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Abstract—In this paper, we introduce a novel approach for computing
the number, location, and transmission powers of wireless base stations in
a 2-D urban setup. The new approach utilizes 2-D convolution to extract
the supply–demand correlation. Available efficient methods for computing
the convolution are then used to substantially reduce the complexity of the
solution. The proposed approach enables network designers to choose
arbitrary antenna propagation and radio demand patterns using a simple
color-coding mechanism. Simulations of the proposed algorithm show its
efficiency and flexibility in solving the placement problem. In this paper, we
consider only the coverage planning. Consequently, the technique in this
paper is useful in networks that operate with time-division multiple-access
technology. However, the work can be extended to consider simultaneous
coverage and frequency planning.

Index Terms—Base station (BS), cell planning, convolution, placement,
wireless communications.

I. INTRODUCTION

The placement of wireless base stations (BSs) has been a chal-
lenging problem that involves many design parameters. Existing au-
tomatic placement techniques are insufficient in both the modeling
and solution phases. Modeling placement problems using optimization
techniques such as simulated annealing or integer programming is
usually a difficult task. In integer programming, for example, the
number of variables is proportional to the number of points inside
the grid, which is usually large for typical practical scenarios. In the
solution phase, the number of computations dramatically increases
with the number of grid points on the site map [7]. For this reason,
these techniques are limited to solving placement problems with a
relatively small number of grid points.

One of the first attempts to solve the placement problem was
presented in [1]. In this paper, the solution of single- and multiple-
transmitter problems was considered. The problem was modeled as a
nonlinear program, and then, three nonlinear optimization algorithms
were considered to solve this model. The work in [2] formulated the
placement problem as a large-scale combinatorial optimization model.
The model was then solved using the simulated-annealing approach.
Similar models were developed in [3]. In [4], a variant of the Simplex
method was used to solve the placement problem where the objective
was to maximize the percentage coverage. A genetic approach was
used in [5] to find the near-optimal location of the BSs. In [6], a
sequential algorithm was formulated and used to solve the placement
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problem. Finally, the work in [7] considered integer programming to
solve the location problem.

In this paper, we propose a fundamentally new approach for solving
the BS placement problem in a 2-D urban environment. The approach
is versatile and can adopt arbitrary radio propagation and demand
patterns. The method uses the convolution to find the minimum
number and location of BSs that satisfy the coverage requirement. The
user interface of the proposed approach allows the designer to provide
a color-coded map of the demand pattern and any arbitrary antenna
propagation pattern. Since only coverage planning is considered in
this paper, it can be useful in cellular networks that operate with
time-division multiple-access technology. However, this paper can be
extended to consider simultaneous coverage and capacity planning.
This way, the proposed approach may be used for networks that are
based on wideband code-division multiple access.

II. PROBLEM FORMULATION

In this paper, we only consider the number of BSs, their locations,
and the transmission power. Other parameters such as antenna height
and frequency planning are not considered. Furthermore, since an
urban setup is assumed, signal attenuation due to walls and obstacles
is not considered. Finally, the antennas are assumed to be of a fixed
type throughout the design space and have the same direction. These
assumptions were made only to simplify the presentation of the
proposed solution.

The objective of the placement problem is to minimize the total
number of BSs N such that the virtual power inside a 2-D Euclidean
space Γ is at least equal to the power threshold α at all locations. In
other words

p(x, y) ≥ α ∀ x, y ∈ Γ (1)

where p(x, y) is the virtual power at the point with coordinates (x, y).
To find an expression for p(x, y), let us define the quantity sn(x, y)

as the power supplied by the nth BS to the mobile station at location
(x, y). This quantity simply indicates the signal strength at location
(x, y) due to station n. It is dependent mainly on the radio propagation
loss and the gain of the transmitter antenna. For example, for an
omnidirectional antenna in free space, the quantity sn(x, y) is given
by the well-known Friis equation [12]

sn(x, y) = pnGtGr

(
λ

4πhn(x, y)

)2

(2)

where pn, Gt, Gr , and λ are the transmission power, transmitter gain,
receiver gain, and wave length, respectively. hn(x, y) is the distance
between point (x, y) and BS n.

Let us also introduce the term d(x, y) to represent the radio demand
level at point (x, y). This quantity is affected by the different coverage
priorities and the extra signal attenuations at location (x, y).

