
Information Processing  
and  

Digital Systems 
 

Objectives 
In this lesson, some basic concepts regarding information processing and 

representation are clarified. These include: 

1. “Analog” versus “Digital” parameters and systems.  

2. Digitization of “Analog” signals. 

3. Digital representation of information. 

4. Effect of noise on the reliability and choice of digital system 

representation. 

Digital versus Analog 
• We live in an “Analog” world.  

• “Analog” means Continuous  

• We use the word “Analog”  to express phenomena or parameters that have 

smooth gradual change or movement. 

• For example, earth’s movement around the sun is continuous or “Analog”.  

• Temperature is an “Analog” parameter. In making a cup of tea, the 

temperature of the tea kettle increases gradually or smoothly. 

• In an “Analog” system, parameters have a continuous range of values  

just like a mathematical function which is “Continuous” ; in other words, 

the function has no discontinuity points  

• The word “Digital”, however, means just the opposite. 

• In Digital Systems, parameters have a limited set of “Discrete” Values 

that they can assume.  



• In Other words, digital parameters don’t have a “Continuous” range. 

• This means that, digital parameters change their values by “Jumping” 

from one allowed value to another.  

• As an example, the day of the month is a parameter that may only assume 

one value out of a set of limited discrete values {1, 2, 3, …., 31}.  

• Thus, the day of the month is a parameter may not assume a value of 2.5 

for example, but it rather jumps from a value of 2 to a value of 3 then to 4 

and so on with no intermediate values!!! 

To Summarize: 

• Analog Systems deal with Continuous  Range of  values. 

• Digital Systems  deal   with  a Discrete  set  of  values. 

• Q. Which is easier to design digital systems or analog ones? 

 

• A. Digital systems are easier to design since dealing with a limited set of 

values rather than an infinite (or indefinitely large) continuous range of 

values is significantly simpler. 

 

Digitization/Quantization of Analog Signals 
• Since the world around us is analog, and processing of digital parameters 

is much easier, is it is fairly common to convert analog parameters (or 

signals) into a digital form in order to allow for efficient transmission and 

processing of these parameters (or signals) 

• To convert an Analog signal into a digital one, some loss of accuracy is 

inevitable since digital systems can only represent a finite discrete set of 

values. 

• The process of conversion is known as Digitization or Quantization. 

• Analog-to-digital-converters (ADC) are used to produce a digitized 



version of analog signals. 

• Digital-to-analog-converters (DAC) are used to regenerate analog signals 

from their digitized form. 

• A typical system consists of an ADC to convert analog signals into digital 

ones to be processed by a digital system which produces results in digital 

form which is then transformed back to analog form through a DAC. 

 
 
• In this course, we will only be studying digital hardware design concepts, 

where both the input and output signals are digital signals. 
 
Digitization Example 
• As an example, consider digitizing the shown voltage signal assuming that 

the digitized version allowed set of discrete voltages is {V1, V2, V3, V4}. 
 
• Analog signal values are mapped to the closest allowed discrete voltage ∈ 

{V1, V2, V3, V4} as shown in Figure. 



 
The Resulting Digitized Waveform 

 



Information Representation 
How Do Computers Represent Values (e.g. V1, V2, V3, V4) ? 

1. Using Electrical Voltages (Semiconductor Processor, or Memory) 

2. Using Magnetism (Hard Disks, Floppies, etc.) 

3. Using Optical Means (Laser Disks, e.g.  CD’s) 

 

Consider the case where values are represented by voltage signals: 

• Each signal represents a digit in some Number System 

• If the Decimal Number System is used, each signal should be capable 

of representing one of 10 possible digits ( 0-to-9) 

• If the Binary Number System is used, each signal should be capable of 

representing  only one of  2 possible digits ( 0 or 1). 

• Digital computers, typically use low power supply voltages to power 

internal signals, e.g.  5 volts, 3.3 volts, 2.5 volts, etc. 

• The voltage level of a signal may be anywhere between the 0 voltage 

level (Ground) and the  power supply voltage level (5 volts, 3.3 volts, 

2.5 volts, etc.) 

• Thus, for a power supply voltage of 5 volts, internal voltage signals 

may have any voltage value between 0 and 5 volts. 

• Using a decimal number system would mean that each signal should 

be capable of representing 10 possible digits ( 0-to-9).  

• With 5 volt range signals, the 10 digits of the decimal system are 

represented with each digit having a range of only  0.5  a volt  

• If, however, a binary number system is used only 2 digits {0, 1} need 

to be represented by a signal, allowing much higher Voltage range of 

5 volts between the 2 binary digits. 

 



 

 

The Noise Factor 
• Typically, lots of noise signals exist in most environments.   

• Noise may cause the voltage level of a signal (which represents  some 

digit value) to be changed  (either higher or lower) which leads to  

misinterpretation of the value this signal represents. 

 
  

• Good designs should guard against noisy environments to prevent 

misinterpretation of the signal information. 

• Q. Which is more reliable for data transmission; binary signals or 

decimal signals ? 

• A. Binary Signals are more reliable. 



• Q. Why? 

• A. The Larger the gap between voltage levels, the more reliable the 

system is. Thus, a signal representing a binary digit will be 

transmitted more reliably compared to a signal which represents a 

decimal digit. 

• For example, with 0.25 volts noise level using a decimal system at 5 

volts power supply is totally unreliable 

 

Conclusions 
• Information can be represented either in an analog form or in a digital 

form. 

• Due to noise, it is more reliable to transmit information in a digital 

form rather than an analog one. 

• Processing of digitally represented information is much more reliable, 

flexible and powerful. 

• Today’s powerful computers use digital techniques and circuitry. 

• Because of its high reliability and simplicity, the binary representation 

of information is most commonly used. 

• The coming lessons in this chapter will discuss how numbers are 

represented and manipulated in digital system. 
 
 



Number Systems 
 

Introduction & Objectives: 
• Before the inception of digital computers, the only number system 

that was in common use is the decimal number system (النظام العشري) 

which has a total of 10 digits (0 to 9). 

• As discussed in the previous lesson, signals in digital computers may 

represent a digit in some number system. It was also found that the 

binary number system is more reliable to use compared to the more 

familiar decimal system 

• In this lesson, you will learn: 

 What is meant by a weighted number system. 

 Basic features of weighted number systems. 

 Commonly used number systems, e.g. decimal, binary, octal and 

hexadecimal. 

 Important properties of these systems. 
 

 

 



Weighted Number Systems: 
 

• A number  D consists of n digits with each digit has a particular position. 
 

D = dn-1   dn-2  ……..  d2  d1   d0 
 

 

 
 
•  Every digit position is associated with a fixed weight. 

• If the weight associated with the ith. position is wi, then the value of D is  

given by: 

D = dn-1 wn-1 + dn-2 wn-2 +…+ d2 w2 + d1 w1 + d0 w0 
 

Example of Weighted Number Systems: 
• The Decimal number system )النظام العشري(  is a weighted system. 

• For Integer decimal numbers, the weight of the rightmost digit (at position 

0) is 1, the weight of position 1 digit is 10, that of position 2 digit is 100, 

position 3 is 1000, etc. 
 

Position
0 

Position
1 

Position
2 

Position 
n-1 



Thus, 

 w0 = 1,  w1 = 10,  w2=100,  w3 = 1000,  etc. 

Example Show how the value of the decimal number 9375 is estimated 
 

 

 

 

 Position 3 2 1 
 

0 

 Number 9 3 7 5 

 Weight 1000 100 10 1 

 Value 9 x 1000 3x100 7x10 5x1 

 Value      9000   +    300   +   70  + 5 

 
The Radix (Base) 

1. For digit position i, most weighted number systems use weights (wi ) 

that are powers of some constant value called the radix (r) or the 

base  such that wi = ri. 

2. A number system of radix r, typically has a set of r  allowed digits ∈ 

{0,1, …,(r-1)}  See the next example 

3. The leftmost digit has the highest weight  Most Significant Digit  

(MSD)  See the next example 

4. The rightmost digit has the lowest weight  Least Significant Digit  

(LSD)  See the next example 

First Position Index 

First Position 
Index (0) 



Example   Decimal Number System 

1. Radix (Base) = Ten    

2. Since  wi = ri., then   

 w0 = 100 = 1,   

 w1 = 101 = 10,   

 w2= 102 = 100,   

 w3 = 103 = 1000,  etc. 

3. Number of Allowed Digits is Ten  {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} 
 

Thus: 

   9375  =  5x100  + 7x101 + 3x102 + 9x103  

   =   5x1    + 7x10  + 3x100 + 9x 1000 
 

Position 3 2 1 0 

 1000 100 10 1 
Weight = 103 = 102 = 101 = 100

 

The Radix Point 
Consider a number system of radix r,  

 A  number   D of   n  integral digits and m  fractional digits is 

represented as shown 

 

LSD MSD 



 Digits to the left of the radix point (integral digits) have positive 

position indices, while digits to the right of the radix point (fractional  

digits) have negative position indices 

 Position   indices of digits to  the  left  of  the  radix  point (the  

integral  part  of D)  start with  a 0 and  are incremented as we move 

lefts (dn-1dn-2…..d2d1d0 . ) 

 Position indices of digits to  the right of the radix point (the fractional 

part of D) are negative starting with  –1 and   are decremented as we 

move rights ( d-1d -2…..d-m). 

 The weight associated with digit position i is given by wi = ri  , 

where i is the position index 
 ∀i= -m, -m+1, …, -2, -1, 0, 1, ……, n-1 

 The Value of D is Computed as : 

 

 

rd i
n

mi
iD ∑

−

−=

=
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Example   Show how the value of the following decimal number is 

estimated 

D =  5 2 . 9 4 6 
 
 
 
 
Number 5 2 . 9 4 6 

Position 1  0  . -1 -2 -3 

Weight 
101 
= 
10 

  100 
=  
1 

 
. 

10-1 
= 

0.1 

10-2

= 
0.01

10-3

= 
0.001

Value 
5 
x 

10 

2 
x 
1 

 
. 

9 
x 

0.1 

2 
x 

0.01

6 
x 

0.001

Value  50  +   2  + 0.9 +0.02 +0.006
 

D = 5x101  + 2x100  + 9x10-1 + 4x10-2 + 6x10-3 

Notation 
• Let (D)r denotes a number D expressed in a number system of radix  r. 
 
Note: In this notation, r will be expressed in decimal 

 

 

Example: 

–  (29)10 Represents a decimal value of 29. The radix “10” here means ten. 

– (100)16 is a Hexadecimal number since r = “16” here means sixteen. This 

number is equivalent to a decimal value of 162. 

– (100)2 is a Binary number (radix =2, i.e. two) which is equivalent to a 

decimal value of 22 = 4. 

. d-3 d1 d0 d-2d-1



Important Number Systems 
The Decimal System 
– r = 10 (ten  Radix is not a Power of 2)  

– Ten Possible Digits  {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} 

 
The Binary System 

 r = 2  

 Two Allowed Digits  {0, 1} 

 A   Binary   Digit    is   referred    to  as    Bit 

 The leftmost bit has the highest weight  Most Significant Bit   

(MSB) 

 The rightmost bit has the lowest weight  Least Significant Bit  

(LSB) 

Examples 

Find the decimal value of the two Binary numbers (101)2   and   (1.101)2 
 
 

•  ( 1 0 1 )2 = 1x20  + 0x21 + 1x22  

•                    = 1x1   + 0x2  + 1x 4 

•                    = ( 5 )10 
 

 
 

 (1 . 1 0 1 )2 =  1x20  + 1x2-1 + 0x2-2 + 1x2-3 

                    =   1       +  0.5   +  0  +  0.125 

                    =  ( 1 . 6 2 5 )10 
 

LSB MSB 

LSB MSB 



Octal System: 

• r = 8   (Eight = 23 ) 

– Eight  Allowed Digits  {0, 1, 2, 3, 4, 5, 6, 7} 

 
Examples 

Find the decimal value of the two Octal numbers (375 )8   and   (2.746 )8 

 

 

 ( 375 )8  = 5x80  + 7x81 + 3x82 

      = 5x1   + 7x8  + 3x64 

      = ( 253 )10 

 
 

 (2.746  )8 = 2x80  + 7x8-1 + 4x8-2 + 6x8-3 

          = (2.94921875 )10 

 

Hexadecimal System:  
  r = 16  (Sixteen = 24 ) 

 Sixteen  Allowed Digits  {0-to-9 and A, B, C, D, E, F} 

o Where: A = ten,  B = Eleven,  C = Twelve, 
  D = Thirteen, E = Fourteen & F = Fifteen. 

 
• Q: Why is the digit following 9 assigned the character A and not “10”? 

• A: What we need is a single digit whose value is ten, but “10” is actually 

two digits not one.  

o Thus, in Hexadecimal system the 2-digit number (10)16 actually 

represents a value of sixteen not ten {(10)16 = 0x160 + 

1x161.=(16)10}. 

LSD MSD 

LSD MSD 



Examples 

Find the decimal value of the two Hexadecimal numbers (9E1)16   and   

(3B.C )16 

 

 

 (9E1)16  = 1x160  + Ex161 + 9x162 

     = 1x1   + 14x16  + 9x256 

     = ( 2529 )10 

 

 

 (3B.C  )16 = Cx16-1  + Bx160 + 3x161  

        = 12x16-1 + 11x160 + 3x16 

        = (59.75 )10 

 

Important Properties 
1. The number of possible digits in any number system with radix r equals 

r.  (Give examples in decimal, binary, octal and hexadecimal) 

2. The smallest digit is 0 and the largest possible digit has a value = (r-1) 

3. The Largest value that can be expressed in n integral digits is (rn-1)   

Prove (Hint add 1 to the LSD position of the largest number) 

4. The Largest value that can be expressed in m fractional digits is (1-r -m) 

 Prove (Hint add 1 to the LSD position of the largest number) 

5. The Largest value that can be expressed in n integral digits and m  

fractional digits is (rn -r -m)  Prove (Hint- add results of properties 3 &4 

above) 

6. Total number of values (patterns) representable in n digits is rn 

LSD MSD 

LSD MSD 



Clarification (a) 

Q. What is the result of adding 1 to the largest digit of some number 

system?? 

A.  

 For the decimal number system, (1)10 + (9)10 =  (10)10  

 For the octal number system,  (1)8 + (7)8 = (10)8 = (8)10 

 
 

 For the hex number system,  (1)16 + (F)16 = (10)16 = (16)10 

 

 For the binary number system,  (1)2 + (1)2 = (10)2 = (2)10 
 

Conclusion. Adding 1 to the largest digit in any number system always has 

a result of (10) in that number system. 



• This is easy to prove since the largest digit in a number system of 

radix r has a value of (r-1). Adding 1 to this value the result is r which 

is always equal to (10)r = 0x r0 + 1x r1=(r)10 
 

Clarification (b) 

Q. What is the largest value representable in 3-integral digits?  

A. The largest value results when all 3 positions are filled with the largest 

digit in the number system.  
------------------------------------------------------------- 

 For the decimal system, it is (999)10 

 For the octal system, it is (777)8 

 For the hex system, it is (FFF)16 

 For the binary system, it is (111)2 
------------------------------------------------------------- 

 

Clarification (c) 

Q. What is the result of adding 1 to the largest 3-digit number? 

? 

A.  

 For the decimal system, (1)10 + (999)10 = (1000)10 = (103)10 

 For the octal system, (1)8 + (777)8 = (1000)8 = (83)10 
 



 
 For the hex system, (1)16 + (FFF)16 = (1000)16 = (163)16 

 

 

 For the binary system, (1)2 + (111)2 = (1000)2 = (23)10 

 

 

In general, for a number system of radix r, adding 1 to the largest n-digit 

number = r n  



Accordingly, the value of largest n-digit number = r n -1 

 

Conclusions.  

1. In any number system of radix r, the result of adding 1 to the largest 

n-digit number equals r n. 

2. Thus, the value of the largest n-digit number is equal to (r n -1) 

3. Thus, n digits can represent r n different values (digit combinations) 

starting from a 0 value up to the largest value of r n -1. 
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Appendix A. Summary  of  Number  Systems  Properties 
The following table summarizes the basic features of the Decimal, Octal, Binary, and 
Hexadecimal number systems as well as a number system with a general radix r 

General 
r 

Hexadeci
mal 
16 

Binary 
2 

Octal 
8 

Decimal 
10 

 

{ 0 - R} 
where R = (r-1) 

{0-9, A-F} {0-1} {0-7} {0-9} Allowed 
Digits 

an-1rn-1+…+ a2r2 + a1r1 

+ a0r0 + a-1r-1 +  a-2r-2 

+….+a-mr-m 
 
ai ∈{0 - (r-1)}  

 an-12n-1+…+ 
a222+a121+a020+a-12-1+  
a-22-2+….+a-m2-m 
 
ai ∈  {0,1}  

an-18n-1+…+ 
a282+a181+a080+a-18-1+  
a-28-2+….+a-m8-m 
 
ai ∈  {0-7}  

an-1x10n-1 + an-2x10n-2 

+...+ a2x102 + a1x101+ 
a0 x 100 + a-1 x 10-1 + 
a-2 x10-2 +..+ a-mx10-m 
ai ∈  {0-9}  
i=-m,…., 0, 1, …, n-1

Value of 
an-1… a2 a1 a0. 
a-1a-2….a-m 

000…..0 000…..0 000…..0 000…..0 000…..0 Smallest n-
digit number 

RR…..R = rn –1 FF…….F = 
16n –1 

11…..1 = 
2n –1 

77…..7 = 
8n –1 

999……9 = 
10n –1 

Largest  n-
digit number 

0 – (rn –1) 0- (16n  -1) 0- (2n-1) 0- (8n-1) 0 - (10n-1) Range of n-
digit integers 

rn 16n 2n 8n 10n # of Possible 
Combinations  
of n-digits  

1-r-m 1-16-m 1-2-m 1-8-m 1-10-m Max Value of   
m Fractional 
Digits 
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Appendix B. First 16 Binary Numbers & Their Decimal Equivalent 
(All Possible Binary Combinations in 4-Bits) 

 
 
 

 
 

Decimal
 

Bin. Equivelent
 

Decimal 
 

Bin. Equivelent
 

0 0000 8 1000 
1 0001 9 1001 
2 0010 10 1010 
3 0011 11 1011 
4 0100 12 1100 
5 0101 13 1101 
6 0110 14 1110 
7 0111 15 1111 
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Appendix C. Decimal Values of the First 10 Powers of 2  
 

 One Kilo is defined as 1000. 
 For example, one Kilogram is 1000 grams.  A kilometer is 

1000 meters. 
 

 In the Binary system, the power of 2 value closest to 1000 is 
210 which equals 1024. This is referred to as one Kilo (or in 
short 1K) in binary systems. 

 
 Thus, one Kilo (or 1K) in Binary systems is not exactly 1000 

but rather equals 1024 or 210 
 

 Thus, in binary systems 2K= 2 x 1024 = 2048,   4K=4 x 
1024= 4096, and so on 

 

 Similarly, a one Meg (one million) in binary systems is 220 
which equals  1,048,576. 

 

 
Powers 

of  2 

 
Decimal. 

Value 
20 1 
21 2 
22 4 
23 8 
24 16 
25 32 
26 64 
27 128 
28 256 
29 512 
210 1024 

1 Kilo = 1K 
2K = 2048 
4K = 4096
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Number Systems Arithmetic  

 
Objectives 

 In this lesson, we will study basic arithmetic operations in various 

number systems with a particular stress on the binary system. 

 

Approach 

 Arithmetic in the Binary number system (addition, subtraction and 

multiplication). 

 Arithmetic in other number systems 

Binary Addition 
 

0 + 0 = 0 

 

1 + 0 = 1 

0 + 1 = 1 

 

1 + 1 = 2 

 

1 + 1 = (10)2 
 

(3)10 + (7) 10 = (ten)10 
 

(3)10 + (7) 10 = (10)10 

 

2 is not an allowed 
digit in binary 

t
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Example 

Show the result of adding: 

(27)10 + (43) 10 

 
   

Carry 1  

1st Number 2 7 

2nd Number 4 3       + 

Result 7 0 

 

Position i+1  i 

weight r(i+1) w= r i 

Digit 1  D1 

Digit 2  D2        + 

Result DCarry DSum 

 
Position 1   i=0 

weight w= 101 =10  w= 100 =1

Digit 1   5 

Digit 2   7        + 

Result   1  2 

 

 

 

 Likewise, in case of the binary system, if the weight of the sum bit 

is 2i, then the weight of the carry bit is 2i+1. 

1x10 2x1
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 Thus, adding 1 + 1 in the binary system results in a Sum bit of 0 and 

a carry bit of 1. 

 The shown table summarizes the Sum and Carry results for binary 

addition 
 

 

 

 

 

 

 

 

 
 

 

Binary Addition Table 

 Carry Sum 

Weight 21 20 

0 + 0 0 0 

0 + 1 0 1 

1 + 0 0 1 
1 + 1 1 0 

Example 

 5 4 3 2 1 0  

+  1 1 1 1   

 1 0 1 1 0 1  

 1 0 0 1 1 1 + 

1 0 1 0 1 0 0  

        

≡ 0x20≡1x21 

≡ +2

Carries

Result of Binary 
Addition (SUM) 
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Binary Subtraction 
 

1 - 0 = 1 

 
1 - 1 = 0 

0 - 0 = 0 

 
0 - 1 = ? 

Position 1  0 

weight 10  1 

1st Number 7  5 

2nd Number   8    - 

Result   ?  ? 

 

Position 1  0 

weight 10  1 

1st Number 7  5 

2nd Number   8    - 

Result   6  7 

 
(5)10 – (8)10 = (7)10 Borrow 1 

 
 For Binary subtraction 

 
0 - 1 = 1 Borrow 1 

 In general, the result of subtracting two digits each of weight w is 

two digits. One is the “Difference” digit and the other is the 

“Borrow” digit.  

6 15
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 The difference digit has the same weight w as the operand digits. 

 The borrow digit is considered negative and has the weight of the 

next higher digit  (wr).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q. What is 1 – 1 – 1 = ? 

A. The answer is 1 borrow 1. 

Explanation: We perform the operation in 2 steps: 

• 1 – 1 = 0 

• We then subtract 1 from the above result, i.e. 0 – 1 which is 1 

borrow 1. 

_______________________________________ 

Q. What is 0 – 1 – 1 = ? 

A. The answer is 0 borrow 1. 

 Borrow Difference

Weight -21 +20 

0 - 0 0 0 

1 - 1 0 0 

1 - 0 0 1 

0 - 1 1 1 

≡ +1x20≡ 1x(-21) 

≡ -1 
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Explanation: We perform the operation in 2 steps: 

• 0 - 1= 1 borrow 1 

• We then subtract 1 from the above result, which yields 0 

borrow 1. 

_______________________________________ 

Subtraction Example 

 
 
 5 4 3 2 1 0  

-  0 1 1 1   

 1 0 1 1 0 0  

 1 0 0 1 1 1 - 

 0 0 0 1 0 1  

        

 

 
 
 
Binary Multiplication (example) 
 

Multiplicand  1 0 1 1  

Multiplier   1 0 1 x 

    1 0 1 1  

   0 0 0 0  + 

  1 0 1 1   + 

  1 1 0 1 1 1  

         

Borrows 

Result of Binary 
Subtraction (Difference)

Col # 
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Arith. With Bases Other Than 10 
 

Example:   Base 5  Digit Set= {0, 1, 2, 3, 4} 

(2)5 + (3)5  = (5)10  

= (?)5  

= (10)5  

Addition Table   

 

+ 0 1 2 3 4 

0 0     

1 1 2    

2 2 3 4   

3 3 4 10 11  

4 4 10 11 12 13 

 

 

 

Multiplication Table   

 

* 0 1 2 3 4 

0 0     

1 0 1    

2 0 2 4   

3 0 3 11 14  

4 0 4 13 22 31 

 

=6= 1x50 + 1x51 

=9= 4x50 + 1x51 

=16= 1x50 + 3x51

=6= 1x50 + 1x51 

=8= 3x50 + 1x51 

=5= 0x50 + 1x51 
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Number Base Conversion 
 
Objectives 
Given the representation of some number (XB) in a number system of radix 

B, this lesson will show how to obtain the representation of the same 

number (X) in another number system of radix A, i.e. (XA). 

 
Converting Whole (Integer) Numbers 
 
Assuming X to be an Integer, 

1. Assume that XB has n digits (bn-1………..b2 b1 b0)B , 

where bi  is a digit in radix B system,  

i.e.    bi ∈ {0, 1, ….., “B-1”} 
 

2. Assume that XA has m digits  (am-1………..a2 a1 a0)A 

where ai  is a digit in radix A system, 

i.e.         ai ∈ {0, 1, ….., “A-1”} 

 

 

XB =(bn-1………..b2 b1 b0)B                              (am-1………..a2 a1 a0)A 

 

XB = am-1*Am-1+……+ a2*A2 + a1*A1  +  a0*A0 

 

 

 

Knowns 

Not Divisible by ADivisible by A

Unknowns 
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Where  ai ∈ {0-(A-1)} 

 

Accordingly, dividing XB by A, the remainder will be a0. 
In other words, we can write   

XB = Q0.A+a0  

Where, Q0 =  am-1*Am-2   +…+  a2*A1      +  a1*A0 

 

 

Q0  = Q1A+a1  Dividing Q0  by  

 

Q0  = Q1A+a1   

 

Q1  = Q2A+a2   

…………..………………. 

Qm-3=Qm-2A+am-2 

Qm-2=am-1  < A  (not divisible by A) 

        =Qm-1A+am-1 

Where  Qm-1 = 0 

 

 This division procedure can be used to convert an integer value from 

some radix number system to any other radix number system 

 An important point to remember is the first digit we get using the 

division process is a0, then a1, then a2, till am-1 

Not Divisible by ADivisible by A
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 In other words, we get the digits of the integer number starting from the 

radix point and moving lefts 

Example : 

Convert  (53) 10                 (? )2 

 
Division Step Quotient Remainder  
53 ÷ 2 Q0 =26 1   = a0 LSB 
26 ÷ 2 Q1 =13 0   = a1  
13 ÷ 2 Q2 =6 1   = a2  
6 ÷ 2 Q3 =3 0   = a3  
3 ÷ 2 Q4 =1 1   = a4  
1 ÷ 2 0 1   = a5 MSB
 

 

 
Thus (53)10=(110101.)2 

 

Since we always divide by the radix, and the quotient is re-divided again by 

the radix, the solution table may be compacted into 2 columns only as 

shown: 

 

 

51   53 
25 1 a0    26 1  LSB  
12 1  13 0 
6 0  6 1 
3 0  3 0 
1 1  1 1 
0 1 am  0 1 MSB 

Stopping Point 

Binary Point
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(51)10=(110011.)2 

(53)10=(110101.)2 

Example : 

Convert (755)10                           (? )8 

Division Step Quotient Remainder  
755 ÷ 8 Q0 =94 3   = a0 LSB 
94 ÷ 8 Q1 =11 6   = a1  
11 ÷ 8 Q2 =1 3   = a2  
1 ÷ 8 0 1   = a3 MSB
 

Thus, (755)10                    ( 1363.)8  

The above method can be more compactly coded as follows: 

755  

94 3   

11 6 

1 3  

0 1  

 

Example : 

Convert (1606)10                (? )12 

 

For radix twelve, the allowed digit set is: 

  {0-9,  A,  B} 
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1606 ÷12  

133   ÷12 10  = A LSB 

11     ÷12 1     

0  11  =  B MSB 

 

(1606)10               ( B1A.)12  

 

Converting Fractions 
Assuming X to be a fraction ( < 1), 

1. Assume that XB has n digits  

XB = (0.b-1 b-2 b-3…….b-n)B 

 

2. Assume that XA has m digits  

XA = (0.a-1 a-2 a-3…  …a-m)A 

 

 

Thus, XB =(0.b-1 b-2 b-3…….b-n)B                      (0.a-1 a-2 a-3…  …a-m)A 

 

 

 

XB = a-1*A-1+a-2*A-2+………a-m*A-m
 

 

 

XB*A  =  a-1   +  XB1 

Knowns 

Unknowns 

Integer Fraction
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Repeating: 

XB1*A  =  a-2    +  XB2 

…………………. 

XBm-2*A  =  a-m-1    +  XBm-1  

 

XBm-1*A  =  a-m 

Example : 

 

Convert  (0.731) 10                     (? )2     

 

 

0.731*2=1.462 

0.462*2=0.924 

0.924*2=1.848 

0.848*2=1.696 

0.696*2=1.392 

0.392*2=0.784 

0.784*2=1.568 

 (0.731) 10 = (.1011101)2 

 

Binary Point
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Example : 

Convert (0.731) 10             (? )8 

 

8*0.731 =5.848 

8*0.848 = 6.784 

8*0.784 = 6.272 

8*0.272 = 2.176 

(0.731) 10 =(0.5662) 8    

 Example : 

Convert         (0.357) 10                (? )12 

• For radix twelve, the allowed digit set is: 

 {0-9,  A,  B} 

 

 

12*0.357 =4.284 

12*0.284 = 3.408 

12*0. 408= 4.896 

12*0. 896= 10.752                   A=10 

 

 

(0.357) 10                (0.434A )12 

Octal  Point

System  Point

=A 



 8

IMPORTANT NOTE 

For a number that has both integral and fractional parts, conversion is done 

separately for both parts, and then the result is put together with a system 

point in between both parts. 

 

Conversion From Bases Other Than 10 
 

Example 

( )7  ( )5 

 

( )9  ( )12 

 

 

2 Approaches 

 

 

 

 

 

 

Perform arith. in original base system 
(in the above example bases 7 & 9) 

1. Convert to Decimal 
2. Convert from Decimal to new base 

(in the above example bases 5&12)
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Binary To Octal Conversion 
 

(bn….. b5 b4 b3 b2 b1 b0 . b-1 b-2 b-3 b-4 b-5…….)2     ( ? )8 

 

(bn…. b5 b4 b3 b2 b1 b0 . b-1 b-2 b-3 b-4 b-5…)2 
 

 

 

 

Group of 3 Binary Bits 
bi+2 bi+1 bi 

Octal 
Equivalent

0     0     0 0 
0     0     1 1 
0     1     0 2 
0     1     1 3 
1     0     0 4 
1     0     1 5 
1     1     0 6 
1     1     1 7 

 

Example :    

Convert (1110010101.1011011)2 ino Octal. 

 

We first partition the Binary number into groups of 3 bits 

 

      001__110__010__101_._101__101__100 

 1 4 

3- 
bits 

3- 
bits 

3- 
bits

3- 
bits

Starting Point 

5 55 2 6 
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      001__110__010__101_._101__101__100  = (1625.554)8 

 

Binary To Hexadecimal Conversion 
 

(bn….. b5 b4 b3 b2 b1 b0 . b-1 b-2 b-3 b-4 b-5…….)2     ( ? )16 

 

 

 

 

(bn….. b5 b4 b3 b2 b1 b0 . b-1 b-2 b-3 b-4 b-5)2 

Group of 4 Binary Bits 
bi+3 bi+2 bi+1 bi 

Hexadecimal
Equivalent 

0     0     0     0 0 
0     0     0     1 1 
0     0     1     0 2 
0     0     1     1 3 
0     1     0     0 4 
0     1     0     1 5 
0     1     1     0 6 
0     1     1     1 7 
1     0     0     0 8 
1     0     0     1 9 
1     0     1     0 A 
1     0     1     1 B 
1     1     0     0 C 
1     1     0     1 D 
1     1     1     0 E 
1     1     1     1 F 

Starting Point 

4- 
bits

4- 
bits

4- 
bits 
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Example :  

Convert (1110010101.1011011)2 into Hexadecimal. 

 

         0011__1001__0101_._1011__0110  

 

 

= (395.B6)16 

 

 

To Convert Between Octal && Hexadecimal Convert to Binary as an 

Intermediate Step 

 

6 B5 9 3 
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Machine Representation of Numbers 

Objectives 
• In this lesson, you will learn how signed numbers (positive or negative) 

are represented in digital computers. 

• You will learn the 2 main methods for signed number representation: 

a. The signed-magnitude method, and 

b. The complement method. 

Registers 
 Digital computers store numbers in special digital electronic devices called 

Registers 

 Registers consist of a fixed number n of storage elements. 

 Each storage element is capable of storing one bit of data (either 0 or 1}. 

 The register size is the number of storage bits in this register (n). 

 Thus, registers are capable of holding n-bit binary numbers 

 Register size (n) is typically a power of 2, e.g. 8, 16, 32, 64, etc. 

 An n-bit  register can represent (store) one of  2n Distinct Values. 
 Numbers stored in registers may be either unsigned or signed numbers. For 

example, 13 is an unsigned number but +13 and –13 are signed numbers. 

Unsigned Number Representation 
 

bit 0bit 1bit 2bit n-2bit n-1

LSBMSB

N-Bit Register holding an n-Bit Unsigned Number

. . . . . . . . . .

 
 
• A register of n-bits, can store any unsigned number that has n-bits or less. 
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• Typically, the rightmost bit of the register is designated to be the least 

significant bit (LSB), while the leftmost bit is designated to be the most-

significant bit (MSB). 

• When representing an integer number , this n-bit register can hold values 

from 0 up to (2n – 1). 

 
Example 

Show how the value (13)10 (or D in Hexadecimal) is stored in a 4-bit register 

and in an 8-bit register 

 
 

 
Signed Number Representation 

 The n-bits of the register holding an unsigned number need only represent 

the value (magnitude) of the number. No sign information needs to be 

represented in this case. 

 In the case of a signed number, the n-bits of the register should represent 

both the magnitude of the number and its sign as well. 

 Two major techniques are used to represent signed numbers: 

1. Signed Magnitude Representation 

2. Complement method 

• Radix (R’s) Complement (2’s Complement) 

• Diminished Radix (R-1’s) Complement (1’s Complement) 

 

11 01

4-Bit Register Storing 13

LSBMSB

 

0000 1011

8-Bit Register Storing 13

LSBMSB
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Signed Magnitude Number Representation 

bit 0bit 1bit 2bit n-2

LSBMSB

Signed-Magnitude Number Representation
in n-Bit Register

. . . . . . . . . .Sign
Bit

0  +ive1  -ive Magnitude

 
 Independent Representation of The Sign and The Magnitude 

 The leftmost bit is used as a Sign Bit. 

 The Sign Bit : 

o  = 0    +ive number 

o  = 1    -ive number. 

 The remaining (n-1) bits are used to represent the magnitude of the number. 

 Thus, the largest representable magnitude, in this method, is (2n-1-1) 

Example 

Show the signed-magnitude representations of +6, -6, +13 and –13 using a 4-Bit 

register and an 8-Bit register 

Solution 

 For a 4-bit register, the leftmost bit is a sign bit, which leaves 3 bits only to 

represent the magnitude. 

 The largest magnitude representable in 3-bits is 7. Accordingly, we cannot 

use a 4-bit register to represent +13 or –13. 

 

 

 

 

 

01 10

Signed-Magnitude
Representation of +6  

01 11

Signed-Magnitude
Representation of -6  
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 For an 8-bit register, the leftmost bit is a sign bit, which leaves 7 bits to 

represent the magnitude. 

 The largest magnitude representable in 7-bits is 127 (= 27-1). 

 

 

Notes 

1. Signed magnitude method has Two representations for 0  {+0 , -0}  

nuisance for implementation. 

 

2. Signed magnitude method has a symmetric range of representation {-(2n-1 

-1) : +(2n-1- 1)} 

3. Harder to implement addition/subtraction. 

a) The sign and magnitude parts have to be processed independently.  

b) Sign bits of the operands have to be examined to determine the actual 

operation (addition or subtraction).  

c) Separate circuits are required to perform the addition and subtraction 

operations.  

4. Multiplication & division are less problematic. 

0001 0110

Signed-Magnitude
Representation of -6  

0000 0110

Signed-Magnitude
Representation of +6  

0000 1011

Signed-Magnitude
Representation of +13  

0001 1011

Signed-Magnitude
Representation of -13  
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Complement Representation 
 

 Positive numbers (+N) are represented in exactly the same way as in signed 

magnitude system 

 Negative numbers (-N) are represented by the complement of N  (N’) 

 
Define the Complement N’  of some  number N  as: 

N’ = M -N   where,  M = Some Constant 

 Applying  a  negative sign to a number (N  -N) is equivalent to 

Complementing that number (N  N’) 

 Thus, given the representation of some number N, the representation of –N 

is equivalent to the representation of the complement N’. 

Important Property: 

 The Complement of the Complement of some number N is the original 

number N. 

