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ABSTRACT  

  
The testability problem of dual port memories is 

investigated. Architectural modifications to enhance the 

testability by allowing multiple access of memory cells 

with minimal overhead on both silicon area and device 

performance are described. New fault models are 

proposed and efficient O( n ) test algorithms are 

described for both the memory array and the address 

decoders. The new fault models account for the 

simultaneous dual access property of the device. In 

addition to the classical static neighborhood pattern 

sensitive faults, the array test algorithm covers a new class 

of pattern sensitive faults, Duplex Dynamic Neighborhood 

Pattern Sensitive faults (DDNPSF).  

 

1.0 INTRODUCTION 

 
Dual-port random access memories (DPRAMs) allow 

simultaneous access of stored data from two ports as 

compared to access from only one port in conventional 

single-port RAMs (SPRAMs). Whereas this may be used 

to speed up the test algorithm, it does complicate the 

memory array fault model as well as the decoder fault 

model resulting in more complex test algorithms. Fault 

modeling for SPRAMs has been thoroughly investigated 

[15]. However, in spite of the growing use of DPRAMs, 

limited work on the testability issues of these devices has 

been reported. An ad-hoc test technique which adopts no 

specific fault model was described by Raposa [16]. Ad-hoc 

techniques, however, are only useful for small size 

memories. A serial test algorithms for an embedded 

DPRAM was developed in [17] where several simple fault 

models were adopted. A simple stuck-at fault model was 

used for the memory array, address decoder and read/write 
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logic. In addition, two types of coupling faults were 

considered. A static (state) coupling fault model for cells 

on the same word line, and a dynamic coupling fault model 

where a read or a write operation to some cell forces a 

particular state on another cell. Whereas these are mainly 

single-port faults, a simple bridging fault model was also 

adopted to accommodate the dual-port nature of the 

memory. A special shadow write operation was designed 

to test for bridging faults between bit lines and between 

word lines of opposite ports. Test algorithms which cover 

stuck-at faults, bridging faults between adjacent bit lines, 

and stuck-open as well as stuck-ON faults of some of the 

memory cell transistors was reported in [13]. These 

approaches, however, do not take into account complex 

pattern sensitive failures which become more common as 

transistor and memory cell sizes get smaller [1]. The 

notion of a complex coupling fault model for DPRAMs 

was introduced in [18] where an O(n2) march test was 

developed. By imposing some topological restrictions on 

the relative locations of the coupling and the coupled cells, 

the test length was reduced to an O(n) complexity [19]. 

Even though [18] has extended the SPRAM array coupling 

fault model to account for the special features of 

DPRAMs, the approach used a single-port decoder fault 

model which does not account for complexities introduced 

by the second port. 

To properly address the testability problem of 

DPRAMs, new fault models covering complex pattern 

sensitive faults should be adopted, the effect of the added 

complexity of the second port should be considered, and 

efficient test algorithms should be developed. An efficient 

test algorithm should not only be of low complexity to 

maintain reasonable test time for large size memories, but 

should also be simple enough to implement as on-chip 

BIST logic without incurring unacceptable chip area 

overhead or degrading the memory performance. This 

paper achieves these goals by introducing new array and 

decoder fault models as well as new circuit modifications 

to allow parallel access and verification of data in the test 

mode. This has lead to efficient O( n ) test algorithms 

that are simple enough to implement in BIST logic [22]. 

The new array fault model covers a new class of pattern 

sensitive faults, Duplex Dynamic Neighborhood Pattern 

Sensitive Faults (DDNPSF), which account for failure 

modes expected in this type of devices. An O( n ) array 

test algorithm covers, in addition to DDNPSF faults, all 

stuck-at faults, all static neighborhood pattern sensitive 

faults for a neighborhood of size 5, and a restricted class of 

complex coupling faults [18]. Moreover, a new decoder 

fault model is proposed to account for the interaction 

between the decoders of both ports. An O( n ) test 

algorithm to detect decoder faults is also presented. Both 



 

 

the array and the address decoders test algorithms are 

suitable for BIST implementation. 

The low O( n ) complexity of the test algorithm is 

achieved through parallel access of row/word line data. In 

the test mode, one fourth of the memory cells on any given 

row can be written into in a single memory cycle. In 

addition, data from half the memory cells on two different 

rows are verified simultaneously by the two ports. A 

similar parallel access approach for SPRAMs has been 

reported in [2]. Whereas parallel access in [2] has been 

achieved by modifying the column decoders, we have 

achieved this through controlling the address inputs of the 

column decoders instead. In addition to being simpler to 

implement, this is also more area efficient with an area 

overhead of only O(Log n) as compared to O( n ) in [2]. 

Such simplicity and area efficiency are essential 

requirements for efficient BIST implementation. The 

number of cells selected in parallel (one fourth of the 

memory cells on any given row) is independent of the 

supplied input address as opposed to a similar scheme 

reported in [20].  

The adopted memory array tiling [21] partitions the 

memory array cells into 8 distinct groups. Such tiling 

causes the test algorithm complexity to have a higher 

constant multiplier compared to the 5-group tiling 

proposed in [2] to obtain minimal test length. Whereas 

such approach fits the design for testability approach they 

have adopted, using  such tiling would result in a complex 

BIST implementation because the power-of-two nature of 

practical memory array sizes does not allow simple 

division by 5. Thus, in light of the required simplicity of 

the algorithm and BIST implementation, the 8-group tiling 

was adopted in spite of the slight increase in the test 

length. In addition to parallel access of row line data, 

parallel comparison of data is allowed by two multiple 

input comparators which flag data errors. An error is 

flagged whenever non identical data are detected. 

In section 2 of the paper, the functional model of 

DPRAMs is presented. Section 3 illustrates the testability 

added modifications required for parallel writing and data 

verification. Details of the array fault model and its test 

algorithm are given in section 4. In section 5, the decoder 

fault model is presented and its test algorithm explained. 

Detailed analysis and BIST implementation of these 

algorithms can be found in [22]. 

