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ABSTRACT 
 
The problem of assigning weights from ordinal ranks appears in many contexts in multi-criteria 
decision making. In this paper, we present an empirical methodology for converting an ordinal 
ranking of a number of criteria into numerical weights. Based on this methodology, the 
weight for each criterion is expressed as a simple mathematical function of its rank and the 
total number of criteria. The proposed methodology is empirically developed, evaluated, and 
validated based on a set of experiments involving university students and faculty members. 
The proposed method is compared with well-known methods in the literature and has shown 
superiority in assigning criteria weights from ordinal ranks.  
 
INTRODUCTION 
 
In multiple criteria decision making, several methods are used to determine the relative criteria 
weights. These methods depend on the input of the decision maker(s), i.e., the approach used to 
compare the different criteria. In many situations, the only input provided by each decision 
maker is a list (in the order of priority) the factors they consider most relevant for evaluating 
and comparing the applicable alternatives. As an example the factors used to assign an overall 
audit score for a quality or maintenance system are ranked by the auditing team and a weight 
for each factor must be obtained from the given ranks. In goal programming, if the different 
objectives are ranked, their relative weights can be determined and used to combine multiple 
objectives into a single objective. 

 
This paper presents an empirically developed methodology to convert criteria ranks into 
relative criteria weights, using real-life experiments that involve surveys of university 
students and faculty members. In these experiments., participants were first asked to list the 
relevant factors in the order of importance, and then asked to give a weight for each factor 
based on its importance in their point of view. In other words they had to provide a weight for 
each factor that matches the given rank (the highest weight must be given to the first-ranked 
factor). Using regression and statistical analysis, a methodology. That best fits the 
experimental data and minimizes the errors is recommended for general use in assigning 
weights. In order to validate the proposed methodology, a second set of experiments 
involving another sample of students and a different set of criteria was subsequently 
conducted. 
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In the following section, relevant literature is reviewed. Subsequently, the problem is defined 
and experimental design is described. Next, the methodology for conversing ranks into 
weights is presented. Finally, validation of the methodology is discussed, and then 
conclusions are drawn. 

 
LITERATURE SURVEY 
 
Lootsma (1999) provides a comprehensive overview of multi-criteria decision making 
(MCDM) approaches based on ratio and difference judgment. Traditional methods for 
determining criteria weights include the tradeoff method and the pricing-out method (Keeney 
and Raiffa, 1976), the ratio method and the swing method (Von Winterfeldt and Edwards, 
1986), conjoint methods (Green and Srinivasan, 1990), and the Analytic Hierarchy Process 
(AHP) (Saaty, 1994). Borcherding et al. (1991) compare the tradeoff, pricing out, ratio, and 
swing methods. More recent methods include habitual domains (Tzeng et al. 1998), 
multiobjective linear programming (Costa and Climaco, 1999), and linear programming 
(Mousseau et al., 2000).  
 
Tzeng et al. (1998) classify weighting methods into objective or subjective, according to 
whether weights are indirectly computed from outcomes or directly obtained from decision 
makers. Weber and Borcherding (1993) classify weight-determining procedures as statistical 
or algebraic, holistic or decomposed, and direct or indirect. Choo et al. (1999) offer several 
interpretations of weights in different MCDM models. Zopounidis and Doumpos (2002) 
provide a detailed survey of multicriteria classification and ranking methods. Al-Kloub et al. 
(1997) describe an MCDM methodology for determining weights and ranks, and apply it to 
rank water projects in Jordan. Lahdelma et al. (2002) use Stochastic Multicriteria 
Acceptability Analysis (SMAA) with ordinal criteria to convert criterion-wise rankings of 
alternatives into cardinal information used for selecting a waste treatment facility location.  

 
Specific functions for assigning weights wr to n criteria with ranks r = 1, …, n, have been 
suggested by several authors. Stillwell et al. (1981) propose two functions: inverse weights, 
and linear weights. Barron (1992) proposes centroid weights. Lootsma (1999) and Lootsma 
and Bots (1999) suggest geometric weights. Barron and Barrett (1996) support using centroid 
weights, while Gonzalez-Pachon and Romero (2001) favor a linear order under a context of 
complete ordinal ranking. 
 
PROBLEM DEFINITION AND EXPERIMENTS 

 
This paper considers a deterministic group MCDM problem with m alternatives and n 
decision criteria. Weights reflect the relative importance of each decision criterion, and are 
usually normalized by making their sum equal to 1 (∑ =

n
j jw1 =1). Given the specific 

performance value ajk of each alternative k (k = 1, 2, …, m) in terms of each criterion j (j = 1, 
2, …, n), the overall performance of each alternative k can be calculated as follows: 
 
 Pk = ∑ =

n
j jkj aw1 ,   k = 1, 2, …, m      (1) 