N’   =M-N  

( N’ )’  = M- (M-N) = N  

 This is a required property to match the negation process since a number 

negated twice    must   yield  the   original    number {- (-N) = N} 

 
Why Use the Complement Method ? 

Through the proper choice of the constant M, the complement operation can be 

fairly simple and quite fast. A simple complement process allows: 

i. Simplified arithmetic operations since. subtraction can be totally replaced 

by addition and complementing. 

ii. Lower cost, since no subtractor circuitry will be required and only an 

adder is needed. 

Complement Arithmetic 

Basic Rules 
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1. Negation  is  replaced   by   complementing ( - N  N’ ) 

2. Subtraction is replaced by addition to the complement. 

• Thus,  (X – Y) is replaced by (X + Y' ) 

 
Choice of M 

The value of M should be chosen such that:  

1. It simplifies the computation of the complement of a number. 

2. It results in simplified arithmetic operations. 

 
 Consider the operation  

Z = X – Y,  
where both X and Y are positive numbers 

 In complement arithmetic, Z is computed by adding X to the 
complement of Y 

Z = X + Y’ 
Consider the following two possible cases: 

First case  Y > X  (Negative Result) 
 The result Z is –ive, where   

Z = – (Y-X)   

 Being –ive, Z should be represented in the complement form as M-(Y-X) 

 Using the complement method: 

Z  = X - Y 

Z  = X + Y’  

 = X + (M-Y) 

 = M - (Y-X) 

   = Correct Answer in the Complement Form  

 Thus, in the case of a negative result, any value of M may be used. 
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Second case Y < X  (Positive Result) 

The result Z is +ive where, 

Z = +(X-Y). 

 
Using complement arithmetic we get: 

 Z  = X-Y 

 Z  = X + Y’  

  = X + (M-Y)  

 Z = M + (X-Y)  

• which is different from the expected correct result of +(X-Y) 
 

 In this case, a correction step is required for the final result.  

 The choice of the value of M affects the complexity of this correction step. 

 
To summarize,  

There are two constraints on the choice of M 

1. Simple and fast complement operation. 

2. Elimination or simplification of the correction step. 

 

R’s and (R-1)’s Complements 
 Two complement methods have generally been used. 

 The two methods differ in the choice of the value of M. 
 

1. The diminished radix complement method {(R-1)’s Complement }, and 
2. The radix complement method (R’s Complement). 

 

 Consider the number X, with n integral digits and m fractional digits, 

where 

 
m Fractional Digits n Integral Digits
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X = Xn-1 Xn-2  .... X1 X0 . X-1 X-2 .…. X-m 

 Next, we will show how to compute the (R-1)’s and the R’s complements 

of X 

 

The Diminished Radix Complement (R-1)’s Complement: 

MR-1 = r n -  r -m  
 

where; r n = 1 000…00 . 00…000 

 

 

  

and; r -m = 000…00 . 00…001 

 

 

 
 Note that, if X is integer, then  m=0 and  r -m =1. 

Thus; r –m = 000…00 . 00…001 

 = Unit (one)  in Least Position (ulp) 

OR  MR-1 = r n -  ulp 

where; ulp = Unit (one)  in Least Position = r -m 
 
Important Notes:  

• The (R-1)’s complement of X will be denoted by X r
'

1− . 

• (rn - r-m) is the largest number representable in n integral digits and m 

fractional digits. 

• X r
'

1−  = L – X, where L is largest number representable in n integral 

digits and m fractional digits 

m Positionsn Positions 

m digitsn digits (n+1)th 
Position 
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The shown table shows how to compute the (r-1)’s complement of X for various 

number systems 

Number 

System 

(R-1)’s 

Complement 

Complement of X 

(X’r-1) 

Decimal 9’s 

Complement 
X’9 =(10

n
-10

-m 
)-X 

  = 99...9.99…9-X 

Binary 1’s 

Complement 
X’1 =(2

n
 -2

-m 
) -X 

  = 11…1.111...1-X 

Octal 7’s 

Complement 
X’7 =(8

n
 -8

-m 
) -X 

    = 77…7.77…7-X 

Hexadec

imal 

F’s 

Complement 
X’F =(16

n
 -16

-m  )-X 

 = FF…F. FF…F-X

Radix Complement  (R’s Complement  ):   

MR = r n 
 

Note that  r 
n = 1000…00.000  

 

 

 
Notes:  

1. The R’s complement of X will be denoted by X r
' . 

2. MR depends only on the number of integral digits (n), but is independent of 

the number of fractional digits (m). 

3. XX rn
r −='

 

4. XulpX rn
r −−=− )('

1  

n-integral digits

m-fractional digits 

n Positions(n+1)th  
Position 
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5. Thus,  ulpXX rr += −
'

1
'

, i.e R's complement =( R-1)'s complement + 

ulp 

 

The shown table summarizes the radix complement computation of X for 

various number systems 

Number 

System 

R’s Complement Complement 

of X (X’r) 

Decimal 10’s Complement X’10=10
n
 -X 

Binary 2’s Complement X’2 =2
n
 -X 

Octal 8’s Complement X’8 =8
n
 -X 

Hexa-

decimal 

16’s Complement X’16=16
n
 -X 

 

Examples 
Find the 9’s and the 10’s complement of the following decimal numbers: 

a- 2357 

b- 2895.786 

Solution: 

a- X = 2357  n=4,  

• X’9=(104 –ulp) –2357  

= 9999 – 2357 = 7642 

• X’10=104 –2357 = 7643; 

• Alternatively, X’10= X’9 + 0001= 7643 

 

b- X = 2895.786  n=4, m=3 

• X’9=(104 – ulp) –2895.786 

= 9999.999 – 2895.786= 7104.213 



 11

• X’10=104 – 2895.786= 7104.214; 

• Alternatively,     X’10 = X’9 + 0000.001= 7104.214 

 
Example 

Find the 1’s and the 2’s complement of the following binary numbers: 

a- 110101010 

b- 1010011011 

c- 1010.001 

Solution: 

a- X = 110101010  n=9,  

• X’1=(29 – ulp) –110101010   = 111111111 – 110101010   

 = 001010101 

• X’2=29 – 110101010     = 1000000000 – 110101010

   = 001010110 

• Alternatively, X’2= X’1 + ulp  = 001010101 + 000000001

  = 001010110 

 
b- X = 1010011011  n=10,  

• X’1=(210 –ULP) –101001101  = 1111111111 – 101001101

  = 010110010 

• X’2=210 – 101001101     = 10000000000 – 

101001101   = 010110011 

• Alternatively, X’2= X’1 + ulp  = 010110010+ 0000000001

  = 010110011 

c- X = 1010.001  n=4, m=3 

• X’1=(24 –ULP) –1010.001   = 1111.111 – 1010.001 

  = 0101.110 

• X’2 = 24 – 1010.001     = 10000  – 1010.001 

   = 0101.111 
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• Alternatively, X’2= X’1 + ulp  = 0101.110+ 0000.001 

  = 0101.111 

Important Notes: 
1. The 1's complement of a number can be directly obtained by bitwise 

complementing of each bit, i.e. each 1 is replaced by a 0 and each 0 is 

replaced by a 1. 

• Example:   X  = 1 1 0 0 1 0 1 0 0 1 

•                   X1' = 0 0 1 1 0 1 0 1 1 0 

 
2.  The 2's complement of a number can be visually obtained as follows: 

• Scan the binary number from right to left. 

• 0's are replaced by 0's till the first 1 is encountered. 

• The first encountered 1 is replaced by a 1 but from this point onwards 

each bit is complemented replacing each 1 by a 0 and each 0 by a 1 

• Example:   X  = 1 1 0 0 1 0 1 0 0  

•                  X2'  = 0 0 1 1 0 1 1 0 0  

Example 

Find the 7’s and the 8’s complement of the following octal numbers: 

a- 6770 

b- 541.736 

Solution: 

a- X = 6770  n=4,  

• X’7=(8 4 –ULP) –6770   = 7777 – 6770  

  = 1007 

• X’8=8 4 – 6770      = 10000 – 6770 = 1010 

• Alternatively, X’8= X’7 + ulp  = 1007+ 0001= 1010 

 
b- X = 541.736  n=3,  m=4 

• X’7=(83 –ULP) –541.736  = 777.7777 – 541.736= 236.041 
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• X’8=83 – 541.736   = 1000 – 541.736  =  236.042 

• Alternatively, X’8= X’7 + ulp =  236.041+ 0.001 =  236.042 

Example 

Find the F’s and the 16’s complement of the following HEX numbers: 

a- 3FA9 

b- 9B1.C70 

Solution: 

a- X = 3FA9  n=4,  

• X’F=(16 4 –ULP) –3FA9   = FFFF – 3FA9 = C056 

• X’16=16 4 – 3FA9     = 10000 – 3FA9  = C057 

• Alternatively, X’16= X’F + ulp  = C056+ 0001 = C057 

 
b- X = 9B1 . C70  n=3,  m=3 

• X’F=(163 –ULP) –9B1 . C70  = FFF . FFF – 9B1 . C70= 64E.38F 

• X’16=163 – 9B1 . C70    = 1000 – 9B1 . C70      = 64E . 390 

• Alternatively, X’16= X’F + ulp =  64E . 38F + 000 . 001=  64E . 390 

Example 

Show how the numbers +53 and -53 are represented in 8-bit registers using 

signed-magnitude, 1's complement and 2's complement representations. 
 

 +53 -53 

Signed Magnitude 00110101 10110101 

1's Complement 00110101 11001010 

2's Complement 00110101 11001011 

Important Notes:  

1. In all signed number representation methods, the leftmost bit indicates 

the sign of the number, i.e. it is considered as a sign bit 

2. If the sign bit (leftmost) is 1, then the number is negative and if it is 0  

the number is positive. 
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Comparison: 

 Signed 
Magnitude 

1's 
Complement

2's 
Complement

No. of 0’s 
2 

( ± 0 ) 

2 

( ± 0 ) 

1 

( + 0 ) 

Symmetric yes yes no 

Largest 
+ive value +(2n-1-1) +(2n-1-1) +(2n-1-1) 

Smallest   
–ive Value - (2n-1-1) -(2n-1-1) - 2n-1  
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Quiz: 

For the shown 4-bit numbers, write the corresponding decimal values in the 

indicated representation. 

X 
Un-

signed 

Signed 

Magnitude 

1's Comp 

(X1’) 

2's Comp 

(X2’) 

0000     

0001     

0010     

0011     

0100     

0101     

0110     

0111     

1000     

1001     

1010     

1011     

1100     

1101     

1110     

1111     

 

End of Lessons Exercises 
 

1. Find the binary representation in signed magnitude, 1's complement, and 2's 

complement for the following decimal numbers: +13, -13, +39, -39, +1, -1, 

+73 and -73. For all numbers, show the required representation for 6-bit and 

8-bit registers  

2. Indicate the decimal value corresponding to all 5-bit binary patterns if the 

binary pattern is interpreted as a number in the signed magnitude, 1's 

complement, and 2's complement representations. 
 



Complement Arithmetic 

Objectives 
In this lesson, you will learn: 

 How additions and subtractions are performed using the complement representation, 

 What is the Overflow condition, and 

 How to perform arithmetic shifts. 

Summary of the Last Lesson 
Basic Rules 

1. Negation  is  replaced   by   complementing ( - N  N’ ) 

2. Subtraction is replaced by addition to the complement. 

• Thus,  (X – Y) is replaced by (X + Y' ) 

3. For some number N, its complement N’ is computed as N’ = M –N,  where  

 M = r n for R’s complement representation, where n is the number of integral digits of 

the register holding the number. 

 M = (r n – ulp) for (R-1)’s complement representation 

4. The operation Z= X–Y, where both X and Y are positive numbers (computed as X + Y’) 

yields two different results depending on the relative magnitudes of X & Y. (Review page 

12 of the previous lesson). 

a) First case  Y > X  (Negative Result) 
 The result Z is –ive, where   

Z = – (Y-X)   

 Being –ive, Z should be represented in the complement form as    

           Z = M-(Y-X)    (1) 

 

 

 

 

 

 

 

 

 

 

Expected 
Correct Result 



 Using the complement method: 

Z  = X + Y’  

 = X + (M-Y), i.e.  

   Z  = M - (Y-X)    (2) 

   = Correct Answer in the Complement Form  

 In this case, any value of M gives correct result. 

 

Note In this case the result fits in the n-digits of the operands. In other words, there is no end 

carry irrespective of the value of M.  

 

 

Second case Y < X  (Positive Result) 

The result Z is +ive where, 

Z = +(X-Y). 

Using complement arithmetic we get: 

 Z  = X + Y’  

  = X + (M-Y)  

    Z = M + (X-Y)   (3) 

• which is different from the expected correct result of  

    Z  = +(X-Y)    (4) 

 

 

 

 

 In this case, a correction step is required for the final result.  

 The correction step depends on the value of M. 

 

Computed Result 

Computed 
Result 

Expected 
Correct Result 



Correction Step for R’s and (R-1)’s Complements  

The previous analysis shows that computing Z = (X-Y) using complement arithmetic gives: 

 The correct complement representation of the answer if the result is negative, that is   M 

- (Y-X). 

 Alternatively, if the result is positive it gives an answer of  M + (X-Y)  which is different 

from the correct answer of +(X-Y)  requiring a correction step. 

 The correction step depends on the value of M 

 

For the R’s Complement 

Note that MR =  r n = 1000…00.000  

 

 

 

Thus, the computed result (M + (X-Y)) is given by 

Z = r n + (X-Y) 

Since (X-Y) is positive, the computed Z value {r n + (X-Y)} requires (n + 1) integral digits to be 

expressed as shown in Figure.  

 

digit 0digit 1digit 2digit n-11

(n+1)-digits  required  to  hold  computed Z value = rn + (X-Y)

. . . . . . . . . .

n-digits holding the value of (X-Y)

rn

(n+1)th digit

 
 

n Positions(n+1)th  
Position 



In this case, it is clear that Z = r n + (X-Y) consists of the digit 1 in the (n+1)th digit position 

while the least significant n digits will hold the expected correct result of (X-Y). 

Since X, Y, and the result Z are stored in registers of n digits, the correct result (X- Y) is simply 

obtained by neglecting the 1 in the (n+1)th digit. 

 

The 1 in the (n+1)th digit is typically referred to as “end carry”. 

 

Conclusion: 

 For the R’s complement method; 

i.  If the computed result has no end carry. This result is the correct answer. 

ii. In case the computed result has an end carry, this end carry is DISACRDED and the 

remaining digits represent the correct answer. 

 

For the (R-1)’s Complement  

 MR-1 = r n- ulp 

Thus, the computed result (M + (X-Y)) is given by 

Z = (r n – ulp) + (X-Y) 

For a positive value of (X-Y), the computed Z value {(r n – ulp)+ (X-Y)} requires (n + 1) 

integral digits for its representation.  

 
Again, r n represents a 1 in the (n+1)th digit position (i.e. an end carry) while the least 

significant n digits will hold the value (X-Y-ulp).  

 
Since the expected correct answer is (X-Y), the correct result is obtained by adding a ulp to the 

least significant digit position. 

 
Q. What does the computed result represent in case X=Y ? 

 
Conclusion: 

 For the (R-1)’s complement method; 

a.  If the computed result has no end carry. This result is the correct answer. 

b. In case the computed result has an end carry, this end carry is added to the least 

significant position  (i.e., as ulp). 

 



Important Note:  

• The previous conclusions are valid irrespective of the signs of X or Y and for both 

addition and subtraction operations. 

Add/Subtract Procedure 

It is desired to compute Z = X ± Y, where X, Y and Z: 

(a) are signed numbers represented in one of the complement representation methods.  

(b) have n integral digits including the sign digit. 

 
The procedure for computing the value of Z depends on the used complement representation 

method: 

 
R’s Complement Arithmetic 

1. If the operation to be performed is addition compute Z = X + Y, otherwise if it is 

subtraction, Z = X – Y, compute Z = X + Y’ instead. 

2. If the result has no end carry, the obtained value is the correct answer. 

3. If the result has an end carry, discard it and the value in the remaining digits is the 

correct answer. 

 
(R-1)’s Complement Arithmetic 

1. If the operation to be performed is addition compute Z = X + Y, otherwise if it is 

subtraction, Z = X – Y, compute Z = X + Y’ instead. 

2. If the result has no end carry, the obtained value is the correct answer. 

3. If the result has an end carry, this end carry should be added to the least significant digit 

(ulp) to obtain the final correct answer. 

 



Examples 

RADIX   COMPLEMENT 
 
Compute (M-N) and (N-M), where M=(072532)10     N=(003250)10 

Both M & N must have the same # of Digits (Pad with 0`s if needed). 

 
COMPUTING (M – N) 

 
Regular Subtraction 
 
M  0 7 2 5 3 2 

 
N ─ 0 0 3 2 5 0 

 
  0 6 9 2 8 2 

 
 
Complement Method 
 
Compute (M+N’) 
 
M  0 7 2 5 3 2 

 
N’ + 9 9 6 7 5 0 

 
 1 0 6 9 2 8 2 
        

 

Correct Result

Discard 
End Carry 



COMPUTING (N – M) 
 

Regular Subtraction 
 
N  0 0 3 2 5 0 

 
M ─ 0 7 2 5 3 2 

 
 ─ 0 6 9 2 8 2 
        
        

 
 
 
Complement Method 
 
Compute (N + M’) 
 
N  0 0 3 2 5 0 

 
M’ + 9 2 7 4 6 8 

 
  9 3 0 7 1 8 
        

 
 
 
 

-ive  sign 
Equivalent Results 
The –ive Result is 
Represented by the 
10’s Complement

No End Carry 

This is the 10’s complement representation of 
a –ive number, i.e. the result (930718) 
represents the number (-069282) 



Example : (2`s Comp)  M=(01010100)2    N=(01000100)2 
 
Note: Both M & N are positive 8-bit numbers 
 

COMPUTING (M – N) 
 
Regular Subtraction 
 
M  0 1 0 1 0 1 0 0 

 
N ─ 0 1 0 0 0 1 0 0 

 
  0 0 0 1 0 0 0 0 
 
 
Complement Method 
 
Compute (M+N’) 
 
M  0 1 0 1 0 1 0 0 

 
N’ + 1 0 1 1 1 1 0 0 

 
 1 0 0 0 1 0 0 0 0 
 

Discard 
Carry Out 

Correct Result

Sign Bit 



COMPUTING (N – M) 
 
Regular Subtraction 
 
N  0 1 0 0 0 1 0 0 

 
M ─ 0 1 0 1 0 1 0 0 

 
 ─ 0 0 0 1 0 0 0 0 
 
 
 
 
 
Complement Method 
 
Compute (N + M’) 
 
N  0 1 0 0 0 1 0 0 

 
M’ + 1 0 1 0 1 1 0 0 

 
  1 1 1 1 0 0 0 0 
 
 
 
 
 
 
 
 
 
 
 
 
 

-ive  sign 

No End Carry 

This is the 2’s complement representation of a 
–ive number, i.e. the result (11110000) 
represents the number (-00010000) 

Sign Bit 

Equivalent Results 
The –ive Result is 
Represented by the 
2’s Complement



DIMINISHED / (R-1)’s   RADIX   COMPLEMENT 
 
Compute (M-N) and (N-M), where M=(072532)10     N=(003250)10 

Both M & N must have the same # of Digits (Pad with 0`s if needed). 

 
COMPUTING (M – N) 

 
Regular Subtraction 
 
M  0 7 2 5 3 2 

 
N ─ 0 0 3 2 5 0 

 
  0 6 9 2 8 2 

 
 
Complement Method 
 
Compute (M+N’) 
 

M  0 7 2 5 3 2 
 

N’ + 9 9 6 7 4 9 
 

 1 0 6 9 2 8 1 
        
 +      1 
  0 6 9 2 8 2 

 

Correct Result

End Carry 



COMPUTING (N – M) 
 
Regular Subtraction 
 
N  0 0 3 2 5 0 

 
M ─ 0 7 2 5 3 2 

 
 ─ 0 6 9 2 8 2 
        
        

 
 
 
 
Complement Method 
 
Compute (N + M’) 
 
N  0 0 3 2 5 0 

 
M’ + 9 2 7 4 6 7 

 
  9 3 0 7 1 7 
        

 
 
 

-ive  sign 

Equivalent Results 
The –ive Result is 
Represented by the 
9’s Complement

No End Carry 

This is the 9’s complement representation of a 
–ive number, i.e. the result (930717) 
represents the number (-069282) 



Example : (1`s Comp)  M=(01010100)2    N=(01000100)2 
 
Note: Both M & N are positive 8-bit numbers 
 

COMPUTING (M – N) 
 
Regular Subtraction 
 
M  0 1 0 1 0 1 0 0 

 
N ─ 0 1 0 0 0 1 0 0 

 
  0 0 0 1 0 0 0 0 
 
 
Complement Method 
 
Compute (M+N’) 
 

M  0 1 0 1 0 1 0 0 
 

N’ + 1 0 1 1 1 0 1 1 
 

 1 0 0 0 0 1 1 1 1 
          
         1 
  0 0 0 1 0 0 0 0 

 

Correct ResultSign Bit

End Carry 



COMPUTING (N – M) 
 
Regular Subtraction 
 
N  0 1 0 0 0 1 0 0 

 
M ─ 0 1 0 1 0 1 0 0 

 
 ─ 0 0 0 1 0 0 0 0 
 
 
 
 
 
 
Complement Method 
 
Compute (N + M’) 
 
N  0 1 0 0 0 1 0 0 

 
M’ + 1 0 1 0 1 0 1 1 

 
  1 1 1 0 1 1 1 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-ive  sign 

No End Carry 

This is the 1’s complement representation of a 
–ive number, i.e. the result (11101111) 
represents the number (-00010000) 

Sign Bit 

Equivalent Results 
The –ive Result is 
Represented by the 
1’s Complement



Overflow Condition 

 If adding two n-digit unsigned numbers results in an n+1 digit sum, this represents an 

overflow condition. 

 In digital computers, overflow represents a problem since register sizes are fixed, 

accordingly a result of n+1 bits cannot fit into an n-bit register and the most significant bit 

will be lost. 

 Overflow condition is a problem whether the added numbers are signed or unsigned. 

 In case of signed numbers, overflow may occur only if the two numbers being added have 

the same sign, i.e. either both numbers are positive or both are negative. 

 For 2’s complement represented numbers, the sign bit is treated as part of the number and 

an end carry does not necessarily indicate an overflow. 

 In 2’s complement system, an overflow condition always changes the sign of the result and 

gives an erroneous n-bit answer. Two cases are possible: 

1. Both operands are positive (sign bits=0). In this case, an overflow will result from a carry 

of 1 into the sign bit column; causing the sum to be interpreted as a negative number. 

2. Both operands are negative (sign bits=1). In this case, an overflow will result when no 

carry is received at the sign bit column causing the two sign bits to be added resulting in a 

0 in the sign bit column and a carry out in the (n+1)th. bit position which will be 

discarded. This causes the sum to be interpreted as a positive number. 

 Accordingly, an overflow condition is detected if one of the two following conditions 

occurs: 

(a) There is a carry into the sign bit column but no carry out of that column. 

(b) There is a carry out of the sign bit column but no carry into that column. 

 



Example: 

 Consider the case of adding the binary values corresponding to (+5)10 and (+6) 10 where the 

correct result should be (+11). 

 Even though the operands (+5)10 & (+6)10 can be represented in 4-bits, the result (+11)10 

cannot be represented in 4-bits.  

 Accordingly, the 4-bit result will be erroneous due to “overflow”. 

 
Add (+5) to (+6) using 4-bit registers and 2’s complement representation. 

(+5)10  (0101)2 

(+6)10  (0110)2 

 

 0 1 0 1 
+ 0 1 1 0 

 
 1 0 1 1 

 

 

 
 If this overflow condition is not detected, the resulting sum would be erroneously 

interpreted as a negative number (1011) which equals (-5)10. 

 

 

Example: 

Add (-5) to (-6) using 4-bit registers and 2’s complement representation. 

(-5)10  (1011)2 

(-6)10  (1010)2 

 

 1 0 1 1 
+ 1 0 1 0 

 
 0 1 0 1 

 

 

 

 If this overflow condition is not detected, the resulting sum would be erroneously 

interpreted as a positive number (0101) which equals (+5)10. 

 

1 

Sign Bit 

1 

Sign Bit 

There is a carry into the 
sign bit column but no 
carry out of it 

There is a carry out of 
the sign bit column but 
no carry into it. 



Example: 

Using 8-bit registers, show the binary number representation of the decimal numbers  (37), (-37),   
(54), and   (-54) using the following systems: 
 

 Signed magnitude 
system 

Signed 1’s complement 
System 

Signed 2’s complement 
system 

37 00100101 00100101 00100101 
-37 10100101 11011010 11011011 
54 00110110 00110110 00110110 
-54 10110110 11001001 11001010 

 
Compute the result of the following operations in 
the signed 2’s complement system.  
 

I.  (+37) – (+54) 

Subtraction is turned into addition to the complement, i.e. 

(+37) – (+54)   (+37) + (+54)’ 

  0 0 1 0 0 1 0 1
 +         
  1 1 0 0 1 0 1 0
  1 1 1 0 1 1 1 1
          

= (-17)10  

 
II.  (-37) – (+54) 

Subtraction is turned into addition to the complement, i.e. 

(-37) – (+54)   (-37) + (+54)’ 

 
  1 1 0 1 1 0 1 1
 +         
  1 1 0 0 1 0 1 0
 1 1 0 1 0 0 1 0 1
          

 
= -(01011011) =- (91)10  

 

III.  (54) + (-37) 
 

  0 0 1 1 0 1 1 0
 +         
  1 1 0 1 1 0 1 1
 1 0 0 0 1 0 0 0 1
          

 

= + (17)10  

Discard End 
Carry 

Discard End 
Carry 



Range Extension of 2’s Complement Numbers 
 To extend the representation of some 2’s complement  number  X  from   n-bits to n`-bits 

where n` > n. 

1. If X is +ive  pad with 0`s to the right of fractional part and/or to the  left of the 

integral part. 

2. If X is -ive  pad with 0`s to the right of fractional part and/or with 1`s to the left of 

the integral part. 

In General 

 Pad with 0`s to the right of fractional part and/or extend sign bit to the left of the integral 

part (Sign Bit Extension).  

 

xn-1 xn-2 x2 x1 x0 x-1 x-2 x-m…. ….
 

X- Before Extending its Range 

xn-2 x2 x1 x0 x-1 x-2 x-m… … 0 0 0…xn-1 xn-1xn-1xn-1 …

Sign Extension Pad with 0's

Sign Bit

 
X- After Extending its Range 

(0’s Padded to the Right of Fractional Part and the Sign is Extended to the Left of the 

Integral Part) 

Example:  

Show how the numbers (+5)10 and (−5)10 are represented in 2’s complemenr using 4-bit registers 

then extend this representation to 8-bit registers. 



1 1 1 1 1 0 1 11 0 1 1 Extend
To 8-bits

Sign Bit Sign bit extension

(-5)10 (-5)10

0 0 0 0 0 1 0 10 1 0 1 Extend
To 8-bits

Sign Bit Sign bit extension

(+5)10 (+5)10

 

Arithmetic Shifts 
Effect of 1-Digit Shift 

 Left Shift   Multiply by radix r  

 Right Shift  Divide by radix r 

(a) Shifting Unsigned Numbers 

 Shift-in 0`s (for both Left & Right Shifts) 

 
(b) Shifting 2’s Complement Numbers 

 Left Shifts:   0`s are shifted-in 

 Right Shifts:  Sign Bit Extended  

 
Example:  

 
 

              

 +1 000001         -1 111111  

 +2 000010         -2 111110  

 +4 000100         -4 111100  

 +8 001000         -8 111000  

 +16 010000         -16 110000  

Shift Right Shift Right 

Shift Left
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Binary Codes 

Objectives 
In this lesson, you will study: 

1. Several binary codes including 

 Binary Coded Decimal (BCD), 

 Error detection codes, 

 Character codes 

2. Coding versus binary conversion. 

 
Binary Codes for Decimal Digits 

 Internally, digital computers operate on binary numbers. 

 When interfacing to humans, digital processors, e.g. pocket calculators, communication is 

decimal-based. 

 Input is done in decimal then converted to binary for internal processing. 

 For output, the result has to be converted from its internal binary representation to a decimal 

form. 

 To be handled by digital processors, the decimal input (output) must be coded in binary in a 

digit by digit manner.  

 For example, to input the decimal number 957, each digit of the number is individually 

coded and the number is stored as 1001_0101_0111. 

 Thus, we need a specific code for each of the 10 decimal digits. There is a variety of such 

decimal binary codes.  

 The shown table gives several common such codes. 

 One commonly used code is the Binary Coded Decimal (BCD) code which corresponds to 

the first 10 binary representations of the decimal digits 0-9.  

 The BCD code requires 4 bits to represent the 10 decimal digits.  

 Since 4 bits may have up to 16 different binary combinations, a total of 6 combinations will 

be unused. 

 The position weights of the BCD code are 8, 4, 2, 1. 

 Other codes (shown in the table) use position weights of 8, 4, -2, -1 and 2, 4, 2, 1. 

 An example of a non-weighted code is the excess-3 code where digit codes is obtained from 

their binary equivalent after adding 3. Thus the code of a decimal 0 is 0011, that of 6 is 

1001, etc. 
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BCD             Decimal 

Digit 8 4 2 1 8 4 -2 -1 2 4 2 1 Excess-3 

                 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 0 0 

2 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 1 

3 0 0 1 1 0 1 0 1 0 0 1 1 0 1 1 0 

4 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 

5 0 1 0 1 1 0 1 1 1 0 1 1 1 0 0 0 

6 0 1 1 0 1 0 1 0 1 1 0 0 1 0 0 1 

7 0 1 1 1 1 0 0 1 1 1 0 1 1 0 1 0 

8 1 0 0 0 1 0 0 0 1 1 1 0 1 0 1 1 

9 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 

U 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 

N 1 0 1 1 0 0 1 0 0 1 1 0 0 0 0 1 

U 1 1 0 0 0 0 1 1 0 1 1 1 0 0 1 0 

S 1 1 0 1 1 1 0 0 1 0 0 0 1 1 0 1 

E 1 1 1 0 1 1 0 1 1 0 0 1 1 1 1 0 

D 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 

 
Number Conversion versus Coding 

 Converting a decimal number into binary is done by repeated division (multiplication) by 2 

for integers (fractions) (see lesson 4). 

 Coding a decimal number into its BCD code is done by replacing each decimal digit of the 

number by its equivalent 4 bit BCD code. 

Example Converting (13)10 into binary, we get 1101, coding the same number into BCD, we 

obtain 00010011.   

 

Exercise: Convert (95)10 into its binary 

equivalent value and give its BCD code as 

well. 

Answer  {(1011111)2, and 10010101} 
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Error-Detection Codes 
 Binary information may be transmitted through some communication medium, e.g. using 

wires or wireless media. 

 A corrupted bit will have its value changed 

from 0 to 1 or vice versa. 

 To be able to detect errors at the receiver end, the sender sends an extra bit (parity bit) with 

the original binary message. 

SENDER Reciever

Binary
Message

Error
Detecting Bit
(Parity Bit)  

 A parity bit is an extra bit included with the n-bit binary message to make the total number 

of 1’s in this message (including the parity bit) either odd or even. 

 If the parity bit makes the total number of 1’s an odd (even) number, it is called odd (even) 

parity.  

 The table shows the required odd (even) parity for a 3-bit message. 

 

 

 

 

 

 

 

 

 

 

 

 At the receiver end, an error is detected if the message does not match have the proper 

parity (odd/even). 

 Parity bits can detect the occurrence 1, 3, 5 or any odd number of errors in the transmitted 

message. 

 Three-Bit Message   Odd Parity Bit Even Parity Bit

X Y Z  P P 

0 0 0  1 0 

0 0 1  0 1 

0 1 0  0 1 

0 1 1  1 0 

1 0 0  0 1 

1 0 1  1 0 

1 1 0  1 0 

1 1 1  0 1 
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 No error is detectable if the transmitted message has 2 bits in error since the total number of 

1’s will remain even (or odd) as in the original message. 

 In general, a transmitted message with even number of errors cannot be detected by the 

parity bit. 

Error-Detection Codes 
 Binary information may be transmitted through some communication medium, e.g. using 

wires or wireless media. 

 Noise in the transmission medium may cause the transmitted binary message to be 

corrupted by changing a bit from 0 to 1 or vice versa. 

 To be able to detect errors at the receiver end, the sender sends an extra bit (parity bit). 
 

Gray Code 
 The Gray code consist of 16 4-bit code words to represent the decimal Numbers 0 to 15. 

 For Gray code, successive code words differ by only one bit from one to the next as shown 

in the table and further illustrated in the Figure. 
 

0000

0011

0010

0110

1001

1011

1010

0111

00011000

0101

0100
1100

1101

1111

1110

0
15

14

13

12

11

10

1

2

3

4

5

6

7
8

9

 

Character Codes 
ASCII Character Code 

 ASCII code is a 7-bit code. Thus, it represents a total of 128 

characters. 

Gray Code Decimal  

Equivalent

0 0 0 0 0 

0 0 0 1 1 

0 0 1 1 2 

0 0 1 0 3 

0 1 1 0 4 

0 1 1 1 5 

0 1 0 1 6 

0 1 0 0 7 

1 1 0 0 8 

1 1 0 1 9 

1 1 1 1 10 

1 1 1 0 11 

1 0 1 0 12 

1 0 1 1 13 

1 0 0 1 14 

1 0 0 0 15 
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 Out of the 128 characters, there are 94 printable characters and 34 control (non- printable) 

characters. 

 The printable characters include the upper and lower case letters (2*26), the 10 numerals (0-9), and 

32 special characters, e.g. @, %, $, etc.  

 For example, “A” is at (41)16, while “a” is at (61) )16.  

 To convert upper case letters to lower case letters, add (20)16. Thus “a” is at (41)16 + (20)16 = (61)16. 

 The code of the character “9” at position (39)16 is different from the binary number 9 (0001001). To 

convert ASCII code of a numeral to its binary number value, subtract (30)16. 

 
 

Unicode Character Code 

 Unicode is a 16-bit character code that accommodates characters of various languages of the 

world. 



Binary Logic and Gates 
 
Introduction 
 

 Our objective is to learn how to design digital circuits.  

 These circuits use binary systems.  

 Signals in such binary systems may represent only one of 2 possible values 

0 or 1 

 Physically, these signals are electrical voltage signals 

 These signals may assume either a high or a Low voltage value.  

 The high voltage value typically equals the voltage of the power supply (e.g.  

5 volts or 3.3 volts), and the Low voltage value is typically 0 volts (or 

Ground). 

 When a signal is at the High voltage value, we say that the signal has a 

Logic 1 value. 

 When a signal is at the Low voltage value, we say that the signal has a Logic 0 

value. 

 Hence, the physical value of a signal is the actual voltage value it carries, 

while its Logic value is either 1 (High) or 0 (Low). 

 Digital circuits process (or manipulate) input binary signals and produce the 

required output binary signals as shown in Figure 1 

 
 
 
 
 
 
 
 
 
 

Figure 1 A Digital Circuit with n Input Signals and m Output Signals 

m Output 
Binary Signals

Digital 
Circuit.

x1 
x2 

xn 

Z1 

Zm 

 n Input 
Binary Signals 



 Generally, the circuit will have a number of input signals (say n of them) as 

shown in the Figure x1, x2, up to  xn, and a number of output signals (say m ) 

Z1, Z2, up to  Zm. 

 The value assumed by the ith output signal Zi depends on the values of the 

input signals x1, x2, up to  xn. 

 In other words, we can say that Zi is a function of the n  input signals x1, x2, up 

to  xn . Or we can write:    

Zi = Fi (x1, x2, ……, xn )   for i = 1, 2, 3, ….m 

 The m output functions (Fi) are functions of binary signals and produce a 

single binary output signal.  

 Thus, these functions are binary functions and require binary logic algebra for 

their derivation and manipulation. This binary system algebra is commonly 

referred to as Boolean Algebra after the mathematician George Boole. The 

functions are known as Boolean functions while the binary signals are 

represented by Boolean variables. 

 To be able to design a digital circuit, we must learn how to derive the Boolean 

function implemented by this circuit. 

Notes: 

1. The two values of binary variables may be equivalently referred to as 0 and 1 

or False (0) and True (1)or as Low (0) and High(1).  

