10

Chapter 1 Binary Systems

utilizes the relationship between the binary number system and the octal or hexadeci-
mal system. By this method, the human thinks in terms of octal or hexadecimal num-
bers and performs the required conversion by inspection when direct communication
with the machine is necessary. Thus the binary number 111111111111 has 12 digits
and is expressed in octal as 7777 (four digits) or in-hexadecimal as FFF (three digits).
During communication between people (about binary numbers in the computer), the
octal or hexadecimal representation is more desirable because it can be expressed more
compactly with a third or a quarter of the number of digits required for the equivalent
binary number. When the human communicates with the machine (throughiconsole
switches or indicator lights or by means of programs written in machine language), the
conversion from octal or hexadecimal to binary and vice versa is done by inspection by
the human user.

1-5 COMPLEMENTS

Complements are used in digital computers for simplifying the subtraction operation
and for logical manipulation. There are two types of complements for each base-r sys-
tem: the radix comnlement and the diminished radix complement. The first is referred
to as the r’s complement and the second as the (r — 1)’s complement. When the value
of the base r is substituted in the name, the two rypes are referred to as the 2's comple-
ment and 1's complement for binary numbers, and the 10’s complement and 9’s com-
plement for decimal numbers.

Diminished Radix Complement

Given a number N in base r having n digits, the (r — 1)’s complement of N is defined
as (r" — 1) — N. For decimal numbers, r = 10 and r — 1 = 9, so the 9's comple-
ment of N is (10" — 1) — N. Now, 10" represents a number that consists of a single 1
followed by n 0"s. 10" — 1 is a number represented by n 9’s. For example, if n = 4,
we have 10° = 10,000 and 10* — 1 = 9999. It follows that the 9’s complement of a
decimal number is obtained by subtracting each digit from 9. Some numerical examples

follow.
The 9's complement of 546700 is 999999 — 546700 = 453299.
The 9's complement of 012398 is 999999 — 012398 = 987601.

For binary numbers, r =2 and r — 1 =1, so the 1's complement of N is
(2" — 1) — N. Again, 2" is represented by a binary number that consists of a 1 fol-
lowed by n 0ls. 2" — 1 is a binary number represented by n 1's. For example, if
n = 4, we have 2 = (10000) and 2* = 1 = (1111);. Thus the 1's complement of a
binary number is obtained by subtracting each digit from 1. However, when subtract-
ing binary digits from 1, we can have either 1 — 0=1or1 — 1= 0, which causes

Section 1-5 Complements A § |

the bit to change from 0 to 1 or from I to 0. Therefore, the 1’s complement of a binary
number is formed by changing 1's to 0’s and 0's to 1's. The following are some nu-
merical examples.

& The 1’s complement of 1011000 is 0100111.
= The 1's complement of 0101101 is 1010010.

The (r — 1)’s complement of octal or hexadecimal numbers is obtained by subtracting
each digit from 7 or F (decimal 15), respectively.

Radix Complement

The r’s complement of an n-digit number N in base r is defined as r" — N for N # 0
and 0 for N = 0. Comparing with the (r — 1)’s complement, we note that the r's
complement is obtained by adding 1 to the (r — 1)’s complement since »" — N =
[(r* — 1) — N] + 1. Thus, the 10’s complement of decimal 2389 is 7610 + 1 = 7611
and is obtained by adding 1 to the 9’s-complement value. The 2’s complement of bi-
nary 101100 is 010011 + 1 = 010100 and is obtained by adding 1 to the 1’s-comple-
ment value.

Since 10" is a number represented by a 1 followed by n 0’s, 10" — N, which is the
10°s complement of N, can be formed also by leaving all least significant 0’s un-
changed, subtracting the first nonzero least significant digit from 10, and subtracting all
higher significant digits from 9. ;

The 10’s complement of 012398 is 987602.
The 10’s complement of 246700 is 753300.

The 10's complement of the first number is obtained by subtracting 8 from 10 in the
least significant position and subtracting all other digits from 9. The 10’s complement
of the second number is obtained by leaving the two least significant 0’s unchanged,
subtracting 7 from 10, and subtracting the other three digits from 9.

