Contents

Abstract

 3

1. Introduction

1.1. Aim and Main Objectives of the Study

2. Literature Review
2.1. Methods for Integrating Distributed Heterogeneous Databases
2.2. Weakness in Integrating Distributed Heterogeneous Databases
2.3. Methods for Integrating Heterogeneous Databases in a Grid Environment
2.4. Weakness in Integrating Heterogeneous Databases in a Grid Environment
2.5. The Need of a Model for Integrating Heterogeneous Databases in a Grid Environment
2.5.1. Data Mapping and Loading Model
2.5.2. Data Redundancies and Anomalies Model
2.5.3. Justification of an Adopted Methodology with Grid Environment
2.6. Study of Mathematical Data Mapping Methodology
2.6.1. Composition of Functions
2.6.2. Types of Functions
3. Data Mapping and Matching Algorithm
3.1. Overview of Value Correspondences in Staging Schema
3.2. Constructing Mapping Algorithm
3.3. The Core Mapping Algorithm
3.4. Implementation of Data Matching SCAT
3.5. The Core Matching Algorithm
3.6. Semantics of Data Matching Algorithm
3.7. Initial Experimental Test Results
4. Comparative Studies

5. Importance of the Algorithm
6. Conclusion
7. Development to the PhD Phase
7.1. Data Loading Log Profile
7.2. Implementation of Data Mapping and Matching
7.3. Testing of the Proposed Algorithm
8. References………………………………………………………………………. 11

Abstract

With the proliferation of international standards for grid-enabled databases, the need for data loading and data mapping in a large integrated environment of heterogeneous databases highlights issues of consistency and integrity. Discussion is required semi-autonomous data integration methods by focusing on an efficient data loading design and effective mapping algorithm. In order to upload and integrate data from various small to large size data repositories, an intermediate staging facility is employed to temporarily store data before it is validated to ensure accurate and useful integration into the target data source. It is necessary to propose a mechanism that semi-automates the integration process that includes not only new data, but legacy data as well. This research expands the integration notion of a database management system (DBMS) to include the data matching, the actual data transfer or data transformation processes. The DBMS now must perform the task of data mapping in the form of value correspondences by using a staging schema or staging DBMS mapping procedure. A generic strategy is adopted to consolidate distinct catalogue schemas of federated databases to access information seamlessly. This strategy involves matching of structure objects and data values across federated databases in a grid environment.
1. Introduction
Data loading and data migration are being used in many modern applications such as Enterprise Resource Planning (ERP), data warehousing, global information systems and electronic commerce. Practices in relation to the data warehouse approach cover the acquisition, extraction, transformation, and loading of the data into a centralised repository, which can then be queried using a unified query interface [2, 11]. Currently, the role of data integration [11] and loading requires more attention in grid environment when using heterogeneous diverse data sources. Loading data is today a largely manual (and extremely difficult) and ad-hoc process. Transformation of the data is accomplished by complex programs, hand-written or pieced together by specialised tools (e.g., for data warehouses), and these programs must then be carefully tuned to get reasonable performance [1]. These kinds of manual and ad-hoc processes are not widely applicable in the grid, where applications must evolve autonomous integration and sharing of heterogeneous diverse data.

The aim of this research is to perform mapping and matching evolving careful considerations when data is dynamic, inconsistent or when data comes from non-volatile data sources. In such situations, mapping will help in analysing data to make ready most of data as required in target schema. Additionally, it aims to introduce a methodology in which data which is unable to load into target database schema will be filtered out. This methodology covers mapping's analytical issues and possibly reduces the issues of manual and ad-hoc processes of data loadings. By simplifying the task of mapping creation, makes it possible for DBMS to play a broader role in new applications, not merely as provider of a DBMS is introduced as an intermediate data storage or data source term as a Staging DBMS [7]. It stores data temporarily as required from diverse heterogeneous data sources and data is validated on it before transfer to other integrated DBMSs. Such validation requires an algorithm to prepare valid data as required in the target data sources. This research covers also the schema matching that is a process of identifying two objects that semantically relate while referring to mapping as the transformations between the objects. It means when data is accessed it will be transformed in the target source. If there are two or more than one accessing objects in the same or distributed data sources like DBMSs then it is necessary to define matching patterns (words, text or sentences) to access the correct objects with their properties.
A target database schema requires access to certain data from many objects (or elements of a schema) of various distinct schemas of databases with the help of common sources’ metadata. It is necessary to search the correct element with its correct properties with the help of various matching texts or sentences using locally provided data dictionary metadata objects in searching schemas, as described in the following section. For example, in Oracle DBMS data dictionary view, USER_TAB_COLUMNS can be used to list all the attributes of a table with structure characteristics. In IBM DB2, the same information can be obtained from SYSIBM.SYSTABLES. USER_TAB_COLUMNS is only recognised in the Oracle database whereas SYSTABLES is recognised in the IBM DB2 database. To overcome such non-generic deficiencies, it should aim to develop a uniform and generic catalogue mechanism that will be applicable in a grid environment (OGSA-DAI) of integrated heterogeneous DBMSs that is only possible by consolidating uniform metadata definitions discussed in section 3.4.
Background

DBMS first appeared in the 1960s and have been subject to rapid changes in concepts and technology for over thirty years. A DBMS is a computer system which is responsible for the storage and maintenance of databases [18]. A DBMS is essentially a software system but, in order to make the management of data more efficient, it may contain specialised hardware such as special disk drives that support faster access to the data, and multiprocessors that support parallelism [18]. Early databases moved toward centralization and resulted in monolithic gigantic databases in the seventies and early eighties, the trend reversed toward more decentralization and autonomy of processing in the late eighties. With advances in distributed processing and distributed computing that occurred in operating systems arena, research did considerable work to address the issues of data distribution, distributed query, transaction processing and distributed metadata etc. Most major vendors redirected their efforts toward developing systems based on client-server, or developing technologies for accessing distributed heterogeneous data sources. The concept of distributed systems has resolved the various integration issues but highlights the problems of heterogeneity and the needs of autonomy in federated or grid oriented database systems.
A number of definitions have been proposed for Grid. However, for the purpose of this research the grid is defined as an emerging infrastructure that supports the discovery, access and use of distributed computational resources [1], including data via OGSA-DAI (Open Grid Service Architecture – Data Access Integration). OGSA-DAI is a middleware product that allows data resources, such as relational or XML databases, to be accessed via Web Services (WS). Web services are software components designed to support interoperable machine to machine interaction over a network. By defining standard languages to present software interfaces, such as WSDL [35], and protocols that describe interaction mechanisms, it is possible for computers to communicate across organizational boundaries from a range of heterogeneous platforms. Grid Services (GSs) build upon and extended the service-oriented architecture and technologies first proposed for WSs [36]. An OGSA-DAI web service allows data to be queried, updated, transformed and delivered. OGSA-DAI can be used to provide web services that offer data integration services to clients. OGSA-DAI web services can be deployed within a Grid environment. OGSA-DAI thereby provide a means for users to Grid-enable their data resources [4].

The main objective of the OGSA-DAI initiative is to build upon the OGSA infrastructure to deliver added-value, high level data functionality for the Grid [32]. One of the major functionality of OGSA is to use notification feature that includes subscription to, delivery of, and event notifications as this research includes the concept of log files of data loading and matching.

This research is focused on the need of coordinated resource sharing and automated problem solving in dynamic, multi-institutional organizations. The sharing is not only limited to file exchange but rather access to resources like computers, software, data required to resolve collaborative problem-solving. This sharing is necessarily, highly controlled, with resource providers and consumers defining clearly and carefully just what is shared, who is allowed to share, and conditions under which sharing occurs. A set of individuals and/ or institutions defined by such sharing rules form what we called a Virtual Organization (VO). VOs enable disparate groups of organisations and/ or individuals to share resources in a controlled fashion, so that members may collaborate to achieve a shared goal [4]. Grid Computing has been described as “the infrastructure and set of protocols that enable the integrated, collaborative use of distributed heterogeneous resources and managed by multiple organizations, referred to as VO” [9].
In data integrated environment like OGSA-DAI, data is accessed and shared among diverse heterogeneous data sources like DBMSs. Data movement and data transfer is one of the key feature of OGSA-DAI [8]. A question rises how it is made successful that all or some data is transfer or load in target data source (s) in grid? To accomplish this it is necessary to adopt algorithms for analysing data in the form of mapping. Such that mostly data will be validated and corrected before it will be made available for data loading into data source(s). Due to large amount of data some data anomalies will remain stayed to verify. Such anomalies will filter out during data loading steps in the form of data loading log information. Later on, algorithms will identify data redundancies, anomalies and inconsistencies in grid's data sources.
A number of approaches have been proposed; one such approach advocates data can be loaded or transferred from source data set to another using SQL [1]. In practice this results failed to transfer the data if one or more records of source data contain inconsistencies and anomalies. This kind of approach is only useful if data is made compatible with target data source before performing transfer that is not possible because of a volatile updates occur in DBMS. In a research this approach is more effectively explained in example 1.1. A number of development efforts of searching similar pattern matching data have been done in a traditional distributed environment [11]. These efforts lack to compatible with the concept of OGSA-DAI and VOs where DBMSs are not heterogeneous. Section 3 elaborates the matching pattern search using heterogeneous DBMSs.
1.1 Aim and Main Objectives of the Study

The aim of the research is to

	develop a data loading methodology for managing data anomalies and data redundancies when integrating heterogeneous data sources in a grid environment.