 

2.0 FUNCTIONAL MODEL 

 
Typically, a memory chip of size n is organized as a 

number (p) of sub-arrays of memory cells each of size 

(r x q) with r rows and q columns (n = pqr). To speed up 

memory testing, the BIST logic is designed to test the p 

sub-arrays in parallel thus cutting the test time by a factor 

of p. In the following analysis, only one such sub-array is 

considered. Each memory cell has two identical access 

ports; a and b. Each access port is associated with one 

row/word line and one set of bit/data line(s). Thus, each 

DPRAM cell has two row lines, one per port, and two sets 

of bit lines, one per port. Both row lines are identified by 

the same row address and both sets of bit lines are 

identified by the same column address. 

The DPRAM functional model consists of an r x q 

memory array of DPRAM cells. Each access port has its 

own row decoder, column decoder, sense amplifiers, and 

input/output buffers. Control, timing and arbitration 

circuitry is common to both ports. The model assumes the 

use of one sense amplifier per bit line. 

 

3.0 TESTABILITY ADDED FEATURES 

 
A number of design modifications are proposed to 

simplify the BIST implementation logic and allow efficient 

O( n ) test algorithms. In the array test mode, the 

modifications provide parallel access of multiple cells on 

the two addressed rows. Each row in the memory array is 

partitioned into exactly four sectors, with each sector 

having q/4 bits. Each port may write data into one full 

sector on any given row, and therefore the column decoder 

should allow accessing a total of q/4 bits in parallel. To 

achieve this, two circuit modifications are necessary. First, 

the write amplifier should be made powerful enough to 

drive the accessed bit lines. This, however, should not 

result in unacceptably high current spikes. If necessary, the 

write cycle during the test mode can be extended to avoid 

such spikes. Second, the column decoders of both ports 

should allow selection of multiple bit lines in the  

array test mode. As shown in Figure 2, to implement 

this feature, only two column addresses (Ay0 and Ay1) are 

allowed to assume arbitrary values while the true and 

complement outputs of all other column address buffers 

will be forced to a logic 1 state (by setting control signal 

C2 to a logic 0 state). 

The array test algorithm includes verification read steps 

which verify the integrity of stored data in the array. These 

steps verify that half the array cells (the base cells) contain 

certain identical background data; either all 0's or all 1's. 

This can be accomplished using rq/2 single read operations 

or rq/4 double (using both ports) read operations. Instead, 

two coincidence comparators are used to simultaneously 

verify two sets of data. Each set consists of data stored in 

half the cells on one of the two accessed row lines (q/2 

cells). The cells of one set (accessed by one port) are the 

odd-numbered cells, while the cells of the other (accessed 

by the other port) are the even-numbered ones. One port 

verifies data of the odd-numbered cells on some row while 

the other port simultaneously verifies those of the even-



 

 

numbered cells on another row. Thus, verifying half the 

array cells (rq/2 cells) needs only r/2 such parallel 

verification steps. According to the memory tiling used, 

exactly two sectors per row line per port will be involved 

in such a verifying read operation. Thus, in one 

verification read step both ports are used to access four 

sectors on two different rows in parallel. Data verification 

is accomplished by adding one parallel coincidence 

comparator circuitry for each port. The inputs to the 

comparator of port a (port b), are the outputs of the sense 

amplifiers of half the array bit lines corresponding to the 

even- numbered (odd-numbered) columns of the port. 

 

Figure 3 shows the logic diagram of the comparator 

circuitry with inputs from the even-numbered bit lines.  

The comparator consists of two NOR gates (N1 and N2) 

the outputs of which ( and  are inputs to a third NOR 

gate (N3). The output of N3 is the "Error" flag signal. The 

inputs to N1 are the true outputs (S0, S2, ..., Sq-2.) of the 

even-numbered sense amplifiers connected to half the bit 

lines of a given port. 

 

The inputs to N2 are the complement outputs of these 

sense amplifiers (S , S0 2 , ..,S q 2 .). The "Error" output 

signal is flagged high only if the data being compared are 

not identical. If the data being verified are identical, the 

inputs of either the N1 or the N2 gate will be all 1's, while 

the inputs of the other will be all 0's. Thus, the output of 

one of these two NORs will be 0, while the output of the 

other will be 1 in which case the "Error" output signal will 

be 0. In case the content of some memory cell is in error, 

the comparator inputs will not be identical and at least one 

of the input signals to each of N1 and N2 will be a logic 1. 

This forces the outputs of both NOR gates to a logic 0 

causing the "Error" output signal to be a logic 1 indicating 

a fault. With their large number of inputs, both the N1 and 

the N2 gates are best implemented as distributed CMOS 

domino logic gates. The pull down transistors of both gates 

span the width of the array q columns as shown in 

Figure 4. The N3 gate, however, is implemented as a static 

CMOS NOR gate. The output signals of N1 and N2 ( and 

 ) together with a single switched ground signal () are 

bused in a direction normal to the bit lines. The outputs of 

N1 and N2 ( and  are evaluated during the comparator 

sampling clock  only after the contents of memory cells 

of the sector under consideration are sensed (i.e., after the 

sense enable signal SE is asserted). In the normal operating 

mode, the "Error" signal always assumes a logic 0 state. 

Furthermore, the gate capacitance load on the sense 

amplifier outputs is not only balanced but is also minimal 

since the NMOS load transistors of the domino logic 

NORs are OFF in the normal mode resulting in negligible 

overhead on the sensing speed. In a preliminary design of a 

256K DRAM using 1.5 CMOS technology, SPICE 
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simulations indicated an estimated delay overhead of less 

than 3ns under worst case operating conditions. The delay 

is mostly due to the added logic at the address buffer 

output to control the column decoder input signals. The 

total BIST logic area overhead was less than 2%.  

 

 

4.0 ARRAY FAULT MODELS and TEST    

ALGORITHMS 

 
4.1 Dual-Port Pattern Sensitive Fault Model  Static 

Neighborhood Pattern Sensitive Faults (SNPSFs) and 

Dynamic Neighborhood Pattern Sensitive Faults 

(DNPSFs) [24] can occur either in single or DPRAMs. 