Then, we can define the virtual power p at location (x, y) as the
difference between the supply and demand of radio coverage, i.e.,

p(x, y) = max
n=[1,N ]

{sn(x, y)} − d(x, y). (3)

We assume here that the mobile station at location (x, y) will connect
to the BS that delivers the maximum signal power.
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The objective of the placement problem is to find the minimum
number of BSs and their locations that will satisfy power constraint
(1), where p(x, y) is given by (3).

A. Discretization of the Model

To solve the placement model previously discussed, the continuous
space is first discretized into a finite number of points that form
a uniform grid of size (I, J). The number of divisions in the grid
depends on the required resolution and computation limitations.
The variables p(x, y), sn(x, y), and d(x, y) are discretized in 2-D
Euclidian space to form the matrices P , Sn, and D, respectively.
Therefore, the optimization problem can be written in matrix format as

min N (4)

subject to

PN = max
n=[1,N ]

{Sn} − D ≥ αΘ (5)

where PN denotes the power pattern matrix of size (I × J) after
assigning N BSs, Sn is the power supply matrix for the nth BS, D is
the demand pattern matrix, and Θ is a matrix full of ones. More details
about designing demand matrix D will be provided in Section IV-B.
Notice that this constraint states that all the elements of matrix PN

should be greater than the power threshold α.
Matrix Sn can be broken down into the convolution of two matrices

as follows:

Sn = A ⊗ Xn (6)

where the symbol ⊗ indicates the 2-D convolution. Matrix A (of size
(IA × JA)) is a fixed propagation pattern matrix of the transmitter
radio antenna. The design of this matrix will be discussed in more
detail in Section IV-A. Matrix Xn indicates the location of BS n. If
we denote this location by the coordinates (un, vn), then Xn has all
its elements equal to zero, except at (un, vn), where it is equal to “1.”
In other words

Xn(i, j) =
{

1, at (un, vn)
0, elsewhere.

(7)

For the sake of illustration, suppose that

A =

[
30 50 30
50 100 50
30 50 30

]
and X1 =

⎡
⎢⎣

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎦ .

Then

S1 =

⎡
⎢⎣

0 0 0 0
0 30 50 30
0 50 100 50
0 30 50 30

⎤
⎥⎦ .

The convolution values outside the range of matrix Xn are simply
truncated. Notice that the objective of the convolution here is to
surround the unique nonzero element in Xn with propagation matrix
A. Therefore, the convolution operation in this case can very efficiently
be performed by simply shifting the elements of matrix A by (un, vn).

Notice also that minimizing the number of BSs N is equivalent
to minimizing the summation norm of the location matrices Xn for

all BSs. In view of this fact, the optimization problem can finally be
written as

min

∥∥∥∥∥
N∑

n=1

Xn

∥∥∥∥∥ (8)

subject to

PN
∆
= max

n=[1,N ]
{Xn ⊗ A} − D ≥ αΘ. (9)

The representation of the placement problem in this matrix format
helps when borrowing useful tools from the matrix theory to find a
near-optimal heuristic solution for this problem. This will be discussed
in the next section.

III. SOLUTION OF THE PLACEMENT PROBLEM

The optimization problem (8) and (9) is solved in this paper using
a simple and efficient heuristic approach. This approach turned out
to offer high flexibility in choosing arbitrary propagation and demand
patterns. It also allows a simple user-interface modeling of the problem
and provides the solution in a relatively short time. The solution
approach uses the convolution operation as a core process to measure
the correlation between the supply and demand of wireless coverage.
Efficient ways to compute convolution are then used to substantially
reduce the required computation complexity.

A flowchart of the proposed algorithm is shown in Fig. 1. To
determine the amount of power consumption associated with placing a
BS at a certain grid point, antenna propagation matrix A is convolved
with the existing power pattern Pn−1 that resulted from previously
assigned BSs, i.e.,

Yn = A ⊗ Pn−1, P0 = −D. (10)

The role of the convolution here is given as follows: For each point on
the current power pattern Pn−1, the antenna propagation A is centered
at that point and dot-multiplied with the intersecting sector of Pn−1.
The multiplication values are then summed up, and the answer is stored
at the corresponding point in Yn. This convolution process is repeated
for all other points in Pn−1.