2. Whether we use 0 and 1 or False and True or Low and High, all these are 

referred to as Logic Values. 

3. Systems manipulating Binary Logic Signals are commonly referred to as 

Binary Logic systems. 

4. Digital circuits implementing a particular Binary (Boolean) function are 

commonly known as Logic Circuits. 



CHAPTER OBJECTIVES 
 Learn Binary Logic and BOOLEAN Algebra 

 Learn How to Map a Boolean Expressions into Logic Circuit 

Implementations 

 Learn How To Manipulate Boolean Expressions and Simplify Them 

 

Elements of Boolean Algebra (Binary Logic) 
As in standard algebra, Boolean algebra has 3  main elements: 

1. Constants,  

2. Variables, and  

3. Operators.  

 

Logically 

 Constant Values  are either   0   or  1Binary Variables  ∈{ 0, 1} 

 3 Possible Operators  The AND operator, the OR operator, and the 

NOT operator 

Physically 

 Constants    ⇒ Power Supply Voltage (Logic 1) 

⇒ Ground  Voltage (Logic 0) 

 Variables     ⇒ Signals (High = 1,  Low = 0) 

 Operators   ⇒ Electronic Devices (Logic Gates) 

1. • AND - Gate 

2. • OR    - Gate 

3. • NOT - Gate  (Inverter) 

 

Logic Gates & Logic Operations 

The AND Operation 

 If X and Y are two binary variables, the result of the operation X AND Y is 1 

if and only if both X = 1 and Y = 1, and is 0 otherwise.  

 In Boolean expressions, the AND operation is represented either by a “dot” or 

by the absence of an operator. Thus, X AND Y is written as X.Y or just XY  

 This is summarized in the following table (commonly called truth table): 



 

 

 

 

 

 

 

 

 

 The electronic device which performs the AND operation is called the AND 

gate. Figure 2 shows the symbol of a 2-input AND gate which has two inputs 

(X and Y) and gives one output Z=XY 

 

X

Y
Z = XY

AND gate Symbol

 
Figure 2 Two-Input AND gate 

 

 The AND logic can be further illustrated using what is known as the Venn 

diagram 

 AND gates may have more than 2 inputs. Figure 3 shows a 3-input AND gate. 

 

X

Y

Z = WXY

3-Input AND gate

W

 
 

Figure 3 Three-Input AND gate 

 

Table 1 Truth Table of the 

AND operation 

  Z = X AND Y 

X Y Z=XY 

F F F 

F T F 

T F F 

T T T 

Table 1 Truth Table of the 

AND operation 

  Z = X AND Y 

X Y Z=XY 

0 0 0 

0 1 0 

1 0 0 

1 1 1 



 The truth table of the output variable Z=WXY of the 3-input AND gate is 

given in Table 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes 

 The output of an AND gate is 1 if and only if  ALL  its input signals are 1’s, 

otherwise it is 0. 

 A function of two input binary variables will have a truth table of 4 rows since 

each variable may assume any one of two possible values (0 or 1). 

 A function of three input variables will have a truth table of 8 rows since each 

variable may assume any one of two possible values (0 or 1). 

 In general, n input variables have 2n possible combinations. Accordingly, a 

function of n input variables, will have a truth table of  2n  rows. 

 

The OR Operation 

 If X and Y are two binary variables, the result of the operation X OR Y is 1 if 

and only if either X = 1 or Y = 1 or both X & Y are 1’s, but it  is 0 

otherwise.  

 In other words, X OR Y is 0 if and only if both X = 0 and Y = 0, but  is 1 

otherwise. 

 In Boolean expressions, the OR operation is represented by a “plus” sign. 

Thus, X OR Y is written as X+Y  

 This is summarized in the Table 3. 

Table 2  Truth Table of  

3-Input AND gate 

W X Y Z=WXY 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 0 

1 0 0 0 

1 0 1 0 

1 1 0 0 

1 1 1 1 



 

 

 

 

 

 

 

 

 

 

 The electronic device which performs the OR operation is called the OR gate. 

Figure 4 shows the symbol of a 2-input OR gate which has two inputs (X and 

Y) and gives one output Z=X+Y 

 

X

Y
Z = X+Y

OR gate Symbol

 
Figure 4 Two-Input OR gate 

 

 The OR logic can be further illustrated using the Venn diagram 

 OR gates may have more than 2 inputs. Figure 5 shows a 3-input OR gate. 

 

X

Y

Z = W+X+Y

3-Input OR gate

W

 
 

Figure 5 Three-Input OR gate 

 
 The truth table of a 3 input OR gate Z=W+X+Y is given in Table 4 

Table 3 Truth Table of the

OR operation 

  Z = X OR Y 

X Y Z=X+Y 

0 0 0 

0 1 1 

1 0 1 

1 1 1 



 

 

 

 

 

 

 

 

 

 

 

 

 

 In general, the output of an OR gate is 1 unless ALL  its input signals are 0’s.  
 

The NOT Operation 

 NOT is a “unary” operator.  

 IF Z = NOT X, then the value of Z will always be the complement of the value 

of X. In other words, if X = 0 then Z = 1, and if X = 1 then Z =0. 

 In Boolean expressions, the NOT operation is represented by either a bar on 

top of the variable (e.g. XZ =  ) or a prime (e.g. 'XZ =  ). 

 This is summarized in Table 5. 

 

 

 

 

 

 

 

 The electronic device which performs the NOT operation is called the NOT 

gate, or simply INVERTER. Figure 5 shows the inverter symbol. 

 

Table 4  Truth Table of  

3-Input OR gate 

W X Y Z=WXY 

0 0 0 0 

0 0 1 1 

0 1 0 1 

0 1 1 1 

1 0 0 1 

1 0 1 1 

1 1 0 1 

1 1 1 1 

Table 5 Truth Table of the

NOT operation 

X Z=X’ 

0 1 

1 0 



X

Inverter Symbol

Z = X

 
Figure 5 An Inverter 

 

 If XZ = , Z is commonly referred to as the Complement of X. Alternatively, 

we say that Z equals X-complemented 

 The NOT operation can be further illustrated using the Venn diagram 

 

 

 

 

 

Boolean Algebra  
Logic Circuits and Boolean Expressions 

 
 A Boolean expression (or a Boolean function) is a combination of Boolean 

variables, AND-operators, OR-operators, and NOT operators. 

 • Boolean Expressions (Functions) are fully defined by their truth tablesEach 

Boolean function (expression) can be implemented by a digital logic circuit 

which consists of logic gates.  

o Variables of the function correspond to signals in the logic circuit, 

o Operators of the function are converted into corresponding logic gates 

in the logic circuit. 



Example 

Consider the expression  ).( ZYXF += The diagram of the logic circuit 

corresponding to this function is shown in Figure 6 

 

X

Y

Z

Y

( Y.Z )

F = X + Y. Z

 
 

Figure  6 Logic Circuit Diagram of ).( ZYXF +=  

 

The truth table of this function is shown in Table 6 

 
Table .6 Truth Table of ).( ZYXF +=  

 

X 
 

Y 
 

Z 
 

Y` 
 

Y`Z 
 

F= X + Y`Z 

0 0 0 1 0 0 
0 0 1 1 1 1 
0 1 0 0 0 0 
0 1 1 0 0 0 
1 0 0 1 0 1 
1 0 1 1 1 1 
1 1 0 0 0 1 
1 1 1 0 0 1 

 
 Since F is function of 3 variables (X, Y, Z), the truth table has 23 or 8 

rows. 

Basic Identities of Boolean Algebra  



AND Identities 

 

From the truth table of the AND operation, shown here for 

reference, we can derive some basic identities. These identities 

can be easily verified by showing that they are valid for both 

possible values of X (0 and 1). 

 

1. 0 . X = 0 
 

 

 

 

 

 

 

 

2. 1 . X = X 
 
 

 

 

 

 

 

 

3. X . X = X 
 
 

 

 

 

 

 

 

 

AND Truth Table

X Y Z=XY 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

AND Truth Table 

X Y Z=XY 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

AND Truth Table 

X Y Z=XY 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

AND Truth Table 

X Y Z=XY 

0 0 0 

0 1 0 

1 0 0 

1 1 1 



4. 0. =XX  

 

 

 

 

 

 

 

 

 

 

OR Identities 

From the truth table of the OR operation, shown here for reference, we can derive 

some basic identities. These identities can be easily verified by showing that they are 

valid for both possible values of X (0 and 1). 

 

 

 

1. 1 + X = 1 

 

 

 

 

 

2. 0 + X = X 

 

 

 

 

 

 

 

 

AND Truth Table

X Y Z=XY 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

OR Truth Table

X Y Z=X+Y 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

OR Truth Table

X Y Z=X+Y 

0 0 0 

0 1 1 

1 0 1 

1 1 1 



3.  X + X = X 

 

 

 

 

 

 

 

4. 1=+ XX  

 

 

 

 

 

 

 

 

Summary of the basic identity 

AND Identities 

 

1. 0 . X = 0 

2. 1 . X = X 

3. X . X = X 

4. 0. =XX  

 

OR Identities 

5. 1 + X = 1 

6. 0 + X = X 

7. X + X = X 

8. 1=+ XX  

 

OR Truth Table

X Y Z=X+Y 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

OR Truth Table

X Y Z=X+Y 

0 0 0 

0 1 1 

1 0 1 

1 1 1 



Duality Principle 

 Given a Boolean expression, its dual is obtained by replacing each 1 with a 0, 

each 0 with a 1, each AND (.) with an OR (+), and each OR (+) with an 

AND(.).   

 The dual of an identity is also an identity. This is known as the duality 

principle.  

 

It can be easily shown that the AND basic identities and the OR basic identities are 

duals as shown in Table 7 

 

Table 7 Duality of the AND and OR Basic Identities 

 
AND Identities

  
Dual Identities 
(OR Udentities)

 
0 . X = 0 

0  1
 
.  + 

 
1 + X = 1 

 
1 . X = X 

1  0
 
.  + 

 
0 + X = X 

 
X . X = X 

 
.  + 

 
X + X = X 

 
X . X = 0 

0  1
 
.  + 

 
X + X = 1 

 

 

Another Important Identity 

( ) XX =  

 This can be simply proven from the truth table of the NOT 

operation as shown. 

 

 

 

NOT operation 

Truth Table 

 

X X  ( )X  

0 1 0 

1 0 1 



Operator Precedence 

 
Given the Boolean expression  X.Y + W.Z  the order of applying the operators will 
affect the final value of the expression.  
 

X.Y + W.Z

AND Higher Priority

1. Compute X AND Y

2. Compute W AND Z

3. OR the previousle
    computed two values

((X.Y) + (W.Z))

OR Higher Priority

1. Compute Y OR W

2. AND the result with X

3. AND the result with Z

X . (Y + W) . Z  
 
 
 

For Boolean Algebra, the precedence rules for various operators are given below , in a 

decreasing order of priority: 

1- Parentheses     Highest Priority 

2- Not operator (Complement) 

3- AND operator, 

4- OR operator     Lowest Priority 



Properties of Boolean Algebra 
Important properties of Boolean Algebra are shown in Table  

 

   
Property 

 

 
Dual Property 

 

 
1 

 
Commutative 

  
X + Y = Y + X 

 
X . Y = Y . X 

 
2 

 
Distributive 

 
X.(Y + Z) = X.Y + X.Z 

 
X+(Y.Z) = (X+Y).(X+Z) 

 

3 
 

DeMorgan 
 

 (X + Y) ` = X`.Y` 
 

 (X.Y) ` = X` + Y` 
 

4 
Extended 
DeMorgan 

(A+B+C+ ….+Z) ` = 
A`.B`.C`…..Z` 

(A.B.C….Z) ` =  
A`+B`+C`+….+Z` 

 
5 

Generalized 
DeMorgan 

 

 [F(x1,x2,…,xn,0,1,+,.)] `=F(x`1,x`2,…,x`n,1,0,.,+)  
Notes 

 The above properties can be easily proved using truth tables. 

 The only difference between the dual of an expression and the complement of 

that expression is that in the dual variables are not complemented while in the 

complement expression, all variables are complemented. 

 Using the above properties, complex Boolean expressions can be manipulated 

into a simpler forms resulting in simpler logic circuit implementations.  

 Simpler expressions are generally implemented by simpler logic circuits 

which are both faster and less expensive. This represents a great advantage 

since  cost and speed are prime factors in the success and profitability of any 

product. 

 



Algebraic Manipulation 
 The objective here is to acquire some skills in manipulating Boolean 

expressions into simpler forms for more efficient implementations. 

 Properties of Boolean algebra will be utilized for this purpose. 

 

Example  Prove that  X + XY = X 

Proof:   X + XY =   X..(1 + Y)   =   X.1   =   X 

Example  Prove that X + X`Y = X + Y  This an important identity that is 

useful in simplifying more complex expressions 

 
Proof:  This will be proved in two ways 

 

 (1) X + X`Y  = (X+ X`) (X + Y)  

 

 

= 1.(X + Y) 

=     X + Y 

 

 (2) X + X`Y  = X.1 + X`Y =  

 

= X.(1+Y) + X`Y  

 

 

= X  + XY  + X`Y 

= X  + (XY +X`Y) 

= X + Y(X +X` ) 

 

 

= X + Y 

= 1 = X

= 1 

= 1



Example ``Consensus Theory``   

Show that XY + X`Z + YZ = XY + X`Z  

Proof:    

LHS  = XY + X`Z + YZ  

= XY + X`Z + YZ . 1 

 
= XY + X`Z + YZ . (X +X`)  

= XY + X`Z + YZX + YZX`  

= XY + YZX + X`Z + YZX` 
 

 

= XY(1 + Z)  +  X`Z(1 + Y)  

 

 

= XY . 1 + X`Z . 1= XY + X`Z = LHS

= 1

= 1 = 1



Example  

Simplify the following function   

)(1 BABAF ++=  )( BCCAAB ++  
Solution:    

 F1 = )( BABA ++  )( BCCAAB ++  

Using De-Morgan theorem 

 )( BABA ++  = A` . B. (A` + B) = A` . B + A` . B = A`. B 

 )( BCCAAB ++  = (A` + B`).(A + C` ).(B` + C` ) 

 F1 = )( BABA ++  )( BCCAAB ++  

  = A`. B. (A` + B`).(A + C` ).(B` + C` ) 

Since X= X.X=X.X.X, we can rewrite the previous expression as follows 

 F1 = (A`.B). (A`. B). (A`. B). (A` + B).(A + C` ).(B` + C` ) 

  = (A`.B). (A` + B`). (A`. B) .(A + C` ). (A`. B). (B` + C` ) 

 

 

  = (A`.B +  0 )   . (0 + A`. B.C` ) . (A`.B + A`.B.C`) 

 

 

  = (A`.B) . (A`. B.C` ) . (A`.B) 

 

  = A`. B.C`  



Example  

Simplify the following function   

i. G = 




 ++++ ACDDCABCBA )(.)(  

Solution:    

( )ACDDCABCBAG ++++= )(.)(  

 

 

( )( )( ) ACDDCABCBA ..)( ++++=  

 

 

( )( ) ACDDCABACDCBA ...)( ++++=
 

 

 

)()( ACDBACDBBACDACD +++=
 

 

ACDBACD+=  

 

 

ACD=  



Standard & Canonical Forms 
 
CHAPTER OBJECTIVES 

 Learn Binary Logic and BOOLEAN AlgebraLearn How to Map a Boolean 

Expression into Logic Circuit Implementation Learn How To Manipulate 

Boolean Expressions and Simplify ThemLesson OjectivesLearn how 

to derive a Boolean expression of a function defined by its truth table. The 

derived expressions may be in one of two possible standard forms: The Sum 

of Min-terms or the Product of Max-Terms. 

2. Learn how to map these expressions into logic circuit implementations (2-

Level Implementations). 

 

MinTerms 
 Consider a system of 3 input signals (variables) x, y, & z. 

 A term which ANDs all input variables, either in the true or complement form, 

is called a minterm. 

 Thus, the considered 3-input system has 8 minterms, namely: 

zyxzyxzyxzyxzyxzyxzyxzyx &,,,,,,  

 

 Each minterm equals 1 at exactly one particular input combination and is 

equal to 0 at all other combinations 

 Thus, for example, zyx  is always equal to 0 except for the input 

combination xyz = 000, where it is equal to 1. 

 Accordingly, the minterm zyx  is referred to as m0. 

 In general, minterms are designated mi, where i corresponds the input 

combination at which this minterm is equal to 1.  



 For the 3-input system under consideration, the number of possible input 

combinations is 23, or 8. This means that the system has a  total of 8 minterms 

as follows: 

 m0 = zyx  =1  IFF  xyz = 000, otherwise it equals 0 

 m1 = zyx  =1   IFF  xyz = 001, otherwise it equals 0 

 m2 = zyx  =1   IFF  xyz = 010, otherwise it equals 0 

 m3 = yzx  =1  IFF  xyz = 011, otherwise it equals 0 

 m4 = zyx  =1   IFF  xyz = 100, otherwise it equals 0 

 m5 = zyx  =1  IFF  xyz = 101, otherwise it equals 0 

 m6 = zxy  =1   IFF  xyz = 110, otherwise it equals 0 

 m7 = xyz  =1   IFF  xyz = 111, otherwise it equals 0 

 

In general, 

 For n-input variables, the number of minterms = the total number of possible 

input combinations = 2n. 

 A minterm = 0 at all input combinations except one where the minterm = 1. 

MaxTerms 
 Consider a circuit of 3 input signals (variables) x, y, & z. 

 A term which ORs all input variables, either in the true or complement form, 

is called a Maxterm. 

 With 3-input variables, the system under consideration has a total of 8 

Maxterms, namely: 

)(&)(,)(,)(),(,)(,)(),( zyxzyxzyxzyxzyxzyxzyxzyx ++++++++++++++++
 

 Each Maxterm equals 0 at exactly one of the 8 possible input combinations 

and is equal to 1 at all other combinations. 

 For example, )( zyx ++  equals 1 at all input combinations except for the 

combination xyz = 000, where it is equal to 0. 

 Accordingly, the Maxterm )( zyx ++  is referred to as M0. 

 In general, Maxterms are designated Mi, where i corresponds to the input 

combination at which this Maxterm is equal to 0. 



 For the 3-input system, the number of possible input combinations is 23, or 8. 

This means that the system has a  total of 8 Maxterms as follows: 

 M0  =  )( zyx ++  =0  IFF  xyz = 000, otherwise it equals 1 

 M1 = )( zyx ++  = 0  IFF  xyz = 001, otherwise it equals 1 

 M2 = )( zyx ++  = 0  IFF  xyz = 010, otherwise it equals 1 

 M3 = )( zyx ++  = 0  IFF  xyz = 011, otherwise it equals 1 

 M4 = )( zyx ++  = 0  IFF  xyz = 100, otherwise it equals 1 

 M5 = )( zyx ++  = 0  IFF  xyz = 101, otherwise it equals 1 

 M6 = )( zyx ++  = 0  IFF  xyz = 110, otherwise it equals 1 

 M7 = )( zyx ++  = 0  IFF  xyz = 111, otherwise it equals 1 

 
In general, 

 For n-input variables, the number of Maxterms = the total number of possible 

input combinations = 2n. 

 A Maxterm = 1 at all input combinations except one where the Maxterm = 0. 

 

Imprtant Result 

Using De-Morgan’s theorem, or truth tables, it can be easily shown that: 

)(.....,,,, 12210 −=∀= n
ii

imM  

 
Expressing Functions as a Sum of Minterms and Product of 
Maxterms 
Example:  Consider the function F defined by the shown truth table 

 

Now let’s rewrite the table, with few added columns.  

 A column i indicating the input combination 

 Four columns of minterms m2, m4, m5 and m7 

 One last column OR-ing the above minterms (m2 + m4 + m5 

+ m7) 

 

 

 

 
x   y   z 

 
F 

0   0   0 0 
0   0   1 0 
0   1   0 1 
0   1   1 0 
1   0   0 1 
1   0   1 1 
1   1   0 0 
1   1   1 1 



 
i 

 
x   y   z

 
 F  

 
m2 

 
m4

 
m5

 
m7

 
m2+ m4+ m5+ m7

0 0   0   0 0 0 0 0 0 0 
1 0   0   1 0 0 0 0 0 0 
2 0   1   0 1 1 0 0 0 1 
3 0   1   1 0 0 0 0 0 0 
4 1   0   0 1 0 1 0 0 1 
5 1   0   1 1 0 0 1 0 1 
6 1   1   0 0 0 0 0 0 0 
7 1   1   1 1 0 0 0 1 1 

 

 From this table, we can clearly see that F = m2 + m4 + m5 + m7 

 This is logical since F = 1, only at input combinations i= 2, 4, 5 and 7 

 Thus, by ORing minterm m2 (which has a value of 1 only at input combination 

i= 2) with minterm m4 (which has a value of 1 only at input combination i= 4) 

with minterm m5 (which has a value of 1 only at input combination i= 5) with 

minterm m7 (which has a value of 1 only at input combination i= 7)  the 

resulting function will equal F. 

 In general, Any function can be expressed by OR-ing all minterms (mi) 

corresponding to input combinations (i) at which the function has a value of 1. 

 The resulting expression is commonly referred to as the SUM of minterms and 

is typically expressed as F = ∑(2, 4, 5, 7), where ∑ indicates OR-ing of the 

indicated minterms. Thus, F = ∑(2, 4, 5, 7) = (m2 + m4 + m5 + m7) 

 

 
Example:   

 Consider the function F of the previous example. 
 We will, first, derive the sum of minterms expression for the 

complement function F`. 
 
The truth table of F` shows that F` equals 1 at i = 0, 1, 3 and 6, then,  

F` = m0 + m1 + m3 + m6, i.e  

F` = ∑(0, 1, 3, 6),     (1) 

F = ∑(2, 4, 5, 7)     (2) 

• Obviously, the sum of minterms expression of F` contains all 

minterms that do not appear in the sum of minterms expression of F. 

 
i  

 
x   y   z 

 
F

 
F`

0 0   0   0 0 1
1 0   0   1 0 1
2 0   1   0 1 0
3 0   1   1 0 1
4 1   0   0 1 0
5 1   0   1 1 0
6 1   1   0 0 1
7 1   1   1 1 0



Using De-Morgan theorem on equation (2),  

( ) 754275427542 ...... MMMMmmmmmmmmF ==+++=  

This form is designated as the Product of Maxterms and is expressed using the ∏ 

symbol, which is used to designate product in regular algebra, but is used to designate 

AND-ing in Boolean algebra.  

Thus,  

F` = ∏ (2, 4, 5, 7) = M2. M4. M5. M7    (3) 

 
From equations (1) and (3) we get,  

F` = ∑(0, 1, 3, 6) = ∏ (2, 4, 5, 7) 

 
In general, any function can be expressed both as a sum of minterms and as a product 

of maxterms. Consider the derivation of F back from F` given in equation (3): 

MMMMmmmmmmmmFF 631063106310 ...... ==+++==  

F = ∑(2, 4, 5, 7) = ∏ (0, 1, 3, 6) 

F` = ∏ (2, 4, 5, 7) = ∑ (0, 1, 3, 6) 

 
Conclusions: 

• Any function can be expressed both as a sum of minterms (∑ mi) and as a 

product of maxterms. The product of maxterms expression (∏ Mj) expression 

of F contains all maxterms Mj  (∀ j ≠ i) that do not appear in the sum of 

minterms expression of F. 

• The sum of minterms expression of F` contains all minterms that do not 

appear in the sum of minterms expression of F. 

• This is true for all complementary functions. Thus, each of the 2n minterms 

will appear either in the sum of minterms expression of F or the sum of 

minterms expression of F  but not both. 

• The product of maxterms expression of F` contains all maxterms that do 

not appear in the product of maxterms expression of F. 

• This is true for all complementary functions. Thus, each of the 2n maxterms 

will appear either in the product of maxterms expression of F or the product of 

maxterms expression of F  but not both. 



Example:   

Given that F (a, b, c, d) = ∑(0, 1, 2, 4, 5, 7), derive the product of maxterms 

expression of F and the 2 standard form expressions of F`. 

 

Since the system has 4 input variables (a, b, c & d)  The number of minterms and 

Maxterms = 24= 16 

F (a, b, c, d) = ∑(0, 1, 2, 4, 5, 7) 

 

 

F = ∏ (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15). 

 

 

F = ∏ (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15). 

 

 

 

F = ∏ (3, 6, 8, 9, 10, 11, 12, 13, 14, 15). 

 

 

Similarly, obtain both canonical form expressions for F` 

 

F` = ∑ (3, 6, 8, 9, 10, 11, 12, 13, 14, 15). 

F` = ∏ (0, 1, 2, 4, 5, 7)  

 

1. List all maxterms in 
the Product of 
maxterms expression 

2. Cross out maxterms 
corresponding to  input 
combinations of the 
minterms appearing in 
the sum of minterms 
expression 



Canonical Forms: 
The sum of minterms and the product of maxterms forms of Boolean expressions are 

known as the canonical forms (الصيغ القانونية) of a function. 

 

Standard Forms: 
• A product term is a term with ANDed literals*. Thus, AB, A’B, A’CD are all 

product terms. 

• A minterm is a special case of a product term where all input variables appear 

in the product term either in the true or complement form. 

• A sum term is a term with ORed literals*. Thus, (A+B), (A’+B), (A’+C+D) are 

all sum terms. 

• A maxterm is a special case of a sum term where all input variables, either in 

the true or complement form, are ORed together. 

• Boolean functions can generally be expressed in the form of a Sum of 

Products (SOP) or in the form of a Product of Sums (POS). 

• The sum of minterms form is a special case of the SOP form where all product 

terms are minterms.  

• The product of maxterms form is a special case of the POS form where all 

sum terms are maxterms.  

• The SOP and POS forms are Standard forms for representing Boolean 

functions. 

 

                                                 
* A Boolean variable in the true or complement forms 



Two-Level Implementations of Standard Forms 
 

Sum of Products Expression (SOP): 

• Any SOP expression can be implemented in 2-levels of gates. 

• The first level consists of a number of AND gates which equals the number of 

product terms in the expression. Each AND gate implements one of the 

product terms in the expression. 

• The second level consists of a SINGLE OR gate whose number of inputs 

equals the number of product terms in the expression. 

 

Example  Implement the following SOP function 

      F = XZ + Y`Z + X`YZ  

 

F

X

Y`

Z

X`
Y
Z

Z

Level 1

Level 2

 
 

Two-Level Implementation (F = XZ + Y`Z + X`YZ ) 

Level-1:  AND-Gates    ;   Level-2: One OR-Gate 



Product of Sums Expression (POS): 

• Any POS expression can be implemented in 2-levels of gates 

• The first level consists of a number of OR gates which equals the number of 

sum terms in the expression, each gate implements one of the sum terms in the 

expression. 

• The second level consists of a SINGLE AND gate whose number of inputs 

equals the number of sum terms. 

 

Example  Implement the following SOP function 

F = (X+Z )(Y`+Z)(X`+Y+Z ) 

 

 

Level 1

Level 2

F

X

Y`

Z

X`
Y
Z

Z

 
 

Two-Level Implementation {F = (X+Z )(Y`+Z)(X`+Y+Z )} 

Level-1: OR-Gates   ;       Level-2: One AND-Gate 



Practical Aspects Of Logic Gates 
 
Introduction & Objectives 
 

 Logic gates are physically implemented as Integrated Circuits (IC). 

 Integrated circuits are implemented in several technologies. 

 Two landmark IC technologies are the TTL and the CMOS technologies. 

 Major physical properties of a digital IC depend on the implementation technology. 

 In this lesson, the following major properties of digital IC’s are described: 

1. Allowed physical range of voltages for logic 0 and logic 1, 

2. Gate propagation delay/ speed, 

3. The fanin and fanout of a gate, 

4. The use of buffers, and 

5. Tri-State drivers 

 
Allowed Voltage Levels 

 Practically, logic 0 is represented by a certain 

RANGE of Voltages rather than by a single voltage 

level.  

 .In other words, if the voltage level of a signal falls 

in this range, the signal has a logic 0 value. 

 Likewise, logic 1 is represented by a different 

RANGE of valid voltages. 

 The range of voltages between the highest logic 0 

voltage level and the lowest logic 1 voltage level is 

an “Illegal Voltage Range”. 

 No signal is allowed to assume a voltage value in this range. 

Input & Output Voltage Ranges 
 Inputs and outputs of IC’s do not have the same allowed range of voltages neither for 

logic 0 nor for logic 1. 

 VIL is the maximum input voltage that considered a Logic 0. 

 VOL is the maximum output voltage that considered a Logic 0. 

 VOL must be lower than VIL to guard against noise disturbance. 

Valid Logic 0
Voltages

Valid Logic 1
Voltages

Invalid         Range

Of  Voltages



Why is VIL > VOL ? 
 Consider the case of connecting the 

output of gate A to the input of 

another gate B: 

• The logic 0 output of A must 

be within the range of 

acceptable logic 0 voltages of gate B inputs. 

• Voltage level at the input of B = Voltage level at the output of A + Noise 

Voltage 

• If the highest logic 0 output voltage of A (VOL) is equal to the highest logic 0 

input voltage of B (VIL), then the noise signal can cause the actual voltage at 

the input of B to fall in the invalid range of voltages. 

 0

Valid Logic 1
Voltages

Invalid         Range

Of  Voltages

Input  Voltages
Valid Logic 0

Valid Logic 0
Output Voltages

Maximum
Tolerable noise

VOL

VIL

 

 Accordingly, VOL is designed to be lower than VIL to allow for some noise margin. 

 
 The difference (VIL - VOL) is thus known as the noise margin for logic 0 (NM0). 

 VIH is the minimum input voltage that considered a Logic 1. 

 VOH is the minimum output voltage that considered a Logic 1. 

 VOH must be higher than VIH to guard against noise signals. 



Why is VOH > VIH ? 

VOH=2.4v

VIH=2v

Allowed Noise
Margin of 0.4v

…
….
….
….

A
B

 
 Consider the case of connecting the output of gate A to the input of another gate B: 

• The logic 1 output of A must accepted as logic 1 by the input of gate B. 

•  Thus, the logic 1 output of A must be within the range of voltages which are 

acceptable as logic 1 input for gate B. 

• If the lowest logic 1 output voltage of A (VOH) is equal to the lowest logic 1 

input voltage of B (VIH), then noise signals can cause the actual voltage at the 

input of B to fall in the invalid range of input voltages. 

V IH

V OH

 0

Valid Logic 1

Invalid         Range

Of  Voltages

Input  Voltages
Valid Logic 0

Maximum
Tolerable noise

Input  Voltages

Valid Logic 1
Output Voltages

 
 Accordingly, VOH is designed to be higher than VIH to allow for some noise margin. 

 The difference (VOH - VIH) is thus known as the noise margin for logic 1 (NM1). 

 

Definition 
 Noise margin is the maximum noise voltage that can be added to the input signal of a 

digital circuit without causing an undesirable change in the circuit output.. 

 



Valid Logic 0
Voltages

Valid Logic 1
Voltages

VIL

VIH

INPUT VOLTAGES

Valid Logic 0
Voltages

Valid Logic 1
Voltages

VOL

VOH

OUTPUT VOLTAGES

NM1

NM0

 
 

Propagation Delay 
Consider the shown inverter with input X and 

output Z.  

 A change in the input (X) from 0 to 1 

causes the inverter output (Z) to change 

from 1 to 0. 

 The change in the output (Z), however is 

not instantaneous. Rather, it occurs slightly after the input change. 

 This delay between an input signal change and the corresponding output 

signal change is what is known as the propagation delay. 

In general, 

 A signal change on the input of some IC takes a finite amount of time to 

cause a corresponding change on the output. 

 This finite delay time is known as Propagation Delay. 

 Faster circuits are characterized by smaller propagation delays. 

 Higher performance systems require higher speeds (smaller propagation 

delays).  

 

X Z = X

ZX
τ

Propagation
Delay = τ



Timing Diagrams 
 A timing diagram shows the logic values of signals in a circuit versus 

time.  

 A signal shape versus time is typically referred to as Waveform. 
 

Example 

The figure shows the timing diagram of a 2-input AND gate. The gate is 

assumed to have a propagation delay of τ. 

X

Y
ZPropagation

Delay =τ
 

 
 The timing diagram shown Figure illustrates the waveforms of signals X, 

Y, and Z. 

 Note how the output Z is delayed from changes of the input signals X & 

Y by the amount of the gate Propagation Delay τ. 

τ τ τ τ

X

Y

Z

t
Time  

Fanin Limitations 
 The fanin of a gate is the number of inputs of this gate. 

 Thus, a 4-input AND gate is said to have a fanin of 4. 

 A physical gate cannot have a large number of inputs (fanin). 



 •For CMOS technology, the more inputs a gate has the slower it is (larger 

propagation delay). For example, a 4-input AND gate is slower than a 2-

input one. 

 In CMOS technology, no more than 4-input gates are typically built since 

more than 4 inputs makes the devices too slow. 

 TTL gates can have more inputs (e.g, 8 input NAND 7430). 

 

Fanout Limitations 
  If the output of some gate A is 

connected to the input of another gate B, 

gate A is said to be driving gate, while 

gate B is said to be the load gate. 

 As the Figure shows, a driver gate 

may have more than one load gate. 

 There is a limit to the number of gate 

inputs that a single output can drive. 

 The fanout of a gate is the largest 

number of gate inputs this gate can 

drive. 

 For TTL, the fanout limit is based on 

CURRENT.  

 A TTL output can supply a maximum current IOL = 16 mA (milliamps) 

 A TTL input requires a current of IIL =1.6mA.  

 Thus, the fanout for TTL is 16mA/1.6 mA = 10 loads. 

 For CMOS, the limit is based on SPEED/propagation delay.  

 A CMOS input resembles a capacitive load (≈10 pf - picofarads).  

 The more inputs tied to a single output, the higher the capacitive load.  

 The HIGHER the capacitive load, the SLOWER the propagation delay.  

1

n

2

Driver Gate

Load Gates



 Typically, it is advisable to avoid loads much higher than about 8 loads. 

Q. What is meant by the DRIVE  of a gate? 

A. It is the “CURRENT” driving-ability of a gate. In other words, it is the 

amount of current the gate can deliver to its load devices.  

 A gate with high-drive is capable of driving more load gates than 

another with low-drive. 

Q. How to drive a number of load gates that is larger than the fanout of the 

driver gate? 

A. In this case, we can use one of two methods: 

1. Use high drive buffers 

2. Use multiple drivers. 

 
Use of High-Drive Buffers: 

 A buffer is a single input, single output 

gate where the logic value of the output 

equals that of the input. 

 The logic symbol of the buffer is shown in the Figure. 

 The buffer provides the necessary drive capability which allows driving 

larger loads. 

 Note that the symbol of the buffer resembles the inverter symbol except 

that it does not have the inverting circle that the inverter symbol has. 

 The figure shows how the buffer is 

used to drive the large load. 

 

Use of Multiple Drivers: 

 The Figure shows the case of 2 

identical drivers driving the load 

gates. 

 In general, the large number of load 

x Z = x
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gates is divided among 

more than one driver such 

that each of the identical 

drivers is driving no more 

than the fanout. 

 The multiple driver gates 

(D1, D2) are of identical 

type and should be 

connected to the same 

input signals 

Tri-State Outputs 
 

Q. Can the outputs of 2 ICs, or 2 gates, be directly connected? 

A. Generally, Nooooooooooo!!! This is only possible if special types of 

gates are used. 

Q. Why cann’t the outputs of 2 normal gates be directly connected? 

A. Because this causes a short Circuit that results in huge current flow with 

a subsequent potential for damaging the circuit. 

 This is obvious since one output may be at logic 1 (High voltage), 

while the other output may be at logic 0 (Low voltage). 

 Furthermore, the common voltage level of the shorted outputs will 

most likely fall in the invalid range of voltage levels.  
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Q. What are the types of IC output pins that can be directly connected? 

A. These are pins/gates with special output drivers. The two main types are: 

 Open-Collector outputs  this will not be discussed in this course. 

 Outputs with Tri-State capability. 

 
Gates with Tri-State Outputs 

 These gates can be in one of 2 possible states: 

1. An enabled state where the output may assume one of two possible 

values: 

 Logic 0 value (low voltage) 

 Logic 1 value (high voltage) 

2. A disabled state where the gate output is in a the Hi-impedance 

(Hi-Z) state. In this case, the gate output is disconnected (open-

circuit) from the wire it is driving. 

 An enable input (E) is used to control the gate into either the enabled or 

disabled state. 

 The enable input (E) may be either active high or active low. 

