WRRD / line.

There is a time delay between the application of an address and the appearance of
contents at the output, this is called the memory access time. This depends both on the
technology and on the structure used to implement the memory.

Random Access Memory (RAM):
For the shown above memory structure, the access time is independent of the sequence in
which addresses are applied.

Such a memory is called random access memory (RAM). Thus, the contents of any one
location can be accessed in essentially the same time as can the contents of any other
location chosen at random.

RAMs are volatile memories that will only retain the stored data as long as power is ON
but will lose this data when power is turned OFF.

RAMs are classified into two main categories: Static RAM (SRAM) and Dynamic RAM
(DRAM). These will be studied in greater details in future courses.

Read Only Memory (ROM):
Read Only Memory (ROM) is memory whose stored data can only be read but cannot be
re-written (altered).

It is a device in which “permanent” binary information has been stored.

ROMs are nonvolatile where stored data are not lost even when power is turned OFF.

The Figure shows a block diagram of a ROM.

Like RAMS, a ROM has n address inputs and m outputs. This corresponds to 2n memory
words each of m storage bits for a total capacity of 2n x m bits.

Unlike RAMs, ROMs do not have data input lines, because they do not have a write
operation.

ROMs are common to use in storing system-level programs that should be available at all
times.

The most common example is the PC system BIOS (Basic Input Output System), which
is stored in a ROM called the system BIOS ROM.

Several classes of ROMs are in common use. These may be categorized according to
their fabrication technologies that influence the way data are introduced into the ROM.
The process of storing the desired data into the ROM is referred to as ROM
programming.

Types of ROMs:
Following are the different types of ROMs.
1. Programming is done by the manufacturer during the last fabrication steps according

to the truth table provided by the customer. This type is known as mask programmable
ROMs or simply ROM. Data stored this way can never be altered.

2. ROM is provided with fuses to allow users to introduce the desired data by electrically

blowing some of these fuses. This type is referred to as a programmable ROM, or
PROM. Fuse blowing is irreversible and, once programmed the ROM stored pattern
cannot be altered.

3. The ROM uses erasable floating-gate memory cells that allow erasure of the stored
data by Ultra-Violet light. In this type, programming is performed electrically by the
user using special hardware programmers. Data, thus stored, can later be erased
globally (all memory bits = 1) by exposing the memory array to UV-light. This ROM
type is referred to as UV-erasable, programmable ROM, or simply EPROM. The
EPROM IC package is provided with a quartz window to allow UV-light penetration
to the memory array.

Quartz
Window

Closer View of
Quartz Window

4. When special electrically erasable memory cells are used, the ROM can be electrically

erased at the byte level. Thus individual bytes may be addressed and programmed or
erased as desired. This type is referred to as electrically erasable, programmable
ROM, or EEPROM or E2PROM. The E2PROM technology is an expensive low-
capacity technology and is thus not used for high density or low-cost applications.

5. The most recent ROM technology is the flash technology that combines the low-cost

and high-density advantages of the UV-EPROM technology and the flexibility of
electrical erase of E2PROM technology. This technology is electrically erasable but
the erasure is performed either globally (the full array) or partially on complete sub-
arrays (sectors).

Combinational Circuit Implementation Using ROM:
ROM devices can be used to implement complex combinational circuits directly from
truth tables without need for minimization.

For an n-input, m-output combinational circuit, a 2n x m ROM is needed (2n words each
of m storage bits). The designer needs only to specify a ROM table that gives the
information stored in each of the 2n words.

When a combinational circuit is implemented using a ROM, the function may either be
expressed in the sum of minterms form, or using a truth table.

As an example, the ROM shown in the figure may be considered as a combinational
circuit with four outputs, each a function of the five input variables.

Outputs Z0 – Z3 can be expressed as sum of minterms as follows:
Z0 (A4, A3, A2, A1, A0) = ∑m (2, 3, 18, 21, 31)
Z1 (A4, A3, A2, A1, A0) = ∑m (0, 1, 17, 25, 31)
Z2 (A4, A3, A2, A1, A0) = ∑m (1, 6, 11, 29, 30)
Z3 (A4, A3, A2, A1, A0) = ∑m (7, 8, 16, 28, 29)

Example 1:
Consider a combinational circuit which is specified by the following two functions:
F1 (X, Y) = ∑m (1, 2, 3)
F2 (X, Y) = ∑m (0, 2)

The truth table for this circuit is as shown.

In this example, the ROM that implements the two combinational functions must have
two address inputs and two outputs. Thus, its size must be 4 x 2 (since 2n x m is the size
of ROM).

The ROM table for this example is as shown.

Example 2:
Design a combinational circuit using a ROM. The circuit accepts a 3-bit number and
generates an output binary number that is equal to the square of the input number.

