

Efficient O n() BIST Algorithms for

DDNPS Faults in Dual Port Memories

A. A. Amin, M. Y. Osman, R. E. Abdel-Aal

and H. Al-Muhtaseb1

King Fahd University of Petroleum &

Minerals,

Dhahran 31261, Saudi Arabia

ABSTRACT

The testability problem of dual port memories is

investigated. Architectural modifications to enhance the

testability by allowing multiple access of memory cells

with minimal overhead on both silicon area and device

performance are described. New fault models are

proposed and efficient O(n) test algorithms are

described for both the memory array and the address

decoders. The new fault models account for the

simultaneous dual access property of the device. In

addition to the classical static neighborhood pattern

sensitive faults, the array test algorithm covers a new class

of pattern sensitive faults, Duplex Dynamic Neighborhood

Pattern Sensitive faults (DDNPSF).

1.0 INTRODUCTION

Dual-port random access memories (DPRAMs) allow

simultaneous access of stored data from two ports as

compared to access from only one port in conventional

single-port RAMs (SPRAMs). Whereas this may be used

to speed up the test algorithm, it does complicate the

memory array fault model as well as the decoder fault

model resulting in more complex test algorithms. Fault

modeling for SPRAMs has been thoroughly investigated

[15]. However, in spite of the growing use of DPRAMs,

limited work on the testability issues of these devices has

been reported. An ad-hoc test technique which adopts no

specific fault model was described by Raposa [16]. Ad-hoc

techniques, however, are only useful for small size

memories. A serial test algorithms for an embedded

DPRAM was developed in [17] where several simple fault

models were adopted. A simple stuck-at fault model was

used for the memory array, address decoder and read/write

1A. A Amin and M. Y. Osman are with the Computer

Engineering Department, R. E. Abdel-Aal is with the Energy

Research Laboratory of the Research Institute, and H. Al-

Muhtaseb is with the Information and Computer Science

Department.

logic. In addition, two types of coupling faults were

considered. A static (state) coupling fault model for cells

on the same word line, and a dynamic coupling fault model

where a read or a write operation to some cell forces a

particular state on another cell. Whereas these are mainly

single-port faults, a simple bridging fault model was also

adopted to accommodate the dual-port nature of the

memory. A special shadow write operation was designed

to test for bridging faults between bit lines and between

word lines of opposite ports. Test algorithms which cover

stuck-at faults, bridging faults between adjacent bit lines,

and stuck-open as well as stuck-ON faults of some of the

memory cell transistors was reported in [13]. These

approaches, however, do not take into account complex

pattern sensitive failures which become more common as

transistor and memory cell sizes get smaller [1]. The

notion of a complex coupling fault model for DPRAMs

was introduced in [18] where an O(n2) march test was

developed. By imposing some topological restrictions on

the relative locations of the coupling and the coupled cells,

the test length was reduced to an O(n) complexity [19].

Even though [18] has extended the SPRAM array coupling

fault model to account for the special features of

DPRAMs, the approach used a single-port decoder fault

model which does not account for complexities introduced

by the second port.

To properly address the testability problem of

DPRAMs, new fault models covering complex pattern

sensitive faults should be adopted, the effect of the added

complexity of the second port should be considered, and

efficient test algorithms should be developed. An efficient

test algorithm should not only be of low complexity to

maintain reasonable test time for large size memories, but

should also be simple enough to implement as on-chip

BIST logic without incurring unacceptable chip area

overhead or degrading the memory performance. This

paper achieves these goals by introducing new array and

decoder fault models as well as new circuit modifications

to allow parallel access and verification of data in the test

mode. This has lead to efficient O(n) test algorithms

that are simple enough to implement in BIST logic [22].

