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In typical production-inventory models of deteriorating items, deterioration of
the production process has not been considered. In this paper, a model is pro-
posed in which both the produced items and the production equipment
deteriorate. When the production system deteriorates, it shifts to an out-
of-control state and begins to produce a proportion of defective items, necessitat-
ing corrective maintenance action. A model is formulated to integrate several
realistic aspects, including item and process deterioration, varying demand and
production rates, quality, inspection, and maintenance. A heuristic solution
algorithm is developed to determine the production and inspection schedules,
and a numerical example is solved.

1. Introduction

In many inventory models, it is assumed that the items can be stored indef-
initely without any risk of deterioration. However, certain types of items undergo
changes while in storage so that, with time, they become partially or entirely unfit
for use. Deterioration refers to damage, spoilage, vaporization, or obsolescence of
the products. There are several types of items that will deteriorate if stored for
extended periods of time. Examples of deteriorating items include metal parts,
which are prone to corrosion and rusting, and food items, which are subject to
spoilage and decay. Electronic components and fashion clothing also fall into this
category, because they can become obsolete over time and their demand will typi-
cally decrease drastically.

Inventory control for deteriorating items has been a well-studied problem.
Numerous optimal and heuristic approaches have been developed for modeling
and solving different variations of this problem. Several criteria have been proposed
for classifying deteriorating inventory models, including the following:

1. Fixed/random lifetime perishability.
2. Deterministic/probabilistic and constant/varying demand.
3. Constant/varying deterioration rate.
4. Single/multiple items.
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5. Single/multiple time periods.
6. Shortage/no shortage models.
7. Purchase/manufacturing models.
8. Economic models: price discounts, payment delay, and inflation.
9. Queuing models.

Typically, the effects of producing bad quality items or the restoration of the
process (i.e., inspection and maintenance) have not been considered in previous
studies of inventory deterioration. Therefore, there seems to be a genuine need for
looking into this aspect in order to make the analysis closer to reality. Thus, the
problem considered in this paper is to incorporate quality, inspection, and main-
tenance into a deteriorating inventory model with a decreasing demand rate and a
constant deterioration rate. First, a model will be formulated, and then a method-
ology will be presented to determine the optimal parameters for the new model,
such as the cycle time and the number of inspections.

A review of the most recent related literature is given in section 2. A mathema-
tical model is developed in section 3. The solution methodology is presented,
illustrated, and analysed in section 4. Finally, conclusions and suggestions for
future research are given in section 5.

2. Literature review

Goyal and Giri (2001) provided the most recent review of the literature on dete-
riorating inventory models published since the early 1990s, classifying them on
the basis of shelf-life characteristic and demand variations. For many products,
the influence of various market trends on demand is a primary factor in deteriora-
tion. Goswami and Chaudhuri (1992) formulated and analytically solved the inven-
tory replenishment problem for a deteriorating item with linearly time-varying
demand, finite shortage cost, and equal replenishment intervals. Wee (1995)
proposed a replenishment policy for a deteriorating product where demand declines
exponentially over a fixed time horizon with constant deterioration and complete or
partial backordering. Models were numerically solved and the policies compared
assuming that shortages are allowed. Su and Lin (2001) optimally solved a pro-
duction-inventory model for deteriorating products with shortages, in which the
demand is exponentially decreasing and the production rate at any time depends
on both the demand and the inventory level. They determined optimal expressions
for the production period, maximum inventory level, backorder level, and average
total cost. Because of demand and production rate variability, the model of Su and
Lin (2001) forms an important component of our model.

The appropriate deterioration distribution is used to model the nature of the
deterioration rate. Hariga (1995) proposed formulations and iterative solutions
for a generalized inventory lot-sizing problem and considered three deterioration
functions: Erlang, uniform, and exponential. Benkherouf and Mohammed (1996)
analysed the inventory replenishment problem with shortages, a constant dete-
rioration rate, and an increasing demand. They presented two optimum solution
methods: an exact algorithm, and a dynamic programming algorithm. Hwang
(1999) formulated and numerically solved a model with a fixed deterioration rate
under both the FIFO and LIFO issuing policies. Abad (2000) formulated a problem
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with exponentially deteriorating items, deterministic demand, and partial backorder-

ing as a convex nonlinear programming (NLP) model.