Similarly, the 2’s complement can be formed by leaving all least significant 0’s and
the first 1 unchanged, and replacing 1°s with 0's and 0's with 1’s in all other higher
significant digits.

2 The 2's complement of 1101100 is 0010100,
=y The 2’s complement of 0110111 is 1001001.

The 2’s complement of the first number is obtained<by leaving the two least significant
0’s and the first 1 unchanged, and then replacing 1's with 0’s and 0’s with 1's in the
other four most-significant digits. The 2's complement of the second number is ob-
tained by leaving the least significant 1 unchanged and complementing all other digits.
* In the previous definitions, it was assumed that the numbers do not have a radix
point. If the original number N contains a radix point, the point should be removed

12 Chapter 1 Binary Systems

temporarily in order to form the r's or (r — 1)’s complement. The radix point is then
restored to the complemented number in the same relative position. It is also worth
mentioning that the complement of the complement restores the number to its original
value. The r's complement of N is r" — N. The complement of the complement is
7" — (r" — N) = N, giving back the original number.

Subtraction with Complements

The direct method of subtraction taught in elementary schools uses the borrow con-
cept. In this method, we borrow a 1 from a higher significant position when the minu-
end digit is smaller than the subtrahend digit. This seems to be easiest when people per-
form subtraction with paper and pencil. When subtraction is implemented with digital
hardware., this method is found to be less efficient than the method that uses comple-

ments.
The subtraction of two n-digit unsigned numbers M — N in base r can be done as

follows:

1. Add the minuend M to the r’s complement of the subtrahend N. This performs
M+ ("=N)=M-N+r".

3. [fM = N. the sum will produce an end carry, r", which is discarded; what is left
is the result M — N.

3. If M < N, the sum does not produce an end carry and is equal to
r" — (N — M), which is the r’s complement of (N — M). To obtain the answer
in a familiar form, take the r’s complement of the sum and place a negative sign
in front.

The following examples illustrate the procedure.

Example
1-5

Using 10°s complement, subtract 72532 — 3250.

M = 72532

10’s complement of N = + 96750

Sum = 169282

Discard end carry 10° = —100000
Answer = 69282 |

Note that M has 5 digits and N has only 4 digits. Both numbers must have the same
number of digits; so we can write N as 03250. Taking the 10’s complement of N' pro-
duces a 9 in the most significant position. The occurrence of the end carry signifies that
M = N and the result is positive.

Section 1-5 Complements 13

Example
1-6

Using 10’s complement, subtract 3250 — 72532.
M= 03250
+ 27468
30718

10’s complement of N =
Sum =
There is no end carry.
Answer: —(10’s complement of 30718) = —69282 |

Note that since 3250 < 72532, the result is negative. Since we are dealing with un-
signed numbers, there is really no way to get an unsigned result for this case. When
subtracting with complements, the negative answer is recognized from the absence of
the end carry and the complemented result. When working with paper and pencil, we
can change the answer to a signed negative number in order to put it in a familiar form.

Subtraction with complements is done with binary numbers in a similar manner us-
ing the same procedure outlined before.

Example
1-7

Given the two binary numbers X = 1010100 and ¥ = 1000011, perform the subtrac-
tion (a) X — Y and (b) ¥ — X using 2’s complements.

(a) X= 1010100 -
2’s complement of ¥ = + 0111101
Sum = 10010001
Discard end carry 27 = — 10000000
Answer: X — Y = 0010001
(b) Y = 1000011
2’s complement of X = + 0101100
Sum = 1101111

There is no end carry.
Answer: Y — X = —(2's complement of 1101111) = —0010001 |

Subtraction of unsigned numbers can be done also by means of the (r — 1)’s com-
plement. Remember that the (— 1)’s complement is one less than the r’s comple-
ment. Because of this, the result of adding the minuend to the complement of the sub-
trahend produces a sum that is 1 less than the correct difference when an end carry
occurs. Removing the end carry and adding 1 to the sum is referred to as an end-
around carry.

14 Chapter 1 Binary Systems

Example
1-8

Repeat Example 1-7 using I's complement.