The new array fault model covers a new class of pattern

sensitive faults, Duplex Dynamic Neighborhood Pattern

Sensitive Faults (DDNPSF), which account for failure

modes expected in this type of devices. An O(n) array

test algorithm covers, in addition to DDNPSF faults, all

stuck-at faults, all static neighborhood pattern sensitive

faults for a neighborhood of size 5, and a restricted class of

complex coupling faults [18]. Moreover, a new decoder

fault model is proposed to account for the interaction

between the decoders of both ports. An O(n) test

algorithm to detect decoder faults is also presented. Both

the array and the address decoders test algorithms are

suitable for BIST implementation.

The low O(n) complexity of the test algorithm is

achieved through parallel access of row/word line data. In

the test mode, one fourth of the memory cells on any given

row can be written into in a single memory cycle. In

addition, data from half the memory cells on two different

rows are verified simultaneously by the two ports. A

similar parallel access approach for SPRAMs has been

reported in [2]. Whereas parallel access in [2] has been

achieved by modifying the column decoders, we have

achieved this through controlling the address inputs of the

column decoders instead. In addition to being simpler to

implement, this is also more area efficient with an area

overhead of only O(Log n) as compared to O(n) in [2].

Such simplicity and area efficiency are essential

requirements for efficient BIST implementation. The

number of cells selected in parallel (one fourth of the

memory cells on any given row) is independent of the

supplied input address as opposed to a similar scheme

reported in [20].

The adopted memory array tiling [21] partitions the

memory array cells into 8 distinct groups. Such tiling

causes the test algorithm complexity to have a higher

constant multiplier compared to the 5-group tiling

proposed in [2] to obtain minimal test length. Whereas

such approach fits the design for testability approach they

have adopted, using such tiling would result in a complex

BIST implementation because the power-of-two nature of

practical memory array sizes does not allow simple

division by 5. Thus, in light of the required simplicity of

the algorithm and BIST implementation, the 8-group tiling

was adopted in spite of the slight increase in the test

length. In addition to parallel access of row line data,

parallel comparison of data is allowed by two multiple

input comparators which flag data errors. An error is

flagged whenever non identical data are detected.

In section 2 of the paper, the functional model of

DPRAMs is presented. Section 3 illustrates the testability

added modifications required for parallel writing and data

verification. Details of the array fault model and its test

algorithm are given in section 4. In section 5, the decoder

fault model is presented and its test algorithm explained.

Detailed analysis and BIST implementation of these

algorithms can be found in [22].

2.0 FUNCTIONAL MODEL

Typically, a memory chip of size n is organized as a

number (p) of sub-arrays of memory cells each of size

(r x q) with r rows and q columns (n = pqr). To speed up

memory testing, the BIST logic is designed to test the p

sub-arrays in parallel thus cutting the test time by a factor

of p. In the following analysis, only one such sub-array is

considered. Each memory cell has two identical access

ports; a and b. Each access port is associated with one

row/word line and one set of bit/data line(s). Thus, each

DPRAM cell has two row lines, one per port, and two sets

of bit lines, one per port. Both row lines are identified by

the same row address and both sets of bit lines are

identified by the same column address.

The DPRAM functional model consists of an r x q

memory array of DPRAM cells. Each access port has its

own row decoder, column decoder, sense amplifiers, and

input/output buffers. Control, timing and arbitration

circuitry is common to both ports. The model assumes the

use of one sense amplifier per bit line.

3.0 TESTABILITY ADDED FEATURES

A number of design modifications are proposed to

simplify the BIST implementation logic and allow efficient

O(n) test algorithms. In the array test mode, the

modifications provide parallel access of multiple cells on

the two addressed rows. Each row in the memory array is

partitioned into exactly four sectors, with each sector

having q/4 bits. Each port may write data into one full

sector on any given row, and therefore the column decoder

should allow accessing a total of q/4 bits in parallel. To

achieve this, two circuit modifications are necessary. First,

the write amplifier should be made powerful enough to

drive the accessed bit lines. This, however, should not

result in unacceptably high current spikes. If necessary, the

write cycle during the test mode can be extended to avoid

such spikes. Second, the column decoders of both ports

should allow selection of multiple bit lines in the

array test mode. As shown in Figure 2, to implement

this feature, only two column addresses (Ay0 and Ay1) are

allowed to assume arbitrary values while the true and

complement outputs of all other column address buffers

will be forced to a logic 1 state (by setting control signal

C2 to a logic 0 state).