The first step is to derive the truth table for the combinational circuit as shown. Three
inputs and six outputs are needed to accommodate all possible numbers.

By observation, we note that output B0 is always equal to input A0, and output B1 is
always 0. Thus, there is no need to store B0 and B1 in the ROM. We actually need to only
store values of the four outputs (B5 through B2) in the ROM.

The table shown specifies all the information that needs to be stored in the ROM, and
figure shows the required connections of the combinational circuit. The output B1 is
connected to logic 0 and output B0 is connected to A0 always to get B1 = 0 and B0 = A0.

The minimum size ROM needed must have three inputs and four outputs, for a total of 8
x 4 = 32 bits.

Synchronous Sequential Circuit Implementation Using ROM:
The block diagram of a sequential circuit is shown in the figure.

Since ROM can implement combinational logic, so this part can be replaced by a ROM
and Flip-Flops can be replaced by a register as shown in the figure.

Example 3:
Design a sequential circuit whose state transition table is given, using a ROM and a
register.

The next-state and output information are obtained from the table as:
Q1

+ = ∑m (1, 2, 5, 6)
Q2

+ = ∑m (4, 6)
Y (Q2, Q1, X) = ∑m (3, 7)

The ROM can be used to implement the combinational circuit and register will provide
the flip-flops.

The number of address inputs to the ROM is equal to the number of flip-flops plus the
number of external inputs.

The number of outputs of the ROM is equal to the number of flip-flops plus the number
of external outputs.

In this example, 3 inputs and 3 outputs of the ROM are required; so its size must be 8 x 3.

The ROM table is identical to the state transition table with Present State and Inputs
specifying the address of ROM and Next State and Outputs specifying the ROM outputs
(stored information). It is shown below:

The next state values must be connected from the ROM outputs to the register inputs as
shown in the figure below.

Programmable Logic Devices (PLDs)

Lesson Objectives:
In this lesson you will be introduced to some types of Programmable Logic Devices
(PLDs):

 PROM, PAL, PLA, CPLDs, FPGAs, etc.
 How to implement digital circuits using PLAs and PALs.

Introduction:
An IC that contains large numbers of gates, flip-flops, etc. that can be configured by
the user to perform different functions is called a Programmable Logic Device
(PLD).

The internal logic gates and/or connections of PLDs can be changed/configured by a
programming process.

One of the simplest programming technologies is to use fuses. In the original state of
the device, all the fuses are intact.

Programming the device involves blowing those fuses along the paths that must be
removed in order to obtain the particular configuration of the desired logic function.

PLDs are typically built with an array of AND gates (AND-array) and an array of
OR gates (OR-array).

Advantages of PLDs:
Problems of using standard ICs:
Problems of using standard ICs in logic design are that they require hundreds or
thousands of these ICs, considerable amount of circuit board space, a great deal of
time and cost in inserting, soldering, and testing. Also require keeping a significant
inventory of ICs.

Advantages of using PLDs:
Advantages of using PLDs are less board space, faster, lower power requirements
(i.e., smaller power supplies), less costly assembly processes, higher reliability (fewer
ICs and circuit connections means easier troubleshooting), and availability of design
software.

There are three fundamental types of standard PLDs: PROM, PAL, and PLA.

A fourth type of PLD, which is discussed later, is the Complex Programmable Logic
Device (CPLD), e.g., Field Programmable Gate Array (FPGA).
A typical PLD may have hundreds to millions of gates.

In order to show the internal logic diagram for such technologies in a concise form, it
is necessary to have special symbols for array logic.

Figure shows the conventional and array logic symbols for a multiple input AND and
a multiple input OR gate.

Three Fundamental Types of PLDs:
The three fundamental types of PLDs differ in the placement of programmable
connections in the AND-OR arrays. Figure shows the locations of the programmable
connections for the three types.

 The PROM (Programmable Read Only Memory) has a fixed AND array
(constructed as a decoder) and programmable connections for the output OR gates
array. The PROM implements Boolean functions in sum-of-minterms form.

 The PAL (Programmable Array Logic) device has a programmable AND array
and fixed connections for the OR array.

 The PLA (Programmable Logic Array) has programmable connections for both
AND and OR arrays. So it is the most flexible type of PLD.

The ROM (Read Only Memory) or PROM (Programmable Read Only
Memory):
The input lines to the AND array are hard-wired and the output lines to the OR array
are programmable.

Each AND gate generates one of the possible AND products (i.e., minterms).

In the previous lesson, you have learnt how to implement a digital circuit using ROM.

The PLA (Programmable Logic Array):
In PLAs, instead of using a decoder as in PROMs, a number (k) of AND gates is used
where k < 2n, (n is the number of inputs).