To achieve this, the following objectives will be pursued:

	1. To review the methods of data integration of heterogeneous data sources: Review of data integration with particular reference to data loading and mapping techniques/ methods in a grid environment.

	2. To examine data loading and data mapping methodologies: To explore methodologies of source and target DBMS with the help of mathematical analysis.

	3. To develop an intelligent algorithm based on user perception: Intelligent algorithm will be developed in the light of mathematical analysis to manage data loading, data anomalies and data redundancies in a grid environment.

	4. To test, evaluate and refine the algorithm in a grid environment: Actual statistics will be gained using various sized data and used as a proof to refine the implemented algorithm. In fact, testing will aim to compare the accuracy of the refined algorithm with current methods of data integration in a grid environment.

Accomplishment of Proposed Plan of Work & Time Plan

The following tasks refer to the research objectives as stated above whilst Appendix A and B illustrate tasks timeframe.

To review the methods of data integration of heterogeneous data sources

A thorough understanding of data integration within the context of data loading and mapping/ matching is accomplished specific to explore issues data anomalies and redundancies. A state-of-the-art literature review identifies various traditional data integration methods’ with particular reference to data anomaly and data redundancy in the context of effectiveness of data loading in a grid environment. The state-of-the-art literature review includes research journal, conference and technical reports publications. This objective has been fully completed and the review is carried out on the latest research publications.

To examine data loading and data mapping methodologies

To develop a state-of-the-art research, work has been done from mathematical set theory as a methodology section 2.6. The research helps to explore and analyse the framework adopted for data loading methodologies specifically using the mappings of schema objects when integrating data sources. One of the methods has been using SQL with an adopted methodology of a mapping of source, target DBMSs in [1, 2] which has been studied thoroughly using mathematical methodologies. With the help of literature review and mathematical analysis alternative approaches have been examined. The first conference paper has been published in IEEE based on an accomplishment of mapping methodologies [7]. A summary of methodologies is discussed in section 2. Such state-of-the-art methodologies are applied in algorithm formulations in section 3. This objective has been completed.
To develop an intelligent algorithm based on user perception

Based upon the study of state-of-the-art methodologies, an algorithm has been developed for data loading, mapping and matching as given in section 3. With the help of an algorithm, draft programming/ pseudocode with case studies is developed to generate log files about data anomalies, data redundancies with descriptions to check validity of data load given in section 2.4. A Second IEEE conference paper has been accepted on an accomplishment of pattern matching methodologies [33]. This objective has been completed 60%. During the PhD phase, the remaining 40% will include final state-of-the-art pseudocode and its testing will continue.

To test, evaluate and refine the algorithm in a grid environment

The state-of-the-art pseudocode followed by software application to act as a test-bed to assess the intelligent algorithm developed will be executed in a grid environment. Based on the testing results and case studies of real-world scenarios, modifications will be done accordingly in the proposed algorithm. Statistical performance tests will be carried out to examine see the efficiency and effectiveness of the overall accomplishments. A nine-month period to perform the testing and modifications has been planned. The deliverables will be documented in a final thesis and submission of a journal paper. The PhD study will be completed by accomplishment of all objectives.
2. Literature Review
2.1 Methods for Integrating Distributed Heterogeneous Databases
The transformation of the data is accomplished by complex programs, hand-written or pieced together by specialised tools (e.g., for data warehouses), and these programs must then be carefully tuned to get reasonable performance [1]. There is a higher-level problem of the semantic integration of heterogeneous databases, which has been a subject of much attention over the past decades [28]. Some research work has been done in analysing and developing methods for semi-autonomous data integration by focusing on efficient design and possible effective mapping strategies. Data loading is defined as the process of loading existing data files such as text files or sequential files into a database [29]. As defined in [2], G represents global or target schema and S represents a source schema. A data transformation system Г is a triplet Г = (G, S, MG,S), where MG,S is a mapping between source (S) and target schema (G) of same or distinct database. This means that data is loaded or migrated from the source into a target data source with the help of mapping value correspondences from the source to target schema, and the structured query language (SQL) will be used to share or load data into target schema [1, 8, 20]. In a traditional distributed environment, some research has been done in analysing and developing methods for semi-autonomous data integration by focusing on efficient design and possible effective mapping strategies such as in [1, 2, 3].
Example-1.1: If Product is a table segment in a target schema and Item is a table segment in a source schema as shown in figure 1, then after value correspondences discussed in [1], data will be loaded using the following SQL

Insert into Product
Select * from Item; …………………………………………………………(1)

There is a fundamental presence of data inconsistencies or anomalies and data redundancies which have not been covered until now. Although, such anomalies are being resolved manually or with the help of ad-hoc queries by fixing data as per requirement of target schema's segment. There could be various scenarios to highlight such anomalies. Such as during execution of the above query if few source tuples have a larger attribute width as compared to the corresponding width size of an attribute of a target table Product then all of the tuples of the query will not be loaded into the target table. A success data load will be only possible if target's attribute width size would be enough to store data value or a decision would be taken whether source's attribute width is correct or not. In the recent manual work such kind of fixes are largely adopted. There is a chance of raising another data anomaly after fixing the last one. Such kind of fixing data anomalies will go on until all data mapping between the source and target schema are consistent.

[image: image1.png]B tem : Ta

tem# | Description Qty Price | SalesComm | Category ||
63489 King Mattress - Super Qualy 34 125 0A
63538 Single Chair - Regular 2 85 6C
66348 Domestic Sofa 7 E3 5

7|
* i i 0

Product :
tem# | Name | Gty [SalesPrice | Commision | Category

63459 King Mattress - Super Quality 34 1250 A
63536 Single Chair - Regular 2 50 [

66348 Dormestic Sofa 7 175

Figure 1: Schema state of Product and Item

In the above scenario, the following are the three mapping anomalies:

1. Width size of an attribute Product.SalesPrice is three, tuple with Item#63489 must be inserted into a target table product as a data value that exceeds the width of an attribute SalesPrice.

2. Tuple with Item#66348 must not be inserted into a target table Product due to Not Null constraint on an attribute Product.Category.

3. Although, tuple of Item#63536 is compatible to be inserted/ loaded into target table Product. It will only be inserted along with the other two tuples if their anomalies need to be fixed.

This query (1) does not load/ insert those tuples which are compatible with target segment along with one or more incompatible source tuples. It is clearly concluded that it is preferable to load/ insert those tuples which are compatible or do not have anomalies and produce log details for those tuples which are not compatible due to certain anomalies. Such a conclusion is a focused research focus in the form of a new proposed methodology as compared to an existing method.
When we access any schema of a database to find certain information or existence of some elements, how can we assure the information that extracted from an object is correct when such information exist in multiple source objects of schemas? In a grid environment, same or similar data values or information can be found in many data sets of federated databases. Such occurrences of information lead to the concept of existence of data redundancies and anomalies. There is a need to filter out the correct objects (matching pattern) where required information may exist. It is the most focused research work of exploring the redundant information in grid oriented databases. Then with the help of other matching techniques, one can access correct data as described in [11].

2.2 Weakness in Integrating Distributed Heterogeneous Databases
As described in [3], a user will choose an entity, define a projection on its column(s) and apply a condition if required. The user will choose another entity, defines a projection on its column(s) and confirms execution. The user will lastly receive all the projection columns defined on both entities with an automatic equi-join of both entities. This scheme of work will become more complicated when the user attempts to execute a complex query with equi-joins, sub-query and possibly with other set operators. Multiple data source access may be requested within one SQL statement.

It is found using SQL no bulk of data will be loaded if any inconsistency or anomaly of data occurs during the process of data loading or data migration.
In an existing traditional distributed environment ad-hoc programming techniques use log record of rejected data in the presence of data anomalies in [1, 2, 10] at small number of commonly agreed-upon standards. Example-1.1 highlights the steps required to validate the rejection of records due to anomalies.

Traditionally queries are used to search data from traditional integrated databases which takes more time and resources in searching through all data segments of databases. These and other similar pioneer techniques are not internet based systems which are not defined by sharing rules of VO and OGSA-DAI’s WS. In traditional environment, sharing information is often client-server and not peer to peer. This means sharing relationships or nodes are limited to local pooled resources and do not exist among any subset of participant.
2.3 Methods for Integrating Heterogeneous Databases in a Grid Environment
The key to progress in the coming years is to create an extensible and an open infrastructure that can incorporate these advances as they become available [4] such as an open infrastructure introduced in OGSA. In a grid environment, the data is usually distributed over heterogeneous data sources. Such data is managed, organised and reorganised locally by multi-vendors of the data sources, which have no ability to map or match data fully across federated DBMSs. Although, some of the features as discussed in 2.1 are required in a grid environment with additional capabilities.
The state-of-the-art research has reset a practical approach to overcome database heterogeneity via a concept of homogeneous or uniform methodology. While different classes of data may be generated at different stages in the scientific process, focusing here on structure data [23] as a relational model.
A VO is formed when “different organizations come together to share resources and collaborate in order to achieve a common goal”. Hence, the state-of-the-art research as a paradigm has an increased focus on the interconnection of resources mainly DBMSs and collaborates in order to achieve common goal of sharing information of VO [4].
As open Grid and WSs protocols become prevalent, business processes (enterprise resources) will become available on demand. Sharing can be provided on demand and resources can be utilized to achieve sharable common goals of VO like quality of service, scheduling, co-allocation etc.
In grid data integration methodology, transformation of data from file format to DBMS or relational standards using OGSA-DAI has been covered in research publications [24, 25, 26, 27].