The array test algorithm includes verification read steps

which verify the integrity of stored data in the array. These

steps verify that half the array cells (the base cells) contain

certain identical background data; either all 0's or all 1's.

This can be accomplished using rq/2 single read operations

or rq/4 double (using both ports) read operations. Instead,

two coincidence comparators are used to simultaneously

verify two sets of data. Each set consists of data stored in

half the cells on one of the two accessed row lines (q/2

cells). The cells of one set (accessed by one port) are the

odd-numbered cells, while the cells of the other (accessed

by the other port) are the even-numbered ones. One port

verifies data of the odd-numbered cells on some row while

the other port simultaneously verifies those of the even-

numbered cells on another row. Thus, verifying half the

array cells (rq/2 cells) needs only r/2 such parallel

verification steps. According to the memory tiling used,

exactly two sectors per row line per port will be involved

in such a verifying read operation. Thus, in one

verification read step both ports are used to access four

sectors on two different rows in parallel. Data verification

is accomplished by adding one parallel coincidence

comparator circuitry for each port. The inputs to the

comparator of port a (port b), are the outputs of the sense

amplifiers of half the array bit lines corresponding to the

even- numbered (odd-numbered) columns of the port.

Figure 3 shows the logic diagram of the comparator

circuitry with inputs from the even-numbered bit lines.

The comparator consists of two NOR gates (N1 and N2)

the outputs of which ( and  are inputs to a third NOR

gate (N3). The output of N3 is the "Error" flag signal. The

inputs to N1 are the true outputs (S0, S2, ..., Sq-2.) of the

even-numbered sense amplifiers connected to half the bit

lines of a given port.

The inputs to N2 are the complement outputs of these

sense amplifiers (S , S0 2 , ..,S q 2 .). The "Error" output

signal is flagged high only if the data being compared are

not identical. If the data being verified are identical, the

inputs of either the N1 or the N2 gate will be all 1's, while

the inputs of the other will be all 0's. Thus, the output of

one of these two NORs will be 0, while the output of the

other will be 1 in which case the "Error" output signal will

be 0. In case the content of some memory cell is in error,

the comparator inputs will not be identical and at least one

of the input signals to each of N1 and N2 will be a logic 1.

This forces the outputs of both NOR gates to a logic 0

causing the "Error" output signal to be a logic 1 indicating

a fault. With their large number of inputs, both the N1 and

the N2 gates are best implemented as distributed CMOS

domino logic gates. The pull down transistors of both gates

span the width of the array q columns as shown in

Figure 4. The N3 gate, however, is implemented as a static

CMOS NOR gate. The output signals of N1 and N2 ( and

) together with a single switched ground signal () are

bused in a direction normal to the bit lines. The outputs of

N1 and N2 ( and  are evaluated during the comparator

sampling clock  only after the contents of memory cells

of the sector under consideration are sensed (i.e., after the

sense enable signal SE is asserted). In the normal operating

mode, the "Error" signal always assumes a logic 0 state.

Furthermore, the gate capacitance load on the sense

amplifier outputs is not only balanced but is also minimal

since the NMOS load transistors of the domino logic

NORs are OFF in the normal mode resulting in negligible

overhead on the sensing speed. In a preliminary design of a

256K DRAM using 1.5 CMOS technology, SPICE

Figure 2. Modified Column Address Decoder Inputs

Ay0

Ay0

Ay1

Ay2

Ay2

Ay

Ay

C2

Column

Decoder

Ay0/Ay0

Ay /
l-1

Ay l-1

Ay1/Ay1

C1

C1

Ay1

C1

Col. Address
Buffer Ay0

Ay0 & Ay1

Generator

Test Mode

M
U
X

I0

I1

M
U
X

I0

I1
Col. Address
Buffer Ay1

Col. Address
Buffer Ay0 M

U
X

I0

I1

M
U
X

I0

I1

Generator

Test Mode

Ay2 & Ay

Col. Address
Buffer Ay

C1

Access ModeC1C2

1 1 Normal Mode

0 0 Array Test Mode, (Sector Access)

0 1 Decoder Test Mode, (Single Cell Access)

Error

S2

S0

Sq-2

S0

S2

Sq-2





N1

N3

N2

(Even Comparator)
Parallel Coincidence Comparator Logic CircuitFigure 3.