Each of the AND gates can be programmed to generate a product term of the input
variables and does not generate all the minterms as in the ROM.

The AND and OR gates inside the PLA are initially fabricated with the links (fuses)
among them.

The specific Boolean functions are implemented in sum of products form by opening
appropriate links and leaving the desired connections.

A block diagram of the PLA is shown in the figure. It consists of n inputs, m outputs,
and k product terms.

The product terms constitute a group of k AND gates each of 2n inputs.

Links are inserted between all n inputs and their complement values to each of the
AND gates.

Links are also provided between the outputs of the AND gates and the inputs of the
OR gates.

Since PLA has m-outputs, the number of OR gates is m.

The output of each OR gate goes to an XOR gate, where the other input has two sets
of links, one connected to logic 0 and other to logic 1. It allows the output function to
be generated either in the true form or in the complement form.

The output is inverted when the XOR input is connected to 1 (since X ⊕ 1 = X/). The
output does not change when the XOR input is connected to 0 (since X ⊕ 0 = X).

Thus, the total number of programmable links is 2n x k + k x m + 2m.

The size of the PLA is specified by the number of inputs (n), the number of product
terms (k), and the number of outputs (m), (the number of sum terms is equal to the
number of outputs).

Example:
Implement the combinational circuit having the shown truth table, using PLA.

Each product term in the expression requires an AND gate. To minimize the cost, it is
necessary to simplify the function to a minimum number of product terms.

Designing using a PLA, a careful investigation must be taken in order to reduce the
distinct product terms. Both the true and complement forms of each function should
be simplified to see which one can be expressed with fewer product terms and which
one provides product terms that are common to other functions.

The combination that gives a minimum number of product terms is:
F1

’ = AB + AC + BC or F1 = (AB + AC + BC)’
F2 = AB + AC + A’B’C’

This gives only 4 distinct product terms: AB, AC, BC, and A’B’C’.

So the PLA table will be as follows:

For each product term, the inputs are marked with 1, 0, or – (dash). If a variable in the
product term appears in its normal form (unprimed), the corresponding input variable
is marked with a 1.

A 1 in the Inputs column specifies a path from the corresponding input to the input of
the AND gate that forms the product term.

A 0 in the Inputs column specifies a path from the corresponding complemented
input to the input of the AND gate. A dash specifies no connection.

The appropriate fuses are blown and the ones left intact form the desired paths. It is
assumed that the open terminals in the AND gate behave like a 1 input.

In the Outputs column, a T (true) specifies that the other input of the corresponding
XOR gate can be connected to 0, and a C (complement) specifies a connection to 1.

Note that output F1 is the normal (or true) output even though a C (for complement) is
marked over it. This is because F1’ is generated with AND-OR circuit prior to the
output XOR. The output XOR complements the function F1’ to produce the true F1
output as its second input is connected to logic 1.

The PAL (Programmable Array Logic):
The PAL device is a PLD with a fixed OR array and a programmable AND array.

As only AND gates are programmable, the PAL device is easier to program but it is
not as flexible as the PLA.

The device shown in the figure has 4 inputs and 4 outputs. Each input has a buffer-
inverter gate, and each output is generated by a fixed OR gate.

The device has 4 sections, each composed of a 3-wide AND-OR array, meaning that
there are 3 programmable AND gates in each section.

Each AND gate has 10 programmable input connections indicating by 10 vertical
lines intersecting each horizontal line. The horizontal line symbolizes the multiple
input configuration of an AND gate.

One of the outputs F1 is connected to a buffer-inverter gate and is fed back into the
inputs of the AND gates through programmed connections.
(see animation in authorware version)

Designing using a PAL device, the Boolean functions must be simplified to fit into
each section.

The number of product terms in each section is fixed and if the number of terms in the
function is too large, it may be necessary to use two or more sections to implement
one Boolean function.

Example:
Implement the following Boolean functions using the PAL device as shown above:

W(A, B, C, D) = ∑m(2, 12, 13)
X(A, B, C, D) = ∑m(7, 8, 9, 10, 11, 12, 13, 14, 15)
Y(A, B, C, D) = ∑m(0, 2, 3, 4, 5, 6, 7, 8, 10, 11, 15)
Z(A, B, C, D) = ∑m(1, 2, 8, 12, 13)

Simplifying the 4 functions to a minimum number of terms results in the following
Boolean functions:

W = ABC’ + A’B’CD’
X = A + BCD
Y = A’B + CD + B’D’
Z = ABC’ + A’B’CD + AC’D’ + A’B’C’D
 =W +AC’D’ + A’B’C’D

Note that the function for Z has four product terms. The logical sum of two of these
terms is equal to W. Thus, by using W, it is possible to reduce the number of terms for
Z from four to three, so that the function can fit into the given PAL device.