Shortages are either allowed or not allowed; and partially or completely back-

ordered; or lost. Padmanabhan and Vrat (1995) developed stock-dependent demand

models and determined economic order quantity (EOQ) expressions for deteriorat-

ing items with complete, partial, and no backlogging. Wee (1995) and Chu and Chen

(2002) allowed shortages for all periods except the final one, assuming a fixed ratio of

backorders to lost sales. Chu and Chen (2002) showed that the inventory carrying

cost is proportional to the cost of deteriorated items, and proposed a near-optimal

closed-form approximate solution. Wang (2002) argued that assuming a fixed frac-

tion of backorders is not reasonable, since the length of the waiting period is the

main factor in whether or not customers accept backordering. He introduced a time-

dependent partial backlogging rate and opportunity cost due to lost sales.

Several previous studies were focused on maintenance and inspection policies for

deteriorating production systems. Lee and Rosenblatt (1989) determined the produc-

tion and inspection schedules for a system in which the cost of maintenance depends

on detection delay, i.e., number of periods in the out-of-control state. The optimum

maintenance schedule is determined as a function of the cost of defective items, the

cost of restoration, and the mean time until the system is out-of-control. The model

of Lee and Rosenblatt (1989) will constitute a major element of our model. Posner

et al. (1994) analysed a number of producing machines that are either stopped for

repair when they fail naturally, or stopped deliberately due to capacity limitations

or other considerations. Iravani and Duenyas (2002) formulated a Markov decision

process to jointly plan production and maintenance of a single deteriorating

machine with an increasing failure rate to satisfy a stochastic demand. In their

model, machine deterioration is assumed to decrease its production rate and increase

the time and cost of its maintenance.

Quality control was integrated with production/inventory control and mainte-

nance scheduling in several models. Rahim (1994) presented a model to simulta-

neously determine the production lot size, inspection schedule, and control chart

parameters for a deteriorating production process with a general time-to-failure

distribution and increasing failure rate. The objective is to minimize the expected

total cost of quality control and inventory control per unit time. Ben-Daya (1999)

extended this work by assuming that the reduction in the age of a deteriorating

system is proportional to the level of preventive maintenance. Wang and

Sheu (2001) determined the optimal lot size and inspection threshold for deteriorat-

ing production equipment, assuming the first group of items of each batch is not

inspected.

Rahim and Ben-Daya (2001) provided the only previous model in which the

deterioration of both the items produced and the production equipment is consid-

ered. They combined the deteriorating inventory model of Misra (1975) with the

deteriorating equipment model of Rahim (1994). The combined model is used to

determine the optimal lot size, inspection schedule, and control chart limits, with the

assumptions of arbitrary distribution of deterioration times, normal distribution of

the quality characteristic, and constant demand and production rates. In compar-

ison, we assume that both the demand rate and the production rate are time depen-

dent, with an exponentially decreasing demand and demand-dependent production

rate. In this paper, the effects of equipment deterioration, variable demand and
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production rates, and inspection and maintenance decisions will be included in an
integrated model of deteriorating inventory.

3. Model development

In order to develop the integrated model, we will combine and extend two
existing models. The first is the production-inventory model presented by Su and
Lin (2001) for deteriorating items in which the production rate depends on both
the demand rate and the inventory level. The second is the production-inspection
model of Lee and Rosenblatt (1989) in which the inspection intervals are equal
and the cost of system maintenance is a function of the detection delay. For our
model, the following aspects will be incorporated:

1. Considering the possibility of producing bad quality items, given the
occurrence of a shift in the process to the out-of-control state.

2. Incorporating both the production-inventory schedule and the inspection-
maintenance schedule, since the process will not return to the in-control
state unless it is inspected and restored.

3. Modeling both deteriorating production equipment as well as deteriorating
inventory items.

4. Assuming the production rate to be a function of the demand rate, and
both to be varying with time.

3.1. Notation

� fraction of bad items produced in the out-of-control state, 0��� 1
D(t) demand rate at time t, t� 0
E(N) expected number of defective items produced per unit time during

the production interval (0, t1)
Im maximum inventory level
I(t) inventory level at any time t
TC total average cost of the system per unit time
kd deterioration cost per unit
kf cost of each inspection
kh inventory holding (carrying) cost per unit per unit time
kq cost resulting from producing a defective item
ks setup cost for each new cycle

CD deterioration cost per unit time
CF inspection cost per unit time
CH inventory holding cost per unit time
CQ quality cost (due to defective items) per unit time
CR restoration (maintenance) cost per unit time
CS setup cost per unit time
1/� mean time until the shift to the out-of-control state

n total number of inspections per cycle, all performed in the interval
[0, t1]