 Any gate or IC output may be provided 

with tri-state capability. 

Output State Illustrations   

 A generalized output driver can be simply 

modeled using 2 switches S1 and S0 as 

shown in Figure. 

 The output state is defined by the state of 

the 2 switches (closed -open) 

 If S1 is closed and  S0 is open, the output is 

high (logic 1) since it is  connected to the 

power supply (VDD). 
 

S1

Output

Power Supply
VDD

GND

S0



 

 If S1 is open and  S0 is closed, the output 

is low (logic 0) since it is  connected to 

the ground voltage (0 volt). 

 
 
 

 

 If, however, both S1 is and  S0 are open, 

then the output is neither connected to 

ground nor to the power supply. In 

this case, the output node is floating 

or is in the Hi-Impedance  (Hi-Z) 

state. 

 
 
Examples   

a) Tri-State Inverter with active high 

enable 
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E x Z 
1 0 1 
1 1 0 
0 0 Hi-Z
0 1 Hi-Z
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b) Tri-State Inverter with active low enable 
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Condition for Connecting Outputs of Tri-State Gates 
 

 Two or more tri-state outputs may be connected provided that at most one 

of these outputs is enabled while all others are in the Hi-Z state. 

 This avoids conflict situations where one gate output is high while 

another is low. 

 
Circuit Examples   

 

 The shown circuit has tri-state 

inverters with active high enable 

inputs.  

 The outputs of these 2 inverters 

are shorted together as a 

common output signal Z 

 The 2 gates are NEVER enabled 

at the same time.  

 G1 is enabled when E=1, while 

G2 is enabled when E=0 

 The circuit performs the function:  yExEZ +=  

 

 



K-Map 1 
 
Lesson Objectives: 
Even though Boolean expressions can be simplified by algebraic manipulation, such 
an approach lacks clear regular rules for each succeeding step and it is difficult to 
determine whether the simplest expression has been achieved. 
 
In contrast, Karnaugh map (K-map) method provides a straightforward procedure for 
simplifying Boolean functions.  
 
K-maps of up to 4 variables are very common to use. Maps of 5 and 6 variables can 
be made as well, but are more cumbersome to use. 
 
Simplified expressions produced by K-maps are always either in the SOP or the POS 
form. 
 
The map provides the same information contained in a Truth Table but in a different 
format. 
 
The objectives of this lesson are to learn: 
1. How to build a 2, 3, or 4 variables K-map. 
2. How to obtain a minimized SOP function using K-maps. 
 
Code Distance: 
Let’s first define the concept of Code Distance. The distance between two binary 
code-words is the number of bit positions in which the two code-words have different 
values.  
 
For example, the distance between the code words 1001 and 0001 is 1 while the 
distance between the code-words 0011 and 0100 is 3. 
 
This definition of code distance is commonly known as the Hamming distance 
between two codes. 
 
Two-Variable K-Maps: 
The 2-variable map is a table of 2 rows by 2 columns. The 2 rows represent the two 
values of the first input variable A, while the two columns represent the two values of 
the second input variable B. 
 
Thus, all entries (squares) in the first row correspond to input variable A=0, while 
entries (squares) of the second row correspond to A=1. 
 
Likewise, all entries of the first column correspond to input variable B = 0, while 
entries of the second column correspond to B=1. 
 
Thus, each map entry (or square) corresponds to a unique value for the input variables 
A and B. 



 
For example, the top left square corresponds to input combination AB=00. In other 
words, this square represents minterm m0. 
 
Likewise, the top right square corresponds to input combination AB=01, or minterm 
m1 and the bottom left square corresponds to input combination AB=10, or minterm 
m2. Finally, the bottom right square corresponds to input combination AB=11, or 
minterm m3. 
 
In general, each map entry (or square) corresponds to a particular input combination 
(or minterm). 
 
Since, Boolean functions of two-variables have four minterms, a 2-variable K-map 
can represent any 2-variable function by plugging the function value for each input 
combination in the corresponding square. 
 
Definitions/Notations: 
Two K-map squares are considered adjacent if the input codes they represent have a 
Hamming distance of 1. 
 
A K-map square with a function value of 1 will be referred to as a 1-Square. 
A K-map square with a function value of 0 will be referred to as a 0-Square. 
 
The simplification procedure is summarized below: 
 
Step 1: Draw the map according to the number of input variables of the function. 
Step 2: Fill “1’s” in the squares for which the function is true. 
Step 3: Form as big group of adjacent 1-squares as possible. There are some rules for 
this which you will learn with bigger maps. 
Step 4: Find the common literals for each group and write the simplified expression 
in SOP. 
 
Example: 
Consider the given truth table of two variable function. Obtain the simplified function 
using K-map. 
 

 
A B F 
0 0 0 
0 1 0 
1 0 1 
1 1 1 



 
First draw a 2-variable K-map. The function F is true when AB’ (m2) is true and when 
AB (m3) is true, so a 1 is placed inside the square that belongs to m2 and a 1 is placed 
inside the square that belongs to m3. 

 
Since both of the 1-squares have different values for variable B but the same value for 
variable A, which is 1, i.e., wherever A = 1 then F = 1 thus F = A. 
 
This simplification is justified by algebraic manipulation as follows:  
F = m2 + m3 = AB’ + AB = A (B’ + B) = A 
 
To understand how combining squares simplifies Boolean functions, the basic 
property possessed by the adjacent squares must be recognized. 
 
In the above example, the two 1-squares are adjacent with the same value for variable 
A (A=1) but different values for variable B (one square has B=0, while the other has 
B=1). 
 
This reduction is possible since both squares are adjacent and the net expression is 
that of the common variable (A). 
 
Generally, this is true for any 2 codes of Hamming distance 1 (adjacent). For an n-
variable K-map, let the codes of two adjacent squares (distance of 1) have the same 
value for all variables except the ith variable. Thus, 
 
Code of 1st Square:  nii XXXXX ............... 1121 +− iX
Code of 2nd Square: nii XXXXX ............... 1121 +− iX  
 
Combining these two squares in a group will eliminate the different variable Xi and 
the combined expression will be  

nii XXXXX .............. 1121 +−  
since: 
( )++− nii XXXXX ............... 1121 iX ( )nii XXXXX ............... 1121 +− iX  

( )nii XXXXX .............. 1121 +−= ( +iX )iX  
( )nii XXXXX .............. 1121 +−=  

The variable in difference is dropped. 
 
Another Example: 
Simplify the given function using K-map method: 
F = ∑ (1, 2, 3) 



 
 
In this example: 
F = m1 + m2 + m3 = m1 + m2 + (m3 + m3) 
F = (m1 + m3) + (m2 + m3) = A + B 
 

 Rule: A 1-square can be member of more than one group. 
 
If we exchange the places of A and B, then minterm positions will also change. Thus, 
m1 and m2 will be exchanged as well. 

                 
 
In an n-variable map each square is adjacent to “n” other squares, e.g., in a 2-variable 
map each square is adjacent to two other squares as shown below: 

 
 

Examples of non-adjacent squares are shown below: 
 

 



Three-Variable K-Maps: 
There are eight minterms for a Boolean function with three-variables. Hence, a three-
variable map consists of 8 squares. 

 
All entries (squares) in the first row correspond to input variable A=0, while entries 
(squares) of the second row correspond to A=1. 
 
Likewise, all entries of the first column correspond to input variable B = 0, C = 0, all 
entries of the second column correspond to input variable B = 0, C = 1, all entries of 
the third column correspond to input variable B = 1, C = 1, while entries of the fourth 
column correspond to B=1, C = 0. 
 
To maintain adjacent columns physically adjacent on the map, the column coordinates 
do not follow the binary count sequence. This choice yields unit distance between 
codes of one column to the next (00 – 01—11 – 10), like Grey Code. 
 
Variations of Three-Variable Map: 
The figure shows variations of the three-variable map. Note that the minterm 
corresponding to each square can be obtained by substituting the values of variables 
ABC in order. 

 
 
Examples: (see authorware version) 



There are cases where two squares in the map are considered to be adjacent even 
though they do not physically touch each other. 
 
In the figure of 3-variable map, m0 is adjacent to m2 and m4 is adjacent to m6 because 
the minterms differ by only one variable. This can be verified algebraically:  
m0 + m2 = A’B’C’ + A’BC’ = A’C’ (B’ + B) = A’C’ 
m4 + m6 = AB’C’ + ABC’ = AC’ (B’ + B) = AC’ 

 
 Rule: Groups may only consist of 2, 4, 8, 16,… squares (always power of 2). For 

example, groups may not consist of 3, 6 or 12 squares. 
 

 Rule: Members of a group must have a closed loop adjacency, i.e., L-Shaped 4 
squares do not form a valid group. 

 
 Notes: 

1. Each square is adjacent to 3 other squares. 
2. One square is represented by a minterm (i.e. a product term containing all 3 

literals). 
3. A group of 2 adjacent squares is represented by a product term containing only 2 

literals, i.e., 1 literal is dropped. 
4. A group of 4 adjacent squares is represented by a product term containing only 1 

literal, i.e., 2 literals are dropped. 
 
Four-Variable K-Maps: 
 
There are 16 minterms for a Boolean function with four-variables. Hence, four-
variable map consists of 16 squares. 

 



 Notes: 
1. 
2. 
3. 
4. 
5. 

Each square is adjacent to 4 other squares. 
One square is represented by a minterm (a product of all 4-literals). 
Combining 2 squares drops 1-literal. 
Combining 4 squares drops 2-literals. 
Combining 8 squares drops 3-literals. 

 
Examples: (see authorware version) 
 

 Rule: The combination of squares that can be chosen during the simplification 
process in the n-variable map are as follows: 
A group of 2n squares produces a function that always equal to logic 1. 
A group of 2n-1 squares represents a product term of one literal. 
A group of 2n-2 squares represents a product term of two literals and so on. 
One square represents a minterm of n literals. 
 



K-Map 2 
 

Lesson Objectives: 
 
In this lesson you will learn: 
 
1. The difference between prime implicants and essential prime implicants. 
2.  How to get a minimized POS function using a K-map. 
3.  How to minimize a combinational circuit that is not completely specified (has don't 
care conditions). 
4.  How to make a 5 and 6 variable K-map given a truth table or a SOP representation. 
 
Definitions/Notations: 
A product term of a function is said to be an implicant. 
 
A Prime Implicant (PI) is a product term obtained by combining the maximum 
possible number of adjacent 1-squares in the map. 
 
If a minterm is covered only by one prime implicant then this prime implicant is said 
to be an Essential Prime Implicant (EPI). 
 
Examples: (see authorware version) 
 
POS Simplification: 
 
Until now we have derived simplified Boolean functions from the maps in SOP form. 
Procedure for deriving simplified Boolean functions POS is slightly different. Instead 
of making groups of 1’s, make the groups of 0’s. 
 
Since the simplified expression obtained by making group of 1’s of the function (say 
F) is always in SOP form. Then the simplified function obtained by making group of 
0’s of the function will be the complement of the function (i.e., F’) in SOP form. 
 
Applying DeMorgan’s theorem to F’ (in SOP) will give F in POS form. 
 
Examples: (see authorware version) 
 
Don’t Care Conditions: 
 
In some cases, the function is not specified for certain combinations of input variables 
as 1 or 0. 
 
There are two cases in which it occurs: 
1. The input combination never occurs. 
2. The input combination occurs but we do not care what the outputs are in response 
to these inputs. 
 



In both cases, the outputs are called as unspecified and the functions having them are 
called as incompletely specified functions. 
 
In most applications, we simply do not care what value is assumed by the function for 
unspecified minterms. 
 
Unspecified minterms of a function are called as don’t care conditions. They provide 
further simplification of the function, and they are denoted by X’s to distinguish them 
from 1’s and 0’s. 
 
In choosing adjacent squares to simplify the function in a map, the don’t care 
minterms can be assumed either 1 or 0, depending on which combination gives the 
simplest expression. 
 
A don’t care minterm need not be chosen at all if it does not contribute to produce a 
larger implicant. 
 
Five-Variable K-Maps: 
 
There are 32 minterms for a Boolean function with five-variables. Hence, Five-
variable map consists of 32 squares. 
 
It consists of 2 four-variable maps. Variable A distinguishes between the two maps, as 
indicated on the top of the diagram. The left-hand four-variable map represents the 16 
squares where A=0, and the other four-variable map represents the squares where 
A=1. 
 
Minterms 0 through 15 belong to the four-variable map with A=0 and minterms 16 
through 31 belong to the four-variable map with A=1. 

 
 
Each four-variable map retains the previously defined adjacency when taken 
separately. In addition, each square in the A=0 map is adjacent to the corresponding 
square in the A=1 map. For example, minterm 4 is adjacent to minterm 20 and 
minterm 15 to 31.  
 
The best way to visualize this new rule for adjacent squares is to consider the two half 
maps as being one on top of the other. Any two squares that fall one over the other are 
considered adjacent. 
 
 



 
 
Six-Variable K-Maps: 
 
There are 64 minterms for a Boolean function with six-variables. Hence, Six-variable 
map consists of 64 squares. 
 
By following the procedure used for the five-variable map, it is possible to construct a 
six-variable map with 4 four-variable maps to obtain the required 64 squares. 



Universal Gates 
 

Lesson Objectives: 
In addition to AND, OR, and NOT gates, other logic gates like NAND and NOR are 
also used in the design of digital circuits. 
 
The NOT circuit inverts the logic sense of a binary signal. 
 
The small circle (bubble) at the output of the graphic symbol of a NOT gate is 
formally called a negation indicator and designates the logical complement. 
 

 
 
The objectives of this lesson are to learn about: 
1. Universal gates - NAND and NOR. 
2. How to implement NOT, AND, and OR gate using NAND gates only. 
3. How to implement NOT, AND, and OR gate using NOR gates only. 
4. Equivalent gates. 
5. Two-level digital circuit implementations using universal gates only. 
6. Two-level digital circuit implementations using other gates. 
 
NAND Gate: 
The NAND gate represents the complement of the AND operation. Its name is an 
abbreviation of NOT AND. 
 
The graphic symbol for the NAND gate consists of an AND symbol with a bubble on 
the output, denoting that a complement operation is performed on the output of the 
AND gate. 
 
The truth table and the graphic symbol of NAND gate is shown in the figure. 
 

 
The truth table clearly shows that the NAND operation is the complement of the 
AND. 



 
NOR Gate: 
The NOR gate represents the complement of the OR operation. Its name is an 
abbreviation of NOT OR. 
 
The graphic symbol for the NOR gate consists of an OR symbol with a bubble on the 
output, denoting that a complement operation is performed on the output of the OR 
gate. 
 
The truth table and the graphic symbol of NOR gate is shown in the figure. 
 

 
The truth table clearly shows that the NOR operation is the complement of the OR. 
 

Universal Gates: 
A universal gate is a gate which can implement any Boolean function without need to 
use any other gate type. 
 
The NAND and NOR gates are universal gates. 
 
In practice, this is advantageous since NAND and NOR gates are economical and 
easier to fabricate and are the basic gates used in all IC digital logic families. 
 
In fact, an AND gate is typically implemented as a NAND gate followed by an 
inverter not the other way around!! 
 
Likewise, an OR gate is typically implemented as a NOR gate followed by an inverter 
not the other way around!! 
 
NAND Gate is a Universal Gate: 
To prove that any Boolean function can be implemented using only NAND gates, we 
will show that the AND, OR, and NOT operations can be performed using only these 
gates. 
 
 
 



Implementing an Inverter Using only NAND Gate 
The figure shows two ways in which a NAND gate can be used as an inverter (NOT 
gate). 

 
1. All NAND input pins connect to the input signal A gives an output A’. 
 

 
 

2. One NAND input pin is connected to the input signal A while all other input pins 
are connected to logic 1. The output will be A’. 
 

 
 
Implementing AND Using only NAND Gates 
An AND gate can be replaced by NAND gates as shown in the figure (The AND is 
replaced by a NAND gate with its output complemented by a NAND gate inverter). 
 

 
 

Implementing OR Using only NAND Gates 
An OR gate can be replaced by NAND gates as shown in the figure (The OR gate is 
replaced by a NAND gate with all its inputs complemented by NAND gate inverters). 
 

 
 

Thus, the NAND gate is a universal gate since it can implement the AND, OR 
and NOT functions. 
 
NAND Gate is a Universal Gate: 
To prove that any Boolean function can be implemented using only NOR gates, we 
will show that the AND, OR, and NOT operations can be performed using only these 
gates. 
 
Implementing an Inverter Using only NOR Gate 
The figure shows two ways in which a NOR gate can be used as an inverter (NOT 
gate). 
 
 



1. All NOR input pins connect to the input signal A gives an output A’. 
 

 
 

2. One NOR input pin is connected to the input signal A while all other input pins are 
connected to logic 0. The output will be A’. 
 

 
 

Implementing OR Using only NOR Gates 
 
An OR gate can be replaced by NOR gates as shown in the figure (The OR is 
replaced by a NOR gate with its output complemented by a NOR gate inverter) 
 

 
 

Implementing AND Using only NOR Gates 
 
An AND gate can be replaced by NOR gates as shown in the figure (The AND gate is 
replaced by a NOR gate with all its inputs complemented by NOR gate inverters) 
 

 
 

Thus, the NOR gate is a universal gate since it can implement the AND, OR and 
NOT functions. 
 
Equivalent Gates: 
The shown figure summarizes important cases of gate equivalence. Note that bubbles 
indicate a complement operation (inverter). 
 
A NAND gate is equivalent to an inverted-input OR gate. 

 
 
 
 
 



An AND gate is equivalent to an inverted-input NOR gate. 
 

 
 
A NOR gate is equivalent to an inverted-input AND gate. 
 

 
 
An OR gate is equivalent to an inverted-input NAND gate. 
 

 
 
Two NOT gates in series are same as a buffer because they cancel each other as A’’ = 
A. 

 
Two-Level Implementations: 
We have seen before that Boolean functions in either SOP or POS forms can be 
implemented using 2-Level implementations. 
 
For SOP forms AND gates will be in the first level and a single OR gate will be in the 
second level. 
 
For POS forms OR gates will be in the first level and a single AND gate will be in the 
second level. 
 
Note that using inverters to complement input variables is not counted as a level. 
 
We will show that SOP forms can be implemented using only NAND gates, while 
POS forms can be implemented using only NOR gates. 
 
This is best explained through examples. 
 
Example 1: Implement the following SOP function 
 

F = XZ + Y’Z + X’YZ 
Being an SOP expression, it is implemented in 2-levels as shown in the figure. 
 



 
 
Introducing two successive inverters at the inputs of the OR gate results in the shown 
equivalent implementation. Since two successive inverters on the same line will not 
have an overall effect on the logic as it is shown before. 
(see animation in authorware version) 
By associating one of the inverters with the output of the first level AND gate and the 
other with the input of the OR gate, it is clear that this implementation is reducible to 
2-level implementation where both levels are NAND gates as shown in Figure. 
 

 
 
Example 2: Implement the following POS function 
 

F = (X+Z) (Y’+Z) (X’+Y+Z) 
Being a POS expression, it is implemented in 2-levels as shown in the figure.  

 
Introducing two successive inverters at the inputs of the AND gate results in the 
shown equivalent implementation. Since two successive inverters on the same line 
will not have an overall effect on the logic as it is shown before. 



(see animation in authorware version) 
By associating one of the inverters with the output of the first level OR gates and the 
other with the input of the AND gate, it is clear that this implementation is reducible 
to 2-level implementation where both levels are NOR gates as shown in Figure. 

 
There are some other types of 2-level combinational circuits which are  

• NAND-AND 
• AND-NOR, 
• NOR-OR, 
• OR-NAND 

 
These are explained by examples. 
 
AND-NOR functions: 
Example 3: Implement the following function 

YZXZYXZF ++=  or 
YZXZYXZF ++=  

 
Since F’ is in SOP form, it can be implemented by using NAND-NAND circuit. 
By complementing the output we can get F, or by using NAND-AND circuit as 
shown in the figure. 

 
It can also be implemented using AND-NOR circuit as it is equivalent to NAND-
AND circuit as shown in the figure. (see animation in authorware version) 



 
 
OR-NAND functions: 
Example 4: Implement the following function 

)).().(( ZYXZYZXF ++++=  or  
))()(( ZYXZYZXF ++++=  

 
Since F’ is in POS form, it can be implemented by using NOR-NOR circuit.  
By complementing the output we can get F, or by using NOR-OR circuit as shown in 
the figure. 

 
It can also be implemented using OR-NAND circuit as it is equivalent to NOR-OR 
circuit as shown in the figure. (see animation in authorware version) 

 



XOR - XNOR Gates 
 

Lesson Objectives: 
In addition to AND, OR, NOT, NAND and NOR gates, exclusive-OR (XOR) and 
exclusive-NOR (XNOR) gates are also used in the design of digital circuits. 
These have special functions and applications. These gates are particularly useful in 
arithmetic operations as well as error-detection and correction circuits. 
 
XOR and XNOR gates are usually found as 2-input gates. No multiple-input 
XOR/XNOR gates are available since they are complex to fabricate with hardware. 
 
The objectives of this lesson are to learn about: 

1. XOR gates and XNOR gates 
2. Their properties of operation and basic identities 
3. Odd function and Even function 
4. Parity generation and checking. 

 
XOR Gate: 
The exclusive-OR (XOR), operator uses the symbol ⊕, and it performs the following 
logic operation:  
X ⊕ Y = X Y’ + X’ Y 
 
The graphic symbol and truth table of XOR gate is shown in the figure. 
 

 
 

The result is 1 only when either X is equal to 1 or Y is equal to 1, but not when both X 
and Y are equal to 1.  
 

XNOR Gate: 
The exclusive-NOR (XNOR), operator uses the symbol , and it performs the following 
logic operation  
X  Y = X Y + X’ Y’ = (X ⊕ Y)’ 
The graphic symbol and truth table of XNOR (Equivalence) gate is shown in the figure. 
 



 
 
The result is 1 when either both X and Y are 0’s or when both are 1’s. That is why this 
gate is often referred to as the Equivalence gate.  
 
The truth tables clearly show that the exclusive-NOR operation is the complement of the 
exclusive-OR. 
 
This can also be shown by algebraic manipulation as follows: 
(X ⊕ Y)’ = (X Y’ + X’ Y)’  

   = (X Y’)’ (X’ Y)’ = (X’ + Y) (X + Y’)  
   = (XY + X’Y’) 
   = X  Y 

 
Properties of XOR/XNOR Operations: 
1- Commutativity 
• A ⊕ B = B ⊕ A, and 
• A  B = B  A  
 

 
 
 
 
2- Associativity 
• A ⊕ (B ⊕ C) = (A ⊕ B) ⊕ C, and 
• A  (B  C) = (A  B)  C 
 



 
 

Basic Identities of XOR Operation: 
Any of the following identities can be proven using either truth tables or algebraically by 
replacing the ⊕ operation by its equivalent Boolean expression: 
• X ⊕ 0 = X 
• X ⊕ 1 = X’ 
• X ⊕ X = 0 
• X ⊕ X’ = 1 
• X ⊕ Y’ = X’ ⊕ Y = (X ⊕ Y)’ = X  Y 
 
The figure provides a graphical presentation of important XOR/XNOR rules and gate 
equivalence.  
 

 
 
Example: 
Show that (A  B) ⊕ (C  D) = A ⊕ B ⊕ C ⊕ D 
 
Proving the above identity is easier done using graphical equivalence between gates as 
specified by the previous figure. 
 



The following figure shows a step-by-step approach starting by the logic circuit 
corresponding to the left-hand-side of the identity and performing equivalent gate 
transformations till a circuit is reached that corresponds to the right-hand-side of the 
identity. 

 
 

ODD Function: 
As shown in the K-map, X ⊕ Y ⊕ Z = 1, IFF (if and only if) the number of 1’s in the 
input combination is odd. 
 

 
 
 
 
 
 
 



Likewise, A ⊕ B ⊕ C ⊕ D = 1, IFF the number of 1’s in the input combination is odd. 
 

 
 
In general, an exclusive-OR function of n-variables is an odd function which has a value 
of 1 IFF the number of 1’s in the input combination is odd, otherwise it has a value of 0. 
 
Since XOR gates are only designed with 2 inputs, the 3-input XOR function is 
implemented by means of two 2-input XOR gates, as shown in figure. 
 

 
 

EVEN Function: 
The complement of an odd function is an even function. The even function is equal to 1 
when the number of 1’s in the input combination is even. 
 
The complement of an odd function (an even function) is obtained by replacing the 
output gate with an exclusive-NOR gate, as shown in figure. 
 

 
Parity Generation and Checking: 
Exclusive-OR functions are very useful in systems using parity bits for error-detection. 
 
A parity bit is used for the purpose of detecting errors during transmission of binary 
information. 
 
A parity bit is an extra bit included with a binary message to make the total number of 
1’s in this message (including the parity bit) either odd or even. 
 



The message, including the parity bit, is transmitted and then checked at the receiving 
end for errors. An error is detected if the checked parity does not correspond with the one 
transmitted. 
 
The circuit that generates the parity bit at the transmitter side is called a parity generator. 
The circuit that checks the parity at the receiver side is called a parity checker. 
 

 
 
As an example, consider a 3-bit message to be transmitted together with an even parity 
bit. The table shows the truth table for the even parity generator. 
 

 
The three bits, X, Y, and Z, constitute the message and are the inputs to the even parity 
generator circuit whose output is the parity bit P. 
 
For even parity, whenever the message bits (X, Y& Z) have an odd number of 1’s, the 
parity bit P must be 1. Otherwise, P must be 0. 
Therefore, P can be expressed as a three-variable exclusive-OR function: 
P = X ⊕ Y ⊕ Z 
 
The logic diagram for the even parity generator circuit is shown in the figure. 
 

 
 
The 4 bits (X, Y, Z & P) are transmitted to their destination, where they are applied to a 
parity-checker circuit to check for possible errors in the transmission. 
 



 
 
Since the information was transmitted with even parity, the received four bits must have 
an even number of 1’s. 
 
The parity checker generates an error signal (C = 1), whenever the received four bits have 
an odd number of 1’s. 
 
The table below shows the truth table for the even-parity checker.  
 

 
 
Obviously, the parity checker error output signal C is given by the following expression: 
C = X ⊕ Y ⊕ Z ⊕ P 
 
The logic diagram of the even-parity checker is shown in the figure. 
 

 
 



It is worth noting that the parity generator can also be implemented with the circuit of this 
figure if the input P is connected to logic-0 and the output is marked with P. This is 
because Z ⊕ 0 = Z, causing the value of Z to pass through the gate unchanged. 
 

 
 
The advantage of this is that the same circuit can be used for both parity generation and 
checking. 



 

 

 

 

Combinational Logic 
 
Lesson Objectives 
In this lesson, you will learn about 

• What are combinational circuits 
• Design procedure of combinational circuits 
• Examples of combinational circuit design 

 
Combinational Circuits 
Logic circuit can be classified into two types. Combinational circuit, which consists of 
logic gates whose outputs at any time are determined by combining the values of the 
applied inputs using logic operations, and sequential circuits, which will be studied later. 

 
In combinational circuits, the output at any time is a direct function of the applied external 
inputs (Figure 1). In other words, 

 
Z = F(X) 

 
That is, the outputs depend only on present inputs. A combinational circuit can be 
specified by a truth table. 
 
 
 
 
 

Figure 1: Combinational Circuit 
Design procedure 
 
The design of a combinational circuit starts from the specification of the problem, which 
leads to the truth table. Using the output values in the truth table, the logic equation for 
output function is found and simplified using K maps, or Algebraic manipulation or 
computer base tools. The equation of the output functions, the corresponding circuit is 
found. The process is shown in Figure 
 

              Circuit Specification 
 

 
         Truth Table 

 
 
                         K-maps,  Algebraic Manipulation. Computer based tools 
 
 
 

    Logic Diagram 
 

Figure 2: Design Procedure 
 

Combinational 
circuit Inputs X Outputs Z 



Let us state these steps formally.   
 
1) The first step is to find the truth table from circuit specification. This involves two sub-
steps.  

• The first is to determine the required number of inputs and outputs from the 
specification or verbal description of the problem. Then, assign a letter symbol to 
each input.  

• Then, derive the truth table that defines the required relationship between inputs 
and outputs 

 
2) Using the truth table, obtain the simplified Boolean expression for each output as a 
function of the input variables. The simplified equations can then be obtained using 
algebraic manipulation, K-maps, or computer-based tools. 

 
3) Once the simplified equations are found, the corresponding logic diagram can be 
derived. 
 
A practical design must consider constraints such as: 

• Number of gates used. 
• Number of gate inputs (Fan-in). 
• Maximum number of gates an output signal can drive (Fan-out). 
• Speed (propagation delay) requirements. 

 
Example 1 
 
Design a combinational circuit that has 3-bit input number and a single output (F). The 
output signal F is specified as follows: 
 
• F = 1 when the input number is less than (3)10 
• F = 0 otherwise. 
• Implement F using only NAND gates  
 
Let the three inputs be called X, Y, and Z. X is the most significant variable and Z is the 
least significant variable. The output F goes high, that is, the output produces logic 1 value 
if the input is less than 011, equivalent to a decimal value of three. This means that the 
output will be logic one for input combinations 000, 001, and 010. For other input 
combinations, which are 011 upto 111, the output is logic zero (see table 1).  
 
 



 
 
 
 
 
 
 
 
 

Table 1: Inputs and outputs for example 1   
 

Since SOP expressions are directly implementable as 2-Level implementation of NAND 
gates, we consider the 1’s of the function as shown in the K-map. 
 
 
 
 
 
 
 
            F =  X’ Y’ + X’ Z’   
 
 

X’

F

X’

Y’

Z’

 
Figure 3: NAND-NAND- implementation for F =  X’ Y’ + X’ Z’ 

 
Code Converters 
 
� Code converters are circuits which translate information from one binary code to 

another. 
 
� The inputs to the circuit provide the bit combination belonging to the first code, 

while the outputs constitute the corresponding combination belonging to the second 
code. 

 
� The combinational circuit performs the transformation from one code to another. 

Dec. # X Y Z F 
0 0 0 0 1 
1 0 0 1 1 

2 0 1 0 1 

3 0 1 1 0 

4 1 0 0 0 

5 1 0 1 0 

6 1 1 0 0 

7 1 1 1 0 

1    1    0    1 

0    0    0    0

0

1

X
YZ    00     01     11     10  



 
 

 
 

Figure 4: Code converter 
        
Figure 4 shows the general structure of a code converter, containing the inputs, the code 
converter circuit, and the outputs. Consider, for example, a binary BCD to Excess-3 code 
converter  
 

Example 2: BCD to excess-3 Code Converter 
 
In this problem, the input is a BCD codeword. Since this is a 4-bit code that represents a 
decimal digit (0-to-9), there will be 4 input bits which will be represented by four input 
variables A,B,C, and D. Output is a 4-bit excess-3 code (W, X, Y ,Z) 
 
Having defined the inputs and outputs, we proceed to build the truth table for this code 
converter. The truth table, lists the values of the output (that is the excess-3 code) for all 
possible combinations of the binary code. Note that, these codes are codes for decimal 
digits 0-9. In other words, even though the 4 bits of the input can represent up to 16 
different combinations, ONLY 10 combinations are used to represent the 10 decimal 
digits.  
Thus, a total of 6 input combinations are not likely to occur. Since these inputs will never 
occur, we use Don’t cares for the corresponding output codes. 
 

 
 BCD input Ex-3 output 

Decimal # A B C D W X Y Z 
0 0 0 0 0 0 0 1 1 
1 0 0 0 1 0 1 0 0 
2 0 0 1 0 0 1 0 1 
3 0 0 1 1 0 1 1 0 
4 0 1 0 0 0 1 1 1 
5 0 1 1 0 1 0 0 1 
6 0 1 1 1 1 0 1 0 
7 1 0 0 0 1 0 1 1 
8 1 0 0 1 1 1 0 0 
9 0 1 1 0 1 0 0 1 

10 - 15 All other inputs X X X X 
 

Table 2: truth table for BCD to excess-3 code converter 
 
Follow implementation procedure 
As the procedure for simplification of a Boolean function suggests, we will minimize the 
four output functions using K-maps. Thus we will be having four K-maps, one for each 
output function. Each of these K-maps and the circuit are given in figure 5 
 
 

Code Converter 
Inputs Outputs 
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Figure 5: K-maps and circuit for example 2 
 
 
 
 



Example 3: BCD to 7-segment display controller 
 
Let’s take another example. We will design a BCD to seven-segment decoder. Before 
proceeding, let’s first understand what a 7-segment display is?  
 
You might have noticed a digital watch, where the digits from 0 to 9 are displayed (see 
figure 6). These digits can be displayed using seven Light emitting diode segments (or 
LED’s) arranged to look like digit 8 as shown in the figure.   By controlling which 
segment is ON and which is OFF we can display illuminated patterns that correspond to 
the 10 decimal digits 0 to 9. For example, digit 8 can be displayed by illuminating all the 
segments. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Numbers displayed in a digital watch 
 
The objective is to design a circuit that will take a BCD number as input, and produces the 
control signals C0 to C6 which allow illuminating the corresponding segments in the 7-
segment display, as shown in figure 7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Design for example 3 
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BCD to 7–segment

 decoder 

A   B   C   D

c0  c1  c2  c3  c4  c5  c6



 
Thus, the input is a  4-bit BCD digit A,B,C, and D; A being the most significant while D 
being the least significant.  
 
The seven segments, which are actually seven output signals, are numbered C0 to C6 that 
control the illumination of the 7-segment display.  
 
Each of the segment is a Light-Emitting Diode (LED) which is illuminated if current 
passes through it or dimmed if no current passes through it. For example, digit zero can be 
displayed by illuminating all the segments except segment C6. Digit 1 can be displayed by 
ONLY  illuminating segments C1 and C2. 
 
Having defined the format of inputs and outputs, let us find out the truth table for this  
circuit. In the truth table, each input BCD code and its corresponding  7-segment output is  
shown. The truth table assumes that a logic-1 illuminates a segment while a logic-0 turns  
the segment off. 
 

 BCD input Outputs for 7-segments 
Decimal 

# 
A B C D C0 C1 C2 C3 C4 C5 C6 

0 0 0 0 0 1 1 1 1 1 1 0 
1 0 0 0 1 0 1 1 0 0 0 0 
2 0 0 1 0 1 1 0 1 1 0 1 
3 0 0 1 1 1 1 1 1 0 0 1 
4 0 1 0 0 0 1 1 0 0 1 1 
5 0 1 0 1 1 0 1 1 0 1 1 
6 0 1 1 0 1 0 1 1 1 1 1 
7 0 1 1 1 1 1 1 0 0 0 0 
8 1 0 0 0 1 1 1 1 1 1 1 
9 1 0 0 1 1 1 1 0 0 1 1 

10 -15 All other inputs 0 0 0 0 0 0 0 
 

Table 3: Truth table for BCD to 7-segment display converter 
 
Even though the 4 bits of the input can represent up to 16 different combinations, ONLY 
10 input combinations representing the 10 decimal digits are considered Valid.  
 
We will design the controller such that the Invalid Input combinations would turn-off all 
segments. Thus all 7 segments are turned off for input codes beyond 1001.  
 
Now we are ready to build the seven K-maps, one for each output segment, as shown 
below 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

AB 
CD 

00 

11 

01 

10 

  00    01    11   10 

1    0    1    1 

0    1    1    1  

0    0    0    0 

1    1    0    0 

C0 = A’ C + A’ B D +B’ C’ D’ + A B’ C’  

C2 = A’ B + B’ C’ + A’ C’ + A’ D 

1    0    1    1 

0    1    0    1 

0    0    0    0 

1    1    0    0

AB 
CD 

00

11

01

10

  00    01    11   10 

C3 = A’ C D’ + A’ B’ C + B’ C’ D’ + A B’ C’ + A’ B C’ D

1    1    1   0 

1    1    1    1 

0    0    0    0 

1    1    0    0 

AB 
CD 

00 

11 

01 

10 

  00    01    11   10 

1    1    1    1 

1    0    1    0 

0    0    0    0 

1    1    0    0

C1 = A’ B’ + B’ C’ + A’ C’ D’ + A’ C D 

AB 
CD 

00

11

01

10

  00    01    11   10 

1    0    0    1 

0    0    0    1 

0    0    0    0 

1    0    0    0 

C4 = A’ C D’ + B’ C’ D’ 

AB 
CD 

00 

11 

01 
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  00    01    11   10 1    0    0    0 

1    1    0    1 

0    0    0    0 

1    1    0    0

C5 = A’ B C’ + A’ C’ D’ + A’ B D’ + A B’ C’

AB 
CD 

00
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  00    01    11   10 

0    0    1   1 

1    1    0    1 

0    0    0    0 

1    1    0    0 

C6 = A’ C D’ + A’ B’ C+ A’ B C’ + A B’ C’ 

AB 
CD 

00 

11 

01 

10 

  00    01    11   10 



Adders - Subtractors 
 

Lesson Objectives: 
The objectives of this lesson are to learn about: 
1. Half adder circuit. 
2. Full adder circuit. 
3. Binary parallel adder circuit. 
4. Half subtractor circuit. 
5. Full subtractor circuit. 
 