2.4 Weakness in Integrating Heterogeneous Databases in a Grid Environment
In a grid data integration algorithm, transformation of data from file format to DBMS is adopted in [24, 25, 26, 27]. No methodology or an algorithm is found that supports the bulk data load with the help of mapping when distributed data contains inconsistencies and anomalies.
As OGSA-DAI provides an open infrastructure, web based and seamless data integration independent of knowing the physical infrastructure resources, most recent grid research has adopted the traditional methodologies of heterogeneous database environment [24]. In OGSA-DAI, no methodology is adopted to search matching patterns for redundant data especially when databases are very large using web services (WS).

In grid, some methodologies are adopted for specific domain and interface based toolkits like Bioinformatics [24, 30, 31], but the existence of data inconsistencies is not fully explored in VO context.

Existing research has reset a practical approach to overcome database heterogeneity. There is lack of using mapping concepts to produce the log profile or notifications of inconsistent data or anomalies. Different classes of data may be generated at different stages in the scientific processes, focusing here on structure data [23] as a relational model without including data anomalies.
Schema integration uses matching to find similar structures in heterogeneous schemas, which are then used as integration points in [11, 12]. Matching helps in exploring redundancies like structures and data values etc. It is only elaborated for traditional heterogeneous databases, and it can be applicable partially in grid but it requires a sophisticated methodology to fulfill implementation in grid.

2.5
The Need of a Model for Integrating Heterogeneous Databases in a Grid Environment
2.5.1 Data Mapping and Loading Model
In addition to the current methods, the proposed methodology and algorithm include completion of the following data mapping with key characteristics including:

1. Adopts the formal methods of value correspondences of mapping [1].

2. Allows loading/ inserting compatible tuples (mostly in large numbers) rather than holding them until all source tuples are made compatible with the target's structure.

3. Produces a detailed log of the whole process which indicates clearly the reasons of incompatible tuples. This helps the user to make decision regarding incompatible or inconsistent tuples which are rejected in loading data into a target segment.

These characteristics are value added (benchmarks) for grid's federated DBMSs as data is accessed and shared seamlessly which can compliance with OGSA-DAI.

Based on experimental results of a sample scenario, contents of a log file can be as follows:

SQL> EXECUTE ERP_0018_EXT_001.proc_extract_main

Resource ERP_0018_EXT_001 EXTRACTION

Started on : 30-mar-08 17:01:52
Total Records Processed : 55

Total Records Rejected for SP1_0018S1_WRK: 30

Total Records Rejected for SP1_0018S2_WRK: 0

Total Records Rejected for SP1_0018S3_WRK: 3

Ended On : 30-mar-08 17:02:11
PL/SQL procedure successfully completed.

SQL> select substr(ora_error,1,100) err_desc, count(*) count_err

 2 from SP1_0018S1_err

 3 group by substr(ora_error,1,100);

error_desc
 count_err

--- --------

ORA-02290: check constraint (EJAZ.S0018S1_CK_02) violated 3

Reference required TC23.PLANV 25

Reference required TC24.VERAN 2

The above contents of a data loading log file indicate the execution of a background processes. The process details are recorded in a file such that it contains start date/time and end date/time of a loading process. As indicated, it contains the total number of records (tuples) that are processed, number of records that are rejected by target data sets or tables due to constraints or anomalies. The rejected records are inserted in a corresponding metadata error table with an error description. An error description of each record is listed using indicated SQL.

2.5.2
Data Redundancies and Anomalies Model
Redundancy means that a matching attribute may occur in more than one data source segment during a search. Schema integration uses matching to find similar structures in heterogeneous schemas, which are then used as integration points [11, 12]. Matching helps in exploring redundancies like structure and data redundancies. For example, it may be possible that the same credit card number may appear in more than one federated databases. It can even appear in more than one relation of a schema(s). In one relation it appears as to keep master information to keep personal information of a card holder. The same credit card number appears in some relation with status as defaulter or fraud. Also, such occurrences can be found with the help of the above matching methodology using plug-in relations (2).

An issue of anomalies will occur if some information like attribute has a certain specific meaning in one object. Based on its corresponding match, it may be interpreted differently in other schema or data source segment. For example, the size of data values of the same matched attributes can be different. Similarly, conditional scenarios of ‘Male and Female, in one schema data values are ‘M’ and ‘F’ whereas in other corresponding schema data values could be ‘0’ and ‘1’. Exact match with respect to data and naming structure will result in redundant data. Partial match produces data anomalies issues. For example, using linguistic techniques, it might be possible to look at Client, ClientName and Ename instances to conclude that ClientName is a better match candidate for a client than Ename.

Language-based or linguistic matching uses names and text in the form of words or sentences to find semantically similar schema elements [10, 11]. Similarity of names or string can be defined, recognized and measured in various ways such as

· Equality of canonical or linguistic name representations using special prefix/ suffix symbols. For example, Client# (Client Number or ClientNo (Client Number.

· Equality of synonyms. For example, car (vehicle or car (automobile and make (brand or model

· Similarity of names based on common substrings, edit distance, soundex (an encoding of names based on how they sound rather than how they are spelled) etc. For example, CR_amount (Credit, ShipTo (Ship2, OrderType (ShipmentType, representedBy (representative

There is a need to store such similarities information for searching purposes.

Consider a set of heterogeneous databases (mainly DBMS) that are integrated through an intermediate staging DBMS. At both levels of DBMS software diversity – the tools and database levels – there exists the problem of communication between DBMSs software. The DBMSs usually do not understand or are unable to communicate with each other [3]. To resolve the heterogeneity problem, federated databases will communicate via a staging DBMS. Staging DBMS will provide a service to make large data sharing seamless. Such sharable data includes data loading, data transformations, data matching and temporary data storage services.

A user can access authorised information from one or more databases. A web interface is provided with a default connection with a staging DBMS. A user can write any ANSI standard SQL query on chosen database. A temporary storage buffer of the staging DBMS will be used to keep fetched data from any of the integrated databases.

Consider a function f that is directed from a staging DBMS to any federated database. Refer to figure 2 if x is a string initiated at staging database (X) that is searched from each integrated database (Y) then f can be mapped as

fn: X (Yn

The range Y may have more than one image of x (X, i.e., more than one domain match exists in range Y. The possible matched values will be mapped in a staging database X defined by function g as

gn: Yn (X

[image: image2.png]

Figure 2: Searching patterns of string element name from federated DBMSs.
For example, if a string name is being searched from each database, it will be searched from each schema and its objects contained in a database. The possible search patterns searched from federated DBMSs are Fname, name, Prodname shown in figure 2. When such an environment is a grid where data volume is very large, searching of such data through the whole federation of databases will consume lots of time or sometimes it would impossible to manage such search. To resolve such an issue of searching all grid objects, it is feasible to utilise metadata/ catalogue features of DBMS. That is every DBMS has features of metadata whereby a user can extract general information about the basic structures of database objects. Such information about the object structure can be element names, data types and constraints, etc.
The methods of accessing such metadata information are not generic in accessing heterogeneous DBMSs. Implementation of mapping requires a generic solution of accessing metadata information especially when DBMSs exist in a grid environment or DBMSs act as federated databases. To handle such conflicts of mapping implementation, introducing a new approach such that each federated DBMS must contains a customized public schema segment whereby read privileges of other schema objects are granted. Creating a schema for the metadata catalogue in a staging DBMS that is a replica of all federated metadata catalogues. Such a metadata catalogue in staging DBMS is termed as SCAT (Staging Catalogue) and it consists of following plug-in relations given in section 3.5.
2.5.3
Justification of an Adopted Methodology with Grid Environment
This section summarises how aimed research contributes to this body of knowledge.

Key contributions:

Data mapping and loading is adopted in a traditional distributed environment with the concept of value correspondences between global schema and the sources using SQL [1, 2, 3, 8, 20]. Referring to an example 1.1 of section 2.1, data cannot load or transfer from one source to another if data contains inconsistencies and anomalies. Due to limitation of SQL data is only loaded if SQL fetched data set does not have any anomaly to target source. This is a core drawback has been found in a traditional distributed environment. An algorithm of data mapping and loading refers to section 2.3, resolves such deficiency of rejecting whole set of SQL fetched data. It facilitates an analogy to filter out the rejected data with the error log of inconsistencies and anomalies, and correct data load or transfer into target source. A decision can be made to resolve inconsistent data before transfer into target source. This indicates an explicit evidence of advancement in a traditional distributed environment as described in sections 2.5.1, 2.3, 3.3, 3.7.

