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In this paper, we present an empirical methodology to determine aggregate numerical
criteria weights from group ordinal ranks of multiple decision criteria. Assuming that
such ordinal ranks are obtained from several decision makers, aggregation procedures
are proposed to combine individual rank inputs into group criteria weights. In this
process, we use previous empirical results for an individual decision maker, in which
a simple function provides the weight for each criterion as a function of its rank and
the total number of criteria. Using a set of experiments, weight aggregation procedures
are proposed and empirically compared for two cases: (i) when all the decision makers
rank the same set of criteria, and (ii) when they rank different subsets of criteria. T"he
proposed methodology can be used to determine relative weights for any set of criteria,
given only criteria ranks provided by several decision makers.

Keywords: Multi-criteria; decision making/process; group decisions.

/,
1. Introduction

This work was originally motivated by a real-life situation at the academic depart-
ment of the authors. A few years ago, several faculty members applied for sabbatical-
year leaves during the subsequent academic year. Naturally, it was not possible due
to staffing requirements and also strict academic regulations to grant all applicants
permission to leave the department at the same time. Therefore, the chairman
requested all faculty members to list (in the order of priority) the factors they
thought were most relevant for evaluating and comparing sabbatical leave applica-
tions. By the time the lists were received from all faculty members, the issue had
been already resolved by a friendly gentleman’s agreement. However, it became
apparent that a methodology was needed in order to assign weights to each fac-
tor in the given lists and also to aggregate the weights into an overall department
weight for each factor. Developing such a methodology on the basis of empirical
data is specifically the purpose of this paper. -
The situation mentioned above is not the only case where weight assignment
and aggregation is needed. Determining criteria weights is a central problem in
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1 multi-criteria decision making (MCDM). Weights are used to express the relative
importance of criteria in MCDM. The determination and aggregation of weights are
3 required when applying MCDM methods such as goal programming, the Analytic
Hierarchy Process (AHP), and the weighted score method. In practice, it is difficult
5 even for a single decision maker to supply relative numerical weights of different
decision criteria. Naturally, obtaining criteria weights from several decision makers
7 is more difficult. Quite often, decision makers are much more comfortable in simply
assigning ordinal ranks to the different criteria under consideration. In such cases,
] relative criteria weights can be derived from criteria ranks supplied by decision
makers. The methodology presented in this paper is useful in assisting decision e
11 makers to determine criteria weights from criteria ranking, and it is helpful in

alternative selection when these weights are used with one of the techniques of
13 MCDM.
The objective of this paper is to combine individual criteria rankings supplied by

15 different decision makers into aggregate group weights for all criteria. In determining
criteria weights for any individual, we assume that a universal functional relation-

17 ship exists between criteria ranks and average weights. In the following section, we
present empirical evidence from the literature that supports this assumption. This

19 empirically developed functional relationship was presented in an earlier work by
the authors.! Moreover, given criteria ranks by several decision makers, we assume

21 that this functional relationship can be used to combine the various rank inputs
into a set of aggregate (group) criteria weights.

23 Subsequent sections of this paper are organized as follows. The relevant liter-
ature is reviewed in Sec. 2. Problem definition and experimental design are intro-

25 duced in Sec. 3. Weight aggregation methodologies are presented in Sec. 4 when
all the decision makers rank the same set of criteria, and in Sec. 5 when they rank

27 different subsets of criteria. Finally, results are discussed and conclusions are given
in Sec. 6.

29 2. Literature Review

Bouyssou provides a recent and comprehensive review of MCDM literature.?2 In
31 this paper, we focus on the following MCDM aspects: (a) deriving criteria weights

from ordinal ranks, and (b) aggregating individual weight inputs for group decision
33 making.

2.1. Deriving criteria weights from ranks

35 Marichal and Roubens determine criteria weights from partial ranking of
the alternatives, individual criteria, or criteria pairs.® Hinloopen et al. integrate
37 the assessment of the scores (cardinal input) and rankings (ordinal input) of the
decision-makers’ preference structure.* Relative criteria importance is represented
39 by a set of cardinal weights or ranks. Salo and Punkka describe Rank Inclusion