However, the presence of two ports and the ability to have 

two simultaneous write operations in DPRAMs provoke 

another type of neighborhood pattern sensitive faults. 

Interference faults between cells, e.g. coupling faults or 

static and dynamic pattern sensitive faults, are generally 

attributed to leakage currents and capacitive coupling 

between cells that are physically adjacent [1, 25, 27]. 

These two problems become more pronounced as the 

packing density of memory cells is increased and their 

geometries are reduced. DNPSFs may be caused by 

capacitive coupling or transition-induced leakage currents 

from neighboring cells. A more subtle type of faults, 

however, would cause degradation in the integrity of the 

stored data in the base cell due to a single transition in a 

deleted neighborhood cell but such degradation is not 

strong enough to show as a DNPSF. Two simultaneous 

such transitions, however, would have a stronger effect on 

the base cell resulting in a larger degradation which would 

be more likely to show as a fault. Such type of duplex 

dynamic pattern sensitive faults, not possible with 

SPRAMs, may occur in DPRAMs due to their 

simultaneous double write capability.  

Definition 1:  A Duplex Dynamic Neighborhood 

Pattern Sensitive Fault (DDNPSF) for DPRAMs is 

defined as follows: the content of a cell is forced to a 

certain state due to a duplex change in its deleted 

neighborhood pattern. This change consists of two 

simultaneous transitions in two cells of the deleted 

neighborhood, while the remaining cells of the deleted 

neighborhood and the base cell contain a certain pattern. 

It should be noted that the double simultaneous 

transitions of the two deleted neighborhood cells can be 

either in the same direction or in opposite directions.  If the 

transitions are in the same direction, then  they can be 

either positive (where the two cells change states from 00 

to 11), or negative (where the two cells change states from 

11 to 00).   If the transitions are in opposite directions 

(mixed), then one cell changes state from 0 to 1 while the 

other cell changes state from 1 to 0. Therefore,  DDNPSF 

can be further classified as either positive, negative, or 

mixed.  As stated earlier, while the effect of a single 

transition in one cell of the deleted neighborhood may not 

be strong enough to show as a fault in the base cell, the 

effect of double simultaneous transitions is stronger and is 

more likely to show as a DDNPSF fault if the effects of 

both transitions are additive.  Such additive effect will 

occur when the double transitions are in the same 

direction. It is also reasonable to assume that double 

transitions in the same direction will sensitize most faults 

caused by single transitions in any of the two deleted 

neighborhood cells undergoing the transition. In other 

words, most DNPSF are detectable by DDNPSF tests. 

Therefore, we will limit our discussion to positive and 

negative DDNPSFs. To test for positive (negative) 

DDNPSF, each base cell must be read in state 0 and in 

state 1, for all possible positive (negative) duplex  changes 

in the deleted neighborhood patterns. To minimize the total 

number of double write operations required to step through 

all such changes in the deleted neighborhood patterns, we 

extend the notion of Eulerian sequence [2, 15] to handle 

DPRAMs as described below.  

4.2 Extended Eulerian Sequence  Let  X  = (x0, x1, ... , 

xk-1),  Y = (y0, y1, ... , yk-1) be vertices in a k-

dimensional cube that represents the state vector space of a 

deleted neighborhood of size k. Vertex X is said to be    

vertex Y if and only if  xi  yi    i = 0,1, ..., k-1. 

Conversely, X is said to be    Y if and only if  xi  yi   i 

= 0,1, ..., k-1. Otherwise, if for some i , j  xi > yi   and  xj  

< yj  then X and Y are unordered. We define a DDNPSF 

graph for a k-bit deleted neighborhood as a graph where 

there is a vertex for each k-bit pattern. Two vertices X and 

Y are connected if and only if they satisfy the following 

two conditions: 

1. The Hamming distance between  X and Y is 

exactly 2, i.e., HD(X,Y)  = 2 

2. X    Y,   or   X    Y 

When two vertices, X and Y are connected, they are 

connected by exactly two directed arcs: one from X to Y, 

and the other from Y to X. Condition 1 ensures that, 

moving from vertex X to vertex Y corresponds to a double 

transition write. Condition 2 ensures that the double 

transition write is either positive (X  Y) or negative (X  

Y). Traversing the set of all directed arcs in the DDNPSF 

graph sensitizes all of the positive and negative DDNPSF 

faults for a deleted neighborhood of size k. Thus, a tour 

through this graph such that each directed arc is traversed 

at least once constitutes a test sequence for DDNPSFs. The 

length of such test sequence is minimum if each directed 

arc is traversed only once.  
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Figure 5 shows the DDNPSF graph for a hypothetical 

neighborhood of size k = 3. The arcs are shown in heavy 

lines. Each line  represents two directed arcs (one for each 

direction). The dotted lines represent the arcs of a single-

port DNPSF Eulerian graph. The arcs of the DDNPSF 

graph can be easily identified if  the vertices of the k-

dimensional cube are arranged in levels such that a vertex  

X appears in level i, i  {0,1,...,k}, if and only if vertex X 

represents a pattern which has exactly i ones. This is 

illustrated in Figure 6 for the hypothetical case of k = 3 

where arcs emanating from a vertex on level 0 (level 3) 

can only connect to a vertex on level 2 (level 1) and vice  

versa. It is clear from Figure 6 that the DDNPSF graph is 

not connected, but rather consists of two strongly 

connected subgraphs. Each of the two subgraphs is an 

Eulerian graph with a possible subtour which traverses 

each directed arc of the subgraph exactly once [26]. An 

extended Eulerian sequence (EES) for k = 3 is constructed 

by linking the two Eulerian subtours as shown in Table 1. 

Each of subtour 1, and subtour 2 has a length of 6. In 

addition, a link of two double write operations is needed to 

move from the end of subtour 1 (000) to the beginning of 

subtour 2 (111). Thus, such a test sequence has a length of 

14. 