As grid technologies are based on a service-oriented architecture [4, 9, 36] such as OGSA-DAI, WS and VO, the seamless data transfer service provides operations for requesting transfer of data from one data source to another. The traditional data mapping and loading services require the features of grid components where services are seamless and autonomous. As WS is designed to support interoperable machine to machine interaction and promise to make available distributed access facilities, the implementation of an algorithm can be applicable using WS. The state-of-the-art algorithm will facilitate such a seamless data transfer using service orchestration WS and indicates that an adopted algorithm is equally applicable in a grid environment. This is another indication of an explicit evidence of advancement in a grid environment.

In a traditional distributed environment, schema integration is not simply straightforward translation between data definition languages. The same attribute names may appear in different distributed databases but with different meaning as described in section 2.5.2. Such deficiency of searching pattern algorithm found in a traditional environment [11, 34]. The techniques have been developed in the past 20 years but they need to be generalised for an implementation and for specifying the semantics of a mapping produced by the match operation. It is evident from section 2.4, the state-of-the-art research is an improved work which provides the algorithm and implementation of pattern search for exploring redundant data to find correct meaning of attributes from distributed DBMSs. Review and research shows that the proposed pattern matching algorithm is applicable in a traditional environment.

An adopted approach uses the facilities of the OGSA-DAI to dynamically obtain the resources like heterogeneous federated DBMSs for efficient matching of a pattern refers to section 2.4. These resources include WSs and customized metadata that is a pre-requisite for an execution of match operation. This assures pattern matching algorithm is applicable in a grid environment.

Furthermore, adopted approach assert that while Grid technologies are currently distinct from an existing major technology trends, such as internet, enterprise, distributed and peer-to-peer computing, these existing trends can benefit significantly from growing into problem space addressed by Grid technologies or environment.
Above list of contributions will be elaborated in more detail in later sections of this report.

2.6
Study of Mathematical Data Mapping Methodology
This section provides the summary of the basis of mathematical mapping which helps later in the implementation of the proposed algorithm in section 3. The concept of a function or mapping is one of the most basic ideas in every branch of mathematics and most of the contents of this section have been taken from [17]. A function is a rule of correspondence that assigns to each element x of a certain set (called the domain of the function) one and only element y in another set (called the range of the function).

Definition-1: Let x and y be two sets. A function from X to Y is a triple (f, X, Y) where f is a relationship from X to Y satisfying

(a)
Dom (f) = X

(b)
if (x,y) (f and (x,z) (f then y = z

Let f: X (Y be a function. If y = f(x), saying that y is the image of x under f and that x is a pre-image of y under f. This is shown in figure-1, 2

Note:
The range of a function needs not to be same as the image of the function that is

Image(f) = {f(x) | x (X}

Definition-2: Let f: X (Y be a function, and let A and B be subsets of X and Y, respectively. The image of A under f, which is denoted by f(A), is the set of all images f(x) such that X (A, or

f(A) = {f(x) | x (A}

2.6.1 Types of Functions

There are three important types of functions, which are

a. Injective Functions

b. Surjective Functions

c. Bijective Functions

(a) Injective Functions

A function f: X (Y is said to be injective or one-to-one, provided that

if
x1, x2 (X

with
f(x1) = f(x2)
then
x1 = x2
[image: image3.png]Source Database | | Staging Schema

temporany soues tables

o

Totsgrator
. T &

Data bading

o

S

—» EH B venweran

Global Schema

| eteriized views

2=z}

seferencatibls

2=z}

et

B oreing e
B cocrtae

Figure-3 depicts an injective function f.

Figure-3: Injective function

(b) Surjective Functions

A function f: X (Y is said to be surjective or onto provided that

if y (Y, there exists at least one x (X such that f(x) = y

This means f: X (Y is surjective (f(X) = Y

Figure-4 depicts a surjective function
[image: image4.png]Source Staging Target

Addess
5
Profussor 0
[—rT]
Student

Personneln

Paymate
——

Figure-4: Surjective function

(c) Bijective Functions

A function f: X (Y is called a bijection or said to be bijective if it is both injective and surjective. A bijection is also called a one-to-one correspondence.

[image: image5.png]Soutce () Staging Target (T9) Staging Target (To) Global Target (§)
—

35

Figure-5: Bijective function

Example-2.2: Let X be a set. The diagonal relation Δx on X is a function from X to X. When I wish to stress that the relation Δx is a function, use the alternate notation

 Ix: X (X

where Ix (x) = x (x (X

[image: image6.png]7@ i
h@)= @ fzee
z ifzes-C

The function Ix is called the identity function on X.
Figure-6: Identity function

2.6.2 Composition of Functions

Let f: X (Y and g: Y (Z be two given functions, where the domain of the second function is the same as the range of the first function. Imagine these two functions as two machines such as a washer and a dryer. It is not necessarily to be inventors to imagine the possibility of combining these two machines into one new machine and the result would be a washer-dryer combination that takes a dirty garment x, washes it so that it becomes a clean but wet garment f(x), and then dries it. The outcome is a clean and dry garment g(f(x)). The idea is illustrated in Figure-7.
[image: image7.png]W fxeT,zeT
Mgs =.

¢ ifzeT,

Figure-7: Composition of function from X to Z via Y.
The “combination” of the machine f: X (Y and g: Y (Z results in a new machine, denoted by h: X (Y, which takes an arbitrary object a in X and transforms it into the object h(x) = g(f(x)) in Z. The traditional notation for h is gof and

(gof)(x) = g(f(x))

the traditional name for the term “combination” is composition.
This entire section 2.6 elaborates the fundamentals of composition functions which will be utilised analytically in later sections where value correspondences and mapping are applicable.

3. Data Mapping and Matching Algorithm
In this section, the aim is to present a mapping and matching algorithm. To keep the notation simple, assume the source and target schemas are represented in the relational model.
3.1 Overview of Value Correspondences in Staging Schema

 A value correspondence is a pair consisting of a function and a filter in [1] and extending the concept by introducing an error message function. This means a value correspondence is a triplet, consisting of (1) a function defining how a value (or combination of values) from a source database can be used to form a value in the target, (2) a filter indicating which source values should be used [14], and (3) an error message function indicating the reason for which an error appears when placing a value in target attribute. An error function can be null if a value is placed in a target attribute. For example, a value of a product’s price attribute from a source may generate a value-error message while placing the value in a target schema, along with a filter that selects only active products. A value-error may indicate that the size of an attribute is larger than the target attribute or that the data type of source is not compatible with the target attribute’s data type. It is important to note that an error message function is generated for a particular attribute of a tuple. Also, this error message function must be stored and logged.

An iterative integration-by-example paradigm is proposed by introducing another middle-tier temporary schema called staging schema [15]. The emphasis is in the development of ontology or an algorithm, as a standardised method for developing temporary staging schema. A temporary staging schema may increase the usefulness of log information by noting the correspondences and filters of selected tuples that were bounced or rejected by target data segment. For example, data in staging schema can be used for analysis of data including how much data is loaded and the details of associated errors etc.

 The details of constructing a schema mapping from a set of values correspondent have been fully described in [1]. The process performs most reasonable mapping based on the properties of the correspondences, the properties of the schemas, and the schema or cues that lie buried in the data. Beginning with the same example 2.1 of paper [1] and introduce an extension through the development of an error message function using the concept of staging schema.

Example 3.1: The example 2.1 given in [1] by introducing the tracking of an error if the value correspondence of a tuple is bounced. Suppose a user or a program design has indicated that the product of the values in the PayRate(HrRate) and WorksOn(Hrs) attributes should also appear in Personnel(Sal). This value correspondence is represented by function f2 with an assumption of filters as “True”.

f2 : PayRate(HrRate) * WorksOn(Hrs) (Personnel (Sal)

This correspondence function indicates how two values from a source can be combined into a target attribute. However, it does not indicate which values should be combined. But it is mentioned that a query q1 is defined that produces a pair of values to combine with an associated tuple.

q1: SELECT P.HrRate * W.Hrs

 FROM PayRate P, WorksOn W

 WHERE P.Rank = W.ProjRank

The above mapping in a query indicates that ProjRank is a foreign key of PayRate that leads to establish an equi-join, Rank = ProjRank. In this example, we are assuming that each corresponding tuple’s value is forming in target based upon query similar to above.
For any kind of data inconsistency one or more tuple’s values are not placed in the target attribute, and then this kind of value correspondence is represented by the function φ.

φ : Personnel (Sal) (Personnelerr (Sal (Φ, zerr)
where Φ represents the null value and zerr represents a value correspondence in terms of an error message.
[image: image8.png]

Figure 8: A typical scenario of mapping – with the inclusion of a temporary staging schema

The correspondence shown in figure 8 indicates how a target attribute is associated with an error message attribute such that the attribute Sal (Personnelerr contains null value Φ. The following criteria are defined for the interpretation of function φ requires:
(a) Creating the relation Personnelerr that should have the same structure as with the Personnel without any integrity and no other relation’s constraints (if any exist). However, five additional attributes are created in Personnelerr [1]
(b) Then calling one of those attribute as e, to store error message of a value correspondence such that zerr (e. This attribute stores log information for an attribute’s value (in this case attribute is Sal) that cannot place a source value into thrtarget attribute because of some data inconsistency. The size of e can be decided to be enough to store brief information. Also, e contains brief error information along with the target attribute’s name so that log information can be explicitly analysed later in the staging schema as defined in following definition 3.3.

