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Abstract

In this paper, the problem of determining the optimum number and locations of banking automatic

teller machines (ATMs) is considered. The objective is to minimize the total number of ATMs to

cover all customer demands within a given geographical area. First, a mathematical model of

this optimization problem is formulated. A novel heuristic algorithm with unique features is then

developed to efficiently solve this problem. Finally, simulation results show the effectiveness of this

algorithm in solving the ATM placement problem.
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I. INTRODUCTION

Facility location problems are classical optimization problems that have numerous ap-

plications, especially in the service industries. Examples of these applications include

optimal location of gas stations, health care units, warehouses, police stations, and power

plants. Facility location models determine the minimum-cost location of a set of facilities

to satisfy a set of demands (customers), subject to a set of constraints.

Automatic teller machines (ATMs) are among the most important service facilities in the

banking industry. Since their appearance some 35 years ago, ATMs have literally changed

the face of banking. The number and impact on the banking and retail business is growing

steadily. The number of ATMs in the United States grew from only 25,000 in 1981 to more

than 150,000 in 1999 [1]. While most of these ATMs are located at banks, there is a growing

number of ATMs located off-premises. Bank Network News magazine [2] reports that the

number of off-premise ATMs in the U.S. jumped from 28,700 in 1994 to 67,000 in 1997.

There are many factors that banks take into consideration in order to determine location

priorities for ATM sites. According to [1], the concerned bank must first determine if its

main objective of placing a new off-premise ATM is visibility or free income. The usual

first step is to determine where potential customers live, where they work, and what main

roads they use [3]. Customer surveys as well as geographic, demographic, economic, and

traffic data are useful for answering these questions. Other considerations include safety,

cost, convenience, and visibility. Quite often, malls, supermarkets, gas stations, and other

high-traffic shopping areas are prime locations for ATM sites. In this paper, the priorities

for different potential ATM locations will be assumed given, based on a-priori analysis of

all the applicable factors.

As recently surveyed in [4], the literature on facility location models and algorithms is

quite large. However, attention to bank ATM location has been scarce. Assuming ATMs
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are placed only in bank branches, ATM location could be merged with the branch location

problem. In this case, bank branch location approaches described in [5], [6], and [7] become

applicable. The work in [8] uses queueing analysis to evaluate the workload and congestion

at existing ATM locations, in order to determine in which locations to install additional

ATMs. Few authors consider off-site ATM location, but only as an example within a

larger given class of service facilities, such as discretionary service facilities, hierarchical

commercial facilities, and immobile service facilities with stochastic customer demands.

Another study developed models and algorithms for what they called ”discretionary service

facilities”, such as gas stations and automated teller machines [9]. Generally, customers

do not regard these facilities as end destinations, but they will use their services if they

pass by them on their way on planned trips from one location to another. In [9], two

equivalent integer programming models were formulated to locate N facilities in order to

maximize the potential customer flow. The study also developed a greedy heuristic and

a branch-and-bound algorithm to solve this problem. Alternatively, the study determined

the minimum number of facilities required to a intercept the flow of a given fraction of

customers. This problem was extended in [10] by allowing the service facilities to be

congested.

In this work, we propose a completely new approach of solving the ATM location prob-

lem. The new approach differs from the previous ones in three aspects. Unlike previous

approaches which demand speciality and complex model building process, the new ap-

proach uses very simple user interface to build the model. Second, the solution in the new

approach is obtained using a simpler and more efficient mathematical technique. Lastly,

the new approach allows any arbitrary service demand pattern and any service degradation

model, allowing it to be more applicable to real-life problems.

The remainder of this paper is organized as follows. Definition of the service and demand
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patterns used in this study are described in the following section. The ATM location

problem is formulated in Section III. The solution algorithm is described in Section IV

followed by simulation and verification in Section IV-C.

II. Design Considerations

The main advantage of the proposed scheme is that it provides high flexibility for lo-

cation specialists to choose arbitrary service and demand patterns by selecting proper

structures of the matrices A and D. In the following, we describe in more detail the role

of these two matrices in the model design process.