 

4.2.1 Extended Eulerian Sequence for k = 4:   Figure 7 

shows the two subgraphs (subgraph 1 and subgraph 2) for 

the DDNPSF graph for k = 4.  A vertex X appears on level  

i  if and only if  X  has exactly  i  ones.  The following 

should be noted: 

1. No arcs connect vertices X and Y on the same level, 

e.g. vertices on level 2, even if HD(X,Y) = 2 since X 

and Y are unordered. 

2. No arcs connect vertices on levels i, and i  1   i, j  

{0,1, ..., k} since their hamming distance is not equal 

to two. 

3. If  X  is a vertex on level  4 and  Y  is a vertex on level  

2, then  HD(X,Y) = 2  and  X     Y.  A similar remark 

applies  if  X  is a vertex on level  2,   and  Y  is a 

vertex on level  0.  Arcs connecting vertices X and Y 

constitute the arcs of subtour 1 in Figure 7(a). 

4. If  X  is a vertex on level  3 and  Y  is a vertex on level  

1, an arc of subtour 2 in Figure 7(b) connects vertices 

X and Y iff  X  Y and HD(X,Y) = 2. 

Subtour1 is an optimal Eulerian subtour of length 24 

and is obtained by traversing each path between 0000 and 

1111 up and down, i.e., in both directions. (6 paths  2 arcs 

 2 directions = 24). One such subtour is shown in Table 2. 

An optimal Eulerian subtour 2 of length 24 for the second 

subgraph of Figure 7(b) is shown in Table  3. Therefore, an 

optimal extended Eulerian sequence for  k = 4  will have a 

length of  49. It consists of subtour 1 (length 24), a link 

(length 1) from the end of subtour 1 to the beginning of 

subtour 2, and subtour 2 (length 24). It should be noted 

that the EES covers SNPSF faults as well since all of the 

graph vertices are visited. 

4.2.2 Extended Eulerian Sequence for k > 4  In general, for 

any deleted neighborhood of size k, the DDNPSF graph is 

a disconnected graph with two strongly connected 

components (subgraphs). Graph vertices having even 

levels belong to one subgraph, while vertices of odd levels 

belong to the other subgraph. Each of these two subgraphs 

is Eulerian. An EES to test for DDNPSFs is constructed by 

linking the two Eulerian subtours of these two subgraphs. 

The EES will cover both  DDNPSF and SNPSF faults. 
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4.3 Memory Array Tiling: The adopted memory array 

tiling [21] is shown in Figure 8. The memory cells are 

partitioned into 8 distinct sets of memory cells. The 8 sets 

are designated by the letters N,E,W,S, n,e,w,s. Each row 

has cells belonging to four of these sets. Cells on even 

rows belong to the s, n, S, N sets, while cells on odd rows 

belong to the w,e,W,E sets. With this tiling, the eight sets 

of memory cells are divided into two major groups: The 

first group consists of all cells designated by n,e,w,s (half 

the array cells), while the second group consists of all cells 

designated by  N,E,W,S. Considering n,e,w,s  as base cells, 

N,E,W,S  become the deleted neighborhood for these cells 

and vice versa. This tiling has the advantage of simple 

address generation which is an important requirement for 

built-in testing. 

4.4 Array Test Procedure  In the array test mode, cells 

belonging to the same set, on any given row, are accessed 

in parallel as one sector. Each sector consists of q/4 

memory cells. For example, all q/4 cells designated s on 

row 0 constitute one sector. This includes cells at columns 

0,4,8,12, etc. In general, the four sectors of a row will be 

designated by the letters corresponding to cell sets on this 

row, i.e. {s,N,n,S} for even rows and {W,w,E,e} for odd 

rows. Write operations, in the array test mode,  are sector 

oriented rather than individual cell oriented  where each 

port performs write operations into the q/4 memory cells of 

a given sector in parallel through multiple selection of 

appropriate column decoder outputs as explained in section 

3. Thus, a double write operation refers to the 

simultaneous writing of data into the two array sectors 

addressed by the two ports.  Furthermore, in this mode, the 

contents of the n,e,w,s ( or N,E,W,S ) base cells are 

repeatedly verified for the correct background data (all 0's 

or all 1's) using the two coincidence comparators after each 

change in the deleted neighborhood pattern. This step is 

accomplished in r/2 verification read operations. Odd-

numbered cells, e.g.  w,e  ( or  N, S), are verified in parallel 

by one coincidence comparator, while  simultaneously the 

even-numbered cells, e.g.   n, s   (or W, E )  are verified in 

parallel by the other coincidence comparator. 

To test for positive (negative) DDNPSF, each base cell 

(e.g., n,e,w,s) must be read in state 0 and in state 1, for all 

possible positive (negative) duplex  changes in the deleted 

neighborhood patterns (e.g., N,E,W,S).  To minimize the 

total number of double write operations required to step 

through all such changes in the neighborhood patterns, the 

order specified by an extended Eulerian sequence (EES) of 

k=4 is followed. This should be performed once with 

(n,e,w,s) considered as base cells and another with 

(N,E,W,S) as the base cells. 

The memory array is first initialized to a background of 

all 0's (vertex  a  in subgraph 1 of Figure 7(a)). 

Considering n,e,w,s as base cells, the arcs of subtours 1 

and 2 are traversed  and positive/negative duplex changes 

are applied to the deleted neighborhood (N,E,W,S) 

throughout the whole array. Traversing the arcs of the EES 

is repeated for an all 1's background data in the n,e,w,s 

base cells. Finally, the whole process is repeated with the 

role of  N,E,W,S  and  n,e,w,s interchanged (i.e., by 

considering  N,E,W,S as base cells and n,e,w,s as the 

deleted neighborhood).  The test procedure can therefore 

be summarized as follows: 

1. Consider  n,e,w,s as base cells, and  N,E,W,S  as 

the deleted neighborhood cells 

2. Initialize the memory array to a background of all 

0's. 

3. Traverse the next arc of the EES (k = 4) and 

verify the base cells. 

4. If the EES is not completed, go back to  3. 

5. Initialize all base cells to 1's, and all deleted 

neighborhood cells to 0's. 