Half Adder: 
A half adder (HA) is an arithmetic circuit that is used to add two bits. The block 
diagram of HA is shown. It has two inputs and two outputs. 
 

 
 
The inputs of the HA are the 2 bits to be added; the augend, and addend. The output is 
the result of this addition, i.e. a sum bit (S) and a carry bit (C). 
 

INPUTS OUTPUTS
X Y C S 
0 0 0 0 
0 1 0 1 
1 0 0 1 
1 1 1 0 

  
The truth table of HA is shown. The Boolean functions for the two outputs can be 
obtained from the truth table which are: 

YXYXYXS ⊕=+= )(  
XYC =  

 
Thus, the HA can be implemented using one XOR gate and one AND gate as shown 
in the Figure. 
 

 

Full Adder: 
A full adder (FA) is an arithmetic circuit that is used to add three bits. The block 
diagram of FA is shown. It has three inputs and two outputs. 
 

 



The inputs of the FA are the 3 bits to be added; the augend, addend, and carry from 
previous lower significant position. The output is the result of this addition, i.e. a sum 
bit (S) and a carry bit (C). 

 
 

INPUTS OUTPUTS
X Y Z C S 
0 0 0 0 0 
0 0 1 0 1 
0 1 0 0 1 
0 1 1 1 0 
1 0 0 0 1 
1 0 1 1 0 
1 1 0 1 0 
1 1 1 1 1 
  

The truth table of FA is shown. The simplified Boolean functions for the two outputs 
can be obtained from the truth table, which are: 

 

 
 

ZYX
XYZZYXZYXZYXS

⊕⊕=
+++=

 

YZXZXYC ++=  

 
 
The Boolean functions for the two outputs can be manipulated to simplify the circuit, 
as shown below: (see animation in authorware version) 
 

ZYX
ZYX
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Thus the full adder can be implemented using two half adders and an OR gate as 
shown in the Figure. 
 

 

Binary Parallel Adder: 
An n-bit adder is a circuit which adds two n-bits numbers, say, A and B. 
 
In addition, an n-bit adder will have another single-bit input which is added to the two 
numbers called the carry-in (Cin). 
 
The output of the n-bit adder is an n-bit sum (S) and a carry-out (Cout) bit. The block 
diagram of the n-bit adder is shown. 
 

 
If all input bits of the two numbers (A & B) are applied simultaneously in parallel, the 
adder is termed a Parallel Adder. 
 
Consider the problem of designing a 4-bit binary parallel adder.  
 
The total number of inputs is 9, since the two numbers have 4-bits each in addition to 
the Cin bit. Using conventional techniques for design would require a truth table of 
29=512 rows.  
 
This causes the conventional design procedure to be unacceptable in this case. 
 
Alternatively, the 4-bit binary parallel adder can be designed using 4 full adders 
connected in-cascade as shown in the figure. 
 



 
That is the carry-out bit of one full adder stage is used as carry-in input to the next 
stage. 
 
In general, an n-bit binary parallel adder can be built out of n full adders connected in 
cascade. 
 
Since a carry of 1 may appear near the least significant bit of the adder and yet 
propagate through many full adders to the most significant bit, just as a wave ripples 
outward from a pebble dropped in a pond. That is why this parallel adder is also 
called as ripple carry adder. 
 
The disadvantage of the ripple-carry adder is that it can get very slow when one needs 
to add many bits. 
 
The propagation delay of this adder is fairly long since under worst case conditions, 
the carry has to propagate through all the stages as shown in the figure by red colored 
path. 

 
This propagation delay is a limiting factor on the adder speed. 
 
The signal from the input carry to the output carry propagates through an AND gate 
and OR gate, which constitute two gate levels. If there are four full adders, the output 
carry would have 2 x 4 = 8 levels from C0 to C4. 
 
The total propagation time in this 4-bit adder would be the propagation time in one 
half adder (which is the first half adder) plus eight gate levels.  
(see animation in authorware version) 
 
Assuming that all the different types of gates have same propagation delay, say T, the 
propagation delay of adder can be generalized as (2n + 1) T, where n is the number of 
stages. In this example, n = 4, so the delay is (2 x 4 + 1) T = 9T 
 



Since all other arithematic operations are implemented by successive additions, the 
time consumed during addition process is very critical. 
 
For fast applications, a better design is required. The carry-look-ahead adder solves 
this problem by calculating the carry signals in advance, based on the input signals. 
 
It is expalined in the next lesson. 
 

Appendix: 
 

Half Subtractor: 
A half subtractor is an arithmetic circuit that subtracts two bits and produces their 
difference. 
 
The block diagram of half subtractor is shown. The circuit has two inputs minuend 
(X) and subtrahend (Y) and two output bits, one is the difference bit (D) and the other 
is the borrow bit (B). 
 

 
 
It performs the operation X – Y. 
 
It should be noted that the weight of the output borrow bit is -2, while the weight of 
the output difference bit is +1. 

INPUTS OUTPUTS
X Y B D 
0 0 0 0 
0 1 1 1 
1 0 0 1 
1 1 0 0 

  
The truth table of the half subtractor is shown. The Boolean functions for the two 
outputs can be obtained directly from the truth table as: 

YXYXYXD ⊕=+= )(  

YXB =  

 
 

Full Subtractor: 
A full subtractor is a combinational circuit that performs a subtraction between two 
bits, taking into account that a 1 may have been borrowed by a lower significant bit. 
 
The block diagram of full subtractor is shown. The circuit has three inputs and two 
outputs. 



 
 
Input variables are minuend (X), subtrahend (Y), and previous borrow (Z); output 
variables are difference (D) and output borrow (B). 
It performs the operation X – Y – Z.  
 
It should be noted that the weight of the output borrow bit is -2, while the weight of 
the output difference bit is +1. 
 
The truth table of the full subtractor is shown. 
 

INPUTS OUTPUTS
X Y Z B D 
0 0 0 0 0 
0 0 1 1 1 
0 1 0 1 1 
0 1 1 1 0 
1 0 0 0 1 
1 0 1 0 0 
1 1 0 0 0 
1 1 1 1 1 
  

The simplified Boolean functions for the two outputs are: 
 

ZYX
XYZZYXZYXZYXD

⊕⊕=
+++=

 

YZZXYXB ++=  
 

 



Carry Look Ahead Adders 
 

Lesson Objectives: 
The objectives of this lesson are to learn about: 
1. Carry Look Ahead Adder circuit. 
2. Binary Parallel Adder/Subtractor circuit. 
3. BCD adder circuit. 
4. Binary mutiplier circuit. 
 
Carry Look Ahead Adder: 
In ripple carry adders, the carry propagation time is the major speed limiting factor as 
seen in the previous lesson. 

 
 
Most other arithmetic operations, e.g. multiplication and division are implemented using 
several add/subtract steps. Thus, improving the speed of addition will improve the speed 
of all other arithmetic operations. 
 
Accordingly, reducing the carry propagation delay of adders is of great importance. 
Different logic design approaches have been employed to overcome the carry 
propagation problem. 
 
One widely used approach employs the principle of carry look-ahead solves this problem 
by calculating the carry signals in advance, based on the input signals. 
 
This type of adder circuit is called as carry look-ahead adder (CLA adder). It is based on 
the fact that a carry signal will be generated in two cases: 
 
(1) when both bits Ai and Bi are 1, or  
(2) when one of the two bits is 1 and the carry-in (carry of the previous stage) is 1. 
 
To understand the carry propagation problem, let’s consider the case of adding two n-bit 
numbers A and B. 

 



 
 
The Figure shows the full adder circuit used to add the operand bits in the ith column; 
namely Ai & Bi and the carry bit coming from the previous column (Ci ). 

 
In this circuit, the 2 internal signals Pi and Gi are given by: 

iii BAP ⊕= ……………………..(1) 

iii BAG = ……………….……(2) 
 
The output sum and carry can be defined as : 

iii CPS ⊕= ……………………(3) 

iiii CPGC +=+1 …………(4) 
 
Gi is known as the carry Generate signal since a carry (Ci+1) is generated whenever Gi 
=1, regardless of the input carry (Ci). 
 
Pi is known as the carry propagate signal since whenever Pi =1, the input carry is 
propagated to the output carry, i.e., Ci+1. = Ci (note that whenever Pi =1, Gi =0). 
 
Computing the values of Pi and Gi only depend on the input operand bits (Ai & Bi) as 
clear from the Figure and equations. 
 
Thus, these signals settle to their steady-state value after the propagation through their 
respective gates. 
 
Computed values of all the Pi’s are valid one XOR-gate delay after the operands A and B 
are made valid. 
 
Computed values of all the Gi’s are valid one AND-gate delay after the operands A and B 
are made valid. 
 
The Boolean expression of the carry outputs of various stages can be written as follows: 
 
C1 = G0 + P0C0 
C2 = G1 + P1C1 = G1 + P1 (G0 + P0C0)  
     = G1 + P1G0 + P1P0C0 
C3 = G2 + P2C2 = G2 + P2G1 + P2P1G0 + P2P1P0C0 
C4 = G3 + P3C3  
     = G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0C0 



In general, the ith. carry output is expressed in the form Ci = Fi (P’s, G’s , C0). 
 
In other words, each carry signal is expressed as a direct SOP function of C0 rather than 
its preceding carry signal. 
 
Since the Boolean expression for each output carry is expressed in SOP form, it can be 
implemented in two-level circuits. 
 
The 2-level implementation of the carry signals has a propagation delay of 2 gates, i.e., 
2τ. 
 
The 4-bit carry look-ahead (CLA) adder consists of 3 levels of logic: 
 

 
 
First level: Generates all the P & G signals. Four sets of P & G logic (each consists of an 
XOR gate and an AND gate). Output signals of this level (P’s & G’s) will be valid after 
1τ. 
 
Second level: The Carry Look-Ahead (CLA) logic block which consists of four 2-level 
implementation logic circuits. It generates the carry signals (C1, C2, C3, and C4) as 
defined by the above expressions. Output signals of this level (C1, C2, C3, and C4) will be 
valid after 3τ. 
 
Third level: Four XOR gates which generate the sum signals (Si) (Si = Pi ⊕ Ci). Output 
signals of this level (S0, S1, S2, and S3) will be valid after 4τ. 
 



Thus, the 4 Sum signals (S0, S1, S2 & S3) will all be valid after a total delay of 4τ 
compared to a delay of (2n+1)τ for Ripple Carry adders.  
 
For a 4-bit adder (n = 4), the Ripple Carry adder delay is 9τ. 
 
The disadvantage of the CLA adders is that the carry expressions (and hence logic) 
become quite complex for more than 4 bits. 
 
Thus, CLA adders are usually implemented as 4-bit modules that are used to build larger 
size adders. 
 
Binary Parallel Adder/Subtractor: 
The addition and subtraction operations can be done using an Adder-Subtractor circuit. 
The figure shows the logic diagram of a 4-bit Adder-Subtractor circuit. 
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The circuit has a mode control signal M which determines if the circuit is to operate as an 
adder or a subtractor. 
 
Each XOR gate receives input M and one of the inputs of B, i.e., Bi. To understand the 
behavior of XOR gate consider its truth table given below. If one input of XOR gate is 
zero then the output of XOR will be same as the second input. While if one input of 
XOR gate is one then the output of XOR will be complement of the second input. 

A B XOR
0 0 0 
0 1 1 
1 0 1 
1 1 0 

  
(see animation in authorware) 
 
So when M = 0, the output of XOR gate will be Bi ⊕ 0 = Bi. If the full adders receive the 
value of B, and the input carry C0 is 0, the circuit performs A plus B. 
 
When M = 1, the output of XOR gate will be Bi ⊕ 1 = Bi

’. If the full adders receive the 
value of B’, and the input carry C0 is 1, the circuit performs A plus 1’s complement of B 
plus 1, which is equal to A minus B. 
 



BCD Adder: 
If two BCD digits are added then their sum result will not always be in BCD. 
Consider the two given examples. 

  0110 =    6 
+0011 = +3 
  1001 =    9 

Correct: Result 
is in BCD. 

 
 
  0101 =    5 
+0111 = + 7 
  1100 =   12 

Wrong: Result is 
not in BCD. 

 
In the first example, result is in BCD while in the second example it is not in BCD. 
 
Four bits are needed to represent all BCD digits (0 – 9). But with four bits we can 
represent up to 16 values (0000 through 1111). The extra six values (1010 through 1111) 
are not valid BCD digits. 
 
Whenever the sum result is > 9, it will not be in BCD and will require correction to get a 
valid BCD result. 

Z3 Z2 Z1 Z0 F
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 1
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

  
Correction is done through the addition of 6 to the result to skip the six invalid values as 
shown in the truth table by yellow color. 
 
 



Consider the given examples of non-BCD sum result and its correction. 
 
 

   0101  =    5 
 +0111 = + 7 
    1100 =   12 
 +0110 =  +6 

BCD correction 

Non-BCD 

In BCD 1 0010 =  1 2  
 
 
 

   1001  =    9 
 +0110 = + 6 
    1111 =   15 
 +0110 =  +6 

BCD correction 

Non-BCD 

In BCD 1 0101 =  1 5 
 
 
 

   1001  =    9 
 +1001 = + 9 
 1 0010 =  18 
 +0110 =  +6 

BCD correction 

Non-BCD 

In BCD 1 1000 =  1 8  
 
 
A BCD adder is a circuit that adds two BCD digits in parallel and produces a sum BCD 
digit and a carry out bit. 
 
The maximum sum result of a BCD input adder can be 19. As maximum number in BCD 
is 9 and may be there will be a carry from previous stage also, so 9 + 9 + 1 = 19 
 
The following truth table shows all the possible sum results when two BCD digits are 
added. 



Dec CO Z3 Z2 Z1 Z0 F
0 0 0 0 0 0 0
1 0 0 0 0 1 0
2 0 0 0 1 0 0
3 0 0 0 1 1 0
4 0 0 1 0 0 0
5 0 0 1 0 1 0
6 0 0 1 1 0 0
7 0 0 1 1 1 0
8 0 1 0 0 0 0
9 0 1 0 0 1 0
10 0 1 0 1 0 1
11 0 1 0 1 1 1
12 0 1 1 0 0 1
13 0 1 1 0 1 1
14 0 1 1 1 0 1
15 0 1 1 1 1 1
16 1 0 0 0 0 1
17 1 0 0 0 1 1
18 1 0 0 1 0 1
19 1 0 0 1 1 1

  
The logic circuit that checks the necessary BCD correction can be derived by detecting 
the condition where the resulting binary sum is 01010 through 10011 (decimal 10 
through 19). 
 
It can be done by considering the shown truth table, in which the function F is true when 
the digit is not a valid BCD digit. It can be simplified using a 5-variable K-map. 
 
But detecting values 1010 through 1111 (decimal 10 through 15) can also be done by 
using a 4-variable K-map as shown in the figure. 

 
Values greater than 1111, i.e., from 10000 through 10011 (decimal 16 through 19) can be 
detected by the carry out (CO) which equals 1 only for these output values. So, F = CO = 
1 for these values. Hence, F is true when CO is true OR when (Z3 Z2 + Z3 Z1) is true. 
Thus, the correction step (adding 0110) is performed if the following function equals 1: 

F = CO + Z3 Z2 + Z3 Z1 



The circuit of the BCD adder will be as shown in the figure. 
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The two BCD digits, together with the input carry, are first added in the top 4-bit binary 
adder to produce the binary sum. The bottom 4-bit binary adder is used to add the 
correction factor to the binary result of the top binary adder. 
 

 Note: 
 When the Output carry is equal to zero, the correction factor equals zero.  
 When the Output carry is equal to one, the correction factor is 0110.  

 
The output carry generated from the bottom binary adder is ignored, since it supplies 
information already available at the output-carry terminal. 
 
A decimal parallel adder that adds n decimal digits needs n BCD adder stages. The 
output carry from one stage must be connected to the input carry of the next higher-order 
stage.  
 
Binary Multiplier: 
Multiplication of binary numbers is performed in the same way as with decimal numbers. 



The multiplicand is multiplied by each bit of the multiplier, starting from the least 
significant bit. 
 
The result of each such multiplication forms a partial product. Successive partial products 
are shifted one bit to the left. 
 
The product is obtained by adding these shifted partial products. 
 
Example 1: Consider an example of multiplication of two numbers, say A and B (2 bits 
each), C = A x B. 
 
The first partial product is formed by multiplying the B1B0 by A0. The multiplication of 
two bits such as A0 and B0 produces a 1 if both bits are 1; otherwise it produces a 0 like 
an AND operation. So the partial products can be implemented with AND gates. 
 
The second partial product is formed by multiplying the B1B0 by A1 and is shifted one 
position to the left. 

 
(see animation in authorware) 
 
The two partial products are added with two half adders (HA).  Usually there are more 
bits in the partial products, and then it will be necessary to use FAs. 

 
The least significant bit of the product does not have to go through an adder, since it is 
formed by the output of the first AND gate as shown in the Figure. 
 



A binary multiplier with more bits can be constructed in a similar manner. 
 
Example 2: Consider the example of multiplying two numbers, say A (3-bit number) and 
B (4-bit number). 
 
Each bit of A (the multiplier) is ANDed with each bit of B (the multipcand) as shown in 
the Figure. 

 
The binary output in each level of AND gates is added in parallel with the partial product 
of the previous level to form a new partial product. The last level produces the final 
product. 

 
Since J = 3 and K = 4, 12 (J x K) AND gates and two 4-bit ((J - 1) K-bit) adders are 
needed to produce a product of seven (J + K) bits. Its circuit is shown in the Figure. 
 
Note that 0 is applied at the most significant bit of augend of first 4-bit adder because the 
least significant bit of the product does not have to go through an adder. 



Decoders and Encoders 
 
Lesson Objectives 
In this lesson, we will learn about 
o Decoders 
o Expansion of decoders 
o Combinational circuit implementation with decoders 
o Some examples of decoders 
o Encoders 
o Major limitations of encoders 
o Priority encoders 
o Some examples of ecnoders 

 
Decoders 
As its name indicates, a decoder is a circuit component that decodes an input code. Given 
a binary code of n-bits, a decoder will tell which code is this out of the 2n possible codes 
(See Figure 1(a)). 
 

n Inputs
n-to-2n

Decoder

0
1

2n-1
 

Figure 1(a): A typical decoder 
 
Thus, a decoder has n- inputs and 2n outputs. Each of the 2n outputs corresponds to one of 
the possible 2n input combinations. 
 

 

n Inputs
n-to-2n

Decoder 2n Outputs

Enable  
Figure 1(b): A typical decoder 

 
Figure 1(b) shows the block diagram of a typical decoder, which has n input lines, and m 
output lines, where m is equal to 2n. The decoder is called n-to-m decoder.  Apart from 
this, there is also a single line connected to the decoder called enable line. The operations 
of the enable line will be discussed in the flowing text. 



 
o In general, output i equals 1 if and only if the input binary code has a value of i. 
 
o Thus, each output line equals 1 at only one input combination but is equal to 0 at 

all other combinations. 
 
o In other words, each decoder output corresponds to a minterm of the n input 

variables. 
 
o Thus, the decoder generates all of the 2n minterms of n input variables. 

 
Example: 2-to-4 decoders 
Let us discuss the operation and combinational circuit design of a decoder by taking the 
specific example of a 2-to-4 decoder.  It contains two inputs denoted by A1 and A0 and 
four outputs denoted by D0, D1, D2, and D3 as shown in figure 2. Also note that A1 is the 
MSB while A0 is the LSB. 
 
 

A0 2-to-4
DecoderA1

D0 = A1A0

D1 = A1A0

D2 = A1A0

D3 = A1A0

 
Figure 2: A 2-to-4 decoder without enable 

 
Decimal # Input Output 

 A1 A0 D0 D1 D2 D3 
0 0 0 1 0 0 0 
1 0 1 0 1 0 0 
2 1 0 0 0 1 0 
3 1 1 0 0 0 1 

 
Table 1: Truth table for 2-to-4 decoder  

 
 
As we see in the truth table (table 1), for each input combination, one output line is 
activated, that is, the output line corresponding to the input combination becomes 1, 
while other lines remain inactive. For example, an input of 00 at the input will activate 
line D0. 01 at the input will activate line D1, and so on.  
 
 



o Notice that, each output of the decoder is actually a minterm resulting from a 
certain combination of the inputs, that is 
o D0 =A1 A0, ( minterm m0) which corresponds to input 00 
o D1 =A1 A0, ( minterm m1) which corresponds to input 01 
o D2 =A1 A0, ( minterm m2) which corresponds to input 10 
o D3 =A1 A0, ( minterm m3) which corresponds to input 11 

 
o This is depicted in Figures 2 where  we see that each input combination will 

inovke the corresponding output, where each output is minterm corresponding to 
the input combination.  

 

 

A1
A0

D0 = A1A0

D1 = A1A0

D2 = A1A0

D3 = A1A0 
 

Figure 3: Implementation 2-to-4 decoder 
 
The circuit is implemented with AND gates, as shown in figure 3.  In this circuit we see 
that the logic equation for D0 is A1

/ A0
/.   D0 is A1

/ A0, and so on. These are in fact the 
minterms being implemented. Thus, each output of the decoder generates a minterm 
corresponding to the input combination. 
 
The “enable” input in decoders 
 
Generally, decoders have the “enable” input .The enable input perroms no logical 
operation, but is only responsible for making the decoder ACTIVE or INACTIVE. 
o If the enable “E” 

o is zero, then  all outputs are zero regardless of the input values. 
o is one, then the decoder performs its normal operation. 

 
For example, consider the 2-to-4 decoder with the enable input (Figure 4). The enable 
input is only responsible for making the decoder active or inactive. If Enable E is zero, 
then all outputs of the decoder will be zeros, regardless of the values of A1 and A0. 
However, if E is 1, then the decoder will perform its normal operation, as is shown in the 



truth table (table 2).  In this table we see that as long as E is zero, the outputs D0 to D3 
will remain zero, no matter whatever value you provide at the inputs A1 A0, depicted by 
two don’t cares. When E becomes 1, then we see the same behavior as we saw in the case 
of 2-to-4 decoder discussed earlier.  
 

D1

D2

D3

A1
A0

D0

E

 
 

Figure 4: Implementation 2-to-4 decoder with enable 
 
 

Decimal 
value 

Enable Inputs Outputs 

 E A1 A0 D0 D1 D2 D3 
 0 X X 0 0 0 0 
0 1 0 0 1 0 0 0 
1 1 0 1 0 1 0 0 
2 1 1 0 0 0 1 0 
3 1 1 1 0 0 0 1 

 
Table 2: Truth table of 2-to-4 decoder with enable 

 
Example: 3-to-8 decoders 
In a three to eight decoder, there are three inputs and eight outputs, as shown in figure 5. 
A0 is the least significant variable, while A2 is the most significant variable.  
 
The three inputs are decoded into eight outputs. That is, binary values at the input form a 
combination, and based on this combination, the corresponding output line is activated. 
 



A0 3-to-8
Decoder

Enable

A1

A2

D0 = A2A1A0

D1 = A2A1A0

D2 = A2A1A0

D3 = A2A1A0

D4 = A2A1A0

D5 = A2A1A0
D6 = A2A1A0
D7 = A2A1A0

 
Figure 5: A 3-to-8 decoder with enable 

 
Each output represents one minterm . 
o  For example, for input combination A2A1A0 = 001, output line D1 equals 1 while all 

other output lines equal 0’s 
o  It should be noted that at any given instance of time, one and only one output line 

can be activated. It is also obvious from the fact that only one combination is 
possible at the input at a time, so the corresponding output line is activated. 

 
 

Dec. Inputs Outputs 
Code A2 A1 A0 D0 D1 D2 D3 D4 D5 D6 D7 

0 0 0 0 1 0 0 0 0 0 0 0 
1 0 0 1 0 1 0 0 0 0 0 0 
2 0 1 0 0 0 1 0 0 0 0 0 
3 0 1 1 0 0 0 1 0 0 0 0 
4 1 0 0 0 0 0 0 1 0 0 0 
5 1 0 1 0 0 0 0 0 1 0 0 
6 1 1 0 0 0 0 0 0 0 1 0 
7 1 1 1 0 0 0 0 0 0 0 1 

 
Table 3: Truth table of 3-to-8 decoder  

 
Since each input combination represents one minterm, the truth table (table 3) contains 
eight output functions, from D0 to D7 seven, where each function represents one and only 
one minterm. Thus function D0 is A2

/ A1
/ A0

/. Similarly function D7 is A2A1A0. The 
corresponding circuit is given in Figure 6. In this figure, the three inverters provide 
complement of the inputs, and each one of the AND gates generates one of the minterms. 
It is also possible to add an Enable input to this decoder. 
 



 
 

Figure 6: Implementation of a 3-to-8 decoder without enable 
 
 
Decoder Expansion 
 
o It is possible to build larger decoders using two or more smaller ones.  

 
o For example, a 6-to-64 decoder can be designed with four 4-to-16 decoders and one 

2-to-4 line decoder. 
 
Example: Construct a 3-to-8 decoder using two 2-to-4 deocders with enable 
inputs. 
Figure 7 shows how decoders with enable inputs can be connected to form a larger 
decoder. Two 2-to-4 line decoders are combined to build a 3-to-8 line decoder.  
 

o The two least signifncat bits (i.e. A1 and A0) are connected to both decoders 
 

o Most signifcant bit (A2) is connected to the enable input of one decoder. 
o The complement of most significant bit (A2) is connected to the enable of the 

other decoder. 
o When A2 = 0, upper decoder is enabled, while the lower is disabled. Thus, the 

outputs of the upper decoder correspond to minterms D0 through D3. 
o When A2 = 1, upper decoder is disabled, while the lower is enabled. Thus, the 

outputs of the lower decoder correspond to minterms D4 through D7. 
 
 



 
 

Figure 7: Implementing a 3-to-8 decoder with two 2-to-4 decoders 
 
Decoder design with NAND gates 
 
o Some decoders are constructed with NAND rather than AND gates. 
 
o In this case, all decoder outputs will be 1’s except the one corresponding to the input 

code which will be 0. 
 

Decimal # Input Output 
 A1 A0 D0’ D1’ D2’ D3’ 
0 0 0 0 1 1 1 
1 0 1 1 0 1 1 
2 1 1 1 1 0 1 
3 1 1 1 1 1 0 

 

 
Table 4: Truth table of 2-to-4 decoder with NAND gates  

 
This decoder can be constructed without enable, similar to what we have seen in the 
design of decoder with AND gates, without enable. The truth table and corresponding 
minters are given in table 4. Notice that the minters are in the complemented form. 
 
 



  
Figure 8: A 2-to-4 decoder with Enable constructed with NAND gates. 

 
  

Decimal 
value 

Enable Inputs Outputs 

 E’ A1 A0 D0’ D1’ D2’ D3’ 
 1 X X 1 1 1 1 
0 0 0 0 0 1 1 1 
1 0 0 1 1 0 1 1 
2 0 1 1 1 1 0 1 
3 0 1 1 1 1 1 0 

 

 
Table 5: Truth table of 2-to-4 decoder with Enable using NAND gates 
 
A 2-to-4 line decoder with an enable input constructed with NAND gates is shown in 
figure 8. The circuit operates with complemented outputs and enable input E’ is also 
complemented to match the outputs of the NAND gate decoder.  The decoder is enabled 
when E’ is equal to zero. As indicated by the truth table, only one output can be equal to 
zero at any given time, all other outputs being equal to one. The output with the value of 
zero represents the minterm selected by inputs A1 and A0. The circuit is disabled when E’ 
is equal to one, regardless of the values of the other two inputs. When the circuit is 
disabled, none of the outputs are equal to zero, and none of the minterms are selected. 
The corresponding logic equations are also given in table 5. 
 
 
Combinational circuit implementation using decoder 
 
o As known, a decoder provides the 2n minterms of n input variables 
o Since any boolean functions can be expressed as a sum of minterms, one can use a 

decoder to implement any function of n variables. 
o In this case, the decoder is used to generate the 2n minterms and an additional OR 

gate is used to generate the sum of the required minterms. 
o In this way, any combinational circuit with n inputs and m outputs can be 



implemented using an n-to-2n decoder in addition to m OR gates. 
 
?  Remember, that 
o The function need not be simplified since the decoder implements a function using 

the minterms, not product terms. 
 
o Any number of output functions can be implemented using a single decoder, 

provided that all those outputs are functions of the same input variables. 
Example: Decoder Implementation of a Full Adder 
 
Let us look at the truth table (table 6) for the given problem. We have two outputs, called 
S, which stands for sum, and C, which stands for carry. Both sum and carry are functions 
of X, Y, and Z.  
 

Decimal 
value 

Input Output 

 X Y Z S C 
0 0 0 0 0 0 

1 0 0 1 1 0 

2 0 1 0 1 0 

3 0 1 1 0 1 

4 1 0 0 1 0 

5 1 0 1 0 1 

6 1 1 0 0 1 

7 1 1 1 1 1 

 
Table 6: Truth table of the Full Adder  

  
o  The output functions S & C can be expressed in sum-of-minterms forms as follows: 

o S (X,Y,Z) = m (1,2,4,7) 
o C (X,Y,Z) = m (3,5,6,7) 

 
 
Looking at the truth table and the functions in sum of minterms form, we observe that 
there are three inputs, X, Y, and Z that correspond to eight minterms. This implies that a 
3-to-8 decoder is needed to implement this function. This implementation is given in 
Figure 9, where the sum S is implemented by taking minterms 1, 2, 4, and 7 and the OR 
gates forms the logical sum of minterm for S. Similarly, carry C is implemented by 
taking logical sum of minterms 3, 5, 6, and 7 from the same decoder. 
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Figure 9: Decoder implementation of a Full Adder 

Encoders 
o An encoder performs the inverse operation of a decoder, as shown in Figure 10. 
o It has 2n inputs, and n output lines. 
o Only one input can be logic 1 at any given time (active input). All other inputs must 

be 0’s. 
o Output lines generate the binary code corresponding to the active input.  

 

 
 
 
 
 

 
Figure 10: A typical Encoder 

Example: Octal-to-binary encoder 
 
We will use 8-to-3 encoder (Figure 11) for this problem, since we have eight inputs, one 
for each of the octal digits, and three outputs that generate the corresponding binary 
number. Thus, in the truth table, we see eight input variables on the left side of the 
vertical lines, and three variables on the right side of the vertical line (table 7).   
 

Inputs Outputs Decimal 
Code 

E7 E6 E5 E4 E3 E2 E1 E0 A2 A1 A0  
0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 1 1 
0 0 0 0 0 1 0 0 0 1 0 2 
0 0 0 0 1 0 0 0 0 1 1 3 
0 0 0 1 0 0 0 0 1 0 0 4 
0 0 1 0 0 0 0 0 1 0 1 5 
0 1 0 0 0 0 0 0 1 1 0 6 
1 0 0 0 0 0 0 0 1 1 1 7 

Table 7: Truth table of Octal-to-binary encoder  
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Figure 11: Octal-to-binary encoder 
o Note that not all input combinations are valid. 
o Valid combinations are those which have exactly one input equal to logic 1 while all 

other inputs are logic 0’s. 
o Since, the number of inputs = 8, K-maps cannot be used to derive the output Boolean 

expressions. 
o The encoder implementation, however, can be directly derived from the truth table 

o Since A0 = 1 if the input octal digit is 1 or 3 or 5 or 7, then we can write: 
A0 = E1 + E3 + E5+ E7 

o Likewise, A1 = E2 + E3 + E6+ E7, and similarly 
o  A2 = E4 + E5 + E6+ E7 

 
o  Thus, the encoder can be implemented using three 4- input OR gates. 
 
Major Limitation of Encoders 
o Exactly one input must be active at any given time. 
o If the number of active inputs is less than one or more than one, the output will be 

incorrect. 
o For example, if E3 = E6 = 1, the output of the encoder A2A1A0 = 111, which implies  

incorrect output. 

 
Two Problems to Resolve. 
1. If two or more inputs are active at the same time, what should the output be? 
2. An output of all 0's is generated in 2 cases: 

o when all inputs are 0 
o when E0 is equal to 1.  

How can this ambiguity be resolved? 
 
Solution To Problem 1:  
o Use a Priority Encoder which produces the output corresponding to the input with 

higher priority. 
o Inputs are assigned priorities according to their subscript value; e.g. higher subscript 

inputs are assigned higher priority. 
o In the previous example, if E3 = E6 = 1, the output corresponding to E6 will be 

produced (A2A1A0 = 110) since E6 has higher priority than E3. 
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Solution To Problem 2:  
o Provide one more output signal V to indicate validity of input data.  
o V = 0 if none of the inputs equals 1, otherwise it is 1  
 
Example: 4-to-2 Priority Encoders 
 
o Sixteen input combinations 
o Three output variables A1, A0, and V 
o V is needed to take care of situation when all inputs are equal to zero.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 8: Truth table of 4-to-2 Priority Encoder  
 
In the truth table (table 8), we have sixteen input combinations. In the output, we have 
three   variables.  The variable V is needed to take care of the situation where all inputs 
are zero. In that case V is kept at zero, regardless of the values of A1 and A0. This 
combination is highlighted green. In all other cases, V is kept at 1, because at least one of 
the inputs is one.  
 
When E0 is 1, the output combination of A1 and A0 is 00. This combination is highlighted 
blue.  
 
Then we have two combinations highlighted yellow. In both these combinations, A1 and 
A0 are 01. This is because in both these combinations E1 is 1, regardless of the value of 
E0, and since E1 has higher subscript, the corresponding output value is 01. 
 
This is followed by four input combinations in pink. In these four combinations, the 
output A1A0 is 10, since E2 is 1 in all these combinations, and E2 has the highest 

Inputs  

E3 E2 E1 E0 A1 A0 V 
0 0 0 0 X X 0 
0 0 0 1 0 0 1 
0 0 1 0 0 1 1 
0 0 1 1 0 1 1 
0 1 0 0 1 0 1 
0 1 0 1 1 0 1 
0 1 1 0 1 0 1 
0 1 1 1 1 0 1 
1 0 0 0 1 1 1 
1 0 0 1 1 1 1 
1 0 1 0 1 1 1 
1 0 1 1 1 1 1 
1 1 0 0 1 1 1 
1 1 0 1 1 1 1 
1 1 1 0 1 1 1 
1 1 1 1 1 1 1 

 

Outputs  

Invalid 
Input 



precedence compared to E0 and E1. Although E0 and E1 are also having a value of one in 
this set of four combinations, but they do not have the priority.  
 
Finally we have the last eight input combinations, whose output is 11. This is because E3 
is the highest priority input, and it is equal to 1. Though the other inputs with smaller 
subscripts, namely, E2, E1, and E0 are also having values of one in some combinations, 
but they do not have the priority.  
 
The truth table can be rewritten in a more compact form using don’t care conditions for 
inputs as shown below in table 9.  
 
 
 
 
 
 
 
 
 
 

Table 9: Truth table of 4-to-2 priority encoder (compact form) 
 
 
o With 4 Input variables, the truth table must have 16 rows, with each row 

representing an input combination.  
 
o With don’t care input conditions, the number of rows can be reduced since rows with 

don’t care inputs will actually represent more than one input combination. 
 
o Thus, for example, row # 3 represents 2 combinations since it represents the input 

conditions E3E2E1E0=0010 and 0011. 
 
o Likewise, row # 4 represents 4 combinations since it represents the input conditions 

E3E2E1E0=0100, 0101, 0110 and 0111. 
 
o Similarly, row # 5 represents 8 combinations. 
 
o Thus, the total number of input combinations represented by the 5-row truth table = 

1+ 1+ 2+ 4 + 8= 16 input combinations. 
 