in Criteria Hierarchies,® a MCDM method in which ranks are given to a set of
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1 attributes, and the best alternative is chosen using certain dominance relations
and decision rules. Kangas uses simulation to assess the risks of using stochas-
3 tic multi-criteria acceptability analysis (SMAA) with incomplete criteria weight
information.® The results indicate the need to have at least complete rank order of
5 criteria in order to minimize the risk of making the wrong decisions. -
Doyle et al.” and Bottomley et al.® report empirical results that indicate that the
7 rank-weight relationship is basically linear. Doyle et al. also use numerical experi-
ments to show the existence of a theoretical straight-line relationship between rank
9 and average weight. In the empirical experiments of Doyle et al.,” the slope of the
linear function depends on the number of criteria being ranked. Bottomley and
11 Doyle find that Max100 weight elicitation procedure,® in which the most important
criterion is given a weight of 100, has the highest reliability, rank-weight linearity,
13 and subject preference.
Assuming that rank is inversely related to weight (rank 1 means highest weight),
15 the weights must be a nonincreasing function of the rank. Paelinck’s theorem
describes the set of weights that satisfy a particular criteria ranking.'® Specific
17 functions for assigning weights have been suggested by several authors. Stillwell
et al. propose three functions: rank reciprocal (inverse), rank sum (linear), and rank
19 exponent weights.!! Solymosi and Dompi'? and Barron!® propose rank-order cen-
troid weights. Lootsma!? and Lootsma and Bots!® suggest two types of geometric
21 weights. Roberts and Goodwin develop rank-order distribution (ROD) weights,'6
which approximate to the rank sum weights as the number of criteria increases.
23 Recently, Alfares and Duffuaa propose an empirically developed linear rank-weight
function whose slope depends on the number of criteria.!
25 The empirical model of Alfares and Duffuaa' is compatible with the empirical i
and theoretical results of Doyle et al.” and Bottomley et al.®¥ The model in Ref. 1, \ ol
27 which is based on the Max100 procedure, is a linear rank-weight function for any )
number of decision criteria. In this paper, this linear function is used to combine
29 rank inputs from several decision makers into group criteria weights.

2.2. Aggregating individual weights for group decisions

31 In this paper, we use the term “aggregation” to specifically mean combining weights
supplied by different individuals into group weights for all of the criteria. Lansdowne
33 compares several well-known vote aggregation methods.!” Wei et al. describe a min-
imax procedure that employs linear programming,'® to determine a compromise
35 weight for multi-criteria group decision making that minimizes conflict among the
different individual preferences. Barzilai and Lootsma use an aggregation procedure
37 based on geometric means to calculate the global scores for a group of participants.t®
Lahdelma and Salminen develop the Stochastic Multi-criteria Acceptability Analy-
39 sis IT (SMAA-2) to support discrete group decision making.2? Weight vectors for any
rank are analyzed to determine rank acceptabilities, which are in turn combined
41 using meta-weights. Lahdelma et al. use SMAA with ordinal criteria, to convert
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criterion-wise rankings of alternatives into cardinal information to select a waste
treatment facility location.?!

Using simulation to compare methods for aggregating individual rankings of
alternatives, Hurley and Lior confirm the superiority of trimmed median rank
in the presence of bias.?? Mateos et al. use simulation and the centroid function
to aggregate utility functions and attribute weight intervals from several decision
makers.?3 Gonzalez-Pachon and Romero consider aggregating partial rankings of
the alternatives,?? where each individual rank is not a fixed value but a specific
range. Interval goal programming is used to minimize the social choice function,
i.e. the total aggregated disagreement. Lootsma defines the relative importance
of any pair of criteria under two widely used MCDM methods.?® The first is the
geometric-mean aggregation rule in the multiplicative AHP technique, and the sec-
ond is the arithmetic-mean aggregation rule in the Simple Multi-Attribute Rating
Technique (SMART) of Von Winterfeldt and Edwards.2¢

Xu and La analyze MCDM problems where only value ranges of criteria weights
are given,2” but not their exact individual weights. A projection method is proposed
to determine criteria weights and to select the most appropriate alternative(s).
Given incomplete linguistic preference relations, Xu uses the extended arithmetic
averaging operator for group decision making.?® Ahmad et al. combine AHP and
Data Envelopment Analysis (DEA) to assess the performance of Small-to-Medium-
Sized Manufacturing Enterprises (SMEs).2? By eliminating the weaknesses and
emphasizing the strengths of each of these two methods, the integrated AHP/DEA
model provides superior MCDM solutions.

