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An optimization method is presented for the cyclic labour scheduling
problem, in which workers are given three consecutive workdays per week.
The dual solution is utilized to calculate the minimum workforce size and
days-off assignments that minimize labour cost. Using simple manual cal-
culations, the need for integer programming is eliminated.
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1. Introduction and Background

Demand for an organization’s goods or services usually varies according
to season, day of week, or even time of the day. Organizations must allocate
resources, including labour, to satisfy these varying customer demands effec-
tively and efficiently. Labour is usually the most important and expensive
resource of any organization. Effective labour scheduling allows businesses
to satisfy customers with the minimum labour cost.

Days-off scheduling is an important and practical problem that applies
to organizations operating seven days a week, such as airlines, restaurants
and hospitals. Since workers must be given weekly breaks, they must be
assigned to specific days-off work patterns. The most common type of days-
off work patterns includes five workdays and two consecutive off days per
week, thus it is usually referred to as the (5, 7) problem. Recently, there
has been a lot of interest in alternative work schedules, including 3-day and
4-day workweeks. This is illustrated by Browne and Nanda (1987), Burns
et al. (1998), Hung (1993, 1994), Hung and Emmons (1993), and Steward
and Larsen (1971).

This paper applies a methodology similar to that used by Alfares (1998)
for the 5-day workweek (5, 7) problem, to the 3-day workweek or the (3, 7)
problem. It assumes that each employee is given three consecutive workdays
and four consecutive off days per week. A simple, yet optimum solution
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method is presented. Using this method, the solution can be easily obtained
manually. The method can be used to obtain either the minimum number
or the minimum cost of the workforce. To find the optimum primal solution,
the method utilizes the dual solution and primal-dual relations.

In solving the (3, 7) problem, the new method offers two advantages
over integer programming (IP): simplicity and computational efficiency. While
IP is a specialized technique which requires training and availability of cer-
tain software packages, the new method can be implemented manually. If
programmed, the new algorithm should be much faster than integer pro-
gramming since it requires only substitutions in simple formulae, and no
iterations. Computational efficiency is a significant benefit in practical ap-
plications that require the solution of a large number of days-off problems,
such as the simultaneous scheduling of operations and labour for projects
(Alfares and Bailey, 1997) and airlines (Vance et al., 1997).

This paper is organized as follows. First, a review of relevant literature
is given. Then, the integer programming models of the problem and its dual
are presented. Subsequently, the procedures for determining the minimum
workforce size and assigning workers to days-off patterns are described. Fi-
nally, a numerical example is solved and conclusions are given.

2. Survey of Literature

Baker (1976) classifies labour scheduling problems into three types: (1)
shift, or time-of-day, scheduling, (2) days-off, or days-of-week scheduling,
and (3) tour scheduling, which combines the first two types. Baker (1976),
Tien and Kamiyama (1982), and Nanda and Browne (1992) provide compre-
hensive surveys of literature on all these types. The scope of this review is
limited to the days-off scheduling problem, with emphasis on non-traditional
work schedules and compressed workweek scheduling.

Several approaches have been developed for the (5, 7) problem in which
only consecutive pairs of off days are allowed. Tiberwala et al. (1972) de-
velop a procedure in which the number of iterations equals the number of
workers required. Browne and Tiberwala (1975) simplify the three steps
involved, but do not reduce the number of iterations. Baker (1974) devel-
ops a two-phase algorithm which starts by calculating the lower bound on
workforce size, then uses trial and error to determine days-off assignments.
Morris and Showalter (1983) describe an iterative, three-step cutting plane
procedure to optimally solve the (5, 7) days-off problem. Another iterative,
manual procedure utilizing three simple rules was developed by Bechtold
and Showalter (1985). The objective of all these procedures is to minimize
the workforce size.
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Various approaches have been applied to different other versions of the
days-off scheduling problem. Bechtold (1988) develops heuristics for assign-
ing full- and part-time employees in multiple-objective, multiple-location
environments. Emmons (1985) and Koop (1986) schedule a single type of
workers, with 2 days off per week and A out of B weekends off. Emmons
and Burns (1991), and Narasimhan (1996) consider the same problem with
m types of workers. Emmons and Burns (1991) assume a constant labour
demand for all days of the week, while Emmons (1985) and Narasimhan
(1996) assume two different demand levels: D for regular weekdays and E
for weekends.

Browne and Nanda (1987) analyze the efficiency of 4-day workweek
scheduling. Hung (1993, 1994) develops multiple-shift models for both 3-day
and 4-day workweeks. Hung and Emmons (1993), and Steward and Larsen
(1971) model the 3-4 workweek in which each worker works three days in
one week and four days in the other during a 2-week cycle. Hung assumes
D workers are required during weekdays and E workers during weekends,
while Hung and Emmons (1993) assume D workers are required every day,
but all minimize workforce size. In comparison, the model presented below
does not assume labour demands to be constant for weekdays or weekend
days, and it does not assume days-off work pattern costs to be equal, thus
it can minimize workforce size or cost.