6. Repeat steps 3 through 4. 

7. Consider  N,E,W,S  as base cells, and  n,e,w,s  as 

the deleted neighborhood cells and repeat steps 2 

through 6. 

4.4.1 EES Arc Traversal    It should be noted that, while 

following an optimum EES minimizes the number of write 

operations, it does not test all the base cells for the 

required duplex transitions. As an example, consider the 

case where  n,e,w,s  are the base cells and the deleted 

neighborhood cells  (N,E,W,S) undergoing the positive 

duplex transition (0000  0011), i.e. traversing arc  ag  in 

subgraph 1 of the DDNPSF graph (Figure 7-a). A series of 

(00 to 11) double write operations to sectors S and W on 

rows (0, 1), (2, 3), (4, 5), ... , (r-2, r-1) will test base cells  

e  and  s  for the positive duplex transition 0000 to 0011, 

while base cells n and w are only tested for two successive 

single transitions from 0000 to 0010 then to 0011. To test 

all base cells for all possible duplex transitions, an arc 

traversal procedure is followed. In this procedure, a given 

bi-directional arc is traversed in both directions (e.g., 00  

11  00) in a repeated manner such that all base cells are 

covered. The procedure also includes verification cycles in 

between global write operations. As an example, consider 

the case of traversing the bi-directional arc ag (0000  

0011) in subgraph 1 (Figure 7-a). A series of double write 

operations to all cells designated W and S in the memory 

array need to be performed.  For all the  n,e,w,s  base cells 
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to be exposed to the required deleted neighborhood duplex 

transitions (0000 to 0011 and 0011 to 0000), such series of 

writes is performed in two phases with two passes per 

phase. Depending on the row addresses of the W and S 

sectors selected to be written simultaneously, either cells e 

and s (phase 1) or cells n and w (phase 2) will be subjected 

to the required positive and negative duplex transitions 

(0000  0011) in their deleted neighborhoods. In the first 

pass of the first phase, a sequence of double write 

operations (0000  0011) to sectors S and W on rows (0, 

1), (2, 3), (4, 5), ... , (r-2, r-1) is performed in r/2 double 

write cycles (see Figure 8). This pass will test base cells e 

and s for the positive duplex transition 0000 to 0011, while 

base cells n and w are only tested for two successive single 

transitions from 0000 to 0010 then to 0011. This is 

followed by a sequence of verification read cycles (r/2 

cycles) to verify the data in the base cells. In the second 

pass, a sequence of (0011 to 0000) double write operations 

is applied to the same set of W and S  sectors (r/2 cycles). 

This will test base cells e and s for the negative duplex 

transition 0011 to 0000, while base cells n and w are only 

tested for two successive single transitions from 0011 to 

0001 then to 0000. This is also followed by another 

sequence of verification read cycles (r/2 cycles). Thus, in 

the first phase, base cells e and s are tested for the positive 

and negative duplex transition (0000  0011) in their 

deleted neighborhood. This is accomplished in r double 

write cycles and r verification read cycles for a total of 2r 

cycles. The second phase is similar to the first with the 

exception that instead of cells e and s, base cells n and w 

are tested for the positive and negative duplex transitions 

(0000  0011) in their deleted neighborhoods. This is 

accomplished by a different grouping of the two sectors 

being written simultaneously (W and S ). Thus, in the 

second phase the double write operations will be 

performed on sectors W and S on rows (1, 2), (3, 4), (5, 6), 

... (r-3, r-2), and (r-1, 0).  

Traversing arcs which require duplex transitions in the 

(S, E), the (E, N), or the (N, W) sectors, will be handled 

similarly and each would require 2r double write cycles 

and 2r verification read cycles for a total of 4r cycles. In 

contrast, traversing arcs which require duplex transitions in 

the (S, N), or the (E, W) sectors, is performed in three 

phases and requires 3r double write cycles and 3r 

verification read cycles for a total of 6r cycles [22]. This is 

due to the fact that sectors of these groups fall on the same 

row and column which requires slightly different handling. 

Thus, for duplex transitions applied to the N, S (or E, W) 

deleted neighborhood cells, i.e. traversing the arc 0XX0 

 1XX1 (X00X  X11X), one phase is required to 

sensitize DDNPSF faults for the n, s (e, w) base cells, a 

second phase for the w (n) base cells and a third phase for 

the e (s) base cells. Similar argument holds when using 

N,E,W,S  as base cells and  n,e,w,s  as deleted 

neighborhood cells. Thus, the arc traversal procedure 

performs all the required positive and negative duplex 

transitions to the deleted neighborhoods of the base cells 

throughout the whole array as well as the necessary 

verification reads of the base cells. 

A finite state machine (FSM) is designed to step 

through the EES and determine the next arc traversal 

operation that is to be carried out based on the current 

content of the deleted neighborhood. The complexity of 

such FSM must be reduced for built-in testing. For a minor 

increase in the length of the test sequence, the complexity 

of such FSM can be reduced. To achieve this, the optimal 

Eulerian subtour 2 shown in Figure 7(b) is replaced with 

subtour 2* shown in Figure 9 and Table 4. Subtour 2* 

starts at vertex A by traversing the three bi-directional arcs 

emanating from A, i.e., AH, AG, and AF. Moving to 

vertex B (using the added link shown in Figure 9 as a 

dotted line AB) the bi-directional arcs emanating from B, 

i.e., BH, BG, and BE are traversed.  Then move to C and 

so on. The extra links added to subtour 2* (AB, BC, and 

CD) would slightly increase the test sequence length but 

will lead to a simpler implementation of the FSM as 

explained below. 

To point at the target cells, x, y   {N,E,W,S} for the 

next double write operation, a 4-bit register, NEWS_REG, 

is used. The bits of NEWS_REG  have a one-to-one 

correspondence with the N,E,W,S sectors such that a given 

bit is 1  if and only if the corresponding sector is to 

undergo a transition write operation. For example, 

NEWS_REG=1001 specifies transition double write 

operations into sectors N,S. As illustrated by the following 

example, the contents of NEWS_REG are simply 

determined using two additional 4-bit registers, R1 and R2. 