(c) There should be only one attribute assigned for the error message in a relation. This attribute stores a message for an attribute for which a data inconsistency exists. The function cannot map values for subsequent attributes. Mapping of more than one attribute is discussed in example 3.1.

(d) As data is inconsistent for target attribute it means it cannot be placed in the target attribute and therefore, a null value (Φ) is placed in it.

Definition 3.1: As in [16], let e be a finite alphabet consisting of a finite set of characters. A string or a word over the given alphabet is a sequence of zero or more symbols (or characters) of the alphabet. A string x of length n is represented by an array x[1,n] = x1x2…..xn, where x is the i-th symbol of x (xi (e for 1≤ i ≤ n) and n = |x|. The set of all strings over the alphabet e (including empty string) is denoted by e*. String w is a substring or a factor of x if x = uwv for u, v (e* and u, v can be null or empty strings. Then assume w (which is a string) as the name of an attribute of a target table or relation. For example, if in an error attribute e the value zerr = “ORA-02290: check constraint [1] violated, Personnel.Sal” then substring w = “Personnel.Sal” will be a substring of zerr in e.

Example 3.2: Continuing from the above example, schema mapping is proposed from a set of value correspondences. In contrast, three schemas are proposed for the mapping based on the properties of correspondences, the properties of the schema. Now further extending and applying mapping in data integration system Г = (G, S, MG, S) in [2, 15], and considering three schemas source schema, staging or temporary schema and global schema. For this example, only considering a single attribute’s mapping within the same domain. Assuming the source schema consists of an attribute S, the staging schema consists of two attributes Ts and Te, and the global schema consists of attribute G as shown in figure 9. It is also noted that domain values of source S may be subset of multiple sources.

Suppose that some value correspondences are injective indicating that the mappings are one-to-one and some other value correspondences are surjective as the product of two values from the source. This type of mapping or value correspondence is represented by function f. Also, assuming all filters are “True” means values exist. In this case f can be interpreted as

 f1: S (2 * 3) (Ts (6), f 2: S (35) (Ts (35)

These correspondences indicate how a one or two value from the source can be combined into target attribute Ts of staging schema. To validate the usage of staging schema, assume that an attribute in Ts has a maximum size of two characters. Consider f3: S (40 * 3) (Ts (120), or source attribute may have maximum size of three characters then f4: S (150) (Ts (150). Consequently, the values defining by functions f3 and f4 cannot form values in the target attribute. It is conformed strictly with an assumption of [1] that the product of two values identifies a particular tuple and this must be validated by defining a query that produces a pair of values to be combined. This correspondence of tuple will be covered in detail later in experiments and analysis of results.
[image: image9.png]DB;

Services l

Pattern Matching Log
Pattern Matching Cortroller

Federated.

Catalogue

LogSearch
Data

Front-end service

Searchs:

o Quick
Granutar
o Alltogether

Figure 9: The mapping functions from source to global target data source.

As indicated above that the values from functions f3 and f4 cannot form value in target Ts because of size inconsistency of an attribute. Another function g is defined from Ts to Te such that it stores or logs error details along with value correspondence. For example, for a value correspondence 120, an error log err120 form an error message as “value error occurs to store value 120”, which is interpreted in the form of mapping as shown in figure 4. The implementation scenario of figure 4 is reflected in figure 6. In this way, then precisely differentiate which tuples are in Ts and which tuples are bounced for which values in Te.

Defining f and g as f: S (Ts and g: Ts (Te. It is noted that the error log of value correspondence are placed in Te instead of Ts because of value error. Consequently,
defining Ts (S, Te (S and Ts ∩ Te = Φ.

Let C = Un>=0 f n (S – Te) in [17],
where f 0 is the identity function on S and, for each positive integer k and for each x (S, f 0 (x) = f (f k-1 (x)).

For each z in S, or for each product of values z in S, defining

[image: image10.png]Legacy Data/

DBMSs or Fiat " o SP1 Working S
=5 Extraciion Progr table(s) Compare Updat
ey Transfer of SP1

Working tables.

v

Dta Entry Program

v

Working to SP1
Fixed Processes

SP1 Fixed Files

Observe that S - Ts (C, f (C) (C.
Finally, defining h by using Schroder-Bernstein theorem as

h(S)
= (S – C) U f (C) = Ts

The main idea behind the above proof can be visualised from the rectangular representation in [17], where the whole rectangle represents the set S. This statement represents value correspondences existing in Ts and no corresponding record is inserted in Te.
Defining Ts = f (z) if z (S – Te. It has been proved analytically in [17] that all value correspondences can be appeare in Ts. Similarly, value correspondences can be appear in Te with error message, can be defined as h' (S) = Te. Also, function g generates two value correspondences in Te.

h' (S) = g (z) = (Φ, zerr)

where Φ represents a null or blank value in Te for an attribute w and zerr represents an error message log for value correspondence z(S including the name of attribute w. Consequently, z does not belong to Ts. This means no record is inserted in Ts.

Example 3.3: To complete running example, consider the following an extended mapping of a value, which correspondences as shown in figure 10.

Since f: S (Ts and ψ: Ts (G. Then the data integration system Г = (G, S, MG, S), can be defined as a composition function (see [1])

[image: image11.png]>)

R

)

Where φ is same as function g.

This mapping function identifies that when data is available in Ts it will be inserted into a corresponding table in a global schema by using a SQL statement. It will be noted that if the data already exists in the target object (table) of a global schema then it will be loaded into Ts of a staging schema. Then the application program applies an ‘update query’ method for the existing records.

[image: image12.png]

Figure 10: A summary of the entire schema mapping process

This situation requires emptying the target objects prior to the data loading from Ts into it. This makes it possible to enforce to disable the referential constraints of target objects. Once the data is loaded disabled constraints can be enabled. This overview of value correspondences leads to formulate the mapping algorithm, as discussed in the next section.
3.2 Constructing Mapping Algorithm
This section illustrates the formalisation of a data integration mapping followed by an algorithm. It follows the nomenclature utilised in the work by Cali in [2] and from above section of value correspondences. It is assumed to have a fixed (infinite) alphabet Г of constants, and, if not specified otherwise, only federated databases are considered over such alphabet. Assume that different constants denote different objects.

 Consider a symbol C for relational schema that consists of

· An alphabet A of relation symbols, each one with the associated arity, i.e., the number of arguments or attribute of the relation.
· A relational database denoted by DB for a schema C is a set of relations with constants as atomic values, and with one relation γDB of arity n for each relation symbol γ of arity n in the A. γDB is the interpretation of the relation symbol γ in database DB such that it contains
1. The set of tuples t that satisfying the relation γ in DB
2. The set of attributes as denoted by symbol A satisfying the relation γ in DB
 Consider the following two fundamental constraints which will be validated with suitable example.
· Key Constraints: A relation γ in a schema C, consists of a set of tuples such that t belongs to γ. A represents a set of attributes in relation γ. Then key constraint over γ in a database DB is satisfied if for each t1, t2 (γDB such that t1 [A] (t2 [A], where each ti[A] is the projection of the tuple t over A.

· Foreign key constraints: Let γ1 and γ2 be two relations with primary keys K1 and K2 respectively. A subset (of γ2 is a foreign key referencing K1 in relation γ1 such that γ1 [K1] (γ2 [K2] means for every tuple t2 in γ2 there must be a tuple t1 in γ1 or t1 [K1] = t2 [(2]. Also, condition (((γ2) ((K1 (γ1) will be satisfied and either (= K1 or (and K1 must be compatible sets of attributes [13].

 As discussed earlier by establishing a mapping between source schema and global or target schema embedding a temporary staging schema between them. These three schema’s layouts are shown in figure 9. A source schema consists of multiple databases, legacy or operational federated databases mainly DBMSs. Where as, staging schema is used to manage the data validating, processing or transforming and loading tasks. In the staging schema, data will be transformed for the target schema which is then validated and tested using above fundamental constraints. In the staging schema, no constraints are applied but an algorithm is used to validate all possible checks for constraints. For example, a tuple from a certain table requires validity of a foreign key on some attribute (s); it will be tested before loading or inserting into target table. Assume that a staging schema will be completely isolated and carried out transformation processing tasks independently. However, it will be lived on connection with federated DBMSs as shown in figure 2. So as defined in [2], G represents global or target schema. A data integration system Г is a triple Г = (G, S, MG,S), where G is the global schema, S is the source schema, and MG,S is the mapping between S and G.