A. Role of the Service Pattern Matrix A

The service pattern matrix A describes how the quality of service changes as customers

move away from the machine. Fig. 1 shows a simple illustration of a 5 × 5 matrix A. In

this example, the service level starts with 100% at the center cell and then decrements

inversely-proportional to the Euclidian distance from the machine. Another example of

a rectilinear distance relation is shown in Fig. 2. Fig. 3 shows the contour plots of the

two matrices. Using a similar approach, many other service patterns can be designed

by choosing proper values of the matrix A. In general terms, the algorithm allows any

arbitrary pattern of A which makes it suitable for modelling real location problems.

A =




26.1 30.9 33.3 30.9 26.1

30.9 41.4 50.0 41.4 30.9

33.3 50.0 100.0 50.0 33.3

30.9 41.4 50.0 41.4 30.9

26.1 30.9 33.3 30.9 26.1




Fig. 1. An example of the service pattern matrix A (Euclidian distance model).
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A =




0 10 40 10 0

10 40 70 40 10

40 70 100 70 40

10 40 70 40 10

0 10 40 10 0




Fig. 2. Another example of the service pattern matrix A (Rectilinear distance model).

a. Euclidian
10 20 30 40

10

20

30

40

b. Rectilinear
10 20 30 40

10

20

30

40

Fig. 3. Contour plots of the two service patterns in Fig 1 and 2

B. Role of the Demand Matrix D

The demand matrix D plays a major role in the placement of ATMs using the proposed

algorithm. It provides flexibility in choosing any type of desired demand pattern. For

the sake of illustration, Fig. 4 shows an example of a color-coded map that represents the

coverage demand pattern in different parts of an actual geographical region at the center

of Riyadh, Saudi Arabia. Each color represents a level of demand. In this example, the

regions with green color have the highest demand. The blue and white colors represent

high and normal demand regions respectively. The red color represents no-demand regions

where the algorithm should avoid assigning ATMs.

The algorithm then interprets this colored map and builds the demand matrix D. The

interpretation of the values of D is as follows. The high demand regions are reflected in D
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by positive values with magnitude that is proportional to the demand level. The positive

values in D would result in small contributions in Cn (see equation (10)) and therefore will

be chosen first for machine locations. On the other hand, negative values in D indicate

that these regions should be avoided. In this case,the convolution values in Cn will be

large and therefore the algorithm will avoid assigning machines at these regions. Finally,

regions with normal coverage priority will be reflected by zero values in the matrix D. As a

result, the matrix D will be mostly full of zeros since normal coverage is usually the default

case. The sparsity of the matrix D helps in substantially reducing the computations in

the proposed scheme as will be described in the next section.

Using this color-coding technique, designers can set any arbitrary number of relative

levels of demand. Although the example in Fig. 4 shows only four color codes, this number

can be increased as desired according to the relative demand levels on hand.

III. Problem Formulation

In this paper, the problem of finding the minimum number of ATMs and their locations

given arbitrary demand patterns is considered. In the following, the variables used in

modelling the placement problem are defined.
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Red: No-Demand

(Avoid)


White: Normal Demand

(Urban area, Campuses, schools, etc.)


Green: Highest Demand

(Malls, Business district,


Large population, etc.)


Blue: High Demand

(Highways, roads, etc.)


Fig. 4. Example of designing the demand levels on a real map using color codes

N Total number of machines.

sn(x, y) Service supply from the nth machine to location (x, y).

d(x, y) Service demand at location (x, y).

e(x, y) Difference between supply and demand at location (x, y).

α Service margin; a constant that specifies the difference between supply and demand.

Sn (I × J) supply matrix containing the discretized values of sn(x, y).

D (I × J) demand matrix containing the discretized values of d(x, y).

E (I × J) difference matrix containing the discretized values of e(x, y).

A (IA × JA) fixed matrix that represents the degradation pattern of the service quality

away from each machine

b Frame penalty value

Ln Location matrix indicating the location of the nth machine

(un, vn) Coordinates of the nth machine.