The coordinates that correspond to the minimum value of matrix Yn

indicates the highest consumption. This point is chosen as the location
of the nth BS

(un, vn) = arg min
(i,j)

Yn. (11)

Once a new BS location is chosen, location matrix Xn is constructed
from (7). The power matrix is then updated as follows:

Pn = Gn − D, n = 1, 2, . . . , N (12)

where Gn is the accumulated supply of power (by stations 1 through
n). This matrix can iteratively be computed from

Gn = max {Gn−1, Sn} = max{Gn−1, A ⊗ Xn} (13)

starting from the zero matrix (G0 = 0). In summary, given the prop-
agation and demand matrices A and D, the location of the BSs is
determined by iterating (10)–(12). The algorithm terminates when
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Fig. 1. Flow diagram of the proposed placement algorithm.

the constraint (9) is satisfied, or, equivalently, the minimum power

pmin(n)
∆
= min{Pn} exceeds threshold α. The algorithm then returns

the total number of stations N , their locations, and the minimum power
value pmin.

A. Solution Verification

Since the analytical solution for the placement problem given by (8)
and (9) is not available, we follow two numerical approaches to verify
the proposed solution. First, the algorithm is implemented on simple
models where solutions are known, and the results are then compared
[8]. Second, the solution is verified by performing an exhaustive search
on all possible locations. The search challenges the algorithm by trying
to find one of the following:

1) a lower number of BSs that meets the coverage requirements
(pmin > α);

2) a different location of the same number of stations that provides
better power coverage (higher pmin).

IV. NETWORK DESIGN CONSIDERATIONS

One of the main advantages of the proposed scheme is that it can
provide high flexibility for network designers to choose arbitrary radio
propagation and demand patterns by selecting proper structures of
matrices A and D. In the following, we describe in more detail the
role of these matrices in the network design process.

Fig. 2. Example of representing the demand levels using color codes on a
real map.

A. Design of Propagation Pattern Matrix A

Propagation pattern matrix A describes the power propagation and
path loss model for the BS antenna. An example of matrix A is

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 4 5 6 6 6 5 4 3
4 5 7 9 10 9 7 5 4
5 7 11 17 20 17 11 7 5
6 9 17 33 50 33 17 9 6
6 10 20 50 100 50 20 10 6
6 9 17 33 50 33 17 9 6
5 7 11 17 20 17 11 7 5
4 5 7 9 10 9 7 5 4
3 4 5 6 6 6 5 4 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (14)

The numbers represent the power attenuation due to path loss for an
omnidirectional antenna. The numbers are normalized, starting with
100% at the center. Basically, any other propagation patterns can be
represented by choosing proper values inside A.

B. Design of Demand Pattern Matrix D

Demand pattern matrix D plays a major role in the design of
wireless networks using the proposed approach. It gives the designer
the flexibility to choose any arbitrary demand patterns. Fig. 2 shows
an example of a color-coded map that represents the coverage demand
pattern in different parts of a real map. Each color represents a level
of demand. In this example, the regions in green have the highest
demand. Blue and white represent the high- and normal-demand
regions, respectively. Red represents the no-demand regions, within
which, the algorithm should avoid placing BSs.

The algorithm then interprets this colored map and builds demand
matrix D with values that are proportional to the demand level.
The positive values in D would result in high consumption in Yn

[see (10)] and therefore will be chosen first for BS locations. On the
other hand, regions with no demand are reflected by negative values
in D. Consequently, these regions will have low consumption, and
therefore, the algorithm will avoid placing BSs at these locations.
Finally, normal demand is represented by zero values in D. This choice
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is intentionally made to further reduce the computation complexity, as
will be described in Section VI.

Using this color-coding technique, network designers can set any
arbitrary levels of demand. Although the example in Fig. 2 shows only
four demand levels, this number can be increased, as desired.

C. Penalizing Boundaries of the Demand Grid

Since the design space is always provided as a confined rectangular
region, demand matrix D needs to be surrounded by a negative frame
value w, as illustrated by the following example:

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

w w w w w w w
w −5 −5 0 0 0 w
w −5 −5 0 0 0 w
w −5 0 +10 +10 +5 w
w 0 0 +10 +10 +5 w
w 0 0 +10 +10 +5 w
w w w w w w w

⎤
⎥⎥⎥⎥⎥⎥⎦

. (15)

The purpose of the penalty w is to push the locations of the BSs
inward and therefore increase the coverage efficiency. The value of w
is chosen using a simple line search. In the case of a tie, the algorithm
will pick the value of w that results in the higher pmin. This way, not
only will the number of stations be minimized, but the minimum power
will also be maximized, reflecting an improved overall coverage.