Sense Amps







TST.SE.

"Error"

Vdd

Vdd

0S S 2
Sq-2

0S S 2
S q-2

SE : Sense Enable Signal

: Comparator Sampling
Clock



SE



N3





Figure 4. Coincidence Comaparator for Even Bit Lines.

COLUMN DECODER

Column Select
Transistors

To I/O Buffer

BL0 BL2 BLq-2

BLi : Bit line # i
Si : True output of Sense Amp. of BLi

Si : Complementary output of Sense
Amp. of BLi

simulations indicated an estimated delay overhead of less

than 3ns under worst case operating conditions. The delay

is mostly due to the added logic at the address buffer

output to control the column decoder input signals. The

total BIST logic area overhead was less than 2%.

4.0 ARRAY FAULT MODELS and TEST

ALGORITHMS

4.1 Dual-Port Pattern Sensitive Fault Model Static

Neighborhood Pattern Sensitive Faults (SNPSFs) and

Dynamic Neighborhood Pattern Sensitive Faults

(DNPSFs) [24] can occur either in single or DPRAMs.

However, the presence of two ports and the ability to have

two simultaneous write operations in DPRAMs provoke

another type of neighborhood pattern sensitive faults.

Interference faults between cells, e.g. coupling faults or

static and dynamic pattern sensitive faults, are generally

attributed to leakage currents and capacitive coupling

between cells that are physically adjacent [1, 25, 27].

These two problems become more pronounced as the

packing density of memory cells is increased and their

geometries are reduced. DNPSFs may be caused by

capacitive coupling or transition-induced leakage currents

from neighboring cells. A more subtle type of faults,

however, would cause degradation in the integrity of the

stored data in the base cell due to a single transition in a

deleted neighborhood cell but such degradation is not

strong enough to show as a DNPSF. Two simultaneous

such transitions, however, would have a stronger effect on

the base cell resulting in a larger degradation which would

be more likely to show as a fault. Such type of duplex

dynamic pattern sensitive faults, not possible with

SPRAMs, may occur in DPRAMs due to their

simultaneous double write capability.

Definition 1: A Duplex Dynamic Neighborhood

Pattern Sensitive Fault (DDNPSF) for DPRAMs is

defined as follows: the content of a cell is forced to a

certain state due to a duplex change in its deleted

neighborhood pattern. This change consists of two

simultaneous transitions in two cells of the deleted

neighborhood, while the remaining cells of the deleted

neighborhood and the base cell contain a certain pattern.

It should be noted that the double simultaneous

transitions of the two deleted neighborhood cells can be

either in the same direction or in opposite directions. If the

transitions are in the same direction, then they can be

either positive (where the two cells change states from 00

to 11), or negative (where the two cells change states from

11 to 00). If the transitions are in opposite directions

(mixed), then one cell changes state from 0 to 1 while the

other cell changes state from 1 to 0. Therefore, DDNPSF

can be further classified as either positive, negative, or

mixed. As stated earlier, while the effect of a single

transition in one cell of the deleted neighborhood may not

be strong enough to show as a fault in the base cell, the

effect of double simultaneous transitions is stronger and is

more likely to show as a DDNPSF fault if the effects of

both transitions are additive. Such additive effect will

occur when the double transitions are in the same

direction. It is also reasonable to assume that double

transitions in the same direction will sensitize most faults

caused by single transitions in any of the two deleted

neighborhood cells undergoing the transition. In other

words, most DNPSF are detectable by DDNPSF tests.