(a) X — Y = 1010100 — 1000011

X = 1010100
1’s complement of ¥ = + 0111100
Sum = —— 10010000 .
End-around carry B +1
Answer: X — Y = 0010001
(b) ¥ — X = 1000011 — 1010100
Yy = 1000011
1’s complement of X = + 0101011
Sum = 1101110

There is no end carry.
Answer: ¥ — X = —(1's complement of 1101110) = —0010001
Note that the negative result is obtained by taking the 1s complement of the sum

since this is the type of complement used. The procedure with end-around carry is also
applicable for subtracting unsigned decimal numbers with 9's complement.

1-6 SIGNED BINARY NUMBERS

Positive integers including zero can be represented as unsigned numbers. However: to
represent negative integers, we need a notation for negative values. In ordinary arith-
metic, a negative number is indicated by a minus sign and a positive number by a pigs
sion. Because of hardware limitations, computers must represent everything with bi-
nz;ry digits, commonly referred to as bits. It is customary to represent the sign witl_a a
bit placed in the leftmost position of the number. The convention is to make the sign
bit O for positive and 1 for negative. -

It is important to realize that both signed and unsigned binary numbers consist of a
string of bits when represented in a computer. The user determines whethcr. the number
is signed or unsigned. If the binary number is signed, then the leftmost bit represents
the sien and the rest of the bits represent the number. If the binary number is assumed
to be unsigned. then the leftmost bit is the most significant bit of the number. For ex-
ample, the string of bits 01001 can be considered as 9 (unsigned binary) or a +_9
(signed binary) because the leftmost bit is 0. The string of bits 11001 represent the l_)l-
nary equivalent of 25 when considered as an unsigned number or as — 9 when consid-
ered as a signed number because of the 1 in the leftmost position, which designates neg-

Section 1-6 Signed Binary Numbers 15

ative, and the other four bits, which represent binary 9. Usually, there is no confusion
in identifying the bits if the type of representation for the number is known in advance.

The representation of the signed numbers in the last example is referred to as the
signed-magnitude convention. In this notation, the number consists of a magnitude and
a symbol (+ or —) or a bit (0 or 1) indicating the sign. This is the representation of
signed numbers used in ordinary arithmetic. When arithmelic Gieiations are 1mple
mented in a computer, it is more convenient to use a different system for repredenting
negative numbers, referred to as the signed-complement system. In this system, a nega-
tive number is indicated by its complement. Whereas the signed-magnitude system
negates a number by changing its sign, the signed-complement system negates a number
by taking its complement. Since positive numbers always start with O (plus) in the left-
most position. the complement will always start with a 1. indicating a negative number.

he signed-cuiniplement system can use either the 1's or the 2°s complement, but the

2’s complement | most commor

As an example, consider the number 9 represented in binary with eight bits. +9 is
represented with a sign bit of 0 in the leftmost position followed by the binary equiva-
lent of 9 to give 00001001. Note that all eight bits must have a value and, therefore, 0’s
are inserted following the sign bit up to the first 1. Although there is only one way to
represent +9, there are three different ways to represent — 9 with eight bits:

In signed-magnitude representation: 10001001
In signed-1’s-complement representation: ";',1 110110
In signed-2’s-complement representation: ‘igl 110111

In signed-magnitude, —9 is obtained from +9 by changing the sign bit in the leftmost
position from 0 to 1. In signed-1's complement, —9 is obtained by complementing all
the bits of +9, including the sign bit. The signed-2’s-complement representation of
—9 is obtained by taking the 2’s complement of the positive number, including the
sign bit.

The signed-magnitude system is used in ordinary arithmetic, but is awkward when
employed in computer arithmetic. Therefore, the signed-complement is normally used.
The 1's complement imposes some difficulties and is seldom used for arithmetic op-
erations except in some older computers. The 1's complement is useful as a logical op-
eration since the change of 1 to 0 or 0 to 1 is equivalent to a logical complement
operation, as will be shown in the next chapter. The following discussion of signed bi-
nary arithmetic deals exclusively with the signed-2’s-complement representation of
negative numbers. The same procedures can be applied to the signed-1’s-complement
system by including the end-around carry as done with unsigned numbers.