From this literature review, it is evident that this is the first paper to empirically
aggregate criteria rank inputs from several individual decision makers, in order to
develop numerical criteria weights representing the preferences of the whole group.

3. Problem Definition and Experimental Design

In this paper, we consider a group MCDM problem with | decision alternatives,
m decision makers, and n decision criteria. Given the performance score a;j of
alternative k (k = 1,2,...,1) in terms of criterion § (j = 1,2,...,n), the overall
score of alternative k is given by:

Pk :ZWjaj,k, k=1,2,...,l. (1)

j=1

Our objective is to determine criteria weights (W1, ..., W,) for all MCDA con-
texts in which Eq. (1) is applicable. Each decision maker (DM) i (i = 1,2,...,m)
may select and rank a subset of n; criteria (n; < n) that he or she deems to be
relevant, giving each criterion j a rank r; ;, (r:i; = 1,...,n;). Given the ranks of
criteria (subsets) provided by all DMs, we aim to develop aggregate (group) weights
for all n criteria.
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Determining Aggregate Criteria Weights from Criteria Rankings 5

A set of experiments were performed to develop and evaluate an empirical
methodology to convert ordinal criteria rankings from several DMs into aggregate
criteria weights. The experimental design aims to test whether relationships between
ranks and aggregate weights change according to the given criteria or the specific
group of DMs. Therefore, the experiments involved two groups of DMs (students
and faculty) and two sets of criteria applicable in two contexts (student learning
and instructor evaluation). The student sample was composed of 111 college stu-
dents from different years and in different fields of study. Naturally, the faculty
sample was much smaller, containing only 23 faculty members. The survey given
to this sample of students and faculty was administered in two consecutive parts
as follows:

Part I The participants were asked the two following questions:

Question 1. List in the order of priority (most important to least impor-
tant) factors that hinder students’ learning and retaining
course materials.

Question 2. List in the order of priority (most important to least impor-
tant) factors that affect the evaluation of course instructors.

After listing these factors, the participants were requested
to give weights to all factors in each list. Following the Max100
method suggested by Bottomley and Doyle,” a weight of 100%
must be given to the most important (first) factor.

Part Il In the second part of the survey, the participants were provided with
two prepared lists of Cstandard® criteria shown in Table 1: 12 factors hindering
student learning (Question 1), and 16 factors affecting instructor evaluation (Ques-
tion 2). The participants were asked to rank each set of factors based on their
importance.

Part TI of the survey was administered only after finishing Part I, in order to
avoid suggesting any factors for Part I. After ranking the factors in each list, the
participants were required to assign weights to each factor, starting with a weight
of 100% for the most important (first ranked) factor.

Aggregation involves combining ordinal rankings of criteria given by several
individuals in order to determine the overall group weight for each criterion.
Before starting to develop aggregation methodologies, we tested whether the survey
responses differed according to the type of decision makers. Therefore, the Wilcoxon
signed-rank test for paired observations (applied to each group’s mean rankings on
each criterion) was used to test whether the differences between the two sets of
decision makers (students and faculty) are significant. The effects of the different
decision makers on the aggregate weights were found to be insignificant at signifi-
cance level a = 0.05. Therefore, all inputs from the two categories of participants
(students and faculty) were combined.
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Table 1. Ready made lists of criteria given to participants in Part IT of the survey.

No. Question 1. Learning hindrances Question 2. Instructor evaluation
1 Large class size Encourages student participation and questions
2 Lack of student motivation Available and helpful in office hours
3 Grading system Prepared for class
4 Current teaching methods Speaks clearly
5 Faculty unavailability outside class time Has clear presentation
6  High study and homework demands Motivates students
7  Course load (many courses per term) Seems knowledgeable in course subject
8  Emphasis on theory in class Uses educational aids and presentations
9  Students’ poor English proficiency Fair in grading
10 Lack of practical cases Concerned about student’s understanding
11 Fast pace of material coverage Explains concepts clearly using examples
12 Students’ poor study habits Prompt in attending and leaving class
13 Gives tests to measure students understanding
14 Assigns homework and gives quizzes regularly
15 States objectives of each class
16 Grades tests and assignments promptly