P(t) production rate at time t; 0 � t � t1
� detection delay, i.e., the elapsed time from the shift to the out-

of-control state to the inspection/restoration time
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t1 production time cycle shown in figure 1
t2 cycle time
Ti time of the ith inspection, i¼ 0, . . ., n�1, T0¼ 0, Tn¼ t1
� fraction of inventory items that deteriorate per unit time, 0� �� 1

R(�) restoration cost as a linear function of detection delay �

3.2. Assumptions

1. A single item is considered, which is subject to a constant �.
2. D(t) is known and decreases exponentially over time. That is, at time t, t� 0,

D(t)¼A e��t, where A is the initial demand rate and � is the rate of demand
decrease, 0� �� 1.

3. P(t) at any instant depends on D(t), i.e., at time t, t� 0, P(t)¼ a þ bD(t),
a>0, 0� b<1.

4. Items which are defective or have deteriorated are neither repaired nor
replaced.

5. Shortages are not allowed.
6. At the start of the production cycle the system is in the in-control state,

i.e., it does not produce any defective items.
7. The elapsed time before the process shifts to the out-of-control state is

an exponentially distributed random variable with mean 1/� (see figure 2).
8. During the out-of-control state, � of the total items produced will be

defective.
9. Once a shift has occurred, the process will stay in the out-of-control state

unless discovered (by inspection) and restored.
10. The scheduled maintenance inspections are performed at equal intervals.
11. The cost of restoration is a function of the duration of the out-of-control

state, i.e., of � (see figure 2).
12. Scheduled inspections and restorations are error-free and instantaneous.

3.3. The inventory equations

The methodology adopted in this paper involves a number of steps. First, the differ-
ential inventory equations for all the periods are developed. Next, these differential

Inspections

I(t) 

Slope ≈
P(t) – D(t)

t2
t

T1

Slope ≈
– D(t)

Im

T2 t1

Figure 1. The production-inventory cycle.
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equations are solved to formulate the cost model. Finally, a heuristic numerical
algorithm is proposed to search for the minimum-cost solution. The details of this
methodology are discussed below.

In order to develop the differential inventory equations, we need to define
the two stages of the production-inventory cycle shown in figure 1, a simplified
representation of the production cycle. The effects of deterioration and the pro-
duction of defective items are ignored in figure 1 (hence the approximate symbols
for the slopes). The two stages are the production period [0, t1] and the consumption
period [t1, t2].

3.3.1. Production period [0, t1]. During this stage, the inventory of good items
increases due to production but decreases due to demand, deterioration, and the
production of defective items. Thus, the inventory differential equation (IDE) is

dI

dt
¼ PðtÞ �DðtÞ � �IðtÞ � EðNÞ: ð1Þ

As shown in appendix A, the expected number of defective items produced per unit
time is given by

EðNÞ ¼
a�

t1
t1 þ

n

�
e��ðt1=nÞ �

n

�

� �
þ
�bA�

t1

t1
�þ �

�
n

�þ �ð Þ
2
þ

n

�þ �ð Þ
2
e� �þ�ð Þðt1=nÞ

� �
:

ð2Þ

In appendix B, we show that the inventory level during the production period is
given by

IðtÞ ¼
a

�
1� e��t
� �

þ
Aðb� 1Þ

� � �
e��t

� e��t
� �

�

"
a�

t1

�
t1 þ

n

�
e��ðt1=nÞ �

n

�

�
þ
�bA�

t1

�
t1

�þ �
�

n

�þ �ð Þ
2
þ

n

ð�þ �Þ2

� e�ð�þ�Þðt1=nÞ

�#
1� e��t� �

�
, 0 � t � t1:

ð3Þ

Ti Ti+1

τ

In
control

Shift time

Out of
control

1/ m

I (t)

t

Figure 2. Process shift during a production cycle.
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3.3.2. Consumption period [t1, t2]. The IDE during the consumption period,
with no production and subsequently no reduction in the inventory level due to
production of defective items, is given by

dI

dt
¼ �DðtÞ � �IðtÞ: ð4Þ

As shown in appendix C, the inventory level during the consumption period is
described by