The added cost for this simplicity is the slight increase in 

the length of subtour 2* as compared to subtour 2. 
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Example: At vertex A (Figure 9) the pattern of the 

deleted neighborhood  (N,E,W,S) = (1110). To reach vertex 

H,  (N,E,W,S)  should be (1000).  This requires negative 

double transition writes to the sectors designated by  E,W 

(i.e., NEWS_REG should be 0110). This is achieved by the 

following simple procedure. 

  The deleted neighborhood pattern corresponding to the 

starting point (A) is complemented, i.e. 0001, and loaded 

into both of R1 and R2. The pattern in R2 is used as a 

mask.  The following two operations produce the correct 

required value of  NEWS_REG: 

a) step 1:   Cyclic Shift Right  R1 

b) step 2:   NEWS_REG  =  R1  NOR  R2 

  At this point NEWS_REG contains the right value, 0110, 

indicating that E,W  are the target sectors for the double 

transition write operations required to traverse the bi-

directional arc AH.  If steps 1,2 are repeated  NEWS_REG 

will contain 1010 providing the locations for the transition 

writes required for the next bi-directional arc AG.  This is 

true for all the bi-directional arcs emanating from A, and is 

also true for each of  B, C, D  provided that the proper 

value of the starting point is used (i.e., 0010 for B, 0100 

for C, and 1000 for D). As shown in Figure 10, after 

traversing all bi-directional arcs emanating from A, R1 

automatically contains the starting point for vertex B (and 

so on). Moreover, the value of  NEWS_REG to effect an 

internal link, e.g. AB, is obtained by simple ORing of the 

contents of R1 and R2.  Figure 11 shows a pseudo code for 

the partial testing procedure handling subtour 2*. 

The same hardware can be used in a similar manner to 

step through subtour 1. Using the arc traversal procedure 

to traverse arcs of subtour 1, however, requires an 

additional link between vertices a (0000) and h (1111). 

The DDNPSF graph for the modified subtour 1, designated 

subtour 1*, is shown in Figure 12 and the corresponding 

pseudo code is shown in Figure 13. 

Data written into the two ports in the array test mode are 

specified using a two-bit register DATA_REG (1-bit per 

port). It is noted that data written to both ports while 

traversing the bi-directional arcs within subtour 1* and 

subtour 2*  are identical for both ports. This is because the 

double transitions effected are either both positive or both 

negative. However, different data inputs to the two ports 

are required for the following uni-directional links: 

i. From the end of subtour 1*, where (N,E,W,S) = 1111, to 

the beginning of subtour 2*, where (N,E,W,S) = 1110.  

ii. The three internal links of subtour 2* (A to B, B to C, 

and C to D in Figure 9). 

Starting Point R1=0001, Mask R2 = 0001  

Cyclic Shift 

Right R1  

R1 

NOR R2 

Target 

Cells  

Traversed Arc 

1000 0110 E,W AH 

0100 1010 N,W AG 

0010 1100 N,E AF 

Starting Point R1=0010, Mask R2 = 0010 

0001 1100 N,E BE 

1000 0101 E,S BH 

0100 1001 N,S BG 

Starting Point R1=0100, Mask R2 = 0100 

0010 1001 N,S CF 

0001 1010 N,W CE 

1000 0011 W,S CH 

Starting Point R1=1000, Mask R2 = 1900 

0100 0011 W,S DG 

0010 0101 E,S DF 

0001 0110 E,W DE 

Figure 10 Subtour 2* Bidirectional Arc 

Traversals  

procedure  subtour2* 

LOAD  R1, "0001" /* R1  0001 */ 

for  i  = 1 to 4 do 

 LOAD  R2, R1 /* R2    R1 */ 

 repeat 3 times 

   Cyclic-Shift-Right  R1 

  NEWS_REG = R1  NOR  R2 

  (x,y) = f (NEWS_REG) 

  /* From  NEWS_REG determine x,y {N,E,W,S} of  the 

target cells to undergo double transition writes. This is 

designated (x,y) =  f (NEWS_REG)  */ 

  Traverse_arc(x,y) 

 end repeat 

 if   i < 4   then /* Link  steps */ 

  NEWS_REG = R1  OR  R2 

  (x,y) = f (NEWS_REG) 

  Double Transition Write  x,y 

 end if 

end for 

end subtour2* 

Figure 11. Pseudo Code for the partial testing procedure 

handling Subtour 2* 
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Figure 12. DDNPSF Graph for Subtour 1*

 



 

 

In subtour 1*, arcs connected to vertices b and c require 

6r read/write cycles, while all other arcs require only 4r 

cycles. Thus, including the r cycles required for the link 

from vertex a to vertex h, procedure subtour 1* requires a 

total of 57r cycles. In procedure subtour 2*, traversing the 

3 arcs from each of vertices A, B, C, or D requires 14r 

cycles (6r + 4r + 4r). In addition, each of the 3 links A to 

B, B to C, and C to D requires r/2 double write cycles. 

Thus, subtour 2* requires a total of 57.5 r cycles. 

4.5 Comparator Test: Since the two coincidence 

comparators are used throughout the array test in addition 

to the fact that their layout follows the tight array design 

rules (same bit line pitch), the test procedure starts by 

testing the operation of these comparators. Using a simple 

single stuck-at fault model, each comparator is fully tested 

using a total of "q + 2" patterns. Each pattern is first 

written into two specific memory sectors in one double 

write cycle. That pattern is then applied to the inputs of the 

comparators (Figure 3) using one  verification read cycle. 

Since both comparators are tested simultaneously using the 

two ports, a total of " q + 2 " double write cycles and q +2 

verification read cycles are required for the test. 

