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The objective of project task scheduling is to determine task start dates and durations to complete a project on time with the
minimum cost of performing tasks plus overhead. By altering task start dates and durations, the daily labor-demand pro®le can be
changed. The objective of personnel scheduling is to determine how many workers must be assigned to each feasible days-o� tour
to satisfy a given labor-demand pro®le with minimum labor cost. Integrating these two problems permits the simultaneous
determination of start dates, durations, labor levels and required tours for a minimum-cost and on-time schedule. Both integer
programming and heuristic solution procedures to solve the integrated problem are presented. In a series of 20 test problems, the
heuristic procedure outperformed the traditional two-step scheduling procedure by reducing the cost of labor and overhead by
8.6%.

1. Introduction

Among the major sectors of the American economy,
construction is valued in excess of $418 billion annually
[1]. Productivity in that industry has been consistently
declining since the 1960s, which has resulted in a com-
petitive disadvantage for U.S. ®rms [2]. During the
1980s, international contracts for U.S. ®rms dropped by
nearly half, whereas foreign competitors increased their
share of U.S. contracts by a factor of three [1]. To re-
gain the competitive edge, American construction com-
panies must adopt higher quality standards and
improved management practices. Labor, which accounts
for 40% of a construction project's cost, must not be
wasted.

At present, the absence of any published integrated
model indicates that project task and manpower sche-
duling are accomplished in two sequential steps. A project
scheduling algorithm ®rst determines the start time and
duration, which is a function of labor level, for each task.
These results establish a daily labor-demand pro®le,
which is then used by a manpower scheduling algorithm
to determine the number of workers assigned to feasible
days-o� tours. A weekly days-o� tour is de®ned as a set of
®ve work days and two consecutive o� days; there are
seven such sets for any week.

Fixing the task schedule before solving the labor
scheduling problem leads to sub-optimal solutions.
Clearly, when each task starts, how much labor is as-
signed to it, and how long it is active, a�ect the labor-
demand pro®le for the project. That pro®le, in turn,
constrains the labor scheduling problem. Therefore to

determine the minimum cost schedule one should in-
tegrate the task and labor scheduling problems.

This paper presents an integer linear programming
(ILP) optimization procedure for the integration of these
two scheduling problems. The paper also presents a
heuristic procedure that performs nearly as well. For 20
test problems, the ILP procedure outperformed the two-
step procedure with an average 9.1% reduction in the cost
of labor plus overhead. The heuristic procedure out-
performed the traditional two-step procedure in every test
case with an average total cost reduction of 8.6%. The
heuristic procedure yielded the same solution as the op-
timization procedure in 10 of the 20 test problems, with
an overall average cost increase of only 0.57% above the
optimal solution. Cost comparisons for the 20 test pro-
blems are shown in Tables 2 and 3.

Integer linear programming models for project sche-
duling have been presented by many authors [3±8]. Dy-
namic programming formulations of the project
scheduling problem were developed by Petrovic [9] and
Davis and Heidorn [10]. Branch-and-bound algorithms
for this problem are presented by Stinson et al. [11] and
by Talbot and Patterson [12]. A goal programming model
was formulated by Lee and Olson [13]. None of these
formulations consider alternative day-o� tours as a
means of reducing total labor cost.

Baker [14, 15] ®rst formulated the cost-minimizing ILP
model of the manpower scheduling problem, and devel-
oped an algorithm for solving this problem with two
consecutive days o� per week for each tour. Bartholdi
et al. [16±18] developed techniques using continuous LP
for solving this integer-valued manpower scheduling
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problem. Others have extended Baker's model [19±22] by
analyzing di�erent variations of the problem. None of the
personnel scheduling models explored ways to change the
demand pro®le to reduce the cost of labor. There are no
published papers on ways to integrate the two aspects of
this problem.