Boolean Expressions for V, A1 and A0 and the circuit: 
 
See next page: 

 E3 E2 E1 E0 A1 A0 V 
1 0 0 0 0 X X 0 
2 0 0 0 1 0 0 1 
3 0 0 1 X 0 1 1 
4 0 1 X X 1 0 1 
5 1 X X X 1 1 1 
  

Inputs  Outputs 



 
Figure 12: Equations and circuit for 4-to-2 priority encoder 

 



Multiplexers and Demultiplexers 
 
In this lesson, you will learn about: 
 
1. Multiplexers 
2. Combinational circuit implementation with multiplexers 
3. Demultiplexers 
4. Some examples 
 
Multiplexer 
A Multiplexer (see Figure 1) is a combinational circuit that selects one of the 2n input 
signals (D0, D1, D2, ……, D2

n
-1) to be passed to the single output line Y. 

Q. How to select the input line (out of the possible 2n input signals) to be passed to the 
output line? 

A. Selection of the particular input to be passed to the output is controlled by a set of n 
input signals called “Select Inputs” (S0, S1, S2, ……., Sn-1). 

 
 

Figure 1: Multiplexer 
 
 
Example 1: 2x1 Mux  
A 2x1 Mux has 2 input lines (D0 & D1) , one select input (S), and one output line (Y). 
(see Figure 2) 
 
IF S=0,  then  Y= D0  
 Else (S=1)          Y= D1 



D0

D1

Y

S

MUX

 
Figure 2: A 2 X 1 Multiplexer 

 
Thus, the output signal Y can be expressed as: 

10 DSDSY +=  
 
Example 2: 4x1 Mux  
A 4x1 Mux has 4 input lines (D0, D1, D2, D3), two select inputs (S0 & S1), and one output 
line Y. (see Figure 3) 
 

IF S1S0=00, then   Y= D0 
IF S1S0=01, then   Y= D1 
IF S1S0=10, then   Y= D2 
IF S1S0=11, then   Y= D3 

Thus, the output signal Y can be expressed as: 

 
      minterm    minterm   minterm    minterm 
        m0             m1             m2            m3 
Obviously, the input selected to be passed to the output depends on the minterm 
expressions of the select inputs. 
 

 
Figure 3: A 4 X 1 Multiplexer 

 
 



In General,   
For MUXes with n select inputs, the output Y is given by 
 
Y = m0D0 + m1D1 + m2D2 + .…+ m2 n-1D2

n
 –1 

 
Where mi = ith minterm of the Select Inputs 
 
Thus 

∑
−

=

=
12

0

n

i
ii DmY  

Example 3: Quad 2X1 Mux  
Given two 4-bit numbers A and B, design a multiplexer that selects one of these 2 
numbers based on some select signal S. Obviously, the output (Y) is a 4-bit number. 

Quad 2-1
MUX

A0

A1

A2

A3

B0

B1

B2

B 3

Y0

Y1

Y 2

Y3

S  
Figure 4: Quad 2 X 1 Multiplexer 

 
 
The 4-bit output number Y is defined as follows: 
 

Y = A  IF S=0, otherwise Y = B 
 
The circuit is implemented using four 2x1 Muxes, where the output of each of the Muxes 
gives one of the outputs (Yi). 
 
Combinational Circuit Implementation using Muxes 
Problem Statement: 
Given a function of n-variables, show how to use a MUX to implement this function. 
This can be accomplished in one of 2 ways: 
� Using a Mux with n-select inputs 
� Using a Mux with n-1 select inputs 
 
Method 1: Using a Mux with n-select inputs 
n variables need to be connected to n select inputs. For a MUX with n select inputs, the 
output Y is given by: 



Y = m0D0 + m1D1 +  m2 D2 + ... + m2
n

-1D2
n

–1 
Alternatively,  

∑
−

=

=
12

0

n

i
ii DmY  

Where mi = ith  minterm of the Select Inputs 
 

The MUX output expression is a SUM of minterms expression for all minterms (mi) 
which have their corresponding inputs (Di) equal to 1. 
 
Thus, it is possible to implement any function of n-variables using a MUX with n-select 
inputs by proper assignment of the input values (Di ∈ {0 , 1}). 
Y(Sn-1 ….. S1S0) = ∑(minterms) 
 
Example 4: Implement the function F (A, B, C)  = ∑(1, 3, 5, 6) (see Figure 5) 
Since number of variables n = 3, this requires a Mux with 3 select inputs, i.e. an 8x1 Mux 
 
The most significant variable A is connected to the most significant select input S2 while 
the least significant variable C is connected to the least significant select input S0 , thus: 

S2 = A, S1 = B, and S0 = C 
For the MUX output expression (sum of minterms) to include minterm 1 we assign D1 =1 
 
Likewise, to include minterms 3, 5, and 6 in the sum of minterms expression while 
excluding minterms 0, 2, 4, and 7, the following input (Di) assignments are made 

D1 = D3 = D5 = D6 = 1 
D0 = D2 = D4 = D7 = 0 

D 0

D 1

Y

S 0

D 2

D 3

D 4

D 5

D 6

D 7 S 1S 2

0

1

0

1

0

1

0

1

A B C

∑

=
( 1 ,3 ,5 ,6 )

C )B ,F ( A ,

 
Figure 5: Implementing function with Mux with n select inputs 

 
 
 



Method 2: Using a Mux with (n-1) select inputs 
Any n-variable logic function can be implemented using a Mux with only (n-1) select 
inputs (e.g  4-to-1 mux to implement any 3 variable function) 
 
This can be accomplished as follows: 
� Express function in canonical sum-of-minterms form. 
� Choose  n-1  variables to be connected to the mux select lines. 
� Construct the truth table of the function, but grouping the n-1 select input variables 
together (e.g. by making the n-1 select variables as most significant inputs).  
The values of Di  (mux input line) will be 0, or 1, or nth variable or complement of nth 
variable of value of function F, as will be clarified by the following example. 
 
Example 5: Implement the function F (A, B, C) = ∑ (1, 2, 6, 7) (see figure 6) 
This function can be implemented with a 4-to-1 line MUX. 
A and B are applied to the select line, that is  

A ⇒ S1, B ⇒ S0 
The truth table of the function and the implementation are as shown: 

 
Figure 6: Implementing function with Mux with n-1 select inputs 

 
 
 
 



 
Example 6: Consider the function F(A,B,C,D)=∑(1,3,4,11,12,13,14,15) 
 
This function can be implemented with an 8-to-1 line MUX (see Figure 7) 
A, B, and C are applied to the select inputs as follows: 
 

A ⇒ S2 , B ⇒ S1, C ⇒ S0 
The truth table and implementation are shown. 

 
Figure 7: Implementing function of Example 6 

 
 
Demultiplexer 
It is a digital function that performs inverse of the multiplexing operation. 
It has one input line (E) and transmits it to one of 2n possible output lines (D0, D1, D2, …, 
D2

n
-1). The selection of the specific output is controlled by the bit combination of n select 

inputs. 
 



D0
D1
D2
D3
D4
D5

D2
n

-1

E

Moving
Arm

 
Figure 8: A demultiplexer 

 
Example 7: A 1-to-4 line Demux 
The input E is directed to one of the outputs, as specified by the two select lines S1 and 
S0. 
D0 = E if S1S0 = 00 ⇒ D0 = S1’ S0’ E 
D1 = E if S1S0 = 01 ⇒ D1 = S1’ S0 E 
D2 = E if S1S0 = 10 ⇒ D2 = S1 S0’ E 
D3 = E if S1S0 = 11 ⇒ D3 = S1 S0 E 
 
A careful inspection of the Demux circuit shows that it is identical to a 2 to 4 decoder 
with enable input. 

D1

D2

D3

A1
A0

D0

E

 
Figure 8: A 1-to-4 line demultiplexer 

 

�For the decoder, the inputs are A1 and A0, and the enable is input E. (see figure 9) 
�For demux, input E provides the data, while other inputs accept the selection variables. 
�Although the two circuits have different applications, their logic diagrams are exactly 
the same. 



 
Decimal 
value 

Enable Inputs Outputs 

 E A1 A0 D0 D1 D2 D3 
 0 X X 0 0 0 0 
0 1 0 0 1 0 0 0 
1 1 0 1 0 1 0 0 
2 1 1 0 0 0 1 0 
3 1 1 1 0 0 0 1 

 
Figure 9: Table for 1-to-4 line demultiplexer 



Magnitude Comparator 
 
In this lesson you will learn about 
1.Magnitude comparator 
2.How to design a 4-bit comparator  
 
Definition 
A magnitude comparator is a combinational circuit that compares two numbers A & B to 
determine whether: 
� A > B, or 
� A = B, or 
� A < B 

Inputs 
First     n-bit number A  
Second n-bit number B 
Outputs 
3 output signals (GT, EQ, LT), where:  
 1.  GT = 1 IFF A > B 
 2.  EQ = 1 IFF A = B 
 3.  LT = 1 IFF A < B 
Note:   Exactly One of these 3 outputs equals 1, while the other 2 outputs are 0`s 
 
 

 
 
4-bit magnitude comparator 
Inputs:  8-bits (A ⇒ 4-bits ,  B ⇒ 4-bits) 
A and B are two 4-bit numbers  
� Let A = A3A2A1A0 , and 
� Let B = B3B2B1B0  
� Inputs have 28 (256) possible combinations 
� Not easy to design using conventional techniques  

 



 
The circuit possesses certain amount of regularity ⇒ can be designed algorithmically. 
 
Design of the EQ output (A = B) in 4-bit magnitude comparator 
Define Xi = (Ai  Bi)+ (Ai 

/ Bi 
/)  

 
Thus    Xi = 1 IFF Ai = Bi     ∀  i =0, 1, 2 and 3 

Xi = 0 IFF Ai ≠ Bi   
 
Condition for A= B  
EQ=1 (i.e., A=B) IFF  

1. A3=B3  → (X3 = 1), and  
2. A2=B2  → (X2 = 1), and  
3. A1=B1  → (X1 = 1), and  
4. A0=B0  → (X0 = 1).  

 
Thus, EQ=1 IFF X3 X2 X1 X0 = 1. In other words, EQ = X3 X2 X1 X0 
 
Design of the GT output (A > B) 4-bit magnitude comparator 
If A3 > B3, then A > B (GT=1) irrespective of the relative values of the other bits of A & 
B. Consider, for example, A = 1000 and B = 0111 where A > B. 
This can be stated as GT=1 if A3 B3

/ =1 
 
If A3 = B3 (X3 = 1), we compare the next significant pair of bits (A2 & B2).  
 
If A2 > B2 then A > B (GT=1) irrespective of the relative values of the other bits of A & 
B. Consider, for example, A = 0100 and B = 0011 where A > B. 
This can be stated as GT=1 if X3A2 B2

/ =1 
 
If A3 = B3 (X3 = 1) and A2 = B2 (X2 = 1), we compare the next significant pair of bits (A1 
& B1).  
 



If A1 > B1 then A > B (GT=1) irrespective of the relative values of the remaining bits A0 
& B0. Consider, for example, A = 0010 and B = 0001 where A > B 
This can be stated as GT=1 if X3 X2A1 B1

/ =1 
 
If A3 = B3 (X3 = 1) and A2 = B2 (X2 = 1) and A1 = B1 (X1 = 1), we compare the next pair 
of bits (A0 & B0).  
If A0 > B0 then A > B (GT=1). This can be stated as GT=1 if X3X2X1A0B0

/=1 
 
To summarize, GT =1 (A > B) IFF: 

1. A3 B3
/ =1, or 

2. X3A2 B2
/ =1, or 

3. X3 X2A1 B1
/ = 1, or 

4. X3X2X1A0B0
/  =1 

In other words, GT =  A3 B3
/ + X3A2 B2

/ + X3 X2A1 B1
/ + X3X2X1A0B0

/ 

 
Design of the LT output (A < B) 4-bit magnitude comparator 
In the same manner as above, we can derive the expression of the LT (A < B) output 
LT =  B3 A3

/ + X3B2 A2
/ + X3 X2B1 A1

/ + X3X2X1B0A0
/ 

The gate implementation of the three output variables (EQ, GT & LT) is shown in the 
figure below. 
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A > B
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Modification to the Design  
The hardware in the comparator can be reduced by implementing only two outputs, and 
the third output can be obtained using these two outputs. 
For example, if we have the LT and GT outputs, then the EQ output can be obtained by 
using only a NOR gate, as shown in the figure below. 
 

 
Thus, when both the GT and LT outputs are zeros, then the 3rd one (i.e. EQ) is a ‘1’ 
 
 



MSI Design Examples 
 
In this lesson, you will see some design examples using MSI devices. These examples 
are: 

•  Designing a circuit that adds three 4-bit numbers.  
•  Design of a 4-to-16 Decoder using five 2-to-4 Decoders with enable inputs. 
•  Design of a circuit that takes 2 unsigned 4-bit numbers and outputs the larger of 

both. 
•  Designing a 16-bit adder using four 4-bit adders.  
•  Designing a 3-bit excess-3 code converter using a Decoder and an Encoder. 

 
Designing a circuit that adds three 4-bit numbers 
 
Recall that a 4-bit binary adder adds two binary numbers, where each number is of 4 bits. 
For adding three 4-bit numbers we have: 
Inputs 
� First   4-bit number X = X3X2X1X0 
� Second 4-bit number Y = Y3Y2Y1Y0 
� Third  4-bit number Z = Z3Z2Z1Z0 

Outputs 
The summation of X, Y, and Z. How many output lines are exactly needed will be 
discussed as we proceed.  
 
To design a circuit using MSI devices that adds three 4-bit numbers, we first have to 
understand how the addition is done. In this case, the addition will take place in two 
steps, that is, we will first add the first two numbers, and the resulting sum will be added 
to the third number, thus giving us the complete addition. 
Apparently it seems that we will have to use two 4-bit adders, and probably some extra 
hardware as well. Let us analyze the steps involved in adding three 4-bit numbers. 
 
Step 1: Addition of X and Y 
A 4-bit adder is required. This addition will result in a sum and a possible carry, as 
follows: 

X3X2X1X0 
Y3Y2Y1Y0 

      ----------------- 
           C4   S3S2S1S0 
Note that the input carry Cin = 0 in this 4-bit adder 
Step 2: Addition of S and Z 
This resulting partial sum (i.e. S3S2S1S0) will be added to the third 4-bit number Z3Z2Z1Z0 
by using another 4-bit adder as follows, resulting in a final sum and a possible carry: 

S3S2S1S0 
            Z3Z2Z1Z0 

         ----------------- 
     D4   F3F2F1F0 



where F3F2F1F0 represents the final sum of the three inputs X, Y, and Z. Again, in this 
step, the input carry to this second adder will also be zero. 
 
Notice that in Step 1, a carry C4 was generated in bit position 4, while in Step 2, another 
carry D4 was generated also in bit position 4.  These two carries must be added together 
to generate the final Sum bits of positions 4 and 5 (F4 and F5). 
Adding C4 and D4 requires a half adder. Thus, the output from this circuit will be six bits, 
namely F5 F4 F3F2F1F0 (See Figure 1) 

 
Figure 1: Circuit for adding three 4-bit numbers 

 
Design a 4-to-16 Decoder using five 2-to-4 Decoders with enable inputs 
We have seen how can we construct a bigger decoder using smaller decoders, by taking 
the specific example of designing a 3-to-8 decoder using two 2-to-4 decoders. Now we 
will design a 4-to-16 decoder using five 2-to-4 decoders.  
 
There are a total of sixteen possible input combinations, as shown in the table (Figure 2). 
These sixteen combinations can be divided into four groups, each group containing four 
combinations.  Within each group, A3 and A2 remain constant, while A1 and A0 change 
their values. Also, in each group, same combination is repeated for A1 and A0 (i.e. 
00→01→10→11)  



 
Figure 2: Combinations with 4 variables 

 
Thus we can use a 2-to-4 decoder for each of the groups, giving us a total of four 
decoders (since we have sixteen outputs; each decoder would give four outputs). To each 
decoder, A1 and A0 will go as the input. 
 
A fifth decoder will be used to select which of the four other decoders should be 
activated. The inputs to this fifth decoder will be A3 and A2. Each of the four outputs of 
this decoder will go to each enable of the other four decoders in the “proper order”. 
 
This means that line 0 (representing A3A2 = 00) of decoder ‘5’ will go to the enable of 
decoder ‘1’. Line 1 (representing A3A2 = 01) of decoder ‘5’ will go to the enable of 
decoder ‘2’ and so on. 
 
Thus a combination of A3 and A2 will decide which “group” (decoder) to select, while the 
combination of A1 and A0 will decide which output line of that particular decoder is to be 
selected. 
 
Moreover, the enable input of decoder ‘5’ will be connected to logic switch, which will  
provide logic 1 value to activate the decoder. 
 



 
Figure 3: Constructing 4-to-16 decoder using 2-to-4 decoders 

 
Decoder example: “Activate” line D2. The corresponding input combination that 
would activate this line is 0010. Now apply 00 at input of decoder ‘5’. This activates line 
‘0’ connected to enable of decoder ‘1’.  Once decoder ‘1’ is activated, inputs at A1A0 = 
10 activate line D2. 
Thus we get the effect of a 4-16 decoder using this design, by applying input 
combinations in two steps. 
 
As another example, to “activate” the line D10: The corresponding input combination is 
1010. Apply 10 at the input of decoder ‘5’. This activates line ‘2’ connected to enable of 
decoder ‘3’. Once decoder ‘3’ is activated, the inputs at A1A0 = 10 activate line D10. 



Given two 4-bit unsigned numbers A and B, design a circuit which outputs 
the larger of the 2 numbers. 
 
Here we will use Quad 2-1 Mux, and a 4-bit magnitude comparator. Both of these 
devices have been discussed earlier. The circuit is given in the figure 
 
Since we are to select one of the two 4-bit numbers A (A3A2A1A0)  and B (B3B2B1B0), it 
is obvious that we will need a quad 2-1 Mux.  
 
The inputs to this Mux are the two 4-bit numbers A and B. 
 
The select input of the Mux must be a signal which indicates the relative magnitude of 
the two numbers A and B. This signal may be True if A<B or if A>B. 
 
Such signal is easily obtained from a 4-bit magnitude comparator. 

 
Figure 4: Circuit that outputs the larger of two numbers 

 
By connecting the select input to the A<B output of the magnitude comparator, we must 
connect A to the 0 input of the Mux and B to the 1 input of the Mux . Alternatively, if we 
connect the select input to the A>B output of the magnitude comparator, we must connect 
A to the 1 input of the Mux and B the 0 input of the Mux . In either case, the Mux output 
will be the larger of the two numbers 
 
Designing a 16-bit adder using four 4-bit adders  
Adds two 16-bit numbers X (X0 to X15), and Y (Y0 to Y15) producing a 16-bit Sum S (S0 
to S15) and a carry out C16 as the most significant position. Thus, four 4-bit adders are 
connected in cascade. 
 



Each adder takes four bits of each input (X and Y) and generates a 4-bit sum and a carry 
that is fed into the next 4-bit adder as shown in Figure 5. 
 

 
Figure 5: A 16-bit adder 

 
Designing an Excess-3 code converter using a Decoder and an Encoder 
 
In this example, the circuit takes a BCD number as input and generates the corresponding 
Ex-3 code. The truth table for this circuit is given in figure 6. 
The outputs 0000, 0001, 0010, 1101, 1110, and 1111 are never generated (Why?) 
 
To design this circuit, a 4-to-16 decoder and a 16-to-4 encoder are required. The design is 
given in figure 7. In this circuit, the decoder takes 4 bits as inputs, represented by 
variables w, x, y, and z.  Based on these four bits, the corresponding minterm output is 
activated. This decoder output then goes to the input of encoder which is three greater 
than the value generated by the decoder. 
 
The encoder then encodes the value and sends the output bits at A, B, C, and D. For 
example, suppose 0011 is sent as input. This will activate minterm 3 of the decoder. This 



output is connected to input 6 of encoder. Thus the encoder will generate the 
corresponding bit combination, which is 0110. 
 

 
Figure 6: table for BCD to Ex-3 conversion 

 

 
 

Figure 7: Circuit for BCD to Ex-3 conversion 



Sequential Circuits 
Objective 
 

 In this lesson, you will learn about: 
 

1. Sequential Circuits, Synchronous Sequential Circuits and Memory 
Elements. 

 
2. Clocked RS, D, JK, & T latches with their analysis. 

 
3. Characteristic and excitation behavior of these latches. 

 
Introduction 
 

 This is an introductory lesson on sequential logic circuits.  
 

 The general block diagram of a combinational circuit is shown in Figure 1. 
 

 A Combinational logic circuit consists of input variables (X), logic gates 
(Combinational Circuit), and output variables (Z). 

 
  

 
Figure 1: General Block Diagram of a Combinational Circuit 

 
 

 Unlike combinational circuits, sequential circuits include memory elements 
(See Figure 2).  

 
 The memory elements are circuits capable of storing binary information. 

 
 The binary information stored in these memory elements at any given time 

defines the state of the sequential circuit at that time. 
 

 The outputs, Z, of a sequential circuit depends both on the present inputs, X, 
and the present state Y (i.e., information stored in the memory elements).  

 
 The next state of the memory elements also depends on the inputs X and the 

present state Y. 
 



 
Figure 2: General Block Diagram of a Sequential Circuit 

 
Sequential Adder 
 

 To best understand sequential circuits, let’s re-visit a known iterative circuit, a 
4-bit combinational ripple carry adder (See Figure 3). 

 
 The combinational circuit of a 4-bit ripple carry adder comprises 4-full adders. 

The inputs to the circuit are a single-bit carry-in (CIN) & two 4-bit numbers A 
& B. This circuit produces a 4-bit sum S & a single-bit carry-out (COUT). 

 

 
Figure 3: 4-bit Ripple-Carry Adder 

 
 We can notice that all 4-bits of the sum are not computed at the same instance 

of time. The 1st stage produces the LSB of the sum, S0, and an intermediate 
carry C0 using CIN and the LSB of A & B (A0, B0). 

 
 The 2nd stage, using the intermediate carry C0 along with A1 and B1, produces 

the 2nd bit of the sum, S1. In this way, the intermediate carry propagates 
through the stages of the adder & each stage, on the arrival of this carry, 
produces its corresponding bit of final sum S. 

 
 We observe that only one stage is active during the computation of the sum. 

Based on this observation, we can make an n-bit adder using only one stage 



full-adder as shown in Figure 4. 
 

 
Figure 4: 4-bit Sequential Adder 

 
 However, we need a single-bit memory element to temporarily store the value 

of the intermediate carry. 
 

 Two 4-bit memory elements are used to store bit-vectors A and B while a 
single-bit memory element is used to store the intermediate carry. 

 
 As we have only one full adder, it will take four instances of time to add the 

corresponding bits of A and B. 
 

 We notice here that the sequential adder has one memory element, which 
stores the state of the circuit as carry. These states define the condition of 
having a carry or no carry.  

 
 In other words, to define 2-states (0 and 1) in a sequential circuit, we require 1 

memory element. In general, for an n-state circuit we require log2n memory 
elements.  

 
 We also notice that to move from one state to another, we need a periodic 

signal, which we called the Clock, to synchronize the activity. 
 
Synchronous & Asynchronous Sequential Circuits  
 

 There are two main types of sequential circuits. Their classification depends 
on the timing of their signals.  

 
 Synchronous sequential circuits are systems whose behaviors can be defined 

from the knowledge of their signals at discrete instants of time. 
 

 While the behavior of asynchronous sequential circuits depends upon the 
order in which their input signals change at any instant of time.  

 



 Synchronous sequential logic systems must employ signals that affect the 
memory elements only at discrete instants of time.  

 
 To achieve this goal, a timing device called a master-clock generator is used to 

generate a periodic train of Clock pulses. 
 

 These clock pulses are distributed throughout the system in such a way that 
memory elements are affected only with arrival of the Clock pulse. 

 
 
Memory Elements  
 

 A basic memory element, as shown in Figure 5 (a), is the latch.  
 

 A latch is a circuit capable of storing one bit of information. 
 

 The latch circuit consists of two inverters; with the output of one connected to 
the input of the other. 

 
 The latch circuit has two outputs, one for the stored value (Q) and one for its 

complement (Q'). 
 

 Figure 5 (b) shows the same latch circuit re-drawn to illustrate the two 
complementary outputs. 

 
 The problem with the latch formed by NOT gates is that we can't change the 

stored value. For example, if the output of inverter B has logic 1, then it will 
be latched forever; and there is no way to change this value. 

 
 

 
 

Figure 5: Simple Latch 

 
 
 
 
 
 



SR Latch 
 

 Recall that a NOT gate can alternatively be expressed using NAND and NOR 
gates as shown in Figure 6 (a). 

 
 Using NOR gates, we can obtain the latch circuit shown in Figure 6 (b). 

 
 This latch has two outputs, Q and Q', and two inputs S and R. 

 
 This type of latches is sometimes called a cross-coupled SR latch or simply 

SR latch. 
 

 
Figure 6: (a) Alternative forms of NOT gate  (b) Basic SR latch with NOR gates 

 
Table 1: Functional Table of the Basic SR Latch with NOR Gates 

S R Q Q’  
1 0 1 0 

0 0 1 0 
Set State 

0 1 0 1 

0 0 0 1 
Reset State

1 1 0 0 Undefined 
 

 The SR latch has two main states: set and reset (See Table 1). 
 

 When output Q=1 and Q'=0, the latch is said to be in the set state; and when 
Q=0 and Q'=1, it is in the reset state. 

 
 When the input S=0 and R=0, the SR latch remains in its current state (i.e. set 

or reset). In this case, the values of Q and Q' are latched forever. 
 

 When  the  SR  latch  is  in  the  set  state, we  can  change  the  state  to  the  
reset state by making R=1. 

 
 Similarly, the state of the SR latch can be changed from reset to set by making 

S=1. 



 
 If a 1 is applied to both inputs of the SR latch, both outputs go to 0. 

 
 This produces an undefined state, because it violates the requirement that the 

outputs be complement of each other. 
 

 It also results in an indeterminate next state when both inputs return to 0 
simultaneously as shown in the figure. 

 
 In normal operation, these problems are avoided by making sure that 1's are 

not applied to both inputs simultaneously. 
 
SR Latch with NAND Gates 
 

 The SR latch with two cross-coupled NAND gates is shown in Figure 7. 
 

 It operates with both inputs normally at 1, unless the state of the latch has to 
be changed (See Table 2). 

 
 With both inputs at 1, applying 0 to the S input causes the output Q to go to 1 

(i.e. set state). 
 

 In the same way, applying 0 to the R input causes the output Q to go to 0 (i.e. 
reset state). 

 
 The condition that undefined for this NAND latch is when both inputs are 

equal to 0 at the same time, which causes both outputs Q and Q’ to go to 1. 
 

 
Figure 7: Basic SR LATCH with NAND Gates 

 
Table 2: Functional Table of the Basic SR Latch with NAND Gates 

S R Q Q’  
0 1 1 0 

1 1 1 0 
Set State 

1 0 0 1 

1 1 0 1 
Reset State

0 0 0 0 Undefined 



 
Clocked SR Latch 
 

The operation of the basic SR latch can be modified by providing an 
additional control input (clock) that determines when the state of the latch can 
be changed.   

 

 

 

 

 

 

 
An SR latch with a control input C is shown in Figure 8. 

 
It consists of the basic SR latch with two additional AND gates. 

 
The control input C acts as an enable signal to the latch (See Table 3). 

 
When C=0, the S and R inputs have no effect on the latch, so the latch will 
remain in the same state regardless of the values of S and R. 

 
When C=1, the S and R inputs will have the same effect as in the basic SR 
latch. 

 

 
Figure 8: Clocked SR Latch 

 
Table 3: Functional Table of Clocked SR Latch 

C S R Next State of Q 
0 X X No Change 

1 0 0 No Change 

1 0 0     Q = 0; Reset State

1 1 0 Q = 0; Set State 

1 1 1 Undefined 
 
 
 
 
 
 
 



Characteristic Table of the SR Latch 
 

The characteristic (behavior) of the sequential circuit defines its logical 
property by specifying the next states when the inputs and the present states 
are known. The characteristic of the RS latch is shown in Table 4. 

 

 

 

 

 

 

 
The characteristic table can also be represented algebraically using what is 
known as a characteristic equation.  

 
The characteristic equation is derived using the K-Map as shown in Figure 9.  

 
X’s mark the two indeterminate states in the map in Figure 9, since their 
inputs are never allowed (Recall “Don’t Cares”).  

 
Note that the condition S.R = 0 must also be included as both S and R cannot 
simultaneously be 1.  

 
The characteristic equations are used in the analysis of sequential circuits. 

 
Table 4: Characteristic Table of SR Latch 

Q(t) S R Q(t + 1) 
0 0 0 0 
0 0 1 0 
0 1 0 1 
0 1 1 Indeterminate
1 0 0 1 
1 0 1 0 
1 1 0 1 
1 1 1 Indeterminate

 

 
Figure 9: Characteristic Equation of the SR Latch 

 
 
 



Excitation Table of the SR Latch 
 

 During the design process we usually know the transition from present state to 
next state and wish to find the latch input conditions that will cause the 
required transition.  

 
 For this reason, we need a table that lists the required inputs for a given 

change of state. Such a table is called an excitation table, and it specifies the 
excitation behavior of the sequential circuits. These are used in the synthesis 
(design) of sequential circuits, which we shall see later. 

 
 The excitation of the SR latch is given in Table 5. 

 
Table 5: Excitaion table of the SR latch 

Q(t) Q(t+1) S R
0 0 0 X
0 1 1 0 
1 0 0 1 
1 1 X 0 

  
Clocked D-Latch 
 

 One way to eliminate the undesirable undefined state in the SR latch is to 
ensure that the inputs S and R are never equal to 1 at the same time. 

 
 This is done in the D latch shown in Figure 10. 

 
 This latch has only two inputs D (Data) and C (Clock). Note that D is applied 

directly to the set input S, and its complement is applied to the reset input R. 
 

 
Figure 10: Clocked D Latch 

 
 As long as the clock input C = 0, the SR latch has both inputs equal to 0 and it 

can’t change its state regardless of the value of D (See Table 6). 
 

 When C is 1, the latch is placed in the set or reset state based on the value of 
D. 

 



 If D = 1, the Q output goes to 1. 
 

 If D = 0, the Q output goes to 0. 
 

 The characteristic table and the characteristic equation of a D latch are 
illustrated in Table 7 and Figure 11 respectively.  

 
Table 6: Functional Table of the D-Latch 

C D Next State of Q 
0 X No Change 

1 0     Q = 0; Reset State

1 1 Q = 1; Set State 
 

Table 7: Characteristic Table of the D-Latch 

Q(t) D Q(t + 1)
0 0 0 
0 1 1 
1 0 0 
1 1 1 

 

 
Figure 11: Characteristic Equation of the D-Latch 

 
 
 
 
 
 
 
 
 
 
 
 



Clocked JK-Latch 
 

The clocked JK latch is shown in Figure 12. Note the feedback path from the 
outputs Q and Q’ to the AND gates at the input. 

 

 

 

 
JK latch is an improvement over the SR latch in the sense that it does not have 
any indeterminate states.  

 
Inputs J and K behave like S and R of the SR latch. J and K set and clear the 
state of the latch, respectively.  

 

 
Figure 12: Clocked JK-Latch 

 
The functional table of the clocked JK-Latch is illustrated in Table 8.  

 

 

 

 

 

 
If both J and K are made high (recall that both S and R cannot be made high at 
the same time) then the latch switches to its complement state, that is, if Q=1 
then it switches to Q=0, and vice versa.  

 
Output Q is ANDed with K and C inputs so that the latch is cleared during a 
clock pulse only if Q was previously 1.  

 
Similarly, Q’ is ANDed with J and C inputs so that the latch is set with a clock 
pulse only if Q’ was previously 1.  

 
The JK latch behaves exactly like the SR latch, except when both J and K are 
1.  

 
Characteristic table and characteristic equation of the JK-Latch are shown in 
Table 8 and Figure 13 respectively. 

 
 
 
 
 
 
 
 
 



Table 8: Functional Table of the Clocked JK-Latch 

C J K Next State of Q 

0 X X    Q    (No Change) 

1 0 0    Q    (No Change) 

1 0 1    0    (Reset State) 

1 1 0    1    (Set State) 

1 1 1    Q’  (Complement) 

 
 

Table 9: Characteristic Table of the JK-Latch 

Q(t) J K Q(t + 1) 

0 0 0 0 

0 0 1 0 

0 1 0 1 

0 1 1 1 

1 0 0 1 

1 0 1 0 

1 1 0 1 

1 1 1 0 

 
 

 
Figure 13: Characteristic Equation of the JK-Latch 

 
 
 
 
 
 
 
 



 
Excitation table of the JK-Latch  are illustrated in Table 9.  

 
 

 

 

 

 
When both states, present and the next one are to be 0, then the J input must 
remain at 0 and the K input can be either 0 or 1 (i.e., X).  

 
Similarly, when both present state and the next state are 1, the K input must 
remain at 0 while J input can be 0 or 1 (i.e., X). 

 
If the latch is to have a transition from the 0-state to 1-state, J must be equal to 
1 since the J input sets the latch. However, input K may be either 0 or 1.  

 
Similarly, for a 1-to-0 transition, K must be set to 1 and J can be either 0 or a 
1. 

 
Table 10: Excitaion Table of the JK-Latch 

Q(t) Q(t+1) J  K 

0 0 0 X 

0 1 1 X 

1 0 X 1 

1 1 X 0 

 
 
 
Clocked T-Latch 
 

The T latch is a single-input version of the JK latch. It is obtained by tying 
both the inputs J and K together as shown in Figure 14. The name comes from 
the ability of the latch to “toggle” or change the state.  

 

 

 
Figure 14: Clocked T-Latch 

 
 
 



 
 

Observe that when T=1, regardless of the present state, the latch toggles or 
changes to the complement state when the clock pulse occurs (See Table 11).  

 

 
Table 11: Functional Table of the Clocked T-Latch 

C T Next State of Q
0 X No Change 

1 0 No Change 

1 1 Q’ 
 

The toggling effect can be seen more clearly in the characteristic behavior of 
the T-Latch (See Table 12 and Figure 15). Notice that when T = 0, the state of 
the latch remains unchanged. 

 

 
Table 12:  Characteristic Table of the T-Latch 

Q(t) T Q(t + 1)
0 0 0 
0 1 1 
1 0 1 
1 1 0 

 

 
Figure 15: Characteristic Equation of the T-Latch 

 
 
 
 
 
 
 
 
 
 
 



 

 

The excitation table of the T-Latch is illustrated in Table 12. 
 

Note that when the state of the latch must remain the same, the requirement is 
that T = 0. When the state of the latch has to be complemented, T must equal 
1, as summarized in the excitation table. 

 
 

Table 13: Excitation Table of the T-Latch 

Q(t) Q(t + 1) T
0 0 0 
0 1 1 
1 0 1 
1 1 0 

 
 
Problem with the Level Triggered JK and T latches 
 

 

 

 

In JK latch, with J = 1 and K = 1 the state of the latch toggles. However, if the 
clock signal remains at 1 (while J = K = 1), the output will go in repeated 
transitions; this is an undesirable oscillating effect. And when clock goes to 0, 
output will be latched to an unknown state.  

 
To avoid this undesirable operation the clock pulse must have pulse duration, 
which is shorter than the propagation delay of the signal through the latch. 
This however is not at all acceptable since the operation of the circuit will then 
depend on the width of the clock pulse and/or the delay through the latch. 

 
For this reason, JK latches are never constructed as discussed above. The 
restriction on the pulse width can be eliminated with a master-slave or edge-
triggered construction described in the next lesson. The same reasoning 
applies to the T latch.  

 



Flip-Flops 
 
Objectives 
 
 The objectives of this lesson are to study: 

 
1. Latches versus Flip-Flops 
 
2. Master-Slave Flip-Flops 
 
3. Timing Analysis of Master-Slave Flip-Flops 

 
4. Different Types of Master-Slave Flip-Flops 

 
5. Propagation Delay 

Problem with Latches 

 A latch is a level sensitive device. 
 
 Because of this the state of the latch may keep changing in circuits with feedback as long 

as the clock pulse remains active.  
 
 Thus, instead of having output change once in a clock cycle, the output may change a 

number of times resulting in latching of unwanted input to the output. 
 
 Due to this uncertainty, latches can not be reliably used as storage elements. 

 
Solution to this Problem 
 
 To overcome this problem of undesired toggling, we need to have a mechanism in which 

we have higher degree of control on the output of the memory element when the clock 
pulse changes. 

 
 This is achieved by introducing a special clock-edge detection logic, such that the state of 

the memory element is switched by a momentary change in the clock pulse (i.e. an edge). 
 