Arithmetic Addition

The addition of two numbers in the signed-magnitude system follows the rules of ordi-
nary arithmetic. If the signs are the same, we add the two magnitudes and give the
sum the common sign. If the signs are different, we subtract the smaller magnitude

16

Chapter 1 Binary Systems

from the larger and give the result the sign of the larger magnitude. For example,
(+25) + (= 37) = —(37 — 25) = —12 and is done by subtracting the smaller mag-
nitude 25 from the larger magnitude 37 and using the sign of 37 for the sign of the re-
sult. This is a process that requires the comparison of the signs and the magnitudes and
then performing either addition or subtraction. The same procedure applies to binary
numbers in signed-magnitude representation. In contrast, the rule for adding numbers
in the signed-complement system does not require a comparison or subtraction, but
only addition. The procedure is very simple and can be stated as follows for binary
numbers.

The addition of two signed binary numbers with negative numbers represented in signed-
2's-complement form is obtained from the addition of the two numbers, including their
sign bits. A carry out of the sign-bit position is discarded.

Numerical examples for addition follow, Note that negative numbers must be initially in
2’s complement and that the sum obtained after the addition if negative is in 2s-com-

plement form. -
+ 6 00000110 -6 11111010 o
+13 00001101 +13 00001101

v, +19 00010011 + 7 00000111

!
+ 6 00000110 -6 11111010
—13 11110011 —13 11110011
-1 11111001 —19 11101101

In each of the four cases, the operation performed is addition with the sign bit included.
Any carry out of the sign-bit position is discarded, and negative results are automati-
cally in 2’s-complement form.

In order to obtain a correct answer, we must ensure that the result has a sufficient
number of bits to accommodate the sum. If we start with two n-bit numbers and the
sum occupies n + 1 bits, we say that an overflow occurs. When one performs the addi-
tion with paper and pencil, an overflow is not a problem since we are not limited by the
width of the page. We just add another 0 to a positive number and another | to a nega-
tive number in the most-significant position to extend them to n + 1 bits and then per-
form the addition. Overflow is a problem in computers because the number of bits that
hold a number is finite, and a result that exceeds the finite value by 1 cannot be accom-
modated.

The complement form of representing negative numbers is unfamiliar to those used
to the signed-magnitude system. To determine the value of a negative number when in
signed-2's complement, it is necessary to convert it to a positive number to place it in a
more familiar form. For example, the signed binary number 11111001 is negative be-
cause the leftmost bit is 1. Its 2°s complement is 00000111, which is the binary equiva-
lent of +7. We therefore recognize the original negative number to be equal to —7.

Section 1-7 Binary Codes 17

Arithmetic Subtraction

Subtraction of two signed binary numbers when negative numbers are in 2's-comple-
ment form is very simple and can be stated as follows:

Take the 2's complement of the subtrahend (including the sign bit) and add it to the minu-
end (including the sign bit). A carry out of the sign-bit position is discarded.

This procedure occurs because a subtraction operation can be changed to an addition
operation if the sign of the subtrahend is changed. This is demonstrated by the follow-
ing relationship:

(xA) — (+B) =(zA) + (—B)
‘ (£4) — (=B) = (A) + (+B)

But changing a positive number to a negative number is easily done by taking its 2’s
complement. The reverse is also true because the complement of a negative number in
complement form produces the equivalent positive number. Consider the subtraction of
(=6) — (—13) = +7. In binary with eight bits, this is written as (11111010 —
11110011). The subtraction is changed to addition by taking the 2’s complement of the
subtrahend (—13) to give (+13). In binary, this is 11111010 + 00001101 =
100000111. Removing the end carry, we obtain the correct answer 00000111 (+7).

It is worth noting that binary numbers in the signed-complement system are added
and subtracted by the same basic addition and subtraction rules as 'unsigned numbers.
Therefore, computers need only one common hardware circuit to handle both types of
arithmetic. The user or programmer must interpret the results of such addition or sub-
traction differently, depending on whether it is assumed that the numbers are signed or
unsigned.