V. OPTIMIZATION OF THE TRANSMISSION POWER

After assigning the BSs, their transmission powers can now be
adjusted. A simple and efficient gradient-based algorithm is used to
adjust these powers. In each iteration, the power of each station is
reduced by a fixed amount, and the corresponding change in total
coverage is measured. The station that has the minimum effect on
coverage is chosen for power reduction. This process is repeated until
the reduction in coverage can no longer be tolerated. In the simulation
section, we implement this scheme and show that it results in an
optimal relation between the transmission power and the total radio
coverage.

VI. COMPUTATION COMPLEXITY

In this section, the computation complexity of the proposed ap-
proach is highlighted. From the preceding discussions, the proposed
scheme has an outer loop and an inner loop. The outer loop searches
for the optimal frame value w∗, whereas the inner loop implements the
algorithm in Fig. 1 to find the location of the BSs.

For the outer loop, a simple line search was found to be sufficient
for finding w∗. The search is limited to the integer values in the range
[wmin − 0]. Still, a more efficient search algorithm could be adopted
to find this value.

In the inner loop shown in Fig. 1, the only computationally expen-
sive operation is the convolution A ⊗ Pn−1. The cost of the convo-
lution operation can substantially be reduced from m2 to m log(m)
using available fast convolution techniques [9]–[11]. This feature
makes the proposed solution feasible, even for large grid sizes. In
Fig. 3, we show the simulated and theoretical time needed to assign
one BS using fast convolution averaged over 100 runs. This feature
makes the proposed approach highly efficient, even for large grid sizes.

In addition, there are two features inherited in the proposed ap-
proach that can further reduce the complexity of the solution.

1) Since normal demand is represented by zero values in D and
since P0 = −D, power matrix Pn usually starts full of zeros.
This matrix is then filled up with nonzero values as new BSs

Fig. 3. Time needed to place a single station as a function of the grid size m =
I × J using fast convolution. The analytical fit is obtained from ρm log(m),
where ρ is a constant related to the machine’s processing time.

are assigned. Therefore, the sparsity of matrix Pn can be ex-
ploited while computing the convolution to reduce the number of
complex operations. For example, zero elements can be avoided
while computing the convolution.

2) The search space for locations reduces as new BSs are assigned.
Therefore, the number of complex operations in the convolution
can substantially be reduced by ignoring those locations already
meeting the coverage requirement.

The savings in computations achieved by the proposed approach al-
lows for the consideration of other design parameters, such as antenna
height, direction, and frequency planning.

VII. SIMULATION

In this section, we demonstrate the performance of the proposed
placement algorithm through some examples. Matlab was used to
implement the algorithm on a 2.1-GHz personal computer with
256 MB of memory. The Matlab program provides a friendly user
interface. It inputs a color-coded map, which is similar to that of Fig. 2,
in a common image format (JPEG) and then constructs the corre-
sponding demand pattern matrix D, following the process described in
Section IV-B. It also constructs A from the antenna parameters set
by the user. It then computes the number of BSs and their locations
and shows them on the color-coded map. The program also returns
the final minimum power pmin and the percentage of coverage of each
assigned BS.

In our simulations, the size of matrices D and A is fixed at 41×61
for each (corresponds to 2501 possible locations). Furthermore, the
power threshold is arbitrarily fixed in all simulations to α = 1%.

To test the proposed approach, the same problem as that in [8] and
[7] is considered. In this problem, a configuration of seven hexagonal
cells is to be covered with omnidirectional antennas having the same
radius as the cells. The solution for this problem is obvious; exactly
seven BSs are needed, which should be located at the centers of the
cells. To implement the proposed approach, the edges of the seven cells
are drawn using a popular drawing software and then directly fed to
the algorithm. The walls are mapped as large positive values in D. The
results are shown in Fig. 4. The algorithm achieved 99.7% coverage
in seven iterations. Solving the same problem with genetic algorithm
(GA), for example, would need more than 1000 generations to get the
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Fig. 4. Solution of the seven hexagonal cells problem.

TABLE I
EXAMPLE OF COLOR CODES AND THEIR CORRESPONDING

VALUES INSIDE DEMAND MATRIX D

Fig. 5. Result of the placement problem with omnidirectional antenna and a
given demand map.

same coverage [8]. Furthermore, the fact that the model can be built
by simply drawing the cell boundaries and feeding the drawing to the
algorithm makes the proposed approach much more attractive when
compared with the cumbrous modeling process demanded by the GA.