En Difference matrix after assigning machine n.

emin(n) Smallest element inside En.
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The objective of the placement problem is to minimize the total number of machines N

such that the service supply exceeds the demand by a fixed amount α all over a confined

2-D space Γ. In mathematical terms, we can write

min N (1)

such that

e(x, y)
∆
= max

n=[1,N ]
{sn(x, y)} − d(x, y) ≥ α ∀ x, y ∈ Γ (2)

The quantity sn(x, y) represents the service supply from the nth ATM to the user at coor-

dinates (x, y). This quantity is dependent mainly on the service pattern of the machine,

i.e., how the service level (SL) varies around an ATM machine. In most practical cases,

the service level by a certain machine decreases as we move away from that machine. We

assume here that the SL at any point is associated with only one machine that delivers

the maximum service. The SL received from other machines at this specific point will

be simply ignored. The term d(x, y) represents the service demand level at point (x, y).

Priority coverage, forbidden regions, streets and highways all can be incorporated within

this term.

The choice of the service margin α is dependent on the problem at hand. Large α means

that the supply will exceed demand by a large amount. Obviously, this will be at the cost

of increasing the number of ATM’s.

Discretization of the Model

To solve the placement model discussed above, the variables are first discretized into a

finite number of uniform grid points of size (I, J). The number of divisions in the grid

depends on the required resolution and available computational power. The variables

e(x, y), sn(x, y), and d(x, y) are discretized in 2-D Euclidian space to form the matrices

E, Sn, and D respectively. Therefore, the optimization problem can be written in matrix
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format as

min N (3)

subject to

EN(i, j) = max
n=[1,N ]

{Sn(i, j)} −D(i, j) ≥ α ∀ i, j (4)

where EN is the difference matrix of size (I × J) after assigning N machines, Sn is the

supply matrix of the nth machine, and D is the demand matrix.

The matrix Sn can be obtained from the convolution of two matrices as follows

Sn = A⊗ Ln (5)

where the symbol ⊗ indicates the 2-dimensional convolution given by the expression

Sn(i, j) =

IA
2∑

r=− IA
2

JA
2∑

s=−JA
2

A(r, s)Ln(i + r, j + s). (6)

The matrix A of size (IA × JA) is a fixed service pattern matrix of the machines. The

matrix Ln indicates the location of the machine n. If we denote this location by the

coordinates (un, vn) then Ln has all its elements equal to zero except at (un, vn) where it

is equal to “1”. In other words,

Ln(i, j) =





1 at (un, vn)

0 elsewhere.
(7)

For the sake of illustration, suppose that

A =




30 50 30

50 100 50

30 50 30


 and L1 =




0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0




. Then S1 =




0 0 0 0

0 30 50 30

0 50 100 50

0 30 50 30




.

The convolution values outside the range of the matrix Ln are simply truncated. Notice

that the objective of the convolution here is to surround the unique non-zero element in Ln
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with the service pattern matrix A. Therefore, the convolution operation in this case can

be performed very efficiently by simply centering the elements of the A matrix at (un, vn).

Notice also that minimizing the number of machines N is equivalent to minimizing the

summation norm of the location matrices Ln for all machines. In view of this fact, the

optimization problem can finally be written as

min ‖
N∑

n=1

Ln‖ (8)

subject to

EN = max
n=[1,N ]

{A⊗ Ln} −D ≥ αΘ. (9)

where Θ is a matrix full of ones. The representation of the placement problem in this

matrix format helps in borrowing useful tools from matrix theory to find a near-optimal

solution for this problem as will be discussed in the next section.

IV. Solution of the Placement Problem

The optimization problem given by (8-9) is solved in this study using a new and simple

heuristic approach. This approach turns out to offer high flexibility in choosing arbitrary

service and demand patterns. It also allows a simple human user interface modelling of

the problem and provides the solution in relatively short time. The solution approach is

described in the following.

First, the fixed service pattern matrix A and the demand matrix D are given by the

designer. Then, the algorithm will compute the service level contribution of every point on

the grid to its neighboring points in case the given point is chosen as a machine location.

This, off course, takes into account the given demand pattern. Then the point that results

in the highest neighborhood coverage is chosen as the new machine location.

After placing each machine, the matrix E is updated and the process is repeated to
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choose the next machine. The algorithm terminates when all the elements of E exceed

the service margin α or when the overall percentage coverage is satisfactory.

Fig. 5. The proposed solution algorithm.