1-7 BINARY CODES

Electronic digital systems use signals that have two distinct values and circuit elements
that have two stable states. There is a direct analogy among binary signals, binary cir-
cuit elements, and binary digits. A binary number of n digits, for example, may be rep-
resented by n binary circuit elements, each having an output signal equivalent to a 0 or
a 1. Digital systems represent and manipulate not only binary numbers, but also many
other discrete elements of information. Any discrete element of information distinct
among a group of quantities can be represented by a binary code. Binary codes play an
important role in digital computers. The codes must be in binary because computers
can only hold 1's and 0’s. It must be realized that binary codes merely change the sym-
bols, not the meaning of the elements of information that they represent. If we inspect
the bits of a computer at random, we will find that most of the time they represent
some type of coded information rather than binary numbers.

A bir, by definition, is a binary digit. When used in conjunction with a binary code,
it is better to think of it as denoting a binary quantity equal to 0 or 1. To represent a

18

Chapter 1 Binary Systems

group of 2" distinct elements in a binary code requires a minimum of n bits. This is be-
cause it is possible to arrange n bits in 2" distinct ways. For example, a group of four
distinct quantities can be represented by a two-bit code, with each quantity assigned
one of the following bit combinations: 00, 01, 10, 11. A group of eight elements re-
quires a three-bit code, with each element assigned to one and only one of the folloulf-
ing: 000, 001, 010, 011, 100, 101, 110, 111. The examples show that the distinct bit
combinations of an n-bit code can be found by counting in binary from 0 to (2" — 1).
Some bit combinations are unassigned when the number of elements of the group to be
coded is not a multiple of the power of 2. The ten decimal digitle, 1,2,...,9arean
example of such a group. A binary code that distinguishes among ten elements must
contain at least four bits; three bits can distinguish a maximum of eight elements. Four
bits can form 16 distinct combinations, but since only ten digits are coded, the remain-
ing six combinations are unassigned and not used.) o

Although the minimum number of bits required to code 2" distinct quantities 1s n,
there is no maximura number of bits that may be used for a binary code. For example,
the ten decimal digits can be coded with ten bits, and each decimal digit assigned a bit
combination of nine 0’s and a 1. In this particular binary code, the digit 6 is assigned
the bit combination 0001000000.

Decimal Codes

Binary codes for decimal digits require a minimum of four bits. Numerous different
codes can be obtained by arranging four or more bits in ten distinct possible combina-
tions. A few possibilities are shown in Table 1-2.

TABLE 1-2

Binary codes for the decimal digits

Decimal (BCD) (Biquinary)

digit 8421 Excess-3 84-2-1 2421 5043210
0 0000 0011 0000 0000 0100001
1 0001 0100 0111 0001 0100010
2 0010 0101 0110 0010 0100100
3 0011 0110 0101 0011 0101000
4 0100 0111 0100 0100 0110000
5 0101 1000 1011 1011 1000001
6 0110 1001 1010 1100 1000010
7 0111 1010 1001 1101 1000100
8 1000 1011 1000 1110 1001000
9 1001 1100 1111 1111 1010000

The BCD (binary-code decimal) is a straight assignment of the binary equivalent. It
is possible to assign weights to the binary bits according to their positions. The weights
in the BCD code are 8, 4, 2, 1. The bit assignment 0110, for example, can be inter-
preted by the weights to represent the decimal digit 6 because 0 X 8 + 1 X 4 +

Section 1-7 Binary Codes 19

1 X240 x 1= 6. Itis also possible to assign negative weights to a decimal code,
as shown by the 8, 4, —2, —1 code. In this case, the bit combination 0110 is inter-
preted as the decimal digit 2, as obtained from 0 X 8 + 1 X 4 + 1 x (=2) + 0 X
(=1) = 2. Two other weighted codes shown in the table are the 2421 and the 5043210.
A decimal code that has been used in some old computers is the excess-3 code. This is
an unweighted code; its code assignment is obtained from the corresponding value of
BCD after the addition of 3.