 This is effective because the clock changes only once during a clock period. 

 
 Such a memory element is "edge-sensitive", i.e., it changes its state at the rising or falling 

edge of a clock.  
 
 Edge-sensitive memory elements are called Flip-Flops. 

 
 Figure 1 shows the standard graphic symbols for positive and negative edge triggered 

Flip-Flops. 
 



 
 

Figure 1: Graphic Symbols of Edge-Triggered Flip-Flops 
 
Master-Slave Flip-Flops 
 
 The simplest way to build a flip-flop is by using two latches in a ‘Master-Slave’ 

configuration as shown in Figure 2. 
 
 In this configuration, one latch serves as the master receiving the external inputs and the 

other as a slave, which takes its inputs from the master.  
 
 When the clock pulse goes high, information at S and R inputs is transmitted to master.  

 
 The slave flip-flop however remains isolated since its control input C is 0. 

 
 Now when the clock pulse returns to ‘0’, the master gets disabled and blocks the external 

inputs to get to its outputs whereas slave gets enabled and passes the latched information 
to its outputs.  

 

 
 

Figure 2: Block diagram of  SR Master-Slave Flip-Flop 

 
Timing Analysis of Master-Slave Flip-Flop 
 
 Now let's view the operation of the master-slave flip-flop by analyzing its timing wave 

forms (See Figure 3). 
 
 Consider a master-slave flip-flop in the clear state (i.e. Y=0 and Q=0) prior to the 

occurrence of a pulse. 
 
 The inputs S=1 and R=0 are applied. So when the clock goes high, the output of the 

master latch will change to the set state, while the slave latch remains disabled. 
 



 When the clock returns to 0, the master latch is disabled and the slave latch is enabled. 
 
 Thus, the data at the slave's input when the clock was high gets latched at the slave's 

output. 
 

 
 

Figure 3: Timing wave form of SR Master-Slave Flip-Flop 
 
 
Different Types of Master-Slave Flip-Flops 
 
Master-Slave JK-FF 
 
 The SR flip-flop can be modified to a JK flip-flop to eliminate the undesirable condition 

that leads to undefined outputs and indeterminate behavior.  
 
 A Master-Slave JK Flip-Flop is shown in the Figure 4.  

 
 Here, the output gets complemented when both J and K inputs are high. 

 

 
 

Figure 4: JK Master-Slave Flip-Flop 
 
D-Type Positive-Edge-Triggered FF 
 
 The logic diagram of a positive edge triggered D-type flip-flop is shown in the Figure 5. 

 
 This flip-flop takes exactly the form of a master-slave flip-flop, with the master a D latch 

and the slave an SR latch. Also, an inverter is added to the clock input of the master latch. 
 



 Because the master latch is a D latch, the flip-flop exhibits edge-triggered rather than 
master-slave (pulse-triggered) behavior. 

 

 
 

Figure 5: D-Type Positive-Edge-Triggered FF 
 

 
Propagation Delay 
 
 In digital logic, every gate has got some finite amount of delay because of which the 

change in the output is not instantaneous to the change in the input. 
 
 In simple terms, the times it takes for an input to appear at the output is called the 

propagation delay.   
 
 In  Figure 6, tPHL, describes the time it takes for an input to cause the output to change 

from logic-level-high to logic-level-low.  
 
 Similarly, tPLH, refers to the delay associated when an input change causes the output to 

change from logic-level-low to logic-level-high.  
 
 The overall delay is average of these two delays. 

 

 
Figure 6: Propagation Delay 



Setup and Hold Times 
 
 For correct operation of logic gates we need to satisfy some timing constrains regarding 

application of inputs and collecting of their outputs.  
 
 Setup time (Ts) refers to a constant duration for which the inputs must be held prior to the 

arrival of the clock transition (See Figure 7).  
 
 Once the inputs are properly set, it must be kept for some time for their proper reading-in 

by the gate once the transition signal is triggered. 
 
 Hold time (Th) refers to the duration for which the inputs must not change after the 

arrival of the transition (See Figure 7). 
 
 If the setup and hold times are violated, a gate may produce an unknown logic signal at its 

output. This condition is called as meta-stability. 
 

 
 

Figure 7: Setup and Hold Times 

 
Propagation Delay  
 
 To set or clear flip-flops asynchronously (i.e., without the use of clock and inputs) some 

flip-flops have direct inputs usually called direct preset or direct clear.  
 
 These inputs are needed to bring the flip-flops to a known initial state prior to the normal 

clocked operation. 
 
 A direct preset input, sets the output of a flip-flop to some known value, asynchronously, 

for example logic-1 or logic-0.  
 
 A direct clear switch clears or resets all the flip-flops to logic value-0. 

 
 Figure 8 shows the graphical symbol of a negative-edge-triggered JK-flip-flop with a 

direct clear. 
 



 
 

Figure 8: Negative-edge-triggered JK Flip-Flop with Asynchronous Clear 
 



Design of Synchronous Sequential Circuits 
 
Objectives 

 
1. Design of synchronous sequential circuits with an example. 
 
2. Construction of state diagrams and state tables/ 

 
3. Translation of State transition table into excitation table. 

 
4. Logic diagram construction of a synchronous sequential circuit 

 
Sequential Circuit Design Steps 

 
 The design of sequential circuit starts with verbal specifications of the problem (See 

Figure 1). 
 

 
Figure 1: Sequential Circuit Design Steps 

 The next step is to derive the state table of the sequential circuit. A state table 
represents the verbal specifications in a tabular form. 

 
 In certain cases state table can be derived directly from verbal description of the 

problem. 
 

 In other cases, it is easier to first obtain a state diagram from the verbal description 
and then obtain the state table from the state diagram.  

 
 A state diagram is a graphical representation of the sequential circuit. 

 
 In the next step, we proceed by simplifying the state table by minimizing the number 

of states and obtain a reduced state table. 
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 The states in the reduced state table are then assigned binary-codes. The resulting 
table is called output and state transition table. 

 
 From the state transition table and using flip-flop’s excitation tables, flip-flops input 

equations are derived. Furthermore, the output equations can readily be derived as 
well. 

 
 Finally, the logic diagram of the sequential circuit is constructed. 

 
 An example will be used to illustrate all these concepts. 

 
 
Sequence Recognizer  
 

 A sequence recognizer is to be designed to detect an input sequence of ‘1011’.  The 
sequence recognizer outputs a ‘1’ on the detection of this input sequence. The 
sequential circuit is to be designed using JK and D type flip-flops. 

 
 A sample input/output trace for the sequence detector is shown in Table 1. 

 
Table 1: Sample Input/Output Trace 

Input 0 1 1 0 1 0 1 1 0 1 1 1 0 1 0 1 1 1 0 0 
Output 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 

 
 

 We will begin solving the problem by first forming a state diagram from the verbal 
description. 

 
 A state diagram consists of circles (which represent the states) and directed arcs that 

connect the circles and represent the transitions between states.  
 

 In a state diagram: 
 

1. The number of circles is equal to the number of states. Every state is given a 
label (or a binary encoding) written inside the corresponding circle. 

 
2. The number of arcs leaving any circle is 2n

,
 where n is the number of inputs of 

the sequential circuit. 
 

3. The label of each arc has the notation x/y, where x is the input vector that 
causes the state transition, and y is the value of the output during that present 
state.  

 
4. An arc may leave a state and end up in the same or any other state. 
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 Before we begin our design, the following should be noted.  

 
1. We do not have an idea about how many states the machine will have.  
 
2. The states are used to “remember” something about the history of past inputs. 

For the sequence 1011, in order to be able to produce the output value 1 when 
the final 1 in the sequence is received, the circuit must be in a state that 
“remembers” that the previous three inputs were 101. 

 
3. There can be more than one possible state machine with the same behavior.  

 
Deriving the State Diagram 
 

Let us begin with an initial state (since a state machine must have at least one state) 
and denote it with ‘S0’ as shown in Figure 2 (a).  

 

 

 

 

 

 

 

 
Two arcs leave state ‘S0’ depending on the input (being a 0 or a 1). If the input is a 0, 
then we return back to the same state. If the input is a 1, then we have to remember it 
(recall that we are trying to detect a sequence of 1011). We remember that the last 
input was a one by changing the state of the machine to a new state, say ‘S1’. This is 
illustrated in Figure 2 (b).  

 
‘S1’ represents a state when the last single bit of the sequence was one. Outputs for 
both transitions are zero, since we have not detected what we are looking for. 

 
Again in state ‘S1’, we have two outgoing arcs. If the input is a 1, then we return to 
the same state and if the input is a 0, then we have to remember it (second number in 
the sequence). We can do so by transiting to a new state, say ‘S2’. This is illustrated 
in Figure 2 (c).  

 
Note that if the input applied is ‘1’, the next state is still ‘S1’ and not the initial state 
‘S0’. This is because we take this input 1 as the first digit of new sequence. The 
output still remains 0 as we have not detected the sequence yet. 

 
State ‘S2’ represents detection of ‘10’ as the last two bits of the sequence. If now the 
input is a ‘1’, we have detected the third bit in our sequence and need to remember it. 
We remember it by transiting to a new state, say ‘S3’ as shown in Figure 2 (d). If the 
input is ‘0’ in state ‘S2’ then it breaks the sequence and we need to start all over 
again. This is achieved by transiting to initial state ‘S0’. The outputs are still 0. 

 
In state ‘S3’, we have detected input sequence ‘101’. Another input 1 completes our 
detection sequence as shown in Figure 2 (e). This is signaled by an output 1. However 
we transit to state ‘S1’ instead of ‘S0’ since this input 1 can be counted as first 1 of a 
new sequence. Application of input 0 to state ‘S3’ means an input sequence of 1010. 
This implies the last two bits in the sequence were 10 and we transit to a state that 
remembers this input sequence, i.e. state ‘S2’. Output remains as zero. 
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Figure 2: Deriving the State Diagram of the Sequence Recognizer 

 
Deriving the State Table 
 

A state table represents time sequence of inputs, outputs, and states in a tabular form. 
The state table for the previous state diagram is shown in Table 2.  

 

 

 

 

 
The state table can also be represented in an alternate form as shown in Table 3.  

 
Here the present state and inputs are tabulated as inputs to the combinational circuit. 
For every combination of present state and input, next state column is filled from the 
state table. 

 
The number of flip-flops required is equal to log2(number of states).   
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Thus, the state machine given in the figure will require two flip-flops log2(4)=2. We 
assign letters A and B to them. 

 

 
Table 2: State Table of the Sequence Recognizer 

Next State Output Present
State X=0 X=1 X=0 X=1 

S0 S0 S1 0 0 
S1 S2 S1 0 0 
S2 S0 S3 0 0 
S3 S2 S1 0 1 

 
Table 3: Alternative Format of Table 2 

Inputs of  
Combinational Circuit 
Present State Input 

Next State Output 

S0 0 S0 0 
S0 1 S1 0 
S1 0 S2 0 
S1 1 S1 0 
S2 0 S0 0 
S2 1 S3 0 
S3 0 S2 0 
S3 1 S1 1 

 
State Assignment 
 

The states in the constructed state diagram have been assigned symbolic names rather 
than binary codes. 

 

 

 

 

 
It is necessary to replace these symbolic names with binary codes in order to proceed 
with the design. 

 
In general, if there are m states, then the codes must contain n bits, where 2n ≥ m, and 
each state must be assigned a unique code. 

 
There can be many possible assignments for our state machine. One possible 
assignment is show in Table 4. 

 
Table 4: State Assignment 

State Assignment 
S0 00 
S1 01 
S2 10 
S3 11 

 
 

The assignment of state codes to states results in state transition table as shown.   
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It is important to mention here that the binary code of the present state at a given time 
t represents the values stored in the flip-flops; and the next-state represents the values 
of the flip-flops one clock period later, at time t+1.  

 

 
Table 5: State Transition Table 

Inputs of  
Combinational Circuit 
Present State Input 

Next State Output 

A  B X A  B Y 
0   0 0 0   0 0 
0   0 1 0   1 0 
0   1 0 1   0 0 
0   1 1 0   1 0 
1   0 0 0   0 0 
1   0 1 1   1 0 
1   1 0 1   0 0 
1   1 1 0   1 1 

 
General Structure of Sequence Recognizer 
 

The specifications required using JK and D type flip-flops.   

 
 

Referring to the general structure of sequential circuit shown in Figure 3, our 
synthesized circuit will look like that as shown in the figure. Observe the feedback 
paths.  

 

 
Figure 3: General Structure of the Sequenc Recognizer 

What remains to be determined is the combinational circuit which specifies the 
external outputs and the flip-flop inputs.  

 

 
 

The state transition table as shown can now be expanded to construct the excitation 
table for the circuit.  
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Since we are designing the sequential circuit using JK and D type flip-flops, we need 
to correlate the required transitions in state transition table with the excitation tables 
of JK and D type-flip-flops. 

 

 

 

 
The functionality of the required combinational logic is encapsulated in the excitation 
table. Thus, the excitation table is next simplified using map or other simplification 
methods to yield Boolean expressions for inputs of the used flip-flops as well as the 
circuit outputs. 

 
Deriving the Excitation Table 
 

The excitation table (See Table 6) describes the behavior of the combinational portion 
of sequential circuit. 

 
Table 6: Excitation Table of the Sequence Recognizer 

Present  
State Input   Flip-flops 

 Inputs 
A  B X A  B Y JA     KA     DB 
0   0 0 0   0 0 0      X      0 
0   0 1 0   1 0 0      X      1 
0   1 0 1   0 0 1      X      0 
0   1 1 0   1 0 0      X      1 
1   0 0 0   0 0 X      1      0 
1   0 1 1   1 0 X      0      1 
1   1 0 1   0 0 X      0      0 
1   1 1 0   1 1 X      1      1 

 
 

For deriving the actual circuitry for the combinational circuit, we need to simplify the 
excitation table in a similar way we used to simplify truth tables for purely 
combinational circuits. 

 

 

 

 

 
Whereas in combinational circuits, our concern were only circuit outputs; in 
sequential circuits, the combinational circuitry is also feeding the flip-flops inputs. 
Thus, we need to simplify the excitation table for both outputs as well as flip-flops 
inputs. 

 
We can simplify flip-flop inputs and output using K-maps as shown in Figure 4. 

 
Finally the logic diagram of the sequential circuit can be made as shown in Figure 5. 
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Figure 4: Input Equations of the Sequence Recognizer 

 
 
 

 
Figure 5: Circuit Diagram of the Sequence Recognizer 
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Analysis of Clocked Sequential Circuits 
Objectives 
  
The objectives of this lesson are as follows: 
  

 Analysis of clocked sequential circuits with an example 
  

 State Reduction with an example 
  

 State assignment 
  

 Design with unused states 
  

 Unused state hazards 
  
 

 
Figure 1: Sequential Circuit Design Steps 

 
The behavior of a sequential circuit is determined from the inputs, outputs and states of its 
flip-flops. 
  
Both the outputs and the next state are a function of the inputs and the present state. 
  
Recall from previous lesson that sequential circuit design involves the flow as shown. 
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Analysis consists of obtaining a state-table or a state-diagram from a given sequential circuit 
implementation. In other words analysis closes the loop by forming state-table from a given 
circuit-implementation. 
  
We will show the analysis procedure by deriving the state table of the example circuit we 
considered in synthesis. The circuit is shown in Figure. 
 

 
Figure 2: A Clocked sequential circuit 

  
The circuit has  

 Clock input, CP. 
 One input x 
 One output y 
 One clocked JK flip-flop  
 One clocked D flip-flop (the machine can be in maximum of 4 states)  

  
A State table is representation of sequence of inputs, outputs, and flip-flop states in a tabular 
form. Two forms of state tables are shown (In this lesson, the second form will be used). 
 

 
Figure 3: State Table: Form 1 

 
Analysis is the generation of state table from the given sequential circuit. 
  
The number of rows in the state table is equal to 2 (number of flip-flops+ number of inputs). For the circuit 
under consideration, number of rows = 2(2+1) = 2(3) = 8 
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Figure 4: State Table - Form 2 

In the present case there are two flip-flops and one input, thus a total of 8 rows as shown in 
the table. 
  

 
Figure 5: State Table 

 
The analysis can start from any arbitrary state. Let us start deriving the state table from the 
initial state 00. 
  
As a first step, the input equations to the flip-flops and to the combinational circuit must be 
obtained from the given logic diagram. These equations are: 

JA = BX’ 
KA = BX + B’X’ 
DB = X 
y = ABX 

  
The first row of the state-table is obtained as follows:  
 
When input X = 0; and present states A = 0 and B = 0 (as in the first row);  
 
then, using the above equations we get:  
 
y = 0, JA= 0, KA = 1, and DB = 0.  
  
 
The resulting state table is exactly same from which we started our design example. Thus 
analysis is opposite to design and combined they act as a closed loop. 
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State Reduction 
The problem of state reduction is to find ways of reducing the number of states in a 
sequential circuit without altering the input-output relationships. 
  
In other words, to reduce the number of states, redundant states should be eliminated. A 
redundant state Si is a state which is equivalent to another state Sj. 
  
Two states are said to be equivalent if, for each member of the set of inputs, they give exactly 
the same output and send the circuit either to the same state or to an equivalent state.   
  
Since ‘m’ flip-flops can describe a state machine of up to 2m states, reducing the number of 
states may (or may not) result in a reduction in the number of flip-flops.  For example, if the 
number of states are reduced from 8 to 5, we still need 3 flip-flops. 
  
However, state reduction will result in more don’t care states. The increased number of don’t 
care states can help obtain a simplified circuit for the state machine. 
  
Consider the shown state diagram. 
 

 
Figure 6: State Diagram 

 
 
The state reduction proceeds by first tabulating the information of the state diagram into its 
equivalent state-table form (as shown in the table) 
  
The problem of state reduction requires identifying equivalent states. Each N states is 
replaced by 1 state.  
Consider the following state table.  
  
States ‘g’ and ‘e’ produce the same outputs, i.e. '1' and ‘0’, and take the state machine to 
same next-states, ‘a’ and ‘f’, on inputs ‘0’ and ‘1’ respectively. Thus, states 'g' and 'e' are 
equivalent states.   
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We can now remove state ‘g’ and replace it with ‘e’ as shown.   
  
We next note that the above change has caused the states ‘d’ and ‘f’ to be equivalent. Thus in 
the next step, we remove state ‘f’ and replace it with ‘d’.   
  
There are no more equivalent states remaining. The reduced state table results in the 
following reduced state diagram. 
  

 
Figure 7: State Table after reduction 

 
States Assignment 
 
When constructing a state diagram, variable names are used for states as the final number of 
states is not known a priori. 
  
Once the state diagram is constructed, prior to implementation (using gates and flip-flops), 
we need to perform the step of 'state reduction'.  
  
The step that follows state reduction is state assignment. In state assignment, binary patterns 
are assigned to state variables.  
 

 
Figure 8: Possible state assignments 

  
For a given machine, there are several state assignments possible. Different state assignments 
may result in different combinational circuits of varying complexities.  
  
State assignment procedures try to assign binary values to states such that the cost 
(complexity) of the combinational circuit is reduced. There are several heuristics that attempt 
to choose good state assignments (also known as state encoding) that try to reduce the 
required combinational logic complexity, and hence cost. 
  
As mentioned earlier, for the reduced state machine obtained in the previous example, there 
can be a number of possible assignments. As an example, three different state assignments 
are shown in the table for the same machine.   
  
We use ad-hoc state assignments in this lesson.  
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Design with unused states 
 
There are occasions when a sequential circuit, implemented using m flip-flops, may not 
utilize all the possible 2m states 
 

 
Figure 9: Reduced table with binary assignments 

 
In the previous example of machine with 5 states, we need three flip-flops. Let us choose 
assignment 1, which is binary assignment for our sequential machine example (shown in the 
table). 
  
The unspecified states can be used as don’t-cares and will therefore help in simplifying the 
logic. 
  
The excitation table of previous example is shown. There are three states, 000, 110, and 111 
that are not listed in the table under present state and input.  
 

 
Figure 10: Excitation Table 

 
With the inclusion of input 1 or 0, we obtain six don’t-care minterms: 0, 1, 12, 13, 14, and 15. 
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Figure 11: K-Maps 

 
The K-maps of SA and RA is shown in the figure. Other K-Maps can be obtained similarly 
and the equations derived are shown in the figure. 
  
The logic diagram thus obtained is shown in the figure. 
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Figure 12: Logic Diagram 

 

 
Figure 13: Equations 

 
Note that the design of the sequential circuit is dependent on binary codes for states. A 
different binary state codes set may have resulted in some different combinational circuit. 
 
Unused States Hazard 
  
Sequential circuits with unused states can cause the circuit to produce erroneous behavior.  
  
This may happen when the circuit enters one of the unused states due to some reason, e.g. due 
to power-on, and continues cycling between the invalid states. 
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Thus, a circuit that is designed must be carefully analyzed to ensure that it converges to some 
valid state. 
  
Consider the circuit of the previous example that employed three unused states 000, 110 and 
111.  We will now investigate its behavior if it enters in any of these states.   
  
The state diagram (from previous example) is shown in the figure. We will use the state 
diagram to derive next state from each of the unused states and derive the state table.   
 

 
Figure 14: State Diagram 

  
For instance, the circuit enters unused state 000.   
  
On application of input 0, ABCx = 0000, from the equations (figure), we see that this 
minterm is not included in any function except for SC, i.e., the set input of flip-flop C and 
output y.   
  
Thus the circuit enters the state ABC = 001 from the unused state 000 when input 0 is 
applied.   
  
On the other hand, if the input applied is 1 then ABCx combination = 0001.  The maps 
indicate that this minterm is included in the functions for SB, RC and y.   
  
Therefore B will be set and C gets cleared.  
  
So the circuit enters next state ABC = 010 when input 1 is applied to unused state 000. 
  
Note that both states 001 and 010 are valid states. 
  
Similar analysis is carried out for all other unused states and the derived state diagram is 
formed (shown in the figure).  
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We note that the circuit converges into one of the valid states if it ever finds itself in one of 
the invalid states 000, 110, and 111.   
  
Such a circuit is said to be self-correcting, free from hazards due to unused states. 
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Mealy and Moore Type Finite State Machines 
 
Objectives 
 

 There are two basic ways to design clocked sequential circuits. These are 
using: 

1. Mealy Machine, which we have seen so far. 
2. Moore Machine. 
 

 The objectives of this lesson are: 
1. Study Mealy and Moore machines 
2. Comparison of the two machine types 
3. Timing diagram and state machines 

 
Mealy Machine 
 

 In a Mealy machine, the outputs are a function of the present state and the 
value of the inputs as shown in Figure 1. 

 
 Accordingly, the outputs may change asynchronously in response to any 

change in the inputs.  
 

 
Figure 1: Mealy Type Machine 

Mealy Machine  
 

 In a Moore machine the outputs depend only on the present state as shown in 
Figure 2. 

 
 A combinational logic block maps the inputs and the current state into the 

necessary flip-flop inputs to store the appropriate next state just like Mealy 
machine. 

 
 However, the outputs are computed by a combinational logic block whose 

inputs are only the flip-flops state outputs. 
 

 1



 The outputs change synchronously with the state transition triggered by the 
active clock edge. 

 

 
Figure 2: Moore Type Machine 

 
Comparison of the Two Machine Types  
 

Consider a finite state machine that checks for a pattern of ‘10’ and asserts 
logic high when it is detected.  

 

 

 

 

 

 

 

 

 
The state diagram representations for the Mealy and Moore machines are 
shown in Figure 3. 

 
The state diagram of the Mealy machine lists the inputs with their associated 
outputs on state transitions arcs.  

 
The value stated on the arrows for Mealy machine is of the form Zi/Xi where 
Zi represents input value and Xi represents output value. 
A Moore machine produces a unique output for every state irrespective of 
inputs.  

 
Accordingly the state diagram of the Moore machine associates the output 
with the state in the form state-notation/output-value.  

 
The state transition arrows of Moore machine are labeled with the input value 
that triggers such transition. 

 
Since a Mealy machine associates outputs with transitions, an output sequence 
can be generated in fewer states using Mealy machine as compared to Moore 
machine. This was illustrated in the previous example. 
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Figure 3: Mealy and Moore State Diagrams for '10' Sequence Detector 

 
 
 
Timing Diagrams  
 

To analyze Mealy and Moore machine timings, consider the following 
problem. A state-machine outputs ‘1’ if the input is ‘1’ for three consecutive 
clocks. 

 

 

 
Figure 4: Mealy State Machine for '111' Sequence Detector 

 
 
 
 
 

 3



Mealy State Machine 
 

The Mealy machine state diagram is shown in Figure 4.  

 

 

 

 
Note that there is no reset condition in the state machine that employs two flip-
flops. This means that the state machine can enter its unused state ‘11’ on start 
up.  

 
To make sure that machine gets resetted to a valid state, we use a ‘Reset’ 
signal. 

 
The logic diagram for this state machine is shown in Figure 5. Note that 
negative edge triggered flip-flops are used. 

 

 
Figure 5: Mealy State Machine Circuit Implementation 

 
 

Timing Diagram for the circuit is shown in Figure 6.  

 

 

 
Since the output in Mealy model is a combination of present state and input 
values, an unsynchronized input with triggering clock may result in invalid 
output, as in the present case. 

 
Consider the present case where input ‘x’ remains high for sometime after 
state ‘AB = 10’ is reached. This results in ‘False Output’, also known as 
‘Output Glitch’. 
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Figure 6: Timing Diagram for Mealy Model Sequence Detector 

 
Moore State Machine  

 
The Moore machine state diagram for ‘111’ sequence detector is shown in 
Figure 7. 

 

 

 

 
The state diagram is converted into its equivalent state table (See Table 1). 

 
The states are next encoded with binary values and we achieve a state 
transition table (See Table 2).  

 

 
Figure 7: Moore Machine State Diagram 
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Table 1: State Table 

Present Next State Output
Present Next State Output

State x = 0 x = 1 Z 
Initial Initial Got-1 0 
Got-1 Initial Got-11 0 
Got-11 Initial Got-111 0 

Got-111 Initial Got-111 1 
 

Table 2: State Transition Table and Output Table 

Present Next State Output
State x = 0 x = 1 Z 
Initial Initial Got-1 0 

Got-1 Initial Got-11 0 

Got-11 Initial Got-111 0 

Got-111 Initial Got-111 1 

 
We will use JK and D flip-flops for the Moore circuit implementation. The 
excitation tables for JK and D flip-flops (Table 3 & 4) are referenced to 
tabulate excitation table (See Table 5). 

 

 
Table 3: Excitation Table for JK flip-flop 

Q(t)    Q(t+1) J    K

0          0 0    X

0          1 1    X

1          0 X    1

1          1 X    0

 
Table 4: Excitation Table for D flip-flop 

Q(t)    Q(t+1) D

0          0 0 

0          1 1 

1          0 0 

1          1 1 
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Table 5: Excitation Table for the Moore Implementation 

Inputs of  
Comb.Circuits 

Outputs of  
Comb.Circuit 

Present  
State Input 

Next 
State Flip-flop  

Inputs 

Output 

A B X A B JA KA DB Z 
0 0 0 0 0 0 X 0 0 
0 0 1 0 1 0 X 1 0 
0 1 0 0 0 0 X 0 0 
0 1 1 1 0 1 X 0 0 
1 0 0 0 0 X 1 0 0 
1 0 1 1 1 X 0 1 0 
1 1 0 0 0 X 1 0 1 
1 1 1 1 1 X 0 1 1 

 
 

Simplifying Table 5 using maps, we get the following equations:  

 

 

 

 

o JA = X.B 
o KA = X’ 
o DB =X(A + B) 
o Z = A . B 

 
Note that the output is a function of present state values only. 

 
The circuit diagram for Moore machine circuit implementation is shown in 
Figure 8. 

 
The timing diagram for Moore machine model is also shown in Figure 9. 

 
There is no false output in a Moore model, since the output depends only on 
the state of the flop flops, which are synchronized with clock. The outputs 
remain valid throughout the logic state in Moore model. 

 

 
Figure 8: Moore Machine Circuit Implementation for Sequence Detector. 
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Figure 9: Timing Diagram for Moore Model Sequence Detector. 
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Registers 
In this lesson, you will learn about 

• Registers 
• Registers with Parallel load 
• Shift registers  
• Shift registers with Parallel Load 
• Bi-directional Shift Registers 

 
 Register 
A register is a circuit capable of storing data. In general, an n-bit register consists of n 
FFs, together with some other logic that allows simple processing of the stored data. 
 
All FFs are triggered synchronously by the same clock signal. In other words, new data 
are latched into all FFs at the same time. 
 
Figure 1 shows a 4-bit register constructed with four D-type FFs. In this figure we have: 
� Inputs D0 to D3  
� Clock 
� Clear/ 
� Outputs Q0 to Q3 

The Clock input is common to all the four D FFs. It triggers all FFs on the rising edge of 
each clock pulse, and the binary data available at the four D inputs are latched into the 
register. 

 
 
Figure 1: 4-bit register with D flip-flops 



• The Clear/ input is an active-low asynchronous input which clears the register 
content to all 0’s when asserted low, independent of the clock pulse. 

• During normal operation, Clear/ must be maintained at logic 1. 
• The transfer of new information into a register is referred to as Loading  
• The term Parallel Loading is used if all the input bits are transferred into the 

register simultaneously, with the common clock pulse. 
 
In most digital systems, a master clock generator supplies clock pulses to all parts of the 
system, just as the heart that supplies a constant beat to all parts in the human system. 
Because of this fact, the input values in the register are loaded when a clock pulse arrives.  
This implies that, whenever a clock pulse arrives, it would load the register with new 
values, thus overwriting the previously stored register data. 
 
Because of this, a problem arises: 
Problem: What if the contents of the register are to be left unchanged? 
A Solution: The Clock may be prevented from reaching the clock input of the FFs of the 
register. 
⇒ A separate control signal is used  
Another Solution: Inputs D0 to D3 may be prevented from changing their values. 
⇒ A control signal is needed for this 

 
 

Figure 2: Clock gating 
 



 
This control can be provided by implementing the following function: 

Cinputs = Load / + Clock 
 
When Load = 0 ⇒ Cinputs = 1, causing no positive transitions to occur on Cinputs. Thus 
contents of the register remain unchanged.  
 
When Load = 1 ⇒ Cinputs = Clock, thus the register is clocked normally. 
 
The above phenomenon is known as Clock gating (Figure 2). 
Problem: Different stages of the register will be gated at different time. This may cause 
loading of wrong information ( known as clock skew). 
Solution: Clock gating should be avoided. 
 
Use register with Parallel Load. (Figure 3) 
� No clock gating is used. 

 
 

Figure 3: One stage of Register with Parallel Load 
 
When Load = 1, the data on the input Di is transferred into the D flip-flop with the next 
positive transition of clock pulse. 
When Load = 0, the data input is blocked, and output Qi gets a path to the D input of the 
flip-flop. 
 
Why do we need feedback connection from output to input of D-FF? 
� Because D-FF does not have a “no change” input condition. Having the feedback 

will cause the next state of the FF (D input) to be equal to present state of the FF, 
i.e. no change in state. 

 
Note that there is no Clock gating. Load determines whether to accept new information in 
the next clock pulse or not. 
 
A 4-bit register with parallel load is shown. 
 
Q: Can clocked latches be used instead of FFs to implement parallel-load registers? 



 
 

Figure 4: Shift Registers 
A shift register  (Figure 4) is capable of transferring data from each FF to the next in one 
or the other direction. Each clock pulse causes data shift from one FF to its immediate 
neighbor. 
 
The configuration consists of a chain of FFs in cascade, with the output of one FF 
connected to the input of the next one. 
 
All FFs receive a common pulse, which activates the shift operation from each stage to 
the next. 
 
The serial input SI is the input to the first (leftmost) FF of the chain. 
 
The serial output SO is the output of the last (rightmost) FF of the chain. 
 
The register discussed above is a “shift right” (MS to LS shifting) register. There is also a 
“shift left” (LS to MS shifting) register. (Figure 4) 
 
Q: Can clocked latches be used instead of FFs to implement shift registers? 
 



 
Figure 5: One stage of a shift register with parallel load 

 
A shift register with parallel load capability can be used to input the data bits in parallel 
into the shift register and then take the data out in a serial fashion by applying the shift 
operation. 
 
Such a register can act as a parallel-to-serial converter, where data can be loaded in 
parallel and shifted out serially (bit-by-bit) 
 
It can also act as a serial-to-parallel converter, where data can be shifted in serially (bit-
by-bit) and the output made available in parallel after shifting is complete. 
 
Figure 5 shows a typical stage of a shift register with parallel load. There are two control 
signals: Shift and Load. A table showing the operation of the register with respect to the 
Shift and Load inputs is also shown in the figure. 
 
 
If Shift = 0 and Load = 0, red AND gate is enabled, causing the output of the flip-flop to 
feed back to its D input.  
� A positive transition in the clock loads this input value into the FF⇒ No Change state. 
 
Load condition: If Shift = 0 and Load = 1, the green AND gate is enabled. This causes 
the Di input to propagate to its input of the D flip-flop. 
� A positive transition of the clock pulse transfers the input data into the FFs; 
 
Shift condition: If Shift = 1 while Load = 0 or 1, the blue AND gate is enabled, while the 



other two AND gates are disabled. 
� A positive transition of the clock pulse causes the shift operation. That is, the blue 

AND gate takes the input from output Qi-1 of previous flip-flop. This is true for all 
stages except for the first stage, where, instead,  serial input SI is provided  

 
Bidirectional Shift Register (BDSR) 
 
Design a 3-bit shift register which has 4 operating modes. The operating modes are 
defined by the status of two select lines S1 and S0. The given table specifies the values of 
S1 and S0 and its corresponding operating mode. 
 

 
Table 1: Modes of BDSR 

The design uses 3 stages, where each stage consists of a single multiplexer and a single 
D-FF. 
 
The output of each MUX is connected to the input of corresponding D FF. 
 
The MUX select inputs are connected to S1 and S0 to pass the proper signal to the D-FF 
input depending on the mode of operation. 
 
When S1 S0 = 00, input 0 of the MUX is selected. This forms a path from the output of 
the FF into its own input, which causes the same value to be loaded in the D FF when a 
clock pulse is applied. This results in the NO CHANGE operation. 
 
When S1 S0 = 01, input 1 of the MUX is selected. This forms a path from the lower 
significant to higher significant bit, resulting in the SHIFT LEFT (i.e. LSB to MSB) 
operation. 
� The serial input SI is transferred into the rightmost bit in this case. 

 
When S1 S0 = 10, input 2 of the MUX is selected. This forms a path from the higher 
significant bit to lower significant bit, resulting in SHIFT RIGHT (i.e. MSB to LSB) 
operation. 
� The serial input SI is transferred into the leftmost bit (i.e. MSB) in this case. 

 
Finally, when S1 S0 = 11, input 3 of the MUX is selected. On this input, the binary 
information on the parallel input line Di is transferred into the FF, resulting in 
PARALLEL LOAD operation.  
 



 

 
Figure 6: Bi-directional shift register  

 
 



Counters 
In this lesson, the operation and design of Synchronous Binary Counters will be studied. 
 
Synchronous Binary Counters (SBC) 
Description and Operation 
In its simplest form, a synchronous binary counter (SBC) receives a train of clock pulses 
as input and outputs the pulse count (Qn-1 …. Q2 Q1 Q0).  
 
An example is a 3-bit counter that counts from 000 upto 111. Each counter consists of a 
number of FFs. (Figure 1) 

 
Figure 1: 3-bit SBC 

 
 
In synchronous counters, all FFs are triggered by the same input clock.  
 
An n-bit counter has n-FFs with 2n distinct states, where each state corresponds to a 
particular count.  
 
Accordingly, the possible counts of an n-bit counter are 0 to (2n-1). Moreover an n-bit 
counter has n output bits (Qn-1 …. Q2 Q1 Q0). 
 
 
After reaching the maximum count of (2n-1), the following clock pulse resets the count 
back to 0.  



 
Thus, a 3-bit counter counts from 0 to 7 and back to 0. In other words, the output count 
actually equals (Total # of input pulses Modulo 2n).  
 
Accordingly, it is common to identify counters by the modulus 2n. For example, a 4-bit 
counter provides a modulo 16 count, a 3-bit counter is a modulo 8 counter, etc. 
 
