Number Base Conversion

Objectives

Given the representation of some number (X_B) in a number system of radix B, this lesson will show how to obtain the representation of the same number (X) in another number system of radix A, i.e. (X_A) .

Converting Whole (Integer) Numbers

Assuming X to be an Integer,

1. Assume that X_B has n digits $(b_{n-1}, \dots, b_2, b_1, b_0)_B$, where \mathbf{b}_i is a digit in radix B system,

i.e.
$$\mathbf{b}_i \in \{0, 1, \dots, \text{``B-1''}\}$$

2. Assume that X_A has m digits $(a_{m-1}, \dots, a_2 a_1 a_0)_A$ where \mathbf{a}_i is a digit in radix A system,

i.e.
$$\mathbf{a}_i \in \{0, 1, \dots, \text{``A-1''}\}$$

Where
$$a_i \in \{0-(A-1)\}$$

Accordingly, dividing X_B by A, the remainder will be a_0 .

In other words, we can write

$$X_{B} = Q_{0}.A + a_{0}$$
Where, $Q_{0} = a_{m-1}*A^{m-2} + ... + a_{2}*A^{1} + a_{1}*A^{0}$
Divisible by A

Not Divisible by A

$$\mathbf{Q}_0 = \mathbf{Q}_1 \mathbf{A} + \mathbf{a}_1$$

$$\mathbf{Q}_1 = \mathbf{Q}_2 \mathbf{A} + \mathbf{a}_2$$

•••••

$$Q_{m-3} = Q_{m-2}A + a_{m-2}$$

 $Q_{m-2}=a_{m-1} < A$ (not divisible by A)

$$=Q_{m-1}A+a_{m-1}$$

Where
$$\mathbf{Q}_{\mathbf{m-1}} = 0$$

- □ This division procedure can be used to convert an integer value from some radix number system to any other radix number system
- \Box An important point to remember is the first digit we get using the division process is a_0 , then a_1 , then a_2 , till a_{m-1}

□ In other words, we get the digits of the integer number starting from the radix point and moving lefts

Example:

Convert
$$(53)_{10} \longrightarrow (?)_2$$

Division Step		Quotient	Remainder			
53	÷	2	$Q_0 = 26$	$1 = \mathbf{a_0}$	LSB	
26	÷	2	$Q_1 = 13$	$0 = a_1$		
13	÷	2	$Q_2 = 6$	$1 = a_2$		
6	÷	2	$Q_3 = 3$	$0 = a_3$		
3	÷	2	$Q_4 = 1$	$1 = a_4$		
1	÷ 2		0	$1 = a_5$	MSB	
			1			
Stopping Point						

Thus $(53)_{10}$ = $(110101.)_2$

Since we always divide by the radix, and the quotient is re-divided again by the radix, the solution table may be compacted into 2 columns only as shown:

$$(51)_{10}$$
= $(110011.)_2$
 $(53)_{10}$ = $(110101.)_2$

Example:

Convert $(755)_{10}$ $(?)_8$

Divis	ion S	tep	Quotient	Remainder	
755	÷	8	$Q_0 = 94$	$3 = \mathbf{a}_0$	LSB
94	÷	8	$Q_1 = 11$	$6 = a_1$	
11	÷	8	$Q_2 = 1$	$3 = a_2$	
1	÷	8	0	$1 = a_3$	MSB

Thus,
$$(755)_{10}$$
 $(1363.)_8$

The above method can be more compactly coded as follows:

Example:

Convert
$$(1606)_{10}$$
 $(?)_{12}$

For radix twelve, the allowed digit set is:

$$(1606)_{10} \longrightarrow (B1A.)_{12}$$

Converting Fractions

Assuming X to be a fraction (≤ 1),

1. Assume that X_B has n digits

$$X_B = (0.b_{-1} b_{-2} b_{-3} \dots b_{-n})_B$$

2. Assume that X_A has m digits

$$X_{A} = (0.a_{-1} \ a_{-2} \ a_{-3} \dots a_{-m})_{A}$$

$$Knowns$$

$$= (0.b_{-1} \ b_{-2} \ b_{-3} \dots b_{-n})_{B}$$

$$(0.a_{-1} \ a_{-2} \ a_{-3} \dots a_{-m})_{A}$$

$$X_{B} = a_{-1} * A^{-1} + a_{-2} * A^{-2} + \dots a_{-m} * A^{-m}$$

Integer

Fraction

 $X_{D} * A = a_{-1} + X_{D}$

Repeating:

$$X_{B1}*A = a_{-2} + X_{B2}$$

$$X_{Bm-2}*A = a_{-m-1} + X_{Bm-1}$$

$$X_{Bm-1}*A = a_{-m}$$

Example:

Convert
$$(0.731)_{10}$$
 $(?)_2$

- 0.731*2=**1**.462
- 0.462*2=0.924
- 0.924*2=1.848
- 0.848*2=1.696
- 0.696*2=1.392
- 0.392*2=0.784
- 0.784*2=**1**.568

$$(0.731)_{10} = (.1011101)_2$$

Example:

Convert
$$(0.731)_{10} \longrightarrow (?)_{8}$$
 $0 \longrightarrow 0$
 $0 \longrightarrow$

- For radix twelve, the allowed digit set is:
 - {0-9, A, B}

IMPORTANT NOTE

For a number that has both integral and fractional parts, conversion is done separately for both parts, and then the result is put together with a system point in between both parts.

Conversion From Bases Other Than 10

Example

$$()_7 \longrightarrow ()_5$$

$$()_9 \longrightarrow ()_{12}$$

2 Approaches

Perform arith. in original base system (in the above example bases 7 & 9)

- 1. Convert to Decimal
- 2. Convert from Decimal to new base (in the above example bases 5&12)

Binary To Octal Conversion

$$(b_n....b_5 b_4 b_3 b_2 b_1 b_0 \cdot b_{-1} b_{-2} b_{-3} b_{-4} b_{-5}....)_2$$

Group of 3 Binary Bits	Octal
$\mathbf{b}_{i+2} \ \mathbf{b}_{i+1} \ \mathbf{b}_{i}$	Equivalent
0 0 0	0
0 0 1	1
0 1 0	2
0 1 1	3
1 0 0	4
1 0 1	5
1 1 0	6
1 1 1	7

Example:

Convert (1110010101.1011011)₂ ino Octal.

We first partition the Binary number into groups of 3 bits

$$001_{100} = 100_$$

Binary To Hexadecimal Conversion

Group	of 4	Hexadecimal		
\mathbf{b}_{i}	$+3$ \mathbf{b}_{i+1}	Equivalent		
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	A
1	0	1	1	В
1	1	0	0	C
1	1	0	1	D
1	1	1	0	E
1	1	1	1	F

Example:

Convert (1110010101.1011011)₂ into Hexadecimal.

$$=(395.B6)_{16}$$

To Convert Between Octal && Hexadecimal Convert to Binary as an Intermediate Step