Numbers are represented in digital computers either in binary or in decimal through
a binary code. When specifying data, the user likes to give the data in decimal form.
The input decimal numbers are stored internally in the computer by means of a decimal
code. Each decimal digit requires at least four binary storage elements. The decimal
numbers are converted to binary when arithmetic operations are done internally with
numbers represented in binary. It is also possible to perform the arithmetic operations
directly in decimal with all numbers left in a coded form throughout. For example, the
decimal number 395, when converted to binary, is equal to 110001011 and consists of
nine binary digits. The same number, when represented internally in the BCD code,
occupies four bits for each decimal digit, for a total of 12 bits: 001110010101. The first
four bits represent a 3, the next four a 9, and the last four a 5.

It is very important to understand the difference between conversion of a decimal
number to binary and the binary coding of a decimal number. In each case, the final
result is a series of bits. The bits obtained from conversion are binary digits. Bits ob-
tained from coding are combinations of 1's and 0's arranged according to the rules of
the code used. Therefore, it is extremely important to realize that a series of 1’s and 0s
in a digital system may sometimes represent a binary number and at other times repre-
sent some other discrete quantity of information as specified by a given binary code.
The BCD code, for example, has been chosen to be both a code and a direct binary
conversion, as long as the decimal numbers are integers from 0 to 9. For numbers
greater than 9, the conversion and the coding are completely different. This concept is
so important that it is worth repeating with another example. The binary conversion of
decimal 13 is 1101; the cbding of decimal 13 with BCD is 00010011.

From the five binary codes listed in Table 1-2, the BCD seems the most natural to
use and is indeed the one most commonly encountered. The other four-bit codes listed
have one characteristic in common that is not found in BCD. The excess-3, the 2, 4,2, 1,
and the 8, 4, =2, —1 are self-complementing codes, that is, the 9’s complement of
the decimal number is easily obtained by changing 1’s to 0’s and 0’s to 1's. For exam-
ple, the decimal 395 is represented in the 2, 4, 2, 1 code by 001111111011. Its 9's
complement 604 is represented by 110000000100, which is easily obtained from the
replacement of 1’s by 0°s and 0’s by 1’s. This property is useful when arithmetic oper-
ations are internally done with decimal numbers (in a binary code) and subtraction is
calculated by means of 9’s complement.

The biquinary code shown in Table 1-2 is an example of a seven-bit code with error-
detection properties. Each decimal digit consists of five 0’s and two 1’s placed in the
corresponding weighted columns. The error-detection property of this code may be un-
derstood if one realizes that digital systems represent binary 1 by one distinct signal

20

Chapter 1 Binary Systems

and binary 0 by a second distinct signal. During transmission of signals from one loca-
tion to another, an error may occur, One or more bits may change value. A circuit in
the receiving side can detect the presence of more (or less) than two 1’s and if the re-
ceived combination of bits does not agree with the allowable combination, an error is
detected.

Error-Detection Code

Binary information can be transmitted from one location to another by electric wires or
other communication medium. Any external noise introduced into the physical commu-
nication medium may change some of the bits from 0 to 1 or vice versa. The purpose of
an error-detection code is to detect such bit-reversal errors. One of the most common
ways to achieve error detection is by means of a pariry bit. A parity bit is an extra bit
included with a message to make the total number of 1's transmitted either odd or
even. A message of four bits and a parity bit P are shown in Table 1-3. If an odd parity
is adopted, the P bit is chosen such that the total number of 1’s is odd in the five bits
that constitute the message and P. If an even parity 1 adopted, the P bit is chosen so
that the total number of 1's in the five bits is even. In a particular situation, one or the
other parity is adopted, with even parity being more common.

The parity bit is helpful in detecting errors during the transmission of information
from one location to another. This is done in the following manner. An even parity bit
is generated in the sending end for each message transmission. The message, together
with the parity bit, is transmitted to its destination. The parity of the received data is

TABLE 1-3

Parity bit
Odd parity Even parity

Message P Message P
0000 1 0000 0
0001 0 0001 1
0010 0 0010 1
0011 1 0011 0
0100 0 0100 1
0101 1 0101 0
0110 1 0110 0
0111 0 0111 1
1000 0 1000 1
1001 1 1001 0
1010 1 1010 0
1011 0 1011 1
1100 1 1100 0
1101 0 1101 1
1110 0 1110 1
1111 1 1111 0

Gray Code

Section 1-7 Binary Codes 21

checked in the receiving end. If the parity of the received information is not even, it
means that at least one bit has changed value during the transmission. This method de-
tects one, three, or any odd combination of errors in each message that is transmitted.
An even combination of errors is undetected. Additional error-detection schemes may
be needed to take care of an even combination of errors.