 
We assume that input is obtained as a list of n prioritized (ranked) criteria, where each 
criterion j has a rank rj, (rj = 1, ..., n). We assume that rank is inversely related to weight (rank 
1 denotes the highest weight, while rank n denotes the lowest weight). Our objective is to 
convert the list of ranks (r1, …, rn) into numerical weights w1, …, wn for the n criteria. 
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The methodology suggested in this paper is empirically developed based on a set of 
experiments. We would like to test whether rank-weight relationships change with different 
sets of criteria or different decision makers. Therefore, the experiment involves two groups of 
participants and two sets of criteria. The main objective of the experiments is to develop a 
general methodology to convert ordinal data into relative weights for any set of criteria. The 
experiment consisted of a survey distributed among a sample of 111 students and 23 faculty 
members at KFUPM, in which the participants were asked to answer two questions:  

 
Question 1. List the factors that hinder students learning and retaining course materials.  
Question 2. List the factors that affect the evaluation of course instructors.  

 
For each list, the participants were asked to arrange the factors in order of priority (most 
important to least important). After they listed them, they were required to give weights to all 
factors in each prioritized list, starting with a weight of 100% for the most important (first) 
factor. The factors most frequently listed by the participants in response to the two questions 
are shown in Table 1. 
 
 
Table 1. Criteria cited most by participants in the survey and corresponding percentage of 

citing participants for the two questions 
 
  Question 1. Learning hindrances %   Question 2. Instructor evaluation % 
  Homework cheating 30   Fluency in English language 28 
  Excessive students social activity 24   Judgment in dealing with students 24 
  Frequent examinations    23   Experience in teaching 22 
  Tough examinations 20   Good handling of student problems 17 
  Focus on theories rather than applications 18   Assuming responsibility 16 
  Student lack of preparation for the lecture16   Honesty in work 14 
  Poor attention and note taking in lectures 15   Honesty in work 12 
  Choosing the wrong roommate 14   Giving students bonus via extra work 10 
  Memorizing instead of understanding 14   Solving homework problems in class 10 
  Losing points for absences 14   Instructor ethics 8 
  Insufficient computer programming skill 14   
  Students carelessness and delaying tasks 14   
 
DETERMINING RANK-WEIGHT RELATIONSHIPS 
 
The methodology for assigning criteria weights based on criteria ranks provided by the 
decision maker(s) is empirically developed on the basis of the data obtained from the 
experiments. The process of analyzing the data in order to develop the methodology involved 
the following steps.  

 
1. First, we separated the data obtained from the survey into four categories based on the 

two sets of criteria (two questions) and the two sets of decision makers (students and 
faculty). We then separated each category into distinct groups according to the number of 
criteria, n, given by each participant in the survey.  

2. For each of the four categories (question 1, question 2, students, and faculty) and each 
value of n, we calculated the average weight for each rank.  
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3. For each value of n, we applied statistical tests to determine whether the differences 
between the two sets of criteria (two questions) or between the two sets of decision 
makers (students and faculty) are significant. Since these differences were found 
statistically insignificant, all inputs from the four categories were combined for each 
value of n, producing the average weights for each rank shown in Table 2.  

 
4. Five different models were applied to estimate the weight of each rank for each value 

of n. All these models assume that there is a consistent relationship between rank and 
average weight, which is independent of the problem context. After plotting the data 
in Table 2, we proposed the first model given below. Our model (M1) assumes that 
the relationship between the weight and rank is linear, in which the slope is itself a 
function of the number of criteria n. All models were adjusted for our data by making 
w1 = 100. The five models used to calculate the weight of each rank are: 

 
M1 Proposed model: Linear weights with variable slope: wr = 100 – sn(r – 1), where wr is 

the weight, r is the rank, and sn is the absolute value of the slope calculated by least 
squares regression when the number of criteria is equal to n, as shown in Table 2. 

M2 Stillwell et al. (1981): Linear weights with fixed slope: wr = 100(n + 1 – r)/n,. 

M3 Stillwell et al. (1981): Inverse or reciprocal weights: wr = 100/r,  

M4 Barron (1992): Centroid weights: wr = 
∑
∑

=

=
n
i

n
ri

i
i

1 /1
/1100 .  

M5 Lootsma (1999): Geometric weights: wr = ( ) 1
2

100
−r . 

5. In order to compare how closely each model approximates actual weights, the mean 
absolute percentage errors (MAPE) were calculated for all five models and all values of 
n. The results shown in Table 3 clearly show that Model M1 consistently outperforms all 
other models. Thus, Model M1 is chosen to represent the relationship between the rank 
and average weight.  