3. Integer Programming Models

The (3, 7) labour scheduling problem can be represented as an integer
programming model as follows:

7
Minimize W = Z z; (1)
j=1
subject to
3
oz, i=1,2,.,7 (2)
=1
z; >0, i=12,..7 (3)
where
W = workforce size, i.e. total number of workers assigned to days-off pat-
terns.

z; = number of workers assigned to weekly days-off pattern j, i.e. number
of workers off on days j, j+1, j+2, and j + 3.
number of workers required on day i, 1 =1,2,...,7.

]
)
Il
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Note:

Since the problem has a one-week cycle, all the subscripts are modular 7.

7
Since Z z; is equal to W, (2} can be written as

j=1
4
Zl‘i_j.H < bz s 1= 1,2,...,7 (4)
i=1
where
biZW—Ti, 7:=1,2,...,7 (5)

= number of workers off on day i

The dual of the (3, 7) days-off scheduling model with dual variables y;, ¢ =
1,2,...,7, is given by

7
Maximize W = Z TiYi (6)
=1
subject to
3
Yoy <l i=1,2,.,7 (7)
=1
y; >0, 31=L12..7 (8)

4. Determining the Minimum Workforce Size

Given seven daily labour demands ry,...,77, the minimum workforce
size W can be easily obtained using the dual formulation shown above, with-
out integer programming. An optimum solution to the above dual problem
is a feasible solution to the primal (original) days-off scheduling problem.
Moreover, the value of the optimal objective function W is the same for
the two problems. To solve the dual problem we allocate the unit resource
(right hand size of (7) equal to 1) among the dual variables in order to
maximize the dual objective W which is a linear combination of labour de-
mands. There are two possible dual solutions, depending on the given labour
demands 71, ..., 77, which are discussed next.

1. Since each constraint (7) contains only three dual variables, it is possible
to divide the unit right-hand side of each constraint among those three
variables. Thus, it is feasible to assign a value of 1/3 to all seven dual
variables. Since y; = 1/3 for i = 1, ..., 7, the workforce size W = > ry is

equal to > /3.
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2. A similar situation pertains to seven sets s; = {vi, yit+3}, 2 = 1,...,7.
Considering modularity, at least one of any four adjacent variables must
belong to a set s;. Therefore, at least one of the four adjacent variables
absent from constraints (7), representing four successive off days, must
belong to a set {yi, ¥i+3}. Since a maximum of one variable from each
set is present in any constraint, it is possible to assign a value of 1 to both
variables in a given set. Defining S; = r; +7;43, we would choose the set k&
which has the maximum total demand Syax = Sk. Then, yx = Y43 =1,
all other y; = 0, and W = r + rg43.

To determine the workforce size, we choose the maximum value of W
obtained from the two above cases, and must also round up W in case it
is not an integer. Therefore, we obtain the following expression for the
minimum W:

W = max {I’% Zri] s Smax ) (9)

where
Smax = max {5, S5, ..., 57}
[a] = smallest integer > a, i.e. a rounded up to the nearest integer
and
S;=ri+riez, 1=12,..,7 (10)

5. Assigning Workers to Days-off patterns
5.1. Minimizing total labour cost

This section will illustrate how minimum-cost days-off assignments
..., o7 are found for the (3, 7) problem. Having determined the minimum
workforce size W by (9), the objective now is to assign workers to days-
off work patterns in order to minimize total cost. The costs of different
days-off work patterns are related to the number of overtime-paid weekend
workdays. Obviously, patterns 4, 5 and 6 are the cheapest with no weekend
workdays, followed by patterns 3 and 7 with one weekend workday each,
while patterns 1 and 2 are the most expensive with two weekend workdays
each. Let us assume each worker costs A per regular-week workday and
A(1 + B) per weekend workday (A, B > 0). The weekly costs of the seven
days-off patterns are given by

c,...¢cr=(3+2B, 3+2B,3+B, 3, 3, 3, 3+B)A (11)

where
c¢; = weekly cost per work of days-off pattern j
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If these varying costs of different days-off patterns were taken into consid-
eration, the objective would be to minimize the total cost of workers, or

7
Minimize Z = chxj (12)

=1

To incorporate differential costs, the right-hand side of the dual constraints
(7) changes to the transposed cost vector (ci,...,c7)T. Naturally, the dual
solutions corresponding to cases when S; is maximum do slightly change,
however, the minimum workforce W obtained by (9) does not change. This
means that for the cost structure defined by (11), the minimum labour cost
Z is always obtained with the minimum number of workers W.

To attain objective (12), we must assign as many workers as possible,
out of W determined by (9), to the cheapest days-off patterns: z4, 5 and zg
then to z3 and z7. This value of W is based on the optimum dual solution.
Therefore, complementary slackness primal-dual relationships will be used
to obtain the solution of the primal (original) days-off scheduling problem.
The solution will depend on which argument of the right-hand side of (9) is
maximum, thus there are two possible cases.