What is done after an error is detected depends on the particular application. One
possibility is to request retransmission of the message on the assumption that the error
was random and will not occur again. Thus, if the receiver detects a parity error, it
sends back a negative acknowledge message. If no error is detected, the receiver sends
back an acknowledge message. The sending end will respond to a previous error by
transmitting the message again until the correct parity is received. If, after a number of
attemnpts, the transmission is still in error, a message can be sent to the human operator
to check for malfunctions in the transmission path.

Digital systems can be designed to process data in discrete form only. Many physical
systems supply continuous output data. These data must be converted into digital form
before they are applied to a digital system. Continuous or analog information is con-
verted into digital form by means of an analog-to-digital converter. It is sometimes
convenient to use the Gray code shown in Table 1-4 to represent the digital data when
it is converted from analog data. The advantage of the Gray code over binary numbers
is that only one bit in the code group changes when going from one number to the next.
For example, in going from 7 to 8, the Gray code changes from 0100 to 1100. Only the

TABLE 1-4
Four-bit Gray code

Gray code Decimal equivalent
0000 0
0001 1
0011 2
0010 3
0110 4
0111 5
0101 6
0100 7
1100 8
1101 9
1111 10
1110 11
1010 12
1011 13
1001 14

1000 15

22

Chapter 1 Binary Systems

first bit from the left changes from 0 to 1; the other three bits remain the same. When’
comparing this with binary numbers, the change from 7 to 8 will be from 0111 to
1000, which causes all four bits to change values.

The Gray code is used in applications where the normal sequence of binary numbers
may produce an error or ambiguity during the transition from one number to the next.
If binary numbers are used, a change from 0111 to 1000 may produce an intermediate
erroneous number 1001 if the rightmost bit takes more time to change than the other
three bits. The Gray code eliminates this probicm since only one bit changes in value
during any transition between two numbers.

A typical application of the Gray code occurs when analog data are represented by

continuous change of a shaft position. The shaft is partitioned into scgments. @nc cach
segment is assigned a number. If adjacent segments are made to correspond with ...
Gray-code sequence, ambiguity is eliminated when detection is sensed ir line that

separates any two segments.

ASCII Character Code

Many applications of digital computers require the handling of data not only of num-
bers. but also of letters. For instance, an insurance company with thousands of policy
holders will use a computer to process its files. To represent the names and other perti-
nent information, it is necessary to formulate a binary code for the letters of the alpha-
bet. In addition, the same binary code must represent numerals and special characters
such as $. An alphanumeric character set is a set of elements that includes the 10 deci-
mal digits, the 26 letters of the alphabet, and a number of special characters. Such a set
contains between 36 and 64 elements if only capital letters are included, or between 64
and 128 elements if both uppercase and lowercase letters are included. In the first case,
we need a binary code of six bits, and in the second we need a binary code of seven
bits.

The standard binary code for the alphanumeric characters is ASCII (American Stan-
dard Code for Information Interchange). It uses seven bits to code 128 characters, as
shown in Table 1-5. The seven bits of the code are designated by b, through b7, with b,
being the most-significant bit. The letter A, for example, is represented in ASCII as
1000001 (column 100, row 0001). The ASCII code contains 94 graphic characters that
can be printed and 34 nonprinting characters used for various control functions. The
graphic characters consist of the 26 uppercase letters (A through Z), the 26 lowercase
letters (a through z), the 10 numerals (0 through 9), and 32 special printable characters
such as %, *, and §.

The 34 control characters are designated in the ASCII table with abbreviated names.
They are listed in the table with their full functional names. The control characters are
used for routing data and arranging the printed text into a prescribed format. There are
three types of control characters: format effectors, information separators, and commu-
nication-control characters. Format effectors are characters that control the layout of
printing. They include the familiar typewriter controls such as backspace (BS), hori-
zontal tabulation (HT), and carriage return (CR). Information separators are used to