The pseudo code for the complete memory array test 

procedure is shown in Figure 14. In the overall array test 

procedure of Figure 14, each initialization step (e.g., step  

1  or step 5) is performed in 2r cycles, since two sectors 

will be written by both ports per cycle. Furthermore, the 

link operation of step 3, even though it can be performed 

in r/4 operations using the two ports, it will be performed 

in r/2 double write operations to maintain simple BIST 

logic [22]. Thus, a total of {468r + q + 2} read/write 

cycles, i.e. O( n ), are required by the array test algorithm 

{(2*{2r + 2*[57r + r/2 + 57.5r] + 2r}) + q + 2}. 

 

5.0 ADDRESS DECODER FAULTS 

 
According to the DPRAM model, each port has its own  

row decoder and column decoder. Since multiple cells are 

accessed during the array test algorithm, some decoder 

faults are not detectable by this test. Therefore, dedicated 

tests to verify decoder operation must be used. For fault 

free decoder operation, each address in the address space 

should access one and only one memory cell which is not 

accessed by any other address. In addition, each cell 

should be uniquely accessed by the same address from 

either port. To reduce the test algorithm complexity, the 

row and column decoders are independently tested. It is 

assumed that a decoder fault does not change the decoder 

circuit into a sequential one [28]. In addition, decoder 

faults are assumed to affect both the read and the write 

operations equally. 

5.1 Dual-Port Decoder Fault Model 

Definition 2: Let Ra and Rb be the sets of all possible 

row lines of ports a and b respectively. A row line rx 

which is accessed from port a (b), i.e. rx  Ra (rx  Rb), 

is said to match another row line ry if and only if ry is 

accessed by the other port b (a), i.e. ry  Rb (ry  Ra), 

and  both  rx and ry  access  the  same set of memory  

cells. If rx  matches  ry we  write  (rx  ry).  

Let A = {0 .. (r-1)} be the set of all row addresses. Two 

mapping functions a and b map this set of row addresses 

onto the set of row lines for each of the two ports (one to 

one and onto mapping). Thus; for fault free row decoder 

operation: 

  a : A  Ra, 

  b : A  Rb, and 

procedure  subtour1* 

for   i = 1, 2 

 LOAD  R1, "0001" 

 LOAD  R2,  R1 

 repeat 3 times 

  Cyclic-Shift-Right  R1 

  NEWS_REG = R1  NOR  R2 

  repeat 2 times 

   (x,y) = f (NEWS_REG)  

   /* From NEWS_REG determine x,y  {N,E,W,S} of the 

target cells to undergo double  transition writes.*/ 

   Traverse_arc(x,y) 
   NEWS REG NEWS REG_ _  

  end repeat 

 end repeat 

 if i = 1 then Link_ah  /* Write 1111 into deleted 

neighborhood */ 

end for 

end subtour1* 

Figure 13. Pseudo Code for the partial testing 

procedure handling Subtour 1* 

procedure  array_test 

 0.  Comparator Test 

 1.  Initialize the memory array M to all 0's. 

 2.  procedure_subtour1* 

   3. link to subtour 2*  /* This step is accomplished by 

writing 0 to all cells labeled S  */ 

 4. procedure_subtour2* 

 5. Initialize M such that (N,E,W,S) =  0000 and  

          (n,e,w,s) = 1111 

 6. repeat steps 2 through 4 

    7. Interchange the role of  N,E,W,S  and n,e,w,s  and 

repeat steps 1 to 6 

end array_test 

Figure 14. Pseudo Code for the Overall Memory Array 

Test Procedure 



 

 

  a(i) 


 b(i) i  A, 

Thus; rx  Ra,   ry  Rb such that rx  ry  (x  A). 

This implies that each port accesses a total of r distinct 

rows. In addition, one and only one row line is accessible 

by each valid address, and conversely, each address 

accesses exactly one row line. Moreover, the above 

mapping functions guarantee that each row of array 

memory cells is accessible from both ports by the same 

unique address whether the accessing port is a or b. 

Similar definitions and mapping functions apply for the 

column address decoder as well. 

There are six types of expected DPRAM decoder faults. 

These can be broadly classified into two main categories: 

single-port decoder faults (SPDF) and cross port decoder 

faults (CPDF). 

a) Single-port Decoder Faults (SPDF):  This category 

includes four types of faults typically found in single-port 

RAMs: 

1. A row (column) line which is not accessed by any 

address. 

2. A row (column) address that accesses no row (bit) line. 

3. One address which accesses more than one row 

(column) line (one to many). 

4. A row (column) line  accessed by more than one address 

(many to one). 

b) Cross Port Decoder Faults (CPDF): Faults in this class 

result from interaction between the access ports. The 

following two faults belong to this class: 

5. An address of one port accesses a row (column) line 

belonging to the other port.  

6. Address mismatch faults, where the same address to 

both ports selects two row (column) lines that are not 

matching. 

None of the single-port decoder faults can stand alone 

[15], but rather a combination of such faults will exist 

together. For cross port decoder faults, only the last fault 

(address mismatch) can stand alone. Possible fault 

combinations are shown in Figure 15. Following the same 

notation of De Goor & Verruijt [15], fault type A 

combines faults 1 & 2, fault B combines faults 2 & 3, fault 

C combines faults 1 & 4, and fault type D combines faults 

3 & 4. Extending this notation to accommodate the dual-

port case, fault combinations E, F, G, H and I are 

illustrated in Figure 15. Fault type E combines faults 1 & 

5, fault F shows a case where fault 5 is combined with 

itself (5 & 5) from both ports, faults G, H and I show 

various forms of combining faults 3, 4 & 5.  

Fault 5 maps a row address of one port into the row line 

belonging to the other port. This, however, does not mean 

that cells on the erroneously selected row are accessible 

from the first port. This is due to the fact that to access a 

cell, both its row line and column line should be properly 

selected by the same accessing port. In case of fault 5, only 

the row line is erroneously accessed by the first port, while 

the column line is accessed by the second port. As an 

example, let row address i of port a actually selects row 

line i of port b. Consider the case where port  a is reading 

some cell (i,k) on row i and column k (whose content is x) 

while port b is writing ( x ) data into another cell (l,k) 

with a different row address l but on the same column 
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RowAdd.
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address k. Port b will write ( x ) not only into cell (l,k) but 

also into cell (i,k) accessed for reading by port a. Data read 

by port a will depend on the memory type. In case of 

DRAMs, the data read will be some stuck-at value. For 

SRAMs, data read will be noise and layout dependent. A 

similar argument holds for  fault 5 on column decoders. 