Referring to the 3-bit counter mentioned earlier, each stage of the counter divides the 
frequency by 2, where the last stage divides the frequency by 2n, n being the number of 
bits.  (Figure 2) 
 

 
Figure 2: 3-bit SBC 

 
Thus, if the frequency (i.e. no. of cycles/ sec) of clock is F, then the frequency of output 
waveform of Q0 is F/2, Q1 is F/4, and so on. In general, for n-bit counter, we have F/2n. 

 
 
Design of Binary Counters (SBC) 
 
Design procedure is the same as for other synchronous circuits.  
 
A counter may operate without an external input (except for the clock pulses!) 
 
In this case, the output of the counter is taken from the outputs of the flip-flops without 
any additional outputs from gates. 
Thus, there are no columns for the input and outputs in the state table; we only see the 
current state and next state… 
 
Example  Design a 4-bit SBC using JK flip-flops.  



 
The counter has 4 FFs with a total of 16 states, (0000 to 1111) � 4 state variables Q3 Q2 
Q1 Q0 are required. 

 

 
 Figure 3: State table for the example 

 
Notice that the next state equals the present state plus one. 
 
To design this circuit, we derive the flip-flop input equations from the state transition 
table. Recall that to find J & K values, we have to use: 
� The present state, 
� The next state, and 
� The JK flip-flop excitation table. 

 
When the count reaches 1111, it resets back to 0000, and the count cycle is repeated. 
 
Once the J and K values are obtained, the next step is to find out the simplified input 
equations by using K-maps, as shown in figure 4. 
 



 
 

Figure 4: K-maps for the example 
 

 
Notice that the maps for JQ0 and KQ0 are not drawn because the values in the table for 
these two variables either contain 1’s or X’s. This will result in JQ0 = KQ0 = 1 
 
Note that the Boolean equation for J input is the same as that of the K input for all the 
FFs  ⇒ Can use T-FFs instead of JK-FFs. 
 
Count Enable Control 
In many applications, controlling the counting operation is necessary ⇒ a count-enable 
(En) is required. 
 
If En= 1 then counting of incoming clock pulses is enabled Else if (En =0), no incoming 
clock pulse is counted. 
 
To accommodate the enable control, two approaches are possible. 

1. Controlling the clock input of the counter 
2. Controlling FF excitation inputs (JK, T, D, etc.). 



 
Clock Control 
Here, instead of applying the system clock to the counter directly, the clock is first 
ANDed with the En signal. 
 
Even though this approach is simple, it is not recommended to use particularly with 
configurable logic, e.g. FPGA’s. 
 
FF Input Control (Figure 5) 
In this case, the En =0 causes the FF inputs to assume the no change value (SR=00, 
JK=00, T=0, or Di=Qi).  
 
To include En, analyze the stage when JQ1 = KQ1 = Q0, and then include En. Accordingly, 
the FF input equations of the previous 4-bit counter example will be modified as follows: 

JQ0 = KQ0 = 1. EN = En 
JQ1 = KQ1 = Q0. En 
JQ2 = KQ2 = Q1.Q0. En 
JQ3 = KQ3 = Q2.Q1.Q0. En 

 
Figure 5: FF input control in counter 

 
Thus, when En = 0, all J and K inputs are equal to zero, and the flip flops remain in the 
same state, even in the presence of clock pulses  



 
When En = 1, the input equations are the same as equations of the previous example.  
 
A carry output signal (CO) is generated when the counting cycle is complete, as seen in 
the timing diagram. 
 
The CO can be used to allow cascading of two counters while using the same clock for 
both counters. In that case, the CO from the first counter becomes the En for the second 
counter. For example, two modulo-16 counters can be cascaded to form a modulo-256 
counter. 
 
Up-Down Binary Counters 
In addition to counting up, a SBC can be made to count down as well.  
 
A control input, S is required to control the direction of count. 
 
IF S= 1, the counter counts up, otherwise it counts down. 
 
FF Input Control 
Design a Modulo-8 up-down counter with control input S, such that if S= 1, the counter 
counts up, otherwise it counts down. Show how to provide a count enable input and a 
carry-out (CO) output. (See figures 6 & 7) 
 

 
Figure 6: State diagram for FF input control example 

 



 
Figure 7: State table for FF input control example 

 
The equations are  (see figure 8) 
T0 = 1 
T1 = Q0. S + Q/

0. S/ 
T2 = Q1.Q0. S + Q/

1. Q/
0. S/ 

 
The carry outputs for the next stage are: (see figure 8) 
Cup = Q2.Q1.Q0  for upward counting. 
Cdown = Q/

2.Q/
1.Q/

0 for downward counting. 
  
The equations with En are (see figure 9) 
T0 = En. 1 
T1 = Q0. S. En + Q/

0. S/. En 
T2 = Q1.Q0. S. En + Q/

1. Q/
0. S/. En 

 
The carry outputs for the next stage, with En are (see figure 9): 
Cup = Q2.Q1.Q0. En  for counting up. 
Cdown = Q/

2.Q/
1.Q/

0. En for counting down. 
 
 



 
Figure 8: Circuit of up-down counter 

 

 
   Figure 9: Circuit of up-down counter with En 



More on Counters 
 
In this lesson, you will learn  

• some important counter control inputs: 
o Parallel Load (Ld) 
o Synchronous Clear  
o Asynchronous Clear 

• use of available counters to build counters of different count 
 
Counter Control 
 
We have seen how to include a count-enable control input to enable/disable counting in 
the counter. 
 
Now we show how to include important counter control inputs; namely: 
� Parallel Load (Ld) 
� Clear  (Synchronous/Asynchronous) 

The block diagram of a 4-bit counter with the above capabilities is shown in Figure 1. 

 
Figure 1: A 4-bit counter 

 
Let us now discuss the design of the counter. We will start with a typical stage of basic 
counter, and will add the control signals to this stage in a step-wise approach. A positive 
edge-triggered counter will be assumed. 
 
Figure 2 shows a stage of the basic counter, where we see that the J and K inputs of flip-
flop at stage 1 are connected to an AND gate with Q0 and Count as inputs. 
 



 
Figure 2: a stage of basic counter 

 
 
Now let’s add the Load control input to this stage. Thus the operation would become as 
shown in Table 1. 
 

 
 Table 1: Operation of counter with Load signal added 

 
Based on the above table, the stage will be modified as shown in Figure 3. 
 
 

 
Figure 3: Modified stage of a counter 

 
In this figure, when Count = 0 and Load = 0, J and K inputs in the flip flop will be equal 
to 0 and 0 ⇒ NO CHANGE state is achieved. Notice that AND gate marked with pink 
will also be generating an output of 0.  



 
When Count = 0 or 1 (i.e. don’t care) and Load = 1, parallel load operation will take 
place. The blue AND gate will propagate D while orange will propagate D/ to J and K 
inputs respectively. 
 
When Count = 1 and Load = 0, the circuit will operate as counter because JK =11. It is 
the same behavior with respect to the tradition counter. 
 
Now, the control signal Clear can be added to the stage. We will assume asynchronous 
Clear in the design. 

 
Table 2: Counter Operation with Count, Load, and Clear signals 

 
The stage will be modified as given in Figure 4. 
 

 
Figure 4: Addition of Clear signal to a counter stage 

 
Designing counters with available counters 
 
Binary counters with parallel load can be used to design different modulo-n counters. For 
example, the 4-bit parallel load counter discussed in this lesson can be used to design any 
counter of modulo n where 2≤ n ≤ 16.  
 



Design of decade counter 
The binary counter with parallel load can be converted into a synchronous DECADE 
counter (without load input) by connecting an external AND gate to it, as shown in 
Figure 5. 

 
Figure 5: Decade counter 

 
 
Connect all the D inputs to Ground (Logic 0). Make Count = 1. This will make the circuit 
always operating in the counter mode. 
 
The 2-input AND gate connected to the Load input of the counter takes Q0 and Q3 as its 
inputs. As long as the Load input (connected to the output of the AND gate) is 0, the 
counter is incremented by one with each clock pulse. 
 
When the output count reaches 9 (1001), the output of AND gate will equal 1. This puts 
the counter in the load mode (Load =1). Thus, the next clock pulse will load the data on 
the D-inputs (0000) into the counter instead of incrementing the count.  
 
Thus the counter counts from 0000 (decimal 0) to 1001 (decimal 9) then goes back to 
0000 and so on. � Modulo 10 counting 
 
Design of a counter that counts from 3 to 12. 
The counter discussed above can be made to count from 0011 (decimal 3) to 1100 
(decimal 12). Only small modifications are required, which are (see Figure 6): 

 
• Connect the D inputs to 0011 (i.e. D3D2D1D0 = 0011). This will make the circuit 

start counting from 3 whenever 12 has been counted. 
• Connect the AND gate to Q3 and Q2. Thus, whenever the circuit reaches 12 

(1100), Q3 = Q2 = 1, which will make the output of the AND gate equal to 1, 
making Load active, so in the next clock transition the counter does not count, but 
is loaded from its four inputs, with a value of 0011. 

 
 



 

 
Figure 6: Counter for 3 to 12 counting 

 
Thus the counter counts from 0011 (decimal 3) to 1100 (decimal 12), and back to 0011. 
This is also a mod-10 counter, since it also counts ten numbers. 
 
Some counters may have the “Clear” control input. With this capability, the counter can 
be “cleared” at any time. The “Clear” signal can also be classified into two types: 
Synchronous and Asynchronous. 
 
The Synchronous Clear case 
The Synchronous Clear input is activated in synchronization with the clock pulse.  
 
To explain this behavior, consider a MOD-6 counter that counts from 000 (decimal 0) to 
101 (decimal 5). The circuit is shown in the figure. 
 
In this circuit, once the count of 5 (101) is detected by the AND gate, the counter is 
cleared on the next clock pulse. Thus, the counter counts from 0 to 5 back to 0. 
 
Assuming negative edge-triggered FFs, the timing diagram of this counter is shown in 
Figure 7. Notice the delayed transitions of the counter outputs (Q’s) after the negative 
clock edge due to gate propagation delays. 



 
Figure 7: Timing diagram – Synchronous Clear 

 
The timing diagram clarifies the case of Q2Q1Q0 = 101 where the Clear input becomes 1 
causing the counter to clear on the next negative clock edge. The point to notice here is 
that the effect of change in “Clear” is not immediately applied, but becomes effective in 
the following clock pulse, because the “Clear” input is “Synchronous”, i.e. it only takes 
effect at the next active clock edge. 
 
The Asynchronous Clear case 
 
If we use asynchronous clear rather than synchronous clear, as soon as the count Q2Q1Q0 
reaches 101, “Clear”is activated and the FFs are cleared immediately without waiting for 
the next active clock edge. 
 
This causes the count Q2Q1Q0 = 101 to switch to 000 after a small delay. In other words 
the count 101 does not last for a full clock period as other counts, but rather will appear 
for a very short duration as a narrow pulse (glitch) as shown in Figure 8. Thus, it would 
appear that the counter counts from 0 to 4, that is, from 000 to 100. 
 
This happens because “Clear” is “Asynchronous”. It does not wait for the clock pulse to 
come, and does the “clearing” operation immediately. 
 
As a result, the output values become Q2Q1Q0 = 101 for a very short duration of time, 
almost negligible, and then the contents become Q2Q1Q0 = 000 within the same clock 
period. 
 



 
Figure 8: Timing diagram – Asynchronous Clear 

 
 
To have a MOD6 counter designed using the asynchronous clear, we should detect a 
count of 6 (instead of 5) and use that to clear the counter asynchronously. 
In this case, once the count reaches Q2Q1Q0 = 110, “Clear” is activated, you will not be 
able to observe Q2Q1Q0 = 110, because it will be for very short duration. This is shown in 
Figure 9. 
 
It would seem to you that after Q2Q1Q0 = 101, the next state is Q2Q1Q0 = 000. 
 

 
Figure 9: Timing diagram 

 
 



Ripple and Arbitrary Counters 
In this lesson, you will learn about: 
� Ripple Counters 
� Counters with arbitrary count sequence 

 
Design of ripple Counters 
 
Two types of counters are identifiable:  

 
� Synchronous counters, which have been discussed earlier, and 
� Ripple counters. 

 
In ripple counters, flip-flop output transitions serve as a source for triggering other flip-
flops. 
 
In other words, clock inputs of the flip-flops are triggered by output transitions of other 
flip-flops, rather than a common clock signal. 
 
Typically, T flip-flops are used to build ripple counters since they are capable of 
complementing their content (See Figure 1). 

 
The signal with the pulses to be counted, i.e.“Pulse”, is connected to the clock input of 
the flip-flop that holds the LSB (FF # 1).  
 
The output of each FF is connected to the clock input of the next flip-flop in sequence. 
 
The flip-flops are negative edge triggered (bubbled clock inputs). 
 
T=1 for all FFs (J = K= 1). This means that each flip-flop complements its value if C 
input goes through a negative transition (1 � 0). 



 
 

Figure 1: A ripple counter 
 

The previous ripple up-counter can be converted into a down-counter in one of two ways: 
 
� Replace the negative-edge triggered FFs by positive-edge triggered FFs, or 
� Instead of connecting C input of FF Qi to the output of the preceding FF (Qi-1) 

connect it to the complement output of that FF (Q/
i-1). 

 
Advantages of Ripple Counters:  
� simple hardware and design. 

 
Disadvantages of Ripple Counters:  
� They are asynchronous circuits, and can be unreliable and delay dependent, if 

more logic is added. 
� Large ripple counters are slow circuits due to the length of time required for the 

ripple to occur. 
 
Counters with Arbitrary Count Sequence:  
 
Design a counter that follows the count sequence: 0, 1, 2, 4, 5, 6. This counter can be 
designed with any flip-flop, but let’s use the JK flip-flop. 



Notice that we have two “unused” states (3 and 7), which have to be dealt with (see 
Figure 2).  These will be marked by don’t cares in the state table (Refer to the design of 
sequential circuits with unused states discussed earlier). The state diagram of this counter 
is shown in Figure 2.  
 
In this figure, the unused states can go to any of the valid states, and the circuit can 
continue to count correctly. One possibility is to take state 7 (111) to 0 (000) and state 3 
(011) to 4 (100). 

 
Figure 2: State diagram for arbitrary counting sequence 

 
The design approach is similar to that of synchronous circuits. The state transition table is 
built as shown in Figure 3 and the equations for all J and K inputs are derived. Notice that 
we have used don’t care for the unused state (although we could have used 100 as the 
next state for 011, and 000 as the next state of 111).  
 



 
Figure 3: State table for arbitrary counting sequence 

 
The computed J and K input equations are as follows: 
JA = B  KA =B 
JB = C  KB =1 

JC = B/  KC =1 

 

 
Figure 4: Circuit for arbitrary counting sequence 

 



Semiconductor Memories: RAMs and ROMs 
 

Lesson Objectives: 
In this lesson you will be introduced to: 
 

 Different memory devices like, RAM, ROM, PROM, EPROM, EEPROM, etc.  
 Different terms like: read, write, access time, nibble, byte, bus, word, word length, 
address, volatile, non-volatile etc. 

 How to implement combinational and sequential circuits using ROM. 
 
Introduction: 
The smallest unit of information a digital system can store is a bit, which can be stored in 
a flip-flop or a 1-bit register. 

 
 

To store m bits of data, an m-bit register with parallel load capability may be used. Data 
available on the m-bit input lines (I0 to Im-1) may be stored/written into this register under 
control of the clock by asserting the “Load” control input. The stored m bits of data may 
be read from the register outputs (O0 to Om-1). 
 

 
 

The m bits of data stored in a register make up a word. It is simply a number of bits 
operated upon or considered by the hardware as a group. The number of bits in the word, 
m, is called word length. 
 
The m inputs of the register are provided through an m-bit input data bus and m outputs 
by an m-bit output data bus. 
 
A bus is a number of signal lines, grouped together because of similarity of function, 
which connect two or more systems or subsystems. 
 
A unit of 8-bits of information is referred to as a byte, while 4-bits of information is 
referred to as a nibble. 



 

 
A memory device can be looked at as consisting of a number of equally sized registers 
sharing a common set of inputs, and a common set of outputs, as shown in the Figure. 
 

 
 
Storing data in a memory register is referred to as a memory write operation and looking 
up the contents of a memory register is referred to as a memory read operation. 
 
In case of a write operation, the input data need to be written into one particular register 
in the memory device. 
 
Since the input data lines are common to all registers of the memory device, only the 
selected register should have its load control signal asserted while the other registers 
should not. 
 
If the number of registers is 2n, n lines will be required to select the register to be written 
into. The n-lines are used as an input to a decoder where the decoder’s 2n outputs may be 
used as the load control inputs to the 2n registers. 
 
The load control signal of a particular register is asserted by a unique combination of the 
n-select lines. This unique combination is considered as the address for that particular 
register.  
 



 
 
Thus, a memory device can be thought of as a collection of addressable registers. 
 
A read or a write operation into the memory device has to specify the address of the 
particular register to be read or written into. 
 
The capacity of the memory is specified in terms of the number of bits or the number of 
words available in this memory device.  
 
For a memory device with n-bit address lines and word (register) size of m-bits, the 
memory has 2n words (storage locations/registers) each having m bits for a total capacity 
of 2n x m bits.  

 
 

For example, if n = 10 and m = 8, the memory is a “1024 x 8” bit memory. Alternatively, 
it is said that the memory has 1K bytes. 
 
A block diagram of the memory device is shown in the figure. The address inputs are 
decoded by address decoder to select one, and only one, of the memory words 
(registers), either for reading or writing. 



 
 

The WRRD /  line is a control signal that determines the type of operation to be 
performed; a read operation or a write operation. 
 

1/ =WRRD  indicates a read operation, while 0/ =WRRD  indicates a write operation. 
 
To read the memory contents stored in a particular word, the address of this word is 
applied, and logic 1 is applied to the WRRD /  line that enables the output buffers of the 
memory. 
 
To write at a location, the address of the location to be written is provided at the address 
inputs, data is provided at the data inputs, and logic 0 is applied to the WRRD /  line. 
 
There is a time delay between the application of an address and the appearance of 
contents at the output, this is called the memory access time. This depends both on the 
technology and on the structure used to implement the memory. 
 
Random Access Memory (RAM): 
For the shown above memory structure, the access time is independent of the sequence in 
which addresses are applied. 
 
Such a memory is called random access memory (RAM). Thus, the contents of any one 
location can be accessed in essentially the same time as can the contents of any other 
location chosen at random. 
 
RAMs are volatile memories that will only retain the stored data as long as power is ON 
but will lose this data when power is turned OFF. 
 



RAMs are classified into two main categories: Static RAM (SRAM) and Dynamic RAM 
(DRAM). These will be studied in greater details in future courses. 
 
Read Only Memory (ROM): 
Read Only Memory (ROM) is memory whose stored data can only be read but cannot be 
re-written (altered). 
 
It is a device in which “permanent” binary information has been stored.  
 
ROMs are nonvolatile where stored data are not lost even when power is turned OFF. 
 
The Figure shows a block diagram of a ROM.  
 

 
 

Like RAMS, a ROM has n address inputs and m outputs. This corresponds to 2n memory 
words each of m storage bits for a total capacity of 2n x m bits. 
 
Unlike RAMs, ROMs do not have data input lines, because they do not have a write 
operation. 
 
ROMs are common to use in storing system-level programs that should be available at all 
times. 
 
The most common example is the PC system BIOS (Basic Input Output System), which 
is stored in a ROM called the system BIOS ROM. 
 
Several classes of ROMs are in common use. These may be categorized according to 
their fabrication technologies that influence the way data are introduced into the ROM. 
The process of storing the desired data into the ROM is referred to as ROM 
programming. 
 
Types of ROMs: 
Following are the different types of ROMs. 
1. Programming is done by the manufacturer during the last fabrication steps according 

to the truth table provided by the customer. This type is known as mask programmable 
ROMs or simply ROM. Data stored this way can never be altered. 

 
2. ROM is provided with fuses to allow users to introduce the desired data by electrically 

blowing some of these fuses. This type is referred to as a programmable ROM, or 
PROM. Fuse blowing is irreversible and, once programmed the ROM stored pattern 
cannot be altered. 

 



3. The ROM uses erasable floating-gate memory cells that allow erasure of the stored 
data by Ultra-Violet light. In this type, programming is performed electrically by the 
user using special hardware programmers. Data, thus stored, can later be erased 
globally (all memory bits = 1) by exposing the memory array to UV-light. This ROM 
type is referred to as UV-erasable, programmable ROM, or simply EPROM. The 
EPROM IC package is provided with a quartz window to allow UV-light penetration 
to the memory array. 

 

 

Quartz 
Window 

Closer View of 
Quartz Window 

 
4. When special electrically erasable memory cells are used, the ROM can be electrically 

erased at the byte level. Thus individual bytes may be addressed and programmed or 
erased as desired. This type is referred to as electrically erasable, programmable 
ROM, or EEPROM or E2PROM. The E2PROM technology is an expensive low-
capacity technology and is thus not used for high density or low-cost applications. 

 
5. The most recent ROM technology is the flash technology that combines the low-cost 

and high-density advantages of the UV-EPROM technology and the flexibility of 
electrical erase of E2PROM technology. This technology is electrically erasable but 
the erasure is performed either globally (the full array) or partially on complete sub-
arrays (sectors). 

 
Combinational Circuit Implementation Using ROM: 
ROM devices can be used to implement complex combinational circuits directly from 
truth tables without need for minimization. 
 



For an n-input, m-output combinational circuit, a 2n x m ROM is needed (2n words each 
of m storage bits). The designer needs only to specify a ROM table that gives the 
information stored in each of the 2n words. 
 
When a combinational circuit is implemented using a ROM, the function may either be 
expressed in the sum of minterms form, or using a truth table. 
 
As an example, the ROM shown in the figure may be considered as a combinational 
circuit with four outputs, each a function of the five input variables. 
 
Outputs Z0 – Z3 can be expressed as sum of minterms as follows: 
Z0 (A4, A3, A2, A1, A0) = ∑m (2, 3, 18, 21, 31) 
Z1 (A4, A3, A2, A1, A0) = ∑m (0, 1, 17, 25, 31) 
Z2 (A4, A3, A2, A1, A0) = ∑m (1, 6, 11, 29, 30) 
Z3 (A4, A3, A2, A1, A0) = ∑m (7, 8, 16, 28, 29) 
 

 
Example 1: 
Consider a combinational circuit which is specified by the following two functions: 
F1 (X, Y) = ∑m (1, 2, 3) 
F2 (X, Y) = ∑m (0, 2) 
 
The truth table for this circuit is as shown. 

 
In this example, the ROM that implements the two combinational functions must have 
two address inputs and two outputs. Thus, its size must be 4 x 2 (since 2n x m is the size 
of ROM). 



 
 

The ROM table for this example is as shown. 

 
Example 2: 
Design a combinational circuit using a ROM. The circuit accepts a 3-bit number and 
generates an output binary number that is equal to the square of the input number. 
 
The first step is to derive the truth table for the combinational circuit as shown. Three 
inputs and six outputs are needed to accommodate all possible numbers. 
 

 
By observation, we note that output B0 is always equal to input A0, and output B1 is 
always 0. Thus, there is no need to store B0 and B1 in the ROM. We actually need to only 
store values of the four outputs (B5 through B2) in the ROM. 
 
The table shown specifies all the information that needs to be stored in the ROM, and 
figure shows the required connections of the combinational circuit. The output B1 is 
connected to logic 0 and output B0 is connected to A0 always to get B1 = 0 and B0 = A0. 



 
The minimum size ROM needed must have three inputs and four outputs, for a total of 8 
x 4 = 32 bits. 

 
 
 
Synchronous Sequential Circuit Implementation Using ROM: 
The block diagram of a sequential circuit is shown in the figure.  
 

 
 

Since ROM can implement combinational logic, so this part can be replaced by a ROM 
and Flip-Flops can be replaced by a register as shown in the figure. 
 

 
 
 



Example 3: 
Design a sequential circuit whose state transition table is given, using a ROM and a 
register. 
 

 
The next-state and output information are obtained from the table as: 
Q1

+ = ∑m (1, 2, 5, 6) 
Q2

+ = ∑m (4, 6) 
Y (Q2, Q1, X) = ∑m (3, 7) 
 
The ROM can be used to implement the combinational circuit and register will provide 
the flip-flops. 
 
The number of address inputs to the ROM is equal to the number of flip-flops plus the 
number of external inputs. 
 
The number of outputs of the ROM is equal to the number of flip-flops plus the number 
of external outputs. 
 
In this example, 3 inputs and 3 outputs of the ROM are required; so its size must be 8 x 3. 
 

 
 

The ROM table is identical to the state transition table with Present State and Inputs 
specifying the address of ROM and Next State and Outputs specifying the ROM outputs 
(stored information). It is shown below: 



 
 

The next state values must be connected from the ROM outputs to the register inputs as 
shown in the figure below. 

 

 
 



Programmable Logic Devices (PLDs) 
 

Lesson Objectives: 
In this lesson you will be introduced to some types of Programmable Logic Devices 
(PLDs): 
 

 PROM, PAL, PLA, CPLDs, FPGAs, etc. 
 How to implement digital circuits using PLAs and PALs. 

 
Introduction: 
An IC that contains large numbers of gates, flip-flops, etc. that can be configured by 
the user to perform different functions is called a Programmable Logic Device 
(PLD). 
 
The internal logic gates and/or connections of PLDs can be changed/configured by a 
programming process. 
 
One of the simplest programming technologies is to use fuses. In the original state of 
the device, all the fuses are intact. 
 
Programming the device involves blowing those fuses along the paths that must be 
removed in order to obtain the particular configuration of the desired logic function. 
 
PLDs are typically built with an array of AND gates (AND-array) and an array of 
OR gates (OR-array). 

 
 
Advantages of PLDs: 
Problems of using standard ICs: 
Problems of using standard ICs in logic design are that they require hundreds or 
thousands of these ICs, considerable amount of circuit board space, a great deal of 
time and cost in inserting, soldering, and testing. Also require keeping a significant 
inventory of ICs. 
 
Advantages of using PLDs: 
Advantages of using PLDs are less board space, faster, lower power requirements 
(i.e., smaller power supplies), less costly assembly processes, higher reliability (fewer 
ICs and circuit connections means easier troubleshooting), and availability of design 
software. 
 
There are three fundamental types of standard PLDs: PROM, PAL, and PLA. 
 
A fourth type of PLD, which is discussed later, is the Complex Programmable Logic 
Device (CPLD), e.g., Field Programmable Gate Array (FPGA). 
A typical PLD may have hundreds to millions of gates. 



 
In order to show the internal logic diagram for such technologies in a concise form, it 
is necessary to have special symbols for array logic. 
 
Figure shows the conventional and array logic symbols for a multiple input AND and 
a multiple input OR gate. 
 

 
 

Three Fundamental Types of PLDs: 
The three fundamental types of PLDs differ in the placement of programmable 
connections in the AND-OR arrays. Figure shows the locations of the programmable 
connections for the three types.  
 

 



 The PROM (Programmable Read Only Memory) has a fixed AND array 
(constructed as a decoder) and programmable connections for the output OR gates 
array. The PROM implements Boolean functions in sum-of-minterms form. 

 
 The PAL (Programmable Array Logic) device has a programmable AND array 
and fixed connections for the OR array. 

 
 The PLA (Programmable Logic Array) has programmable connections for both 
AND and OR arrays. So it is the most flexible type of PLD. 

 
The ROM (Read Only Memory) or PROM (Programmable Read Only 
Memory): 
The input lines to the AND array are hard-wired and the output lines to the OR array 
are programmable. 
 
Each AND gate generates one of the possible AND products (i.e., minterms). 
 
In the previous lesson, you have learnt how to implement a digital circuit using ROM. 
 
The PLA (Programmable Logic Array): 
In PLAs, instead of using a decoder as in PROMs, a number (k) of AND gates is used 
where k < 2n, (n is the number of inputs). 
 
Each of the AND gates can be programmed to generate a product term of the input 
variables and does not generate all the minterms as in the ROM. 
 
The AND and OR gates inside the PLA are initially fabricated with the links (fuses) 
among them. 
 
The specific Boolean functions are implemented in sum of products form by opening 
appropriate links and leaving the desired connections. 
 
A block diagram of the PLA is shown in the figure. It consists of n inputs, m outputs, 
and k product terms. 

 
 

The product terms constitute a group of k AND gates each of 2n inputs. 
 
Links are inserted between all n inputs and their complement values to each of the 
AND gates. 
 
Links are also provided between the outputs of the AND gates and the inputs of the 
OR gates. 
 



Since PLA has m-outputs, the number of OR gates is m. 
 
The output of each OR gate goes to an XOR gate, where the other input has two sets 
of links, one connected to logic 0 and other to logic 1. It allows the output function to 
be generated either in the true form or in the complement form. 
 
The output is inverted when the XOR input is connected to 1 (since X ⊕ 1 = X/). The 
output does not change when the XOR input is connected to 0 (since X ⊕ 0 = X). 
 
Thus, the total number of programmable links is 2n x k + k x m + 2m. 
 
The size of the PLA is specified by the number of inputs (n), the number of product 
terms (k), and the number of outputs (m), (the number of sum terms is equal to the 
number of outputs). 
 
Example: 
Implement the combinational circuit having the shown truth table, using PLA. 
 

 
Each product term in the expression requires an AND gate. To minimize the cost, it is 
necessary to simplify the function to a minimum number of product terms. 

 
Designing using a PLA, a careful investigation must be taken in order to reduce the 
distinct product terms. Both the true and complement forms of each function should 
be simplified to see which one can be expressed with fewer product terms and which 
one provides product terms that are common to other functions. 
 
The combination that gives a minimum number of product terms is: 
F1

’ = AB + AC + BC  or  F1 = (AB + AC + BC)’ 
F2 = AB + AC + A’B’C’ 
 
This gives only 4 distinct product terms: AB, AC, BC, and A’B’C’. 



So the PLA table will be as follows: 

 
For each product term, the inputs are marked with 1, 0, or – (dash). If a variable in the 
product term appears in its normal form (unprimed), the corresponding input variable 
is marked with a 1. 
 
A 1 in the Inputs column specifies a path from the corresponding input to the input of 
the AND gate that forms the product term. 
 
A 0 in the Inputs column specifies a path from the corresponding complemented 
input to the input of the AND gate. A dash specifies no connection. 
 
The appropriate fuses are blown and the ones left intact form the desired paths. It is 
assumed that the open terminals in the AND gate behave like a 1 input. 
 
In the Outputs column, a T (true) specifies that the other input of the corresponding 
XOR gate can be connected to 0, and a C (complement) specifies a connection to 1. 
 
Note that output F1 is the normal (or true) output even though a C (for complement) is 
marked over it. This is because F1’ is generated with AND-OR circuit prior to the 
output XOR. The output XOR complements the function F1’ to produce the true F1 
output as its second input is connected to logic 1. 

 
 



The PAL (Programmable Array Logic): 
The PAL device is a PLD with a fixed OR array and a programmable AND array. 
 
As only AND gates are programmable, the PAL device is easier to program but it is 
not as flexible as the PLA. 
 

 
 

The device shown in the figure has 4 inputs and 4 outputs. Each input has a buffer-
inverter gate, and each output is generated by a fixed OR gate. 
 
The device has 4 sections, each composed of a 3-wide AND-OR array, meaning that 
there are 3 programmable AND gates in each section. 
 
Each AND gate has 10 programmable input connections indicating by 10 vertical 
lines intersecting each horizontal line. The horizontal line symbolizes the multiple 
input configuration of an AND gate. 
 
One of the outputs F1 is connected to a buffer-inverter gate and is fed back into the 
inputs of the AND gates through programmed connections. 
(see animation in authorware version) 
 
Designing using a PAL device, the Boolean functions must be simplified to fit into 
each section. 
 
The number of product terms in each section is fixed and if the number of terms in the 
function is too large, it may be necessary to use two or more sections to implement 
one Boolean function. 



Example: 
Implement the following Boolean functions using the PAL device as shown above: 
 
W(A, B, C, D) = ∑m(2, 12, 13) 
X(A, B, C, D) = ∑m(7, 8, 9, 10, 11, 12, 13, 14, 15) 
Y(A, B, C, D) = ∑m(0, 2, 3, 4, 5, 6, 7, 8, 10, 11, 15) 
Z(A, B, C, D) = ∑m(1, 2, 8, 12, 13) 
 
Simplifying the 4 functions to a minimum number of terms results in the following 
Boolean functions: 
 
W = ABC’ + A’B’CD’ 
X = A + BCD 
Y = A’B + CD + B’D’ 
Z = ABC’ + A’B’CD + AC’D’ + A’B’C’D 
   =W +AC’D’ + A’B’C’D 
 
Note that the function for Z has four product terms. The logical sum of two of these 
terms is equal to W. Thus, by using W, it is possible to reduce the number of terms for 
Z from four to three, so that the function can fit into the given PAL device. 
 
The PAL programming table is similar to the table used for the PLA, except that only 
the inputs of the AND gates need to be programmed. 
 

 
 

The figure shows the connection map for the PAL device, as specified in the 
programming table. 
(see animation in authorware version) 
 



 
 

Since both W and X have two product terms, third AND gate is not used. If all the 
inputs to this AND gate left intact, then its output will always be 0, because it receives 
both the true and complement of each input variable i.e., AA’ =0 
 
Complex Programmable Logic Devices (CPLDs): 
A CPLD contains a bunch of PLD blocks whose inputs and outputs are connected 
together by a global interconnection matrix. 
 
Thus a CPLD has two levels of programmability: each PLD block can be 
programmed, and then the interconnections between the PLDs can be programmed. 
 

 
 
 
 



Field Programmable Gate Arrays (FPGAs): 
The FPGA consists of 3 main structures: 

1. Programmable logic structure, 
2. Programmable routing structure, and 
3. Programmable Input/Output (I/O). 

 
1. Programmable logic structure 
The programmable logic structure FPGA consists of a 2-dimensional array of 
configurable logic blocks (CLBs). 

 
 

Each CLB can be configured (programmed) to implement any Boolean function of its 
input variables. Typically CLBs have between 4-6 input variables. Functions of larger 
number of variables are implemented using more than one CLB. 
 
In addition, each CLB typically contains 1 or 2 FFs to allow implementation of 
sequential logic. 
 
Large designs are partitioned and mapped to a number of CLBs with each CLB 
configured (programmed) to perform a particular function. 
 
These CLBs are then connected together to fully implement the target design. 
Connecting the CLBs is done using the FPGA programmable routing structure. 
 
2. Programmable routing structure 
 To allow for flexible interconnection of CLBs, FPGAs have 3 programmable routing 
resources: 
 
1. Vertical and horizontal routing channels which consist of different length wires 

that can be connected together if needed. These channel run vertically and 
horizontally between columns and rows of CLBs as shown in the Figure. 

 



2. Connection boxes, which are a set of programmable links that can connect input 
and output pins of the CLBs to wires of the vertical or the horizontal routing 
channels.  

 
3. Switch boxes, located at the intersection of the vertical and horizontal channels. 

These are a set of programmable links that can connect wire segments in the 
horizontal and vertical channels. (see animation in authorware version) 

 

 
3. Programmable I/O 
These are mainly buffers that can be configured either as input buffers, output buffers 
or input/output buffers. 
 
They allow the pins of the FPGA chip to function either as input pins, output pins or 
input/output pins. 
 

 

Programmable 
I/Os 



eCOE200  Lessons Errata 
 
 

Error Location Error Description Correction 
Example 3-a on P119 of U1-L5,  84 -6770 = 1000000000 -6770 84 -6770=10000 -6770 
P15 of U1-L6, 2’s complement 
Representation of -37 

11011010 11011011 

Example 4- P18 of U2-L1, after 
the downward red lines 

F= (A`.B+ 0) . (0 + A’ B C` ). (A`. B + A’.B.C` ) 
 

F= (A`.B+ 0) . (0 + A’ B C` ). (A`.B.B` +A`.B.C` ) 
  = (A`.B+ 0) . (0 + A’ B C` ). (A`.0 +A`.B.C` ) 
  = (A’B). (A’BC’) . (0 + A’BC’) 
  = A’BC’ 
 

Example 2- P5 of U2-L5 K-Map representation of the function has 1 in in 
M1 , But it is located. 

The 1 must be relocated in M2 and the grouping of 
0’s done accordingly 

Quiz on  P6 of U2-L7, Question 2 
of 3 

The given answer is False Correct answer is TRUE 

 
PS: These are the known errors so far. If you come across any other error please send for a more comprehensive list 
 
 
 
 

                                                 
1 P  Page,  U  Unit, L  Lesson. Thus P19 of U1 L5 means Page 19 in lesson 5 of unit 1. 
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