A flow chart of the proposed algorithm is shown in Fig. 5. To determine the contribution

of each point on the grid to the service distribution within the grid in case it is chosen as

a machine location, the service pattern A is convolved with the existing difference matrix
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En−1 from previously assigned machines, i.e.,

Cn = A⊗ En−1, E0 = −D. (10)

The matrix Cn describes the contribution provided by the ATM when located at each

point in the grid to the neighboring points given the previous difference matrix En−1. The

role of the convolution here is as follows. For each point on the previous difference matrix

En−1, the matrix A is centered at that point and dot-multiplied with the intersecting

sector of En−1. The multiplication values are then summed up and the answer is stored

at the corresponding point in Cn. This convolution process is repeated for all other points

in En−1. Then, the coordinates that correspond to the minimum value of the matrix Cn

are then chosen as the location of the nth machine, i.e.,

(un, vn) = argmin
(i,j)

Cn. (11)

When a set of points give the same minima, the middle among these points is arbitrarily

chosen to break the tie.

To understand the motivation behind this choice, suppose first that the space has equal

demand all over the area. If n − 1 machines are already placed, then En−1 will have

large positive values of SLs around these machines. When A is convolved with En−1, the

convolution values will be smallest at the location that is farthest away from the previous

n − 1 machines. Consequently, (11) will chose this location for the next machine. This

guarantees that the new machine will be placed at locations with poorest service.

Now suppose that a certain area has higher demand than others. In this case, negative

values can simply be assigned in the corresponding regions in D. Since E0 = −D, the

convolution at these locations will be smallest and therefore they will be chosen first by

(11) as machine location. In this way, the matrix D can be designed to fulfill any arbitrary

demand patterns.
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Once a new machine location is computed, the location matrix Ln is constructed from

(7). The difference matrix is then updated as follows

En = Qn −D, n = 1, 2, ...., N (12)

where Qn is the accumulated supply of service due to the machines: 1,....,n. The elements

inside Qn are obtained recursively from the expression

Qn(i, j) = max {Qn−1(i, j), Sn(i, j)}, i = 1, ..., I, j = 1, ..., J, Q0 = 0 (13)

where 0 is the (I × J) zero matrix.

In summary, given the service pattern and demand matrices A and D, the location of

the machines is determined by iterating equations (10-12) starting from E0 = −D. The

algorithm terminates when the constraint (2) is satisfied, or equivalently, the minimum

difference: emin(n)
∆
= min {En} exceeds the margin α. The algorithm then returns the

total number of machines N, their locations, and emin.

A. Penalizing Boundaries of the Demand Grid

Based on the discussions above, the proposed algorithm tends to assign machines at

the boundaries of the covered area so that they will be farthest apart from each other.

This will be at the cost of increasing the required number of machines. This problem

can be resolved by augmenting one frame of penalty b around the demand matrix D as

shown in Fig. 6. The main objective of this frame value is to push the machines inside

the demand area. The optimal value of b is usually a positive number that depends on

the size and content of the matrices A and D. The frame value can fine-tune the solution

by improving the total coverage for the same number of machines. In this work, an outer

loop is performed that implements a simple line-search to find the optimum frame value.

In Section VI, we show a numerical example on deciding this value.
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D =




b b b b b

b 10 5 −10 b

b 5 5 −10 b

b 0 0 −10 b

b b b b b




Fig. 6. Illustrative example of a demand grid surrounded by the penalty constant b

B. Percentage Coverage of the machines

The algorithm also computes the percentage coverage for each of the machines as it as-

signs them one-by-one. After placing each machine, the accumulative percentage coverage

(APC) is computed as the number of grid points in En that have SL greater than the

margin α divided by the total number of grid points in En. The percentage coverage (PC)

is then evaluated by simply computing the change of APC values from one assigned ma-

chine to the next. The algorithm returns both PC and APC with the solution as we shall

show in the simulations section. The PC is essential information in locating the ATMs.

One example of utilizing this information is to eliminate those machines with negligible

percentage coverage, resulting in an overall cost reduction.