2. Integrated ILP project and manpower scheduling
model

As with other project scheduling models, the objective (1)
of the integrated model shown below is to minimize the
sum of overhead plus labor costs. There are ®ve sets of
constraints in the model. The ®rst set of constraints (2)
ensures that a unique duration and start date be chosen
for each task in the ®nal solution. The second set of
constraints (3) requires that the start date of any task be
later than the completion date of all its immediate pre-
decessors. The third set of constraints (4) guarantees that
the number of people assigned to work any given day is at
least equal to the summed manpower demand of all tasks
scheduled for that day. This is the constraint that in-
tegrates the personnel scheduling and the project sche-
duling models. The fourth set of constraints (5) sets the
project duration time as the completion of the last task
from the set of tasks with no successors. A last set of
constraints (6) limits the total work force size in any given
week.

The integer linear programming model is therefore:

Minimize COST � OH � PT �
XNWK

w�1

X7

i�1

Ci � Ywi �1�

Subject toXLSjt

d�ESj

X
8t2Tj

Xjdt � 1; j � 1; . . . ;NACT ; �2�

XLSpt

d�ESp

X
8t2Tp

�d � t� � Xpdt �
XLSjt

d�ESj

X
8t2Tj

d � Xjdt;

8 p 2 Pj; j � 1; . . . ;NACT ; �3�

XNACT

j�1

X
8t2Tj

Xmin�d;LSjt�

q�max�dÿt�1;ESj�
MANjt � Xjdt �

XNWK

w�1

X7

i�1

aawid � Ywi;

d � 1; . . . ; TU ; �4�XLSjt

d�ESj

X
8t2Tj

�d � t ÿ 1� � Xjdt � PT ; 8 j 2 L; �5�

X7

i�1

Ywi � SIZEw; w � 1; . . . ;NWK ; �6�

where

aawid �
1 if day d is a work day for days-off

tour i in week w,

0 otherwise ;

8<:
Ci � weekly cost of days-off tour i ;

d � start day of task j ;

ESj � earliest possible start date for activity j ;

L � set of all tasks which have no successors ;

LSjt � latest possible start date for activity j

if it has a duration of t ;

MANjt � daily required manpower for task j

if its duration is t ;

t �MANjt � TMANj ;

NACT � the number of tasks in the project ;

NWK � project due date in weeks ;

OH � daily overhead cost ;

p � an immediate predecessor of task j; �p 2 Pj� ;
Pj � set of immediate predecessors for task j ;

PT � project duration in days; PT � 0 and integer ;

SIZEw � maximum size of the work force in week w ;

t � time duration in days of task j; �t 2 Tj� ;
Tj � the set of activity duration times for activity j;

TMANj � total man-days of effort required by task j ;

TU � project due date, or maximum project

duration in days ;

Xjdt �
1 if task j with duration time t is

started on day d,

0 otherwise ;

8<:
Ywi � number of workers assigned to days-off tour

i in week w; Ywi � 0 and integer:

3. Heuristic solution procedure

A big limitation for the ILP solution procedure is that the
required number of constraints and variables make the
procedure too slow and costly for realistic problems. For
example, the largest problem that could be solved within
120 CPU seconds on an IBM 3090 mainframe computer
involved only 15 tasks, but needed 60 constraints and 69
integer variables. Because the ILP procedure is unable to
solve larger problems in a reasonable amount of time, a
heuristic procedure is obviously needed for practical use.
The proposed heuristic uses dynamic programming (DP)
to signi®cantly reduce the complexity of large practical
problems, by replacing them with much smaller and
simpler weekly sub-problems.
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Because the manpower scheduling problem is solved on
a week-by-week basis, it is natural to break the project
scheduling problem into a sequence of linked weekly sub-
problems. In any week, all tasks can be placed into one of
three sets: the completed-task set, the future-task set, and
the active-task set containing all tasks not in one of the ®rst
two sets. A task may appear several times in a set, once for
every start-time, labor-level/duration-time possibility.