Next, the nontrivial example of Fig. 2 is used in simulation. The
numerical weights assigned to the four demand colors in this example
are listed in Table I. Again, an omnidirectional antenna is assumed.
Fig. 5 shows the resulting placement of the BSs. In this case, six
BSs were sufficient to meet the coverage requirement. Notice that, as
expected, the first BS was located at the green region (corresponds
to the very high demand region). In addition, the algorithm avoided
the placement of any BS at the red region (corresponds to the no-

Fig. 6. Percentage of coverage (PC) and accumulative percentage of coverage
(APC) for the BSs in Fig. 5.

Fig. 7. Optimum total coverage in terms of the total power consumed by all
stations (in percentages).

demand region). The minimum power returned by the algorithm is
pmin = 1.0724, which is just above the required power threshold
α = 1. The optimal frame value w∗ in this example is −86. The
percentage of coverage and accumulated percentage of coverage for
this example are shown in Fig. 6. The second BS covered about 40%
of the area, whereas the sixth BS covered about 1% only. This means
that, if 99% of the total coverage is sufficient, then the sixth station
can simply be removed. The algorithm returned the results in less than
2 min.

The transmission power is then optimized using the scheme de-
scribed in Section V. The resulting optimal relation between the
total covered area and the total power consumed is shown in Fig. 7
(measured in percentages of full scale). The result is challenged by
comparing it with thousands of randomly generated points that span
the whole power range. It is clear that the proposed gradient-based
scheme produces the optimum power behavior, i.e., the minimum
reduction in coverage for the maximum reduction in transmission
power. As a numerical example, suppose that it is desired to reduce the
total transmission power to 54% of the full scale. Then, from Fig. 7,
the total coverage will be reduced to 90% of the full scale. For this
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case, the algorithm results in the following optimum transmission pow-
ers for the five stations: {70.00%, 0.00%, 60.00%, 80.00%, 60.00%}.
Notice that the second station can now be removed since it no longer
contributes to the coverage.

VIII. CONCLUSION

In this paper, we have proposed a novel approach for the placement
of wireless BSs. The proposed approach computes the number of BSs,
their locations, and the transmission powers that satisfy the power
coverage requirements. The proposed approach provides a flexible
means for choosing arbitrary power propagation and demand patterns,
making it potentially suitable for real applications. The proposed
approach uses the 2-D convolution as a core process. This results in
substantial reduction in complexity by utilizing available fast methods
for computing convolution. Simulations of the new algorithm show its
efficiency and flexibility in solving wireless placement problems.
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Optimal Frame Splitting for Downlink MIMO Channels
With Distributed Antenna Arrays
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Abstract—A frame-splitting (FS) scheme is proposed to exploit spatial
diversity in the downlink wireless transmission from a base station (BS)
to a mobile station (MS) that has multiple receive antennas. The BS has
multiple geographically distributed arrays, each consisting of multiple
transmit antennas. The scenario comprises a number of downlink
multiple-input–multiple-output (MIMO) channels from different BS ar-
rays to an MS with mutually independent Rayleigh-fading processes.
A data frame from the BS for the MS is split into portions, which are con-
secutively transmitted from multiple BS arrays. For the FS transmission
scheme, the distribution of information capacity is formulated on the basis
of the FS fractional lengths of the portions. Analytical evaluation of the
outage probability reveals the optimal setting of FS fractional lengths for
the maximum diversity advantage based on knowledge of the long-term
average signal-to-noise ratios (SNRs) of the downlink MIMO channels.

Index Terms—Distributed antennas, diversity, multiple-input multiple-
output (MIMO), outage capacity, Rayleigh fading, Wishart matrices.

I. INTRODUCTION

Deploying multiple antennas is an effective means to improve
the performance of wireless communications. Multiple transmit and
multiple receive antennas are installed to construct a multiple-input
multiple-output (MIMO) wireless channel. Analysis of the information
capacity distribution of a MIMO channel in [1] and [2] suggested a
great increase in spectrum efficiency. Transmitting independent data
streams in parallel through multiple antennas (for example, the Bell
Laboratories layered space–time architecture (BLAST) [3]) exploits
the high spectrum efficiency of the MIMO channel. This effect is
known as spatial multiplexing [4].

The distributed antenna system (DAS) was proposed in [5] and [6].
Instead of being colocated at a wireless base station (BS), multiple
antennas are deployed at geographically dispersed locations within
a wireless service area and are connected with a central BS by
fiber/coaxial cables. From the viewpoint of wireless system architec-
ture, the DAS brings many benefits, such as a reduction in transmission
power, tolerance to large-scale fading, and improvement in link quality
and coverage [5]–[7].

To gain the benefits from both the MIMO channel and the DAS
wireless architecture, the antennas that are deployed at dispersed loca-
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