Therefore, we will limit our discussion to positive and

negative DDNPSFs. To test for positive (negative)

DDNPSF, each base cell must be read in state 0 and in

state 1, for all possible positive (negative) duplex changes

in the deleted neighborhood patterns. To minimize the total

number of double write operations required to step through

all such changes in the deleted neighborhood patterns, we

extend the notion of Eulerian sequence [2, 15] to handle

DPRAMs as described below.

4.2 Extended Eulerian Sequence Let X = (x0, x1, ... ,

xk-1), Y = (y0, y1, ... , yk-1) be vertices in a k-

dimensional cube that represents the state vector space of a

deleted neighborhood of size k. Vertex X is said to be 

vertex Y if and only if xi  yi  i = 0,1, ..., k-1.

Conversely, X is said to be  Y if and only if xi  yi  i

= 0,1, ..., k-1. Otherwise, if for some i , j xi > yi and xj

< yj then X and Y are unordered. We define a DDNPSF

graph for a k-bit deleted neighborhood as a graph where

there is a vertex for each k-bit pattern. Two vertices X and

Y are connected if and only if they satisfy the following

two conditions:

1. The Hamming distance between X and Y is

exactly 2, i.e., HD(X,Y) = 2

2. X  Y, or X  Y

When two vertices, X and Y are connected, they are

connected by exactly two directed arcs: one from X to Y,

and the other from Y to X. Condition 1 ensures that,

moving from vertex X to vertex Y corresponds to a double

transition write. Condition 2 ensures that the double

transition write is either positive (X  Y) or negative (X 

Y). Traversing the set of all directed arcs in the DDNPSF

graph sensitizes all of the positive and negative DDNPSF

faults for a deleted neighborhood of size k. Thus, a tour

through this graph such that each directed arc is traversed

at least once constitutes a test sequence for DDNPSFs. The

length of such test sequence is minimum if each directed

arc is traversed only once.

101

100 110

010

011001

000

111

 DDNPSF Graph for K = 3 (heavy lines)

 DNPSF Eulerian Graph (dotted lines)

Figure 5.

Figure 5 shows the DDNPSF graph for a hypothetical

neighborhood of size k = 3. The arcs are shown in heavy

lines. Each line represents two directed arcs (one for each

direction). The dotted lines represent the arcs of a single-

port DNPSF Eulerian graph. The arcs of the DDNPSF

graph can be easily identified if the vertices of the k-

dimensional cube are arranged in levels such that a vertex

X appears in level i, i  {0,1,...,k}, if and only if vertex X

represents a pattern which has exactly i ones. This is

illustrated in Figure 6 for the hypothetical case of k = 3

where arcs emanating from a vertex on level 0 (level 3)

can only connect to a vertex on level 2 (level 1) and vice

versa. It is clear from Figure 6 that the DDNPSF graph is

not connected, but rather consists of two strongly

connected subgraphs. Each of the two subgraphs is an

Eulerian graph with a possible subtour which traverses

each directed arc of the subgraph exactly once [26]. An

extended Eulerian sequence (EES) for k = 3 is constructed

by linking the two Eulerian subtours as shown in Table 1.

Each of subtour 1, and subtour 2 has a length of 6. In

addition, a link of two double write operations is needed to

move from the end of subtour 1 (000) to the beginning of

subtour 2 (111). Thus, such a test sequence has a length of

14.

4.2.1 Extended Eulerian Sequence for k = 4: Figure 7

shows the two subgraphs (subgraph 1 and subgraph 2) for

the DDNPSF graph for k = 4. A vertex X appears on level

i if and only if X has exactly i ones. The following

should be noted:

1. No arcs connect vertices X and Y on the same level,

e.g. vertices on level 2, even if HD(X,Y) = 2 since X

and Y are unordered.

2. No arcs connect vertices on levels i, and i  1  i, j 

{0,1, ..., k} since their hamming distance is not equal

to two.