Example 3.4. Consider a simple example of data integration with single source option containing Г1 = (G1, S1, M1G, S) where G1 is constituted by the relation symbols

customer (Cid, Cname, Caddress, CCity)

orders (Oid, Otype, Odate, Cid)

sold (Oid, Pid, Sprice, Qty)

product (Pid, Pname, Pprice) and
the constraints are defined as

key (customer) = {Cid}

key (orders) = {Oid}

key (sold) = {Oid,Pid}

key (product) = {Pid}

such that

sold[Oid] (order[Oid], sold[Pid] (product[Pid],

orders[Cid] (customer[Cid], sold[Sprice]
may not be a subset of product[Pprice]
 S1 consists of four relation sources. Source s1, of arity n (where n can be different), contains information about customers with their customer id, name, address and city. Source s2, of arity 4, contains order id (invoice id), type, date and customer id (which is a foreign key). Source s3, of arity 3, contains information about product’s id, name and price. Finally, Source s4, of arity 3, contains information about products that are sold. The mapping M1G, S is defined by

 ((customer) = cus(X,Y,Z) <-- s1(X,Y,Z,W,P)

 ((orders) = ord(X,Y,Z,W) <-- s2(X,Y,Z,W)

 ((product) = prd(X,Y,Z,W) <-- s3(X,Y,Z,W)

 ((sold) = sol(X,Y,Z) <-- s4(X,Y,Z)

 In [2], ((γ) is defined as the associated query. This leads to extend current concept ((γ) without associated query but using a well-defined algorithm. In this example, assuming same data integration system Г = (G, S, MG, S) and start data at the sources and specify which are the data satisfying the target schema. Also, a source database D for Г is constituted by one relation γDB for each source γ in S. A database DB for Г is said to be legal with respect to D if:

· B satisfies the integrity constraints of G.

· B satisfies MG, S with respect to D i.e., for each γ in G (global database), the set of tuples rB that assigns to γ is a subset of the set ((γ)D computed by the associated query ((γ) over D . i.e., ((γ)D (γB
· An algorithm contains the associated query ((γ) and data model standards (which indicate the violation of constraints).

3.3 The Core Mapping Algorithm
 As defined earlier, a data integration system Г = (G, S, MG, S) then mapping MG,S includes the following relation standards:

1. Defining the relation γ with arity n, in staging schema as

γ(R) = γ(xk, yf, zn)

where xk, yf, zn represent keys, foreign key and non-key attributes respectively.

2. Defining a working relation γwrk by introducing four standard attributes as
γwrk = γ(R, w1, w2, w3)

where w1, w2, w3 represent tuple’s active validity flag, user update flag and tuple’s update date/ time respectively.

3. Defining, the error relation can be defined as

γerr = γ(R, w1, w2, w3, e)

where e is an attribute that stores error message for each tuple t. Attributes w's have the same meaning as explained in γwrk. This relation contains those tuples which were unable to store in working relation γwrk.

4. Finally, defining or creating temporary source relation si of arity n. Temporary source relation si contains data extracted using simple queries through application software gateway as shown in figure 6. In this section, it will be discussed further how to migrate data from single or multiple source relation si into working relation γwrk using pseudocode as given in example 3.5. During data migration tuples contain inconsistent data. This inconsistent data is finally inserted into an error relation γerr. Tuples in an error relation can be subsequently inserted into working relation γwrk by modifying the algorithm based upon business rules or error message e.
[image: image13.png]

Figure 6: Architecture of a staging schema in data integration.

Example 3.5: Consider the following pseudocode of an algorithm

PROCEDURE ProcSetActiveTuple

 --This procedure sets the value for the ACTIVE column 'N'

 --for all the tuples which have

 --USER_UPDATE set to 'N' before performing an update of

 --existing records when this extraction is not the first

 -- one for this SP1 working table. This is the first

 --procedure being called from main procedure

BEGIN

 Set the value of attribute Active equals to 'Y'

 Cnage value of TargetTable attribute Active to 'N'

END

PROCEDURE ProcExtractSource

BEGIN

 Set value for NoOfRecordsProcessed = 0

 Set attribute Active = 'Y'

 REPEAT

Check foreign key exists for referencing attributes

IF foreign key value does not exist THEN

 Raise exception to insert record in error table

 with error message

ELSE

 Assign source attribute value to target attribute

END IF

Call ProcInsertUpdateTuple

 UNTIL NOT EXISTS (select * from SourceTable)

 Display NoOfRecordsProcessed

 Display number of rejected records from error table

 Display number of records loaded successfully

END

PROCEDURE ProcInsertUpdateTuple

BEGIN

 Set the value of attribute Active to 'Y'

 Check if corresponding record is already exist in target

 table

 IF record not exists and user update = 'Y' THEN

 Raise exception to insert record in error table with

 error message

 ELSIF record exists and user update = 'Y' THEN

 Modify record with corresponding source attribute(s)

 ELSE

 Add a new record in a target table

 END IF

END

[image: image14.png]

Figure 11: Data flow of loading process under the mapping algorithm
In this phase of the algorithm figure 6, 11, prune from value correspondences of the source DBMSs into pseudocode as mentioned above in the form of an extraction program. Depending upon business rules, data will be parsed into SP1 working tables. Data will then be placed into SP1 working tables if not already exist; it will be updated under Compare Update for existing data. For any discrepancy, Compare Update can be repeated again from an Extraction Program. Once data is loaded into SP1 tables, a facility of Data Entry can be provided that helps the user to directly add or update missing data values in case if a business rule could not be covered during Extraction Program process. Finally, the data will be transferred from SP1 working tables into target data sets like tables of files.
3.4 Implementation of Data Matching SCAT

Every DBMS has features of metadata whereby a user can extract general information about the basic structures of database objects. Such information about object structure can be element names, data types and constraints, etc. For example, in a relational DBMS table names have their attribute with data types and constraints. The methods of accessing such metadata information are not generic in accessing heterogeneous DBMSs. Implementation of mapping requires a generic solution of accessing metadata information especially when DBMSs exist in a grid environment or DBMSs act as federated databases. To handle such conflicts of mapping implementation, it is required to introduce a new approach such that each federated DBMS contains a public schema segment whereby read privileges of other schema objects are granted. Creating a schema for the metadata catalogue in a staging DBMS that is a replica of all federated metadata catalogues is shown in figure 12. Such a metadata catalogue in staging DBMS is termed as SCAT (Staging Catalogue).

On the global scale, it is expected that the amount of data flowing or data search into integrated grid DBMSs could be of the order of a terabyte. Any data information can be searched in the form of pattern matching that would be possible in two phases. In a quick search, a pattern will be searched initially through SCAT of staging database. This will generate a profile of possible searched data- elements as an output to perform further granular searches. A detailed profile or log of a search will be produced as an output in the staging DBMS.

The Pattern Matching Controller is the front-end service for pattern matching operations across the data held at each federated DBMS as discussed in [5]. It accesses all objects of each federated DBMS DBi which was searched from SCAT as shown in figure 8.
[image: image15.png]A

Figure 12: Pattern match data management architecture

In the staging database, Pattern Matching Log service includes object details where patterns exist and in which form as shown figure 12. A search pattern can be a data value; it can be the name of some relation or an attribute. Similarly, the log service maintains the list of patterns that are included in the search but these are not found in federated DBMSs. These services can be additional building blocks of OGSA-DAI.

3.5 The Core Matching Algorithm

SCAT contains structure of relations (2) which is termed as plug-in relations. These plug-in relations provide similar information as standard metadata dictionaries of any DBMS but some auxiliary information is included to improve the effectiveness of mappings. Note that plug-in relations are created by users and can be customised. Also, federated databases contain the built in catalogue same as the structure of SCAT. The concept of granularity of match is used, i.e., at an element level and structure level [11] with the following plug-in relations.

DataTable (TableName, SchemaName, Description, DateCreated)

TableDetails (TableName, SchemaName, Serial#, Attribute, DataType, Size, Constraints, ShortDesc, DetailDesc) ……………………………………….(2)

These relations will act as an enterprise dictionary or will be taxonomies of a schema. Underlined attributes represents unique key constraints. It is noted that attributes Descriptions, ShortDesc and DetailDesc play an important role for the name or linguistic matching, and the description matching.

It would be possible to indicate canonical name matching in TableDetails.ShortDesc. Also, more than one similarity can be used in attribute ShortDesc or in DetailDesc. These descriptive attributes of plug-in relations the possible matching information when mapping is performed from any target schema to search correct object(s) or a table for best possible data sharing, as shown in equations 4 or 5. Staging DBMS SCAT will also contain a most recent replica of public schema segments of each federated DBMS. Such a service helps significantly to provide initial searched information fast before scanning an element from all federated DBMSs. SCAT will filter out those databases and schemas where possible match found and store in the staging scheme catalogue. Initially, search is performed in a SCAT staging schema catalogue and possible pattern matches will be listed down from it. This list indicates the details of each pattern as given in plug-in relations (2). Based upon details SCAT service will perform further granular search from the corresponding federated DBMSs and their schemas.

3.6 Semantics of Data Matching Algorithm

In order to define semantics of a plug-in relation concept, the following are the two relations required in each source DBMS. Any federated schema or SCAT establishes a mapping with the relations of (2), to search the correct schema objects like tables or relations (for required data access.

tDef(tn, sn, des, dc),

tDet(tn, sn, sno, at, dt, sz, cs, sd, dd)
…………………………………………..(3)

where
tDef.t1[tn, sn] (tDef.t2[tn, sn],
tDet.t1[tn,sno] (tDet.t2[tn,sno],
tDet[tn] (tDef[tn] and
description of each attribute of (3) is given in (2)
For every attribute a in each relation (of schema C and associate three functions:
for t (tDet, t[at] = a.
On attribute a, defining functions (to find a table name such that t[tn] = (((, C)
ξ to find a schema name such that t[sn] = ξ(sn, S)
(to find an attribute name such that t[at] = (((,a)
(to find a data type such that t[dt] = (((,a)
(to find a size such that t[sz] = (((,a)
(to find constraints such that t[cs] = concat[(((,ai)] and

for some attributes ai that are contain constraints i.e., (((,ai) ((.