 

5.2 Decoder Test Procedures:  To reduce the complexity 

of the test algorithm as well as simplify the BIST logic, 

row and column decoders are tested separately. The 

algorithm consists mainly of two test procedures which 

utilize the capability of simultaneous access by both ports 

to minimize the test time. To test row decoders, two march 

tests are performed on the memory cells of particular 

columns. The first test scans two different columns, each 

accessed by one port, in two opposite directions, while the 

second scans a single column, accessed by both ports, in 

the same direction.  

Similar test procedures are used for column decoders 

with the march tests applied to the memory cells of 

specific rows rather than columns. The test algorithm is of 

O(r) for row decoders and O(q) for column decoders, i.e.  

O( n ) decoder test algorithms.  

5.2.1 Row Decoder Test Procedure 1  Figure 16 shows 

the pseudo code for this test procedure. The notation 

Read_x_(i,j)  (Write_x_(i,j)) is  used to indicate a read 

(write) operation with expected (input) data x (x  {0,1}) 

through port  (  {a,b}) from (to) the memory cell 

whose row and column addresses are i and j respectively. 

The procedure initializes the memory cells of two 

distinct columns by the two ports to some background data 

(all 0's or all 1's). After initialization, the memory cells of 

both columns are scanned simultaneously by both ports in 

opposite row address directions where the background data 

are verified and the complement data are written. This 

amounts to performing two independent march tests of a 

total length 5r on these two columns simultaneously. Thus, 

the test procedure fully detects fault types A, B, C, and D 

[15]. This procedure also detects fault types E, F, G, H and 

I except for the case where fault 5 corresponds to some 

address x of one port mapping into row r-x-1 (or column q-

x-1) on the other port. In addition, address mismatch faults 

are not detected by this procedure. Such faults will be 

detected by the second test procedure. 

5.2.2 Row Decoder Test Procedure 2: In this procedure, 

the test is performed only on a single column which is 

accessed by both ports. This column is first initialized to 

some background data (all 0's). The column cells are then 

scanned in an ascending order of row addresses, verifying 

their contents through read operations by both ports. Then, 

one port is used to write complementary data which is then 

also verified by a read operation from both ports. The test 

procedure verifies that data written to some row address by 

any port is also readable by both ports using the same 

address. For test regularity, this test procedure uses the 

double write operation used in the decoder_1 procedure. 

Thus, in addition to the test column (l), some other dummy 

column (m) is written into. This regularity leads to a 

simpler BIST logic implementation. The pseudo code of 

this procedure is shown in Figure 17. In addition to 

detecting address mismatch faults, this procedure detects 

faults of type E, F, G, H and I which escape detection by 

the previous procedure. 

For the row decoder, the first procedure takes 5r cycles 

while the second procedure takes 6r  cycles for a total of 

11r cycles. Similarly column decoder test of length 11q 

Procedure Decoder_1 

/* Initialize the memory cells of two distinct columns l 
and m to all 0's.*/ 

initialize_columns (l,m,0); 

 for i = 0 to r-1 do 

 Read_0_a(i,l), Read_0_b(r-i-1, m);  

   /* Double Read by both Ports */ 

 Write_1_a(i,l), Write_1_b(r-i-1, m);   

  /* Double Write by both Ports */ 

 end_for 

 for i = 0 to r-1 do 

 Read_1_a(r-i-1, l), Read_1_b(i,m); 

  /* Double Read by both Ports */ 

 Write_0_a(r-i-1, l), Write_0_b(i,m);  

 /* Double Write by both Ports */ 

 end_for 

end Decoder_1 

Figure 16. Row-decoder Test Procedure Decoder_1. 

Procedure Decoder_2; 

/* Initialize the memory cells of the test  column "l" to 

all 0's for test regularity, a dummy column "m" is also 

initialized  to all 0's.*/ 

 initialize_columns (l,m,0); 

 for i = 0 to r-1 do 

 Read_0_a(i,l),  Read_0_b(i,l);  

 /* Double Read Operation by both Ports */ 

 Write_1_a(i,l), Write_1_b(i,m);  

  /* A Write Operation on Port a*/ 

 Read_1_a(i,l),  Read_1_b(i,l);  

 /* Double Read Operation by both Ports */ 

 Write_0_b(i,l), Write_0_a(i,m);  

  /* A Write Operation on Port b*/ 

 Read_0_a(i,l),  Read_0_b(i,l);  

  /* Double Read Operation by both Ports */ 

 end_for 

end Decoder_2 

Figure 17. Row-decoder Test Procedure Decoder_2. 



 

 

will be required for a total of 11(r+q) cycles for both 

decoders which is of order O( n ). 

Since the array test algorithm requires (468r + q + 1)  

read and write cycles, the total number of read and write 

operations required for both the array and decoder tests is 

(479 r + 12 q + 1). For p = 1 and r = q = n  , this 

amounts to (491 n  + 1) operations.  

 

6.0 CONCLUSION 

 
The testability problem of dual port memories has been 

investigated. A functional model is defined and 

architectural modifications to enhance the testability of 

such chips are described. The modifications allow multiple 

access of memory cells for increased test speed with 

minimal overhead on both silicon area and device 

performance. New fault models are proposed and efficient 

O( n ) test algorithms are described for both the memory 

array and the address decoders. In addition to the classical 

static neighborhood pattern sensitive faults, the array test 

algorithm covers a new class of pattern sensitive faults, 

Duplex Dynamic Neighborhood Pattern Sensitive faults 

(DDNPSF) which accounts for the simultaneous dual 

access property of the device. The efficiency of the 

proposed scheme together with the reduced area and 

performance overhead makes it a viable and promising 

approach for future DPRAM designs. 
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