IðtÞ ¼
A

�� �
e��ðtÞ 1� e� ���ð Þ t2�tð Þ

h i
, t1 � t � t2: ð5Þ

Since I(t1)¼ Im, substituting t¼ t1 into (3) gives

Im ¼
a

�
1� e��t1
� �

þ
Aðb� 1Þ

� � �
e��t1 � e��t1
� �

�

"
a�

t1

�
t1 þ

n

�
e��ðt1=nÞ �

n

�

�
þ
�bA�

t1

�

�
t1

�þ �
�

n

�þ �ð Þ
2
þ

n

�þ �ð Þ
2
e� �þ�ð Þðt1=nÞ

�#
1� e��t1
� �

�
: ð6Þ

In line with Su and Lin (2001), a time shift of t1 periods is applied to (4), corres-
ponding to the consumption period’s start time. Thus, substituting t¼ 0 into (5)
produces

Im ¼
A

�� �
1� e� ���ð Þt2
h i

: ð7Þ

Equating (6) with (7), we obtain

A

�� �
1� e� ���ð Þt2
h i

¼
a

�
1� e��t1
� �

þ
Aðb� 1Þ

� � �
e��t1 � e��t1
� �

�

"
a�

t1

�
t1 þ

n

�
e��ðt1=nÞ �

n

�

�
þ
�bA�

t1

�

�
t1

�þ �
�

n

�þ �ð Þ
2
þ

n

�þ �ð Þ
2
e� �þ�ð Þðt1=nÞ

�#
1� e��t1
� �

�
: ð8Þ

Denoting the right-hand side of (8) by Q, and solving for t2, we derive the following
expression for the length of the cycle time:

t2 ¼
1

� � �
ln

Aþ � � �ð ÞQ

A

� �
: ð9Þ

3.4. The cost components

The setup cost per unit time, CS, is

CS ¼
ks
t2
: ð10Þ
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A total of n inspections are carried out during the production stage [0, t1] of
each cycle. For a fixed cost kf per inspection, the total inspection cost per unit
time, CF, is

CF ¼
nkf
t2

: ð11Þ

Deterioration cost, which is applicable to both stages of the production cycle, is

CD ¼
kd
t2

Zt2
0

�IðtÞ dt: ð12Þ

Inventory holding cost is also applicable to both stages of the production cycle, as
described by

CH ¼
kh
t2

Zt2
0

IðtÞ dt: ð13Þ

Quality cost is the cost incurred due to the production of defective items during
the out-of-control phase of the process. This cost is applicable only to the first stage
of the production cycle

CQ ¼
kqEðNÞt1

t2
: ð14Þ

The restoration cost CR is the cost incurred for maintenance performed, in order
to restore the system from an out-of-control state back to an in-control state. This
cost is given by Lee and Rosenblatt (1989) as

CR ¼
1

t2

Xn�1

i¼0

ZTiþ1

Ti

�Rð�Þe�� Tiþ1�Ti��ð Þd�

8><
>:

9>=
>;: ð15Þ

Assuming equal inspection intervals, Tiþ 1�Ti¼ t1/n, and based on the forget-
fulness property of the exponential distribution, (15) can be written as

CR ¼
n

t2

Zt1=n
0

�Rð�Þe��½ðt1=nÞ���d�

2
4

3
5: ð16Þ

The total cost per unit time TC is the sum of all the individual costs defined by
(10)–(16)

TC ¼ CS þ CF þ CD þ CH þ CQ þ CR: ð17Þ

It is evident that a closed-form optimum solution of the above equation is
not practical. To minimize this function we employ a heuristic numerical solution
algorithm using an integer search for the number of inspections n and a line search
for the corresponding production period t1. In the following section, the algorithm
is described, a numerical example is solved, and sensitivity analysis is performed.
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4. Solution algorithm

4.1. Algorithm description

In order to minimize TC, the algorithm goes through the following steps:

1. Substitute the given parameter numerical values into (10)–(16), and simplify
them by numerically integrating all integrals and combining similar terms
to get TC from (17) as a function of n, t1 and t2.

2. Use (8) and (9) to find t2 as a function of t1.
3. Substitute t2 back into (17) to get TC¼ f(n, t1).
4. Set n¼ 1.
5. Use the golden section search method to find t1 (t1*) that minimizes TC, and

subsequently TC(n).
6. Use the equation obtained in step 2 to calculate t2*.
7. Set n¼ n þ 1, and then repeat steps 5 and 6 to obtain TC(n þ 1).
8. If TC(n þ 1)<TC(n), go to step 7; otherwise, go to step 9.
9. Stop. TC(n) is the best heuristic total cost TC*, and the corresponding t1(n)

and t2(n) are the best production and cycle periods, i.e., t1* and t2*.