 
6. In order to determine the relationship in Model M1 between the slope (– sn) and the 

number of criteria n, we plotted the values of sn shown in Table 2 versus n. The plot 
showed a decreasing nonlinear curve that suggested an inverse model of absolute slope sn 
as a function of n. Applying least-squares regression to sn versus n, we obtained the 
following model. 

 
 sn  =  3.19514 + n

75756.37  

 
Therefore, for any set of n ranked factors, assuming a weight of 100% for the first-ranked 
(most important) factor, the percentage weight of a factor ranked as r is given by: 
 
 wr,n   = 100 – sn(r – 1), or  

 wr,n   = 100 – (3.19514 + n
75756.37 )(r – 1),  1 ≤ r ≤ n , r and n are integer  (2) 
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Table 2. Actual average weights for each rank r and slope magnitude sn of the weight-
versus-rank line according to the number of criteria n 

 
n 2 3 4 5 6 7 8 10 11 12 
r           
1 100 100 100 100 100 100 100 100 100 100 
2 79.26 81.94 86.42 92.85 93.39 90 93.75 90 99 87.56
3  65.53 72.3 79.35 85.56 90 84.38 88 80 84.94
4   58.55 67.36 71.67 80 76.25 85 80 75.44
5    58 62.5 70 72.63 85 75 71.64
6     54.44 50 63.88 70 75 66.63
7      40 47.63 65 70 63.82
8       38.88 55 60 55.53
9        40 60 51.77
10        30 45 48.93
11         40 41.15
12          35.09
sn 20.74 17.4 13.81 10.48 9.05 9.01 8.15 6.75 5.72 6.07 

 
 
Table 3.  MAPE values of the 6 models for all values n 
 
n M1 M2 M3 M4 M5 
2 0 0.37 0.37 0.58 0.11 
3 0.43 22.59 29.37 38.1 12.47 
4 0.1 25.34 38.34 43.67 22.16 
5 1.18 28.87 46.51 48.35 33.05 
6 1.86 29.86 51.67 50.66 40.67 
7 7.45 28.56 54.08 51.06 45.62 
8 4.49 27.95 57.32 51.6 50.98 
10 8.93 28.53 62.4 52.77 60.27 
11 5.21 29.8 65.73 53.88 64.03 
12 4.27 24.45 65.41 50.84 65.13 
Ave. MAPE 3.39 24.63 47.12 44.31 39.45 

 
VALIDATION 
 
Equation (2) represents our proposed functional relationship between criteria ranks and 
weights. In order to validate this relationship, a second set of experiments involving a 
different set of 59 KFUPM students, was conducted. Students were given 3 questions relating 
to the requirements for the optimal design of a numerical analysis course. The first question 
listed 7 faculty requirements, the second 6 textbook requirements, and the third 6 grading 
policy requirements. Students were asked give the proper weight to each requirement 
(criterion) on a scale from 1 to 9, with 1 = least important and 9 = most important. Although 
the ranks are not explicitly given, they are implied in the descending order of the weights. 

 
Since both questions 2 and 3 involved 6 criteria (n = 6), their data was combined together. 
For the two new sets of data, the average weight was determined for each rank, and then 
normalized to correspond with w1 = 100. Subsequently, the normalized actual weights were 
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compared with the values suggested by models M1 through M5. The results, summarized in 
Table 4, confirm the overwhelming superiority of our Model M1 over other models. First, the 
errors in the weights for Model M1 (MAPE values) are much lower than the four other 
models. Second, the theoretical slope estimates are quite close to the actual values (relative 
error = 6.88% and – 4.41% for n = 7 and n =  6, respectively). 
 
Table 4.  Comparing Model M1 with other models using two additional (validation) 

data sets 
 
Quest. Rank r 1 2 3 4 5 6 7 MAPE S7 
 Actual 100 95.18 89.52 81.13 73.17 57.86 44.86  8.036 
 M1 100 91.41 82.82 74.23 65.64 57.05 48.47 5.66 8.589 
1 M2 100 85.71 71.43 57.14 42.86 28.57 14.29 31.42  
 M3 100 50 33.33 25 20 16.67 14.29 55.92  
 M4 100 61.43 42.15 29.29 19.65 11.94 5.51 56.07  
 M5 100 70.71 50 35.36 25 17.68 12.5 47.67  
Quest. Rank r 1 2 3 4 5 6  MAPE S6 
 Actual 100 94.97 89.61 79.89 64.8 36.2   9.926 
 M1 100 90.51 81.02 71.54 62.05 52.56  12.36 9.488 
2 & 3 M2 100 83.33 66.67 50 33.33 16.67  29.63  
 M3 100 50 33.33 25 20 16.67  50.33  
 M4 100 59.18 38.78 25.17 14.97 6.803  53.5  
 M5 100 70.71 50 35.36 25 17.68  39.68  
 
CONCLUSIONS 
 
This paper presented a methodology to determine individual criteria weight on the basis of 
individual ordinal ranking of these criteria. Experiments were conducted to develop the 
proposed methodology. A model has been proposed in which the weight of each criterion is a 
function of both its rank and the total number of criteria The linear model defined by equation 
(2), whose slope depends on the number of criteria, outperforms other functional forms 
reported in the literature.  

 
The work in this paper can be extended into several directions. One direction is to investigate 
and assess the performance of the aggregation methods in the literature. Aggregation methods 
are used for combining different criteria ordinal rankings provided by several decision 
makers into aggregate numerical criteria weights. An alterative direction is to use the 
concepts in this paper and propose new aggregation methods. 
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