3. If X is a vertex on level 4 and Y is a vertex on level

2, then HD(X,Y) = 2 and X  Y. A similar remark

applies if X is a vertex on level 2, and Y is a

vertex on level 0. Arcs connecting vertices X and Y

constitute the arcs of subtour 1 in Figure 7(a).

4. If X is a vertex on level 3 and Y is a vertex on level

1, an arc of subtour 2 in Figure 7(b) connects vertices

X and Y iff X  Y and HD(X,Y) = 2.

Subtour1 is an optimal Eulerian subtour of length 24

and is obtained by traversing each path between 0000 and

1111 up and down, i.e., in both directions. (6 paths  2 arcs

 2 directions = 24). One such subtour is shown in Table 2.

An optimal Eulerian subtour 2 of length 24 for the second

subgraph of Figure 7(b) is shown in Table 3. Therefore, an

optimal extended Eulerian sequence for k = 4 will have a

length of 49. It consists of subtour 1 (length 24), a link

(length 1) from the end of subtour 1 to the beginning of

subtour 2, and subtour 2 (length 24). It should be noted

that the EES covers SNPSF faults as well since all of the

graph vertices are visited.

4.2.2 Extended Eulerian Sequence for k > 4 In general, for

any deleted neighborhood of size k, the DDNPSF graph is

a disconnected graph with two strongly connected

components (subgraphs). Graph vertices having even

levels belong to one subgraph, while vertices of odd levels

belong to the other subgraph. Each of these two subgraphs

is Eulerian. An EES to test for DDNPSFs is constructed by

linking the two Eulerian subtours of these two subgraphs.

The EES will cover both DDNPSF and SNPSF faults.

LEVEL 4

LEVEL 2

LEVEL 0

 1111 h

0011 01101100 1010 10010101

 0000

g f e d c b

a

(a).

(k = 4)

Subgraph 1 (vertices on levels 0, 2, 4)

0000

0011

1111

0011

0000

0110

1111

0110

0000

1100

1111

1100

0000

1010

1111

1010

0000

1001

1111

1001

0000

0101

1111

0101

0000

Table 2. An Optimal Subtour 1
(k = 4)

1000

1011

0001

1011

0010

0111

0001

0111

0100

0111

0010

1011

1000

1101

0001

1101

0100

1101

1000

1110

0010

1110

0100

1110

1000

Table 3. An Optimal Subtour 2

(k = 4)

Figure 7 DDNPSF Graph for k = 4

LEVEL 3

LEVEL 1

1110 1101 1011 0111

0001 0010 0100 1000

(b).

(k = 4)
Subgraph 2 (vertices on levels 1, 3)

101

100

110

010

011

001

000

111

LEVEL 1

LEVEL 2

LEVEL 3

LEVEL 0

 DDNPSF Graph for k = 3Figure 6.

SUBTOUR 1 SUBTOUR 2

000 111

101 001

000 111

011 100

000 111

110 010

000 111

Table 1

Link

4.3 Memory Array Tiling: The adopted memory array

tiling [21] is shown in Figure 8. The memory cells are

partitioned into 8 distinct sets of memory cells. The 8 sets

are designated by the letters N,E,W,S, n,e,w,s. Each row

has cells belonging to four of these sets. Cells on even

rows belong to the s, n, S, N sets, while cells on odd rows

belong to the w,e,W,E sets. With this tiling, the eight sets

of memory cells are divided into two major groups: The

first group consists of all cells designated by n,e,w,s (half

the array cells), while the second group consists of all cells

designated by N,E,W,S. Considering n,e,w,s as base cells,

N,E,W,S become the deleted neighborhood for these cells

and vice versa. This tiling has the advantage of simple

address generation which is an important requirement for

built-in testing.