I

In order to develop aggregate criteria weights, we utilized the empirical rank-
weight relationship of Alfares and Duffuaa.! This linear relationship specifies the
average weight for each rank for an individual DM, assuming a weight of 100%
for the first-ranked (most important) factor. For any set of n ranked factors, the

percentage weight of a factor ranked as r is given by
Wrp = 100 — s, (r — 1), (2)
where
Sp = 3.195 + 37';58, 1<n <21, 1<r<n, randn are integer. (3)

The upper limit (n < 21) is meant to prevent Eq. (2) from assigning negative
weights to criteria ranked greater than 21. Obviously, this range of up to 21 criteria
is sufficient for all practical MCDM purposes. Although we may combine the two
groups of participants (students and faculty), we obviously cannot combine the
criteria of the two questions (students learning and instructor evaluation) because
the aggregation data is criterion-specific. Moreover, for each question, we must
separately analyze the data obtained from the two parts of the survey. Therefore,
we evaluated two different sets of aggregation methods using two different types of
data:

(1) Data with the same criteria for all decision makers (Part IT of the survey).
(2) Data with different criteria for each decision maker (Part I of the survey).

4. Aggregate Weights for the Same Ranked Criteria from all DMs

It must be noted that in all the aggregation methods presented in Secs. 4 and
5, there is in an implicit last step in which weights are normalized to make their

- Q'lmit_'t\
< rale
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sum equal to 100%. In this section, we consider methods to determine aggregate
{(group) weights if all the decision makers rank the same set of criteria. Let us
assume we have m individuals and n criteria that are common to all individuals
(ny =ng =+ =n,, =n). We also assume that each individual 7 assigns a rank
of r; ; to criterion j. This kind of data is provided by the two ready-made lists of
12 or 16 criteria provided in Part IT of the survey (n = 12 for Question 1,n = 16
for Question 2). For the data of each question, we compared the three following
aggregation methods.

4.1. Method S1

In this methbd, we first convert individual ranks into individual weights for each
factor, and then calculate the average weight for each factor among all individuals.
The two steps are given as follows:

(1) For each individual i, use Eq. (2) to convert ranks r; ; into individual weights
w;,; for all n criteria:

wi; =100—s,(r;;—1), i=1,..., m, j=1,...,n. (4)

(2) Calculate the aggregate weight of each criterion by averaging its weights
obtained from all m individuals:

1 m
Wj:%Ewi’j, j:l,...,n. (5)

The two steps of this method can be reversed; we may average the ranks first, and
then convert average ranks into average (aggregate) weights. The same values of
relative aggregate weights will be obtained.

4.2, Method 52

This method is similar to Method S1; thus, Eq. (4) is used in the first step. However,
in the second step, the geometric mean of individual weights (the mth root of the
product of the m individual weights) is used to determine aggregate weights as

proposed by Barzilai and Lootsmal®:

Wj = R/wrj X wa; X+ X w5, j=1,...,n. (6)

4.3. Method 53

This method is similar to method S1 performed in reverse order. However, in the
first step, the geometric mean of individual ranks is used instead of the simple
arithmetic mean to determine the average rank of each criterionA

T = R/T1g X T2 X X Ty, §=1,...,m, (7)

-
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In the second step, Eq. (4) is used to convert average rank 7; into average (aggre-
gate) weight W; for each of the n criteria:

Wj:].OO—Sn(fj—l), ji=1,...,n. (8)

4.4. Illustration and comparison of methods for the same criteria

A small numerical example is used to illustrate the steps of the three methods
described above. Table 2 shows a solved example for aggregation of weights when
the same set (number) of criteria is ranked by all decision makers. The example
involves three decision makers (DM1, DM2, and DM3) and four decision criteria
(A, B, C, and D). As explained above, two alternative calculation sequences are
possible for applying method S1. :

Comparison of the three above aggregation methods is based on how close they
estimate the relative actual sum of weights given by all the participants. Taking
Question 1 of Part 1I of the survey as an example, n = 12. Therefore, we used Eq. (3)
to find the slope value s12 = 6.3416 and normalized weights to make 2?21 wy =
100%. The results of applying the three methods to Question 1 of Part II of the
survey, including the mean absolute percentage error (MAPE) values, are shown in
Table 3.

Similar results are obtained for Question 2, showing that method S1 consistently
has the minimum absolute percentage errors. On the basis of these results, we can
conclude that method S1 is the best for aggregation when all individuals rank the
same set of criteria.

Table 2. Example of applying three aggregation methods for the same set of ranked criteria.