Another important issue in this problem is to determine the percent of total demand

satisfied which can be defined as follows

Υ =

∑
i

∑
j |B(i, j)|∑

i

∑
j |D(i, j)| (14)

where

B(i, j) =





D(i, j) if EN(i, j) > α

QN(i, j) otherwise
(15)

determines the demand covered by the ATMs. Unlike APC which considered number of

points covered, Υ indicates how much demand is covered.
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C. Solution Verification

The ATM placement problem is usually NP hard and its solution cannot be found

analytically. Therefore, numerical methods are used for verifying the proposed algorithm.

First the algorithm is implemented on simple models where solutions are known and the

results are then compared [11]. Second, solution is verified by performing an exhaustive

search on all possible locations. The search challenges the algorithm by trying to find one

of the following

1. a lower number of ATMs that meets the service level requirements.

2. a different location of the same number of ATMs that provides better service coverage

(higher emin).

For example, suppose that the proposed algorithm gives a minimum number of ATMs

equal to 5 together with their near-optimal locations. First, the exhaustive search will

try all possible location combinations on the grid to locate 4 ATMs such that the service

requirement is satisfied, i.e. emin > α. Next, the exhaustive search will also try to locate 5

ATMs in different places than those given by the algorithm to get a higher value for emin.

If both tries fail, then the algorithm can be claimed to achieve an optimal solution. For

the exhaustive search, a reasonable grid size is used to make it computationally achievable.

Solutions found by the convolution algorithm matched those found by exhaustive search

for a set of 6 small problems.

Furthermore, the heuristic solutions have been compared to the optimum solutions

produced by integer programming (IP) and exhaustive search. Comparisons with IP were

limited to a set of 4 small test problems because optimum IP solutions are hard to attain for

larger problems. In all 4 cases, the heuristic solutions matched the optimum IP solutions.

V. Computation complexity of the proposed scheme

In this section, the computation complexity of the proposed scheme is analyzed. From
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the discussions above, the proposed scheme has an outer loop as well as an inner loop. The

outer loop searches for the optimal scalar frame penalty value while the inner loop searches

for the optimal number of machines and their locations by implementing the algorithm of

Fig. 5.

For the outer loop, a simple line search was found sufficient to locate the optimal scalar

frame penalty. The search is limited to the integer values in the range [0, 500]. Still, more

efficient search algorithms could be adopted to find this value.

In the inner loop represented by Fig. 5, the only computationally expensive operation is

the convolution A⊗En−1. Row convolution costs m2 multiplications where m is the number

of grid points in the search space (m = I×J). However, this number can be substantially

reduced by utilizing available efficient schemes for computing the convolution. An example

of these schemes is the convolution theorem which reduces the number of multiplications

to m × logm if m is a power-of-two. In addition, there are two observations that can

further reduce the complexity of the convolution operation as follows.

1. The matrix En usually starts with a structure that consists mostly of zero elements

(corresponding to normal demand in D). This matrix is then gradually filled up with non-

zero values as new machines are assigned. Therefore, the sparsity of the matrix En can be

exploited while computing the convolution to reduce the number of complex operations.

For example, there is no need to compute the convolution in regions of En with zero values.

2. The search space for optimal locations decreases as new machines are assigned. There-

fore, the number of complex operations in the convolution can be substantially reduced

by ignoring those locations already meeting the coverage requirement.

VI. Computational Experiments

In this section, we demonstrate the performance of the proposed ATM placement algo-

rithm through simple illustrative examples. Matlab was used to implement the algorithm
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on a 2.1 GHz personal computer with 256 MB of memory. The Matlab program provides

a friendly User Interface (UI). This interface is used to input a color-coded map in a com-

mon image format (JPEG) to automatically generate the corresponding demand matrix

D. It is also used to input the service pattern matrix A from the user with arbitrary size

and values. It subsequently computes the number of machines and their locations and

then shows them on the color-coded map. The program also returns the coordinates of

the machines, emin, and the percentage coverage (PC) of each assigned machine.

In our experiments, the size of the matrices D and A is fixed to 41 × 41 for both

(corresponds to 1681 possible locations). Furthermore, the service margin is arbitrarily

fixed in all instances to the normalized value α = 1. We consider first the placement

problem where the demand is the same for all points on the grid. This corresponds to

D = 0. A rectilinear distance model is used to represent the degradation of service around

the machines. Such model is common to represent street traveling distances in urban

setting. The results are shown in Fig. 7. As expected, the machines were placed uniformly

across the demand area starting from the center of the region. The number at the center

of each segment indicates the order by which the machine was assigned. In this example,

the number of machines needed to cover the entire area is 5 machines. The PC and APC

of the assigned machines are shown in Fig. 8. Machine number 1 covered 66% of the whole

area, while the other four machines covered 8.5% each.