The cost function (17) is nonlinear and involves both continuous and integer
variables. The first three steps of the algorithm are designed to simplify the cost
function as much as possible. However, the resulting function TC is still extremely
complicated. Thus, it is difficult to analytically test the convexity of the cost function.
This fact and the use of numerical integration mean that the optimality of the
solution cannot be guaranteed. Nonetheless, extensive numerical experiments
indicate that TC is piece-wise convex. Empirical experiments with several solved
problems indicate that the algorithm is robust and produces high-quality solutions.
After solving each problem by the algorithm, several other feasible solutions were
randomly generated. In each of the tested problems, the solution obtained by
the heuristic algorithm yielded the minimum total cost.

4.2. A numerical example

The following values for the parameters for a production-inventory system, adapted
from Su and Lin (2001) and Lee and Rosenblatt (1989), will be used:

� ¼ 500 units=week, A ¼ 100, b ¼ 0:1,
kd ¼ 3=unit, kf ¼ 4, kh ¼ 1=unit=week,
kq ¼ 5, ks ¼ 100=cycle, Rð�Þ ¼ 10þ 0:15�,
� ¼ 0:2, � ¼ 0:3, � ¼ 0:1,
� ¼ 0:05:

MATHEMATICA was used for the simplification of equations and a program
was written in FORTRAN to perform the steps of the numerical algorithm.
The results are summarized in table 1. From table 1, the best heuristic solution
is obtained with one inspection and a total cost of $121.16 per week.

Sensitivity analysis has been performed on the results of the example. One
parameter was changed at a time (both decreased and increased) and the effect
on the optimal solution was determined. Twenty-eight problems were solved,
and sensitivity analysis results are summarized in table 2. The model’s sensitivity
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to changes in input parameters is indicated by the range of TC values in table 2
(107.91–133.12). Computation times in FORTRAN were negligible and practically
indifferent for all 29 problems.

The total cost TC was negatively correlated with � and positively correlated
with all other parameters. The value of TC was most sensitive to changes in kh,
and least sensitive to changes in b. The production period t1 was positively correlated
with A, �, ks, kf, and R(�) and negatively correlated with all other parameters.
The value of t1 was most sensitive to ks, and least sensitive to � and R(�). The
cycle time t2 was positively correlated with �, ks, kf, and R(�) and negatively cor-
related with all other parameters. The value of t2 was most sensitive to ks and kh,
and least sensitive to b and R(�). Overall, the model is most sensitive to changes in ks
and kh, and least sensitive to changes in b and R(�).

Table 2. Sensitivity analysis for the given example.

Parameter Original value New values n TC t1 t2

a 500 450 1 120.3 0.4755 2.2318
550 1 121.95 0.3684 2.1950

A 100 90 1 114.35 0.3925 2.4296
110 1 127.53 0.4403 2.0492

b 0.1 0.09 1 121.14 0.4164 2.2127
0.11 1 121.17 0.4144 2.2119

� 0.05 0.045 1 119.99 0.4188 2.5527
0.055 1 122.31 0.4122 2.172

� 0.1 0.09 1 120.95 0.4175 2.2159
0.11 1 121.37 0.4151 2.2086

� 0.3 0.27 1 123.94 0.4031 2.0454
0.33 1 118.06 0.4368 2.4815

� 0.2 0.18 1 120.96 0.4158 2.2163
0.22 1 121.35 0.4151 2.2083

kd 3 1 1 114.73 0.4428 2.4115
5 1 127.27 0.3932 2.0575

kh 1 0.8 1 107.91 0.4787 2.6884
1.2 1 133.12 0.3745 1.9317

kq 5 4 1 120.77 0.4166 2.2207
6 1 121.55 0.41425 2.204

ks 100 80 1 111.26 0.3614 1.8464
120 1 129.44 0.4741 2.6512

kf 4 0.1 6 118.02 0.4089 2.1783
10 1 123.8 0.4322 2.333

R(�) 10þ 0.15� 1 þ 0.15� 1 120.99 0.4152 2.2104
5 þ 0.15� 1 121.07 0.4153 2.2112
10 þ 0.1� 1 121.16 0.4154 2.2123
10 þ 0.2� 1 121.16 0.4154 2.2123

Table 1. Solution of the numerical example.

n TC t1 t2

1 121.16* 0.4154 2.2123
2 121.96 0.4283 2.3127

908 H. K. Alfares et al.



5. Conclusions

In this paper, we presented a model and a solution algorithm for incorpo-
rating quality and maintenance aspects into a production-inventory system for
deteriorating items. Several possible extensions and improvements provide oppor-
tunities for future research. In general, closed-form solutions are rare in models
that include the quality considerations. Because of the complexity of such models
one normally has to resort to heuristic numerical solutions.