Criterion A B C D
Given DM1 rank 1 2 3 4
DM1 rank 2 1 3 4
DM3 rank 1 2 4 3
Method S1 DM1 weight 100 87.37 74.73 62.10
DM1 weight 87.37 100 74.73 62.10
DM3 weight 100 87.37 62.10 74.73
Arithmetic average weight 95.79 91.58 70.52 66.31
Percent weight 29.55 28.25 21.75 20.45
Method S1 Arithmetic average rank 1.33 1.67 3.33 3.67
(alternative) Average weight 95.79 91.58 70.52 66.31
Percent weight 29.55 28.25 21.75 20.45
Method 52 Geometric average weight 95.60 91.39 70.26 66.05
Percent weight 29.57 28.27 21.73 20.43
Method 53 Geometric average rank 1.26 1.59 3.30 3.63
Average weight 96.72 92.58 70.92 66.72

Percent weight 29.58 28.32 21.69 20.41 &_@? K

ML
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Table 3. Actual and calculated aggregate percent weights of 12 criteria of
Question 2 in Part II of the survey (same set of criteria).

Factor No. Actual Method S1 Method §2 Method S3

1 7.41 7.76 7.55 7.93
2 8.80 9.02 9.20 8.89
3 10.08 9.96 10.10 9.89
4 9.19 9.40 9.38 9.43
- 5 = 7.77 7.64 7.63 7.58
6 8.55 8.59 8.66 8.49
7 8.90 8.99 9.12 8.91
8 7.87 7.79 7.75 7.82
9 8.52 8.66 8.63 8.75
10 7.63 7.34 7.32 7.29
11 7.06 6.88 6.87 6.74
12 8.21 7.99 7.78 8.28
MAPE 2.13 2,43 2.43

4

5. Aggregate Weights for Different Ranked Criteria from each DM

The data in this section are collected in Part I of the survey. At the beginning, the
participants listed a total of 53 factors (criteria) that they considered as significant
for both questions. Since this number is too large, we decided to concentrate only
on the criteria that we judged to be most important on the basis of their frequency.
As a result, we ended up with only 16 criteria for Question 1 and 10 criteria for
Question 2. s

In order to determine aggregate criteria weights for each question in Part I,
we applied four different aggregation methods. These methods are similar to those
used for aggregation when the same set of criteria is ranked by all individuals.
However, adjustments are made to accommodate two new facts. First, the number
of criteria changes from a constant n for all DMs to a variable n; that depends on
the individual DM 4. Second, since some criteria are listed by more DMs, criteria
frequency must be taken into consideration. Therefore, the aggregate weight of each
criterion is determined by both its rank(s) and its frequency.

5.1. Method D1

This method involves the two following steps:

(1) For each individual ¢, convert ranks r; ; into individual weights w;,; for all
n, criteria. The slope of the linear conversion function, —s,d is determined
by the number of criteria listed by the individual, i.e. n,;. Therefore, w;; =
100 — sp, (ri,; — 1) if criterion j is listed by individual 7, otherwise w; ; = 0.

(2) Calculate the aggregate weight of each criterion as the arithmetic mean of
weights obtained from all individuals.

a5

wi
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1 5.2. Method D2

This method involves three steps:

3 (1) Calculate the arithmetic mean of ranks for each criterion (only among individ-
uals listing the given criterion).

5 (2) Convert the average rank into an average weight for each criterion based on
estimated slope —s,, (n is the total number of criteria listed by all individuals).

7 (3) Multiply the average criterion weight by the corresponding frequency (number

of individuals listing the given criterion).

9 5.3. Method D3

This method involves three steps:

11 (1) Convert individual ranks r; ; into individual weights w; ; for all n; criteria.
(2) Compute the geometric mean of weights for each criterion (only among indi-
13 viduals listing the given criterion).

(3) Multiply the geometric mean of criterion weight by the corresponding frequency.

15 5.4. Method D/
This method involves three steps: -
17 (1) Calculate the geometric mean of ranks for each criterion (only among individ-
uals listing the given criterion).
19 (2) Convert the geometric mean of ranks into an average weight for each criterion
based on estimated slope —s,,.
21 (3) Multiply the average criterion weight by the corresponding frequency.