The PAL programming table is similar to the table used for the PLA, except that only
the inputs of the AND gates need to be programmed.

The figure shows the connection map for the PAL device, as specified in the
programming table.
(see animation in authorware version)

Since both W and X have two product terms, third AND gate is not used. If all the
inputs to this AND gate left intact, then its output will always be 0, because it receives
both the true and complement of each input variable i.e., AA’ =0

Complex Programmable Logic Devices (CPLDs):
A CPLD contains a bunch of PLD blocks whose inputs and outputs are connected
together by a global interconnection matrix.

Thus a CPLD has two levels of programmability: each PLD block can be
programmed, and then the interconnections between the PLDs can be programmed.

Field Programmable Gate Arrays (FPGAs):
The FPGA consists of 3 main structures:

1. Programmable logic structure,
2. Programmable routing structure, and
3. Programmable Input/Output (I/O).

1. Programmable logic structure
The programmable logic structure FPGA consists of a 2-dimensional array of
configurable logic blocks (CLBs).

Each CLB can be configured (programmed) to implement any Boolean function of its
input variables. Typically CLBs have between 4-6 input variables. Functions of larger
number of variables are implemented using more than one CLB.

In addition, each CLB typically contains 1 or 2 FFs to allow implementation of
sequential logic.

Large designs are partitioned and mapped to a number of CLBs with each CLB
configured (programmed) to perform a particular function.

These CLBs are then connected together to fully implement the target design.
Connecting the CLBs is done using the FPGA programmable routing structure.

2. Programmable routing structure
 To allow for flexible interconnection of CLBs, FPGAs have 3 programmable routing
resources:

1. Vertical and horizontal routing channels which consist of different length wires

that can be connected together if needed. These channel run vertically and
horizontally between columns and rows of CLBs as shown in the Figure.

2. Connection boxes, which are a set of programmable links that can connect input
and output pins of the CLBs to wires of the vertical or the horizontal routing
channels.

3. Switch boxes, located at the intersection of the vertical and horizontal channels.

These are a set of programmable links that can connect wire segments in the
horizontal and vertical channels. (see animation in authorware version)

3. Programmable I/O
These are mainly buffers that can be configured either as input buffers, output buffers
or input/output buffers.

They allow the pins of the FPGA chip to function either as input pins, output pins or
input/output pins.

Programmable
I/Os

eCOE200 Lessons Errata

Error Location Error Description Correction
Example 3-a on P119 of U1-L5, 84 -6770 = 1000000000 -6770 84 -6770=10000 -6770
P15 of U1-L6, 2’s complement
Representation of -37

11011010 11011011

Example 4- P18 of U2-L1, after
the downward red lines

F= (A`.B+ 0) . (0 + A’ B C`). (A`. B + A’.B.C`)

F= (A`.B+ 0) . (0 + A’ B C`). (A`.B.B` +A`.B.C`)
 = (A`.B+ 0) . (0 + A’ B C`). (A`.0 +A`.B.C`)
 = (A’B). (A’BC’) . (0 + A’BC’)
 = A’BC’

Example 2- P5 of U2-L5 K-Map representation of the function has 1 in in
M1 , But it is located.

The 1 must be relocated in M2 and the grouping of
0’s done accordingly

Quiz on P6 of U2-L7, Question 2
of 3

The given answer is False Correct answer is TRUE

PS: These are the known errors so far. If you come across any other error please send for a more comprehensive list

1 P Page, U Unit, L Lesson. Thus P19 of U1 L5 means Page 19 in lesson 5 of unit 1.

	Unit I
	L 1_Inf Processing
	L2 Number Systems
	L3 Number Arith
	L4 Number Base Conversion
	L5 Machine Representation of Number
	L6 Complement Arith
	Binary Codes

	Unit II
	L1 Binary Logic & Gates
	L2 Std & Canonical Forms
	L3 Practical Aspects of Logic Gates
	L4 Map-Method-I
	L5 Map Method - II
	L6 Universal Gates
	L7 XOR-XNOR Gates

	Unit III
	L1 Combinational Logic
	L2 Adders-Subtractors
	L3 Carry Lookahead Adders
	L4 Decoders & Encoders
	L5 Multiplexers & DeMultiplexers
	L6 Magnitude Comparator
	MSI Design Examples

	Unit IV
	L1 Sequential Ckts.
	L2 Flip-Flops
	L3 Design of Synch Seq Ckts
	L4 Analysis of Synch Seq Ckts
	Mealy vs Moore Machines

	Unit V
	L1 Registers
	L2 Counters -I
	L3 Counters - II
	L4 Counters - III

	Unit VI
	L1 RAMs & ROMs
	L2 Programmable Logic Devices

	Errata