The attributes sd, dd will be used to store multiple names or similar meanings which are text details entered by the user with schema sn. Also, sno is a sequence number starting with 1, incremented by 1 for the same tn, denoted by I, t (tDet, for relation (and attribute a.
t = {<tn, (((, C)>, <sn, ξ(sn, S)>, <sno,i>, <at, (((,a)>, <dt, (((,a)>, <sz, (((,a)>, <cs, concat[(((,ai)]>, <sd, t[sd]>, <dd, t[dd]>}

Once possible schema objects or relations are found, instance level matching will then help to further boost the confidence in matching results. At this level, linguistic and constraint based characterization of instance is useful. For example, using linguistic techniques, it might be possible to look at Client, ClientName and Ename instances to conclude that ClientName is a better match candidate for client than Ename. Following is a DBMS state using plug-in relations (3), referring to figure 2:
tDef:
	tn
	sn
	Des
	dc

	Student
	DBMS1.scott
	Name
	22/06/2008

	Dept
	DBMS1.scott
	Name
	22/06/2008

	Product
	DBMS2.sys
	prod name
	20/05/2008

	Medicine
	DBMS2.sys
	generic name
	20/05/2008

tDet:
	tn
	sn
	sno
	At
	dt
	sz
	cs
	sd
	dd

	Student
	DBMS1.scott
	1
	Fname
	VARCHAR
	20
	NOT NULL
	First name
	...

	Dept
	DBMS1.scott
	1
	Name
	VARCHAR
	15
	NOT NULL
	Dname, Dept name
	...

	Product
	DBMS2.sys
	1
	Prodname
	VARCHAR
	20
	NOT NULL
	Product name
	...

	Product
	DBMS2.sys
	2
	Desc
	VARCHAR
	15
	NOT NULL
	Name or desc
	...

	Medicine
	DBMS2.sys
	3
	Shortname
	VARCHAR
	15
	
	generic name
	...

Figure 13: Staging schema catalogue SCAT

This DBMS state (figure 13) is contained in staging schema (SCAT) which provides initial search details, SCAT service will search an attribute (at) from listed DBMS/ schema names (sn). It is expected that this service of SCAT can be implemented by extending the metadata held in the SCAT. Since the SCAT and data catalogue will no longer need to be harmonised, this will improve data integrity as described in [19].
3.7 Initial Experimental Test Results
To produce the experimental results given in 2.4.1 referring to the adopted methodology and algorithm, sample data named as SP1_0018S1 is extracted from source database segment and loaded into temporary table SP1_0018_TMP in staging DBMS. As defined in 3.1 and 3.6, create structure tables SP1_0018S1_ERR and SP1_0018S1_WRK are created to keep inconsistent and valid data validity respectively. The summary of data load will be generated in a log file. The algorithm is applied to access data from heterogeneous DBMSs which includes database connection using XML, and then data transformed based on defined business rules.
In future, further experimental data will be generated and changes in algorithm will be explored which involve enhanced pseudocode. Based on test results analysis of mapping and pattern matching will help to work around a generic algorithm which will facilitate the additional features of an OGSA-DAI.
4. Comparative Study

In [1, 2] data is mapped or loaded using queries. It is usually the case that queries are not designed to measure the validity of the data prior to inclusion into some target database or data warehouse. In addition, most queries fail to provide a complete analysis of the inclusion process in order to determine if the entire data store was loaded successfully or not. These critical issues were not covered in any significant detail in many papers such as in [1, 2, 14].
 A major difficulty in data integration is the frequent presence of data inconsistencies and data incompleteness, requiring a number of complex reasoning tasks and/or algorithms to guarantee the correctness of the final loaded data although some of the automated issues are discussed in [21]. To resolve this problem of loading data, the concept of staging schema is introduced as discussed above.
 In above definition, the main concern is related with constraints (unique and referential integrity) that can be handled with state-of-the-art algorithm such that information like constraint violation or inconsistent data (from sources) for any tuple can be recorded in a defined storage named as an error relation. The decision can be made to resolve error issues for tuples in an error relation. Then cleaned data can be loaded or migrated to a target schema such as data warehouse's materialized views using associated query ((γ) in database D as decribed in section 3.2.
In this research, the data source is DBMS standard. Whereas, research of transforming data from file format to DBMS or relational standards has been covered already in many research publications [24, 25, 26, 27].
5. Importance of the Algorithm

In the section 3.1, the fundamentals of data integration are explored in the form of mapping objects and value correspondences. An algorithm is formulated to explore the schema mapping log profile for inconsistent data. The mapping algorithm distinguished schema mapping from the well-known problem of traditional schema integration, and produce the log details of data sets which are rejected due to target's constraints. The matching algorithm formulates SCAT metadata that keeps the possible object's matching in a schema, which helps in searching information before scanning through federated DBMSs. This algorithm also identifies the validity of metadata schema in each federated DBMS. The mapping algorithm provides the effectiveness of data load such that a large amount of data can be loaded or monitored with the help of logs. Decision can be easily made for the data which is rejected using log profiles. The matching algorithm provides an efficient search from large data of federated DBMSs. It helps in exploring redundant data and relevant data matching with the help of SCAT metadata services. SCAT is a searching service that filters out the possible occurrences of data and their locations in the federated DBMSs before performing an actual granular search through all the federated DBMS environments. Both mapping and matching algorithms significantly help in reducing the manual and ad-hoc query processing for data transformation [1]. These kinds of traditional manual and ad-hoc processes of transformation are not widely applicable in the grid, where applications must evolve autonomous integration and sharing of heterogeneous data.
6. Conclusion
Based upon current studies, not much work in the form of an algorithm is published on integration of heterogeneous databases for data loading and mapping in context of grid. Some related issues have been discussed in various research papers but no explicit clear methodology and implementation has been adopted. A certain part of related work has been introduced in [22, 15]. A practical approach is adopted to overcome database heterogeneity via a homogeneous, user friendly database access interface in [3]. There is a need of handling the large quantity of data using some temporary storage which is elaborated with Staging DBMS. Staging DBMS provides a facility to keep track record of data load processes and other unified DBMS services for federated database in a grid environment. The aim is then to facilitate such interaction of staging database with other grid services like OGSA-DAI. In this research, it has been emphasised that data mapping is another important aspect that requires more sophistication when functioning in a grid environment to avoid data bounced issues or keep track record of data loading logs in a consistent manner. Existing DBMS do not have uniform and generic data loading utilities. Such utilities are locally being used by host vendors. Predictions by industry analysts have focused primarily on commercial grid based WS to deploy such data loading and matching applications.
7. Development to PhD Phase
The work carried out at the MPhil stage has shown novel aspects of research and laid a sound basis for the PhD phase. As discussed in the third and fourth objectives of this research that PhD phase will include the following tasks to test, evaluate and refine the state-of-the-art algorithm in a grid environment:
7.1 Data Loading Log Profile
As demonstrated in section 2.4.1, keeping log information of error relation's records (bounced records) help to do group by error messages details to view the quality of data. Improved and efficient techniques will be adopted to manage log profile such that mining work will then generates various summary reports to analyze such quality of data. The state-of-the-art pseudocode followed by software application to act as a test-bed to assess the intelligent algorithm of mapping will be developed.
7.2 Implementation of Data Mapping and Matching
As discussed earlier mapping is used to map elements or objects in federated DBMS to explore inconsistent data. Matching introduces search patterns data that is searched across federated DBMS to explore redundancies and anomalies. Based on further testing results and case studies of real-world scenarios, modifications will be done accordingly in the proposed algorithm.

7.3 Testing of the Proposed Algorithm
Adopted research has reset a practical approach to overcome database heterogeneity via a concept of homogeneous or uniform algorithm. Testing will aim to compare the accuracy of the refined algorithm with the current methods of data integration in a traditional and grid environment. Performance issues using statistical analysis tests on large data will be carried out to explore the efficiency and effectiveness of the overall accomplishments.
8. References

1. R. J. Miller, L. M. Haas, M. A. Hernandez, “Schema Mapping as Query Discovery”, Proceedings of the 26th VLDB Conference, Cairo, Egypt, pp. 77-88, 2000.
2. Cali, Diego Calvanese, G. Giacomo, and M. Lenzerini, “Data Integration under Integrity Constraints”, CAiSE, Springer LNCS 2348, pp. 262-279, 2002.
3. F. de F. Rezenda, U. H. Georgian, R. Jochen, “A Practical Approach to Access Heterogeneous and Distributed Databases”, CAiSE*99, Berlin Heidelberg, pp. 317-332, June 1999.
4. Foster and C. Kessleman, “The Grid: Blueprint for a New Computing Infrastructure”, Morgan Kaufmann, pp. 39-40, 390-396, 216, 418, 2004.

5. J. Austin, R. Davis, M. Fletcher, T. Jackson, M. Jessop, N. Liang, A. Pasley, “DAME: Searching Large Data Sets Within a Grid-Enabled Engineering Application”, Proceedings of the IEEE, Vol. 93, pp. 496-509, 2005

6. N. Bessis, T. French, M. Burakova-Lorgnier, and W. Huang, “Using Grid Technology for Data Sharing to support Intelligence in Decision Making”, in Xu, M. (ed) Managing Strategic Intelligence: Techniques and Technologies, Idea Group Publishing Inc, 2007.