5.5. Illustration and comparison of methods for different criteria

23 A small numerical example is shown in Table 4 to illustrate the steps of the four
aggregation methods described above. Similar to the example of Sec. 4, this example

25 involves three decision makers and four decision criteria.
Taking Question 2 of Part I of the survey as an example, n = 10. Thus, we
27 used Eq. (3) to find the absolute fitted slope value s19 = 6.9709. Applying the
four methods to the 10 criteria of Question 2 of Part I of the survey, we obtain
29 the normalized weights shown in Table 5. Based on the MAPE values shown in
Table 5, Method D2 seems to be the best for determining aggregate weights when
31 the number of ranked criteria varies among different individuals. Similar results are

obtained from the data of Question 1 of Part I of the survey.
/

33 6. Discussion and Conclusions

Although the proposed methodology is based on strong empirical evidence, it still
35 has inherent limitations. First, by giving an equal weight to each individual’s rank,
b
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Table 4. Example of applying four aggregation methods for different sets of ranked

criteria.
Criterion A B C D
Given DM1 rank 1 2 3 4
DM1 rank 2 1
DMa3 rank 1 2 3
Method D1~ DM1 weight 100 87.37 74.73 62.10
DM1 weight 77.93 100
DM3 weight 100 84.22 68.44
Total weight 277.93 271.58 74.73 130.53
Percent weight 36.82 35.98 9.90 17.29/
Method D2  Arithmetic average rank 1.33 1.67 3.00 3.50
Average weight 95.79 91.58 74.73 68.41
Total weight 287.365  274.731 74.73 136.827
Percent weight 37.14 35.51 9.66 17.69
Method D3  Geometric average weight 92.02 90.28 74.73 65.19
Total weight 276.068  270.835 74.73 130.38
Percent weight 36.71 36.01 9.94 17.34
Method D4  Geometric average rank 1.26 1.59 3.00 3.46
Average weight 96.72 92.58 74.73 68.87
Total weight 290.148  277.735 74.73 137.734
Percent weight 37.18 35.59 9.58 17.65

Table 5. Actual and calculated aggregate percent weights for 10 criteria of Question
2 in Part I of the survey (different sets of criteria).

Criterion no.  Actual Method D1 Method D2 Method D3  Method D4

1 18.24 18.99 18.32 19.48 21.91
2 20.94 20.39 20.63 19.23 24.45
3 21.47 22.98 22.01 23.97 25.83
4 8.73 8.57 8.75 8.87 10.38
5 4.29 3.89 . 4.06 4.06 4.77
6 9.15 9.47 9.73 9.80 11.55
7 2.39 2.11 2.13 2.16 2.62
8 3.73 3.33 3.37 3.44 4.03
9 0.63 0.71 0.64 0.74 0.74
10 10.42 9.57 10.35 8.24 12.36
MAPE 7.07 3.91 9.65 16.67
s <

the methodology cannot recognize the different intensities of preferences among
individual decision makers. Second, the tasks used to collect the empirical data were
not decision-making tasks. The experiments involved specifying criteria preferences
(ranks), but no selection of an alternative decision on the basis of these ranks. The
presence of concrete decision alternatives might influence individual criteria ranks.
For example, a student might consider speaking clearly as the most important
criteria for instructor evaluation. However, in choosing between two instructors who
are both clear speakers, “speaking clearly” may become less important because it
does not influence the current instructor’s selection decision.
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To summarize, an empirical methodology has been presented for calculating
aggregate (group) criteria weights on the basis of ordinal ranking of these criteria
by several decision makers. Experiments involving university students and faculty
were conducted to collect necessary data for developing this methodology. Several
aggregation methods have been investigated for two possible cases, depending on
whether or not the ranks provided by different individuals correspond to the same
set of criteria. For both cases, the best aggregation method is determined on the
basis of comparison with the actual aggregate weights.

If all the decision makers rank the same set of criteria, we recommend aggre-
gation method S1, which converts individual ranks into individual weights and
then calculates the average weight for each criterion. If different individuals rank
different subsets of the criteria, the recommended method is D2, which converts
individual ranks into individual weights and then calculates aggregate weights as
averages of individual weights. Potential future extensions include partial or fuzzy
rankings, group decision making with weighted voting to reflect different intensities
of preference, and aggregation for other rank-weight functions, such as the centroid
and the inverse weight models. Another extension is to collect empirical data in a
decision-making task setting, aiming to find out whether the same empirical results
would be obtained. Finally, theoretical analysis is needed to confirm, explain, and
generalize the empirical results.
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