Each week has a ®nite set of possible project schedules
de®ned by all feasible combinations of tasks in the active-
task set. Each project schedule de®nes a labor-demand
pro®le that can be used to ®nd an optimal solution by
using any personnel scheduling formulation. The solution
to a week's project/personnel scheduling problem is de-
®ned as a possible state for that week. In dynamic pro-
gramming terminology the optimal schedule for the
present and future weeks can be found when the possible
states of the project at the end of the previous week are
known, without regard to how one got to those states.
The recursive relationship that links week w to the pre-
vious weeks is given by:

COST0�0� � 0 ; �7�
COSTw�S� � SOLNw�S� �minfCOSTwÿ1�CS�g;

w � 1; 2; . . . ;NWK; �8�
where

COSTw�S� � minimum cumulative cost for weeks 1

through w given state S in week w ;

SOLNw�S� � the solution of the LP personnel scheduling

problem with a labor demand profile for

state S in week w ;

CS � the set of all solutions for week wÿ 1 that

are precedent compatible with state S in

week w:

The problem is that even with DP, the number of feasible
project schedules for each week can still be quite large. A
procedure is needed to reduce the size of these sets. Two
logical procedures can be employed. First, to be con-
sidered further, the daily labor demand should lie be-
tween two previously established limits so that labor
expenditure is reasonably level during the project. The
two limits are based on the average daily labor required
to complete the project between the minimum critical
path time (TL) and due date time (TU). These bounds,
given below, can be arbitrarily adjusted by a factor a,
which for the test cases reported below was set at 0.3.
Increasing the value of a allows more weekly schedules to
be considered, increasing the probability of obtaining an
optimal solution, but prolonging the computation time.

MinL � b�1ÿ a�
XNACT

j�1

minfMANjt : 8 t 2 Tjg=TUc ; �9�

MaxL � d�1� a�
XNACT

j�1

maxfMANjt : 8 t 2 Tjg=TLe ; �10�

where

bxc � the greatest integer smaller than x ;

dxe � the smallest integer greater than x ;

a � an arbitrary factor set at 0.3 in this report:

A second size reduction procedure also employs a bound
on the daily number of workers. Baker [14] presented a
procedure for establishing the minimum sta� size needed
to satisfy a given weekly labor-demand pro®le. To be
considered further, the work force requirement must be
equal to the Baker minimum NWF. Given daily labor
demands for one work week REQ1; . . . ;REQ7, Baker's
algorithm to calculate NWF, slightly modi®ed by Alfares
[23], proceeds as follows.

Calculate initial workforce size W � maxfd1
5

P7
d�1

REQde;
REQmaxg.

Calculate labor slack t � 5W ÿ P7
d�1

REQd .

Calculate initial days-o� tour assignments Y1; . . . ; Y7 as

Y7 � REQ2 � REQ4 � REQ6 ÿ 2W ;

Yi � W ÿ REQi�1 ÿ Yi�1 ; i � 6; 5; . . . ; 1 :

Baker's bound on workforce size NWF � W �max
f0; d1

3
�ÿYmin ÿ t�eg.

For each surviving weekly project schedule, the LP per-
sonnel scheduling formulation given below is solved. If a
feasible solution is not found with this model, the weekly
project schedule is discarded.

Minimize Lcost �
X7

i�1

Ci � Yi �11�

subject to X7

i�1

aid � Yi � REQd ; d � 1; . . . ; 7 ; �12�

X7

i�1

Yi � NWF ; �13�

where

aid �
1 if day d is a work day for weekly

days-off tour i ;

0 otherwise ;

8<:
Ci � cost of employing one person on weekly

days-off tour i ;

NWF � Baker's lower bound limit on total weekly

staff size ;
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REQd � the labor requirement for day d; d � 1; . . . ; 7 ;

Yi � number of workers to be assigned tour i; Yi � 0

and integer:

4. The traditional two-stage solution

In the ®rst stage, project tasks are scheduled by de-
termining the start time and duration for each task. The
ILP model for this stage is based on Elmaghraby's [3]
resource-constrained project scheduling formulation. The
objective of this model (14) is to minimize overhead plus
total required man-days cost:

Minimize Pcost � OH � PT

� LC
XNACT

j�1

XLSjt

d�ESj

X
8t2Tj

t�MANjt � Xjdt : �14�

This objective is subject to the same set of constraints
used in the integrated ILP model representing: unique
duration and start time (2), precedence (3), project com-
pletion (5), and workforce size (6); however, manpower
scheduling constraints (4) are replaced by the following
manpower demand constraints:

XNACT

j�1

X
8t2Tj

Xmin�d;LSjt�

q�max�dÿt�1;ESj�
MANjt � Xjdt � SIZEd ;

d � 1; . . . ; TU �15�
where

LC � daily labor cost per worker ;

SIZEd � maximum size of the work force in day d:

Task durations and start times, which are ®xed in the ®rst
stage, de®ne a daily labor-demand pro®le. The second
stage assigns workers to days-o� tours to satisfy this de-
mand pro®le with minimum labor cost, using Baker's [15]
manpower scheduling ILP model, simply de®ned by (11)
and (12).

5. Comparison test results

The optimal and heuristic procedures presented here were
compared with the traditional two-step scheduling ap-
proach by using 20 test problems. The size of the test
problems, 6 to 15 tasks, was constrained by the severe
computational limitations of the ILP optimization pro-
cedure. Besides, the use of small test problems is com-
monplace in literature, even when dealing with the
simpler problem of scheduling project tasks only. For
example, [4, 7, 24] reported project scheduling test pro-
blems ranging from 5 to 30 tasks. Moreover, the heuristic
procedure demonstrated its practical applicability by
solving a realistic problem involving 200 tasks and 40
weeks in only 25.33 seconds.

Task sequencing relationships for the test problems are
represented by the four network diagrams shown in Fig. 1.
Di�erent problems represented by the same network have
common number and sequencing of tasks but vary in all
other data, such as task durations, labor demands, and
costs. Tasks ranged from 6 to 15, durations from 2 to 3
weeks, ILP model constraints from 29 to 60, and ILP
variables from 57 to 69. The network used, number of
tasks, weeks, ILP constraints and variables, and sche-
duling ¯exibility index for each of the 20 test problems
appear in Table 1. The ¯exibility index equals the average
number of slack-time and labor-level/duration-time
scheduling alternatives that a task allows.

The results of the 20 test runs are displayed in Table 2,
which presents the labor cost and total project cost.
Table 3 contains the percentage improvement of the op-
timal and heuristic procedures over the traditional two-
step procedure. Note that on average, the ILP optimal
procedure yielded a 9.1% reduction in total project cost
and the heuristic procedure performed almost as well,
yielding an 8.6% reduction. In the test cases, labor pro-
ductivity for the heuristic procedure averaged 98%, an
increase of 14% over the traditional procedure. Note also
that the heuristic procedure yielded an optimal solution

Fig. 1. Activity networks used to generate the 20 test problems.
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in half the test cases and averaged only 0.6% higher costs
than the optimal procedure. Finally, the heuristic proce-
dure produced an average reduction of 58% in compu-
tation time compared with the optimal integer
programming procedure.

As expected, all of the cost saving was in labor. In fact,
in three-quarters of the test cases the integrated proce-
dures found lower cost solutions by lengthening the
project's duration while employing fewer workers. This
leads to the observation that the traditional two-step

scheduling procedure minimizes the project duration time
and the associated overhead cost but frequently does so
by using more costly labor-demand pro®les. If desired,
however, the heuristic procedure can be geared towards
minimizing project durations by increasing the overhead
cost or imposing earlier due date requirements.

The heuristic procedure's percentage savings in total
cost was regressed against the scheduling ¯exibility index,
number of ILP constraints, and number of tasks to see
how these variables a�ected the performance of the

Table 1. Parameters of the 20 test problems including the network used, number of tasks, number of ILP constraints and
variables, and ¯exibility index

Problem
number

Network
used

No. of
tasks

No. of
weeks

No. of ILP
constraints

No. of ILP
variables

Flexibility
index

1 A 6 2 29 65 8.33
2 A 6 2 29 65 8.33
3 A 6 2 29 65 8.33
4 A 6 2 29 65 8.33
5 A 6 2 29 57 7.00
6 A 6 2 29 57 7.00
7 A 6 2 29 57 7.00
8 A 6 2 29 57 7.00
9 B 9 2 35 65 5.56