7. E. Ahmed, N. Bessis, Y. Yue, D. Stephens, “Data loading and mapping using staging DBMS in the Grid”, 21st IEEE Annual Canadian Conference on Electrical and Computer Engineering, CCECE, pp. 1887-1893 Ontario, Canada, 2008.
8. C. Li, “Describing and Utilization Constraints to Answer Queries in Data-Integration Systems”, Information and Computer Science, University of California, Irvine, 2002.
9. I. Foster, C. Kesselman, S. Tueke: “The Anatomy of the Grid”, Enabling Scalable Virtual Organizations. Int J. Supercomputer Applications, 15(3), 2001.
10. R. Madhavan, P. A. Berstein, E. Rahm, “Generic Schema Matching with Cupid”, Proceedings of the 27th VLDB Conference, Roma, Italy, 2001.
11. E. Rahm, P. A. Bernstein, “A survey of Approaches to Automatic Schema Matching”, Online publication, VLDB Journal 10, pp. 334-350, 2001.
12. Palopoli, L. G. Terracina, and D. Ursine, “The System DIKE: Towards the Semi-Automatic Synthesis of cooperative Information Systems and Data Warehouses, ADBIS-DASFAA, Matfyzpress, pp. 108-117, 2000.

13. A. Silberschatz, H. F. Korth, S. Sudarshan, “Database System Concepts”, 5th Edition, McGraw Hill publisher, 2005.
14. Y. Velegrakis, R. J. Miller, L. Popa, “Mapping Adaptation under Evolving Schemas”, Proceedings of the 29th VLDB Conference, Berlin, Germany, pp. 584-595, 2003.
15. E. Ahmed, K. Revett, “Utilizing Staging tables in Data Integration to load data into Materialized Views”, CIS04, Springer-Verlag Berlin Heidelberg, LNCS 3314, pp. 685-691, 2004.
16. Zhang, Q. Guo, C. S. Iliopoulos, “String Matching with Swaps in a Weighted Sequence”, CIS 2004, Springer-Verlag Berlin Heidelberg, LNCS 3314, pp. 698-704, 2004.
17. T. Shwu-Yeng, Y. Lin, “Set Theory with Applications”, Book Publishers Inc., Florida, pp. 135-136, 1985.
18. M. Levene and G. Loizou, A Guided Tour of Relational Databases and Beyond, Springer-Verlag, London, England, 1999.

19. J. Austin, R. Davis, M. Fletcher, T. Jackson, M. Jessop, N. Liang, A. Pasley, “DAME: Searching Large Data Sets Within a Grid-Enabled Engineering Application”, Proceedings of the IEEE, Vol. 93, pp. 496-509, 2005.
20. X. Dong, A. Y. Halevy, C. Yu, “Data Integration with uncertainty”, Proceedings of the 33rd VLDB Conference, Vienna, Austria, pp. 687-698, 2007.
21. H. Kim, T. Lee, S. Lee, J. Chun, “Automated Data Warehousing for Rule-based CRM Systems, School of Computer Science and Engineering, Seoul National University, Korea. Australian Computer Society, Inc. Volume 17, 2003.
22. M. Antonioletti, M. Atkinson, R.Baxter, A. Borley, N. P. Hong, B. Collins, N. Hardman, A. Hume, A. Knox, M. Jackson, A. Krause, S. Laws, J. Magowan, N. W. Paton, D. Pearson, T. Sugden, P. Watson and M. Westhead, “The Design and Implementation of Grid Database Services in OGSA-DAI”, Concurrency and Computation: Practice and Experience, vol. 7, no. 2-4, 2005.
23. I. Foster, C. Kesselman, J. Nick, S. Tueke, “Grid Services for Distributed System Integration”, IEEE Computer, 35(6): pp. 397-398, 2002.
24. M. Mirto, S.Fiore, M.Cafaro, M.Passante, G.Aloisio. “A Grid-based Bioinformatics Wrapper for Biological Databases”, IEEE International Symposium on Computer-Based Medical Systems, pp. 191-196, 2008.
25. T. Hernandez and S. Kambhampati. “Integration of biological sources: Current systems and challenges ahead”. SIGMOD Record, 33(3), pp. 51–60, 2004.
26. C. A. Goble, R. Stevens, G. Ng, S. Bechhofer, N. W. Paton, P. G. Baker, M. Peim, and A. Brass. “Transparent access to multiple bioinformatics information sources”, IBM Systems Journal, 40(2), pp. 532-551, 2001.
27. L. Wong. “Kleisli, a functional query system”, Journal of Functional Programming, 10(1), pp. 19-56, 2000.
28. T. Lahiri, S. Abiteboul, et. Al. (1999), Ozone, “Integrating Structured Semistructured Data”, Seventh Int. Workshop on Database Programming Languages, Kinloch Rannoch, Scottland, 1999.
29. R. Elmasri and S. B. Navathe , “Fundamentals of Database Systems”, 4th edition, pp. 37, Addison-Wesley, 2003.

30. J. Liu, Y. Wu , W. Zheng, “Grid Enabled Data Integration Framework for Bioinformatics Research”, 5th International Conference on Grid and Cooperative Computing Workshops, pp. 401-406, 2006.
31. H. Chen, Z. Wu , “DartGrid III: A Semantic Grid Toolkit for Data Integration”, 5th International Conference on Semantics, Knowledge and Grid (IEEE-SKG'05) ”, pp. 12-13, 2005.
32. N. Alpdemir, A. Mukherjee, I. Foster, N.W. Paton, P. Watson, A.A.A. Fernandes, “A. Gounaris and J.Smith, Service-Based Distributed Query Processing on the Grid”, 1st Intl. Conference on Service-Oriented Computing (ICSOC), 467-482, Springer-Verlag, 2003.
33. E. Ahmed, N. Bessis, Y. Yue, M. Sarfraz, “Matching Multiple Elements in Grid Databases: A Practical Approach”, 3rd International Conference on Digital Information Management (IEEE-ICDIM), 2008.
34. N. Rishi, J.Yuan, R. Athauda, S. Chen, X. Lu, X. Ma, A. Vaschillo, A. Shaposhnikov, D. Vasilevsky, “Semantic Interface for Querying Databases”, 26th International Conference on VLDB, pp. 591-594, 2000.

35. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services Description Language (WSDL) 1.1, W3C, March 2001.
36. K. Gottschalk, S. Graham, H. Kreger, and J. Snell, “Introduction to Web Services Architecture”. IBM Sys. Journal, 41(2), pp. 170-177, 2002.

Appendix-A
Tasks Accomplished
As per tasks and milestones defined in Gantt Chart Appendix-B, following are the details of tasks.
	S#
	Task Description
	Status/ Progress

	1
	Initial Literature Review
	Completed (100%)

	2
	Submit RS1 Report
	Completed/ Approved

	3
	Identifying Research Strategy Methods
	Completed (100%)

	4
	Conference Research Paper-1 [7]
	Published (IEEE Conf.)

	5
	Apply Research Experiments (Initial draft development)
	Completed (60%)

	6
	Analysis & Producing Mathematical Models
	Completed (100%)

	7
	Conference Research Paper-2 [33]
	Submitted (IEEE Conf.)

	8
	Submit RS4 Report & Oral Presentation
	To be submitted

Appendix-B
	S#
	Task Name
	Dur.
	Start
	End
	Half 1, 2007
	Half 2, 2007
	Half 1, 2008
	Half 2, 2008
	Half 1, 2009
	Half 2, 2009
	2010

	1
	Initial Literature Review
	10
	01/02/2007
	30/11/2007
	
	
	
	
	
	
	

	2
	Identifying Research Strategy Methods
	4
	01/06/2007
	20/09/2007
	
	
	
	
	
	
	

	3
	Conference Research Paper-1

	3
	09/07/2007
	30/09/2007
	
	
	
	
	
	
	

	4
	Apply Research Experiments (Initial Development)
	6
	01/08/2007
	31/01/2008
	
	
	
	
	
	
	

	5
	Analysis & Producing Mathematical Models
	6
	01/02/2008
	31/07/2008
	
	
	
	
	
	
	

	6
	Conference Research Paper-2 (submission)
	4
	01/02/2008
	31/06/2008
	
	
	
	
	
	
	

	7
	Submit MPhil RS4 Final Report & Oral Presentation
	2
	01/06/2008
	31/07/2008
	
	
	
	
	
	
	

	8
	Experimental Prototype (manifesting)
	14
	01/02/2008
	27/02/2009
	
	
	
	
	
	
	

	9
	Testing & Evaluating Implementations
	3
	27/02/2009
	27/05/2009
	
	
	
	
	
	
	

	10
	Refine & reproduce Results

	4
	01/04/2009
	30/07/2009
	
	
	
	
	
	
	

	11
	Produce & Submit Journal Paper
	6
	01/07/2009
	20/12/2009
	
	
	
	
	
	
	

	12
	Final PhD Thesis Submissions & Presentations
	2
	20/12/2009
	20/02/2010
	
	
	
	
	
	
	

Gantt Chart

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Ejaz Ahmed
Document RS4 - 27/07/2008

1 of 32