7
5.2. [%Zr,] is maximum
i=1

In this case, W = [Y_ /3], all dual variables are basic (y; = 1/3, i =
1,2,...,7), and all dual constraints are equations. Therefore, all primal vari-
ables are also basic and all primal constraints are equations. Constraint
system (4) is transformed into the following set of equations:

4
Zmi—j+1 =b, 1=12,..,7 (13)
j=1

The solution of the 7 x 7 linear system of equations is given by

n=W-=5, i=12..7 (14)

5.3. Smax IS maximum

Let S; = Spax. In this case W = S;, dual variables {y;, vi+3}U{ys, y7}
are basic, and dual constraint i is an inequality. Thus, the primal problem
has three or four equations in the ith, (¢ + 3)rd, 6th and 7th constraints and
the variable z; is equal to zero. Since weekend work is more expensive, con-
straints 6 and 7 are always satisfied as equations indicating that the number
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of workers assigned on weekends equals but never exceeds the number re-
quired. The optimum solution for each i(i = 1,...,7) is found by assigning
as many workers as possible to the cheapest days-off patterns. For example,
if S; is maximum, then z; = 0 and constraints 1, 4, 6 and 7 are equations.
Including this information in system (4) and simplifying, we obtain

rs + Ig + I7 = (15.1)

I + z6 + x7 < b2 (152)
o + X3 + z7 < b3 (153)
To + T3 + x4 = by (15.4)
Is5 S b5 - b4 (155)

r3 + x4 + x5 + g = bg (156)

T4 =b; — by (15.7)

Note that introducing differential costs does not change the workforce size
W obtained by (9). Since z; = 0, W is given by the sum of (15.1) and

(154) as
W=bl+b4=(W—T1)+(W—T4)=2W—(T1+T4)=2W—Sl
thus W =25

Subtracting (15.6) from the sum of (15.1) and (15.4), we obtain
$2+$7=b1+b4—bs =W—-b6
but from (15.2),
ze < by — T2 —T7
Therefore,
Zg Sb5+b2—W=(W—T6)+(W—T‘2)—W=W—(7‘6+7‘2)
or
26 < W — S
By maximizing x¢ and z5, the solution is given by
g4 = b7 - bl
z¢ = min {by, W — S, bs — x4}
T5 = min {bl — Tg, b5 - b4, b5 — T4 — 116}
Ty = b1 — X5 — Tg
a:3=b6—a:4—x5—a:6
To = b4 — T3 — T4
Solutions for the remaining cases, S; is maximum, ¢ = 2,...,7, can be ob-

tained similarly. Days-off assignments corresponding to each case are shown
in Table 1.
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6. Steps of the Algorithm

1. Determine the minimum workforce size W using equation (9).

2. If max{> r/3, Smax} =Y. 7/3 then,
(a) If 3" 7/3 is not integer, increment daily demands by (3W — 3" r) to
make ) r a multiple of 3, choosing the lowest demands but avoiding
weekend demands (rg, 77).

(b) Calculate by,...,b7 using equation (5), then compute > 7/3 row in
Table 1.

3. If max{z 7'/3, Smax} - Si7
Calculate by, ..., b7 using equation (5), then compute S; row in Table 1.
In the case of ties, apply any one of steps 2 or 3 arbitrarily.

7. A Solved Example

The following example is used to illustrate the simple calculations re-
quired for implementing the algorithm. However, using any spreadsheet
software, Table 1 itself can be expressed as a spreadsheet which can be used
to conveniently implement the algorithm. Given the following daily labour
demands for a work week:

71,79,...,77 = 8§,3,6,2,5,4,8
Calculate

Zr=36

Sy, Ss,..., 57 =10,8,10,10,13,7,14
Thus,

> r/3=36/3=12
Smax =57 =14

Using (9), the workforce size is
W=8=14
Using equation (5), b; = 14 — r;, we obtain

by, bg, ..., by = 6,11,8,12,9,10,6
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Using S; row in Table 1, we obtain the following days-off assignments:

z7 =0
Z¢ = min {b;, by, W —S¢} =min {6, 6, 14—-7} =6
z5 = min {b; — z¢, bs, by — 26} =min {6 -6, 9, 6 -6} =0
ry=b;—25—26=6—-0-6=0
3 =bg—b;=10—-6=4
Zo = min {bo — x5, b3 — z3, b5 — 23 — T4 — 25}
—min {11-6, 8—4, 9—4—-0-0} =4
1 =b3—z9—23=8-4—4=0

8. Conclusions

An efficient optimization algorithm for the cyclic (3, 7) labour days-
off scheduling problem has been presented. The algorithm is based on the
solution of the dual linear programming model but does not involve linear
or integer programming. Since the costs of different days-off work patterns
are not assumed to be equal, the algorithm can be used to minimize either
the total number or the total cost of workers assigned. The simplicity of
the algorithm makes it easy to implement manually, removing the need
for specialized training and software. A similar approach could be used to
solve other cyclic scheduling problems in which the dual solution is easily
obtained.
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