10 B 9 2 35 65 5.56
11 B 9 2 35 60 5.00
12 B 9 2 35 60 5.00
13 B 9 2 35 60 5.00
14 B 9 2 35 60 5.00
15 C 12 3 53 63 3.42
16 C 12 3 53 63 3.42
17 C 12 3 53 63 3.42
18 D 15 3 60 69 3.13
19 D 15 3 60 69 3.13
20 D 15 3 60 69 3.13

Table 2. Labor cost and total cost results for the 20 test problems

Problem
number

Two-step
labor cost

Heuristic
labor cost

Optimal
labor cost

Two-step
total cost

Heuristic
total cost

Optimal
total cost

1 3 720 2 980 3 020 4 920 4 380 4 320
2 4 620 3 790 3 790 5 820 4 990 4 990
3 4 460 3 740 3 740 5 660 4 940 4 940
4 3 810 3 120 3 080 4 770 4 080 4 040
5 3 400 2 810 2 810 5 800 5 210 5 210
6 4 890 4 010 4 010 7 290 6 410 6 410
7 4 920 3 910 3 910 7 320 6 310 6 310
8 5 040 4 160 4 160 7 440 6 560 6 560
9 4 820 3 930 3 930 7 020 6 330 6 330

10 5 700 4 610 4 610 7 900 7 010 7 010
11 4 720 4 020 3 900 6 920 6 420 6 300
12 4 720 3 900 3 900 6 040 5 580 5 460
13 5 580 4 140 4 110 7 780 6 940 6 910
14 4 550 4 140 4 110 5 850 5 540 5 510
15 9 300 8 390 8 390 13 100 12 590 12 590
16 10 500 9 400 9 400 14 300 13 600 13 600
17 10 720 9 580 9 430 14 520 13 780 13 630
18 8 170 7 800 7 730 12 170 12 000 11 930
19 9 040 8 670 8 580 13 040 12 870 12 780
20 8 170 7 590 7 420 11 370 10 950 10 780
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heuristic procedure. Only the ¯exibility index was found
to be signi®cant, with a regression coe�cient of 1.84,
indicating that the advantage of the integrated heuristic
grew rapidly as the ¯exibility index increased. When the
heuristic procedure's cost increase above optimum was
regressed against the same three variables, none of them
was found signi®cant.

6. Conclusions

The task and personnel scheduling problems have been
integrated in a model that seems to o�er substantial
savings in the overall cost of a project. The savings come
as a result of selecting a start time and labor level for each
task that reduces labor cost. The integer programming
optimization formulation is, however, large for realistic
problems. A much more e�cient heuristic approach
based on dynamic programming was presented and tes-
ted. The heuristic procedure produced near-optimal so-
lutions in terms of total cost, labor cost, and labor
productivity, while providing signi®cant savings in com-
putation time. Yet although the heuristic solution is easily
obtained for real-world problems, the optimal solution is
currently impracticable.

When compared with the traditional two-stage ap-
proach, the heuristic procedure provided notable savings
in total cost and labor cost, and substantial gains in labor
productivity. The heuristic solution procedure yielded an
8.6% reduction in total cost compared with the tradi-
tional two-step procedure. In the test cases, this percen-

tage saving tended to increase as the average number of
options for start time and labor level grew. By using the
heuristic procedure, labor productivity was increased in
the test cases by 14% to 98%. Relative to the integer
programming procedure, the heuristic procedure reduced
the computational time by 58%.

The primary conclusion is that integrating the solutions
of project task and personnel scheduling problems is both
feasible and wise. Future research extensions include
considering stochastic elements and sensitivity analysis of
the solution. Although there are standard estimates for
most construction tasks, equipment breakdowns, cost
increases, and labor shortages can never be ruled out.
Other reasonable follow-up e�orts would be to explore
re®nements to the heuristic procedure presented here and
to program user-friendly decision support tools for this
scheduling activity.
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