Further work could result in a model that is representative of many practical
situations and that is useful as a decision making tool for management. Future
research can be divided into two categories: extending the model, and improving
the solution. Model extension possibilities include consideration of: inventory-
level-dependent production rate, shortages, non-instantaneous inspections/-
restorations, random demand, random deterioration rate, and random fraction of
defects during the out-of-control phase. Possible solution improvement alternatives
could be based on meta-heuristics such as genetic algorithms, tabu search, simulated
annealing, or some other combination of optimization and numerical algorithms.
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Appendix A. Derivation of (2)

Using assumptions 7 and 8, the expected number of defective items produced per unit
time during the production interval (0, t1) is given by

EðNÞ ¼
1

t1

Xn�1

i¼0

ZTiþ1

Ti

�PðtÞðTiþ1 � Ti � tÞ�e��tdt: ðA1Þ

Substituting P(t)¼ a þ bD(t), D(t)¼A e��t, and Tiþ 1�Ti¼ t1/n leads to

EðNÞ ¼
n

t1

Zt1=n
0

�ðaþ bAe��t
Þ
t1
n
� t

	 

�e��tdt, ðA2Þ

EðNÞ ¼
n

t1

Rt1=n
0

�a�
t1
n
e��tdtþ

Rt1=n
0

�bA�
t1
n
e�ð�þ�Þtdt

�
Rt1=n
0

�a�te��tdt�
Rt1=n
0

�bA�te�ð�þ�Þtdt

2
6664

3
7775: ðA3Þ
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Integrating, we obtain

EðNÞ ¼ �að1� e��t1=nÞ þ
�bA�

�þ �
ð1� e�ð�þ�Þt1=nÞ �

n�a�

t1
�
t1e

��t1=n

nu
�
e��t1=n

u2
þ

1

u2

� �

�
n�bA�

t1
�
t1e

�ð�þ�Þt1=n

nð�þ uÞ
�
e�ð�þ�Þt1=n

ð�þ uÞ2
þ

1

ð�þ uÞ2

 !
:

ðA4Þ

Simplifying and combining similar terms in (A4), we obtain (2).

Appendix B. Derivation of (3)

Substituting P(t)¼ a þ bD(t) and D(t)¼A e��t into (1), we obtain

dI

dt
þ �IðtÞ ¼ aþ ðb� 1ÞAe��t

� EðNÞ: ðB1Þ

Multiplying both sides by e�t produces

dI

dt
½e�tIðtÞ� ¼ ae�t þ b� 1ð ÞAeð���Þt

� EðNÞe�t: ðB2Þ

Integrating both sides and dividing by e�t leads to

IðtÞ ¼
a

�
þ

b� 1ð ÞA

� � �
e��t

�
EðNÞ

�
þ C1e

��t: ðB3Þ

Using the boundary condition I(0)¼ 0, we obtain the value of the integration
constant C1

C1 ¼ �
a

�
�

b� 1ð ÞA

� � �
þ
EðNÞ

�
: ðB4Þ

Substituting C1 from (B4) and E(N) from (2) into (B3) and simplifying, we
obtain (3).

Appendix C. Derivation of (5)

Substituting D(t)¼A e��t, (4) can be written as

dI

dt
¼ �Ae��t

� �IðtÞ: ðC1Þ

Rearranging and multiplying both sides by e�t, we obtain

dI

dt
½e�tIðtÞ� ¼ �Aeð���Þt: ðC2Þ

Integrating both sides and dividing by e�, produces

IðtÞ ¼
Ae��t

�� �
þ C2e

��t: ðC3Þ

Using the boundary condition I(t2)¼ 0, we obtain the following value of C2

C2 ¼ �
Aeð���Þt2

�� �
: ðC4Þ

Substituting C2 from (C4) into (C3) and simplifying, we obtain (5).
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