In another experiment, we changed the demand matrix to include a region of high

priority coverage. This region could be a bank, a shopping center, or a highly populated

area. The region is simply drawn in a specific distinct color which is interpreted by the

algorithm as high demand region. The algorithm then finds the solution and the results

are shown in Fig. 9. In this case, the first machine assigned was moved to cover the

high demand region first. The next machines were then assigned to cover the remaining
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5

Fig. 7. Result of machine assignment over an area with uniform demand.

uncovered areas.

Another case considered a mesh of roads from a real city map. The roads are redrawn

with a unique color. The algorithm reads the map and interprets this new color and

assigns it an appropriate value in the matrix D. The solution is shown in Fig. 10. Notice

that the first machine was assigned next to the road in a way as to enclose as much road

distances as possible. The next machines were then assigned the same way.

Finally, an actual map for the down-town area of Khubar City in Saudi Arabia is

considered. The map is shown in Fig. 11. The green regions are the shopping areas, the

pink and blue lines are the main roads and the red area is the avoid-region. In this case,

the grid resolution is 75× 75 pixels. The algorithm is implemented for this configuration
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Fig. 8. Percentage coverage (PC) and accumulative percentage coverage (APC) for the machines in Fig. 7.

and the results are shown in Fig. 12. The percentage coverage is also shown in Fig. 13.

The results are returned within 20 seconds. Looking closely at the results, we notice the

following.

1. The 18 ATMs placed by the algorithm covered about 95% of the total demand space.

2. According to (14), the percentage demand coverage is 99.6%. This means that the

remaining uncovered 5% of the demand space is not much significant.

3. The shopping areas are covered first by the algorithm as expected.

4. The remaining ATMs are located at the intersections of or along the main roads.

5. No ATM was placed at the avoid-region.

To choose the optimal frame value b, we considered again the map shown in Fig. 9. The

number of machines is fixed to the optimum value (five machines). Then, the coverage

of the machines is computed for different values of b. Fig. 14 shows the resulting total

percentage coverage as a function of b. As we increase b the machines are pushed towards

the center of the region increasing the contribution of the machines at the edges. After a
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Fig. 9. Result of the placement problem with high demand region.

while, the machines are too much pushed that the regions at the edges are not covered.

This causes the coverage to drop rapidly. This pattern is typical in all scenarios tested.

In this example, the optimal value of b is 280.

In another test, we investigate numerically the computational complexity of the proposed

approach. As mentioned earlier, the main advantage of using the convolution as a core

process in the proposed algorithm is that there exists many ways of efficiently computing

it. For example, the convolution theorem reduces the number of complex operations from

m2 to m log(m), with m being the grid size of the map (m = I × J). The processing

time for the proposed algorithm is proportional to the convolution complexity. In our

simulations, we made use of the convolution theorem to reduce the processing time of the
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Fig. 10. Result of the placement problem for a mesh of roads.

algorithm. In Fig. 15, we show the processing time needed to assign a single station2 for

various values of the grid size m. The theoretical fit is also shown for comparison purpose.

Clearly the processing time is reduced to the order of m log(m) resulting in a substantial

saving in computations.

VII. Conclusion

In this work, we proposed a new approach for the placement of automatic teller machines

(ATMs). The approach computes the minimum number of machines as well as their

locations that satisfy the service level coverage requirements. It does so by implementing

a new heuristic solution that is based on the 2-dimensional convolution. The proposed

2That is the same time required to go through one round of Fig. 5.
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Fig. 11. Down-town area of Khubar, Saudi Arabia. Green: Shopping areas, Blue and Pink: Main roads,

Red: Avoid-region.

approach provides a flexible means for choosing arbitrary service models and demand

patterns, making it suitable for real applications. Experiments with the new algorithm

show its efficiency and flexibility in solving ATM placement problems near-optimally.
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