4.4 Array Test Procedure In the array test mode, cells

belonging to the same set, on any given row, are accessed

in parallel as one sector. Each sector consists of q/4

memory cells. For example, all q/4 cells designated s on

row 0 constitute one sector. This includes cells at columns

0,4,8,12, etc. In general, the four sectors of a row will be

designated by the letters corresponding to cell sets on this

row, i.e. {s,N,n,S} for even rows and {W,w,E,e} for odd

rows. Write operations, in the array test mode, are sector

oriented rather than individual cell oriented where each

port performs write operations into the q/4 memory cells of

a given sector in parallel through multiple selection of

appropriate column decoder outputs as explained in section

3. Thus, a double write operation refers to the

simultaneous writing of data into the two array sectors

addressed by the two ports. Furthermore, in this mode, the

contents of the n,e,w,s (or N,E,W,S) base cells are

repeatedly verified for the correct background data (all 0's

or all 1's) using the two coincidence comparators after each

change in the deleted neighborhood pattern. This step is

accomplished in r/2 verification read operations. Odd-

numbered cells, e.g. w,e (or N, S), are verified in parallel

by one coincidence comparator, while simultaneously the

even-numbered cells, e.g. n, s (or W, E) are verified in

parallel by the other coincidence comparator.

To test for positive (negative) DDNPSF, each base cell

(e.g., n,e,w,s) must be read in state 0 and in state 1, for all

possible positive (negative) duplex changes in the deleted

neighborhood patterns (e.g., N,E,W,S). To minimize the

total number of double write operations required to step

through all such changes in the neighborhood patterns, the

order specified by an extended Eulerian sequence (EES) of

k=4 is followed. This should be performed once with

(n,e,w,s) considered as base cells and another with

(N,E,W,S) as the base cells.

The memory array is first initialized to a background of

all 0's (vertex a in subgraph 1 of Figure 7(a)).

Considering n,e,w,s as base cells, the arcs of subtours 1

and 2 are traversed and positive/negative duplex changes

are applied to the deleted neighborhood (N,E,W,S)

throughout the whole array. Traversing the arcs of the EES

is repeated for an all 1's background data in the n,e,w,s

base cells. Finally, the whole process is repeated with the

role of N,E,W,S and n,e,w,s interchanged (i.e., by

considering N,E,W,S as base cells and n,e,w,s as the

deleted neighborhood). The test procedure can therefore

be summarized as follows:

1. Consider n,e,w,s as base cells, and N,E,W,S as

the deleted neighborhood cells

2. Initialize the memory array to a background of all

0's.

3. Traverse the next arc of the EES (k = 4) and

verify the base cells.

4. If the EES is not completed, go back to 3.

5. Initialize all base cells to 1's, and all deleted

neighborhood cells to 0's.

6. Repeat steps 3 through 4.

7. Consider N,E,W,S as base cells, and n,e,w,s as

the deleted neighborhood cells and repeat steps 2

through 6.

4.4.1 EES Arc Traversal It should be noted that, while

following an optimum EES minimizes the number of write

operations, it does not test all the base cells for the

required duplex transitions. As an example, consider the

case where n,e,w,s are the base cells and the deleted

neighborhood cells (N,E,W,S) undergoing the positive

duplex transition (0000  0011), i.e. traversing arc ag in

subgraph 1 of the DDNPSF graph (Figure 7-a). A series of

(00 to 11) double write operations to sectors S and W on

rows (0, 1), (2, 3), (4, 5), ... , (r-2, r-1) will test base cells

e and s for the positive duplex transition 0000 to 0011,

while base cells n and w are only tested for two successive

single transitions from 0000 to 0010 then to 0011. To test

all base cells for all possible duplex transitions, an arc

traversal procedure is followed. In this procedure, a given

bi-directional arc is traversed in both directions (e.g., 00 

11  00) in a repeated manner such that all base cells are

covered. The procedure also includes verification cycles in

between global write operations. As an example, consider

the case of traversing the bi-directional arc ag (0000 

0011) in subgraph 1 (Figure 7-a). A series of double write

operations to all cells designated W and S in the memory

array need to be performed. For all the n,e,w,s base cells

COL

ROW
0

1

2

3

s s

s s

w w

s s

s s

w w

w w

w w

N N

N N

N N

N N

E E

E E

E E

E E

n n

n n

n n

n n

S S

S S

S S

S S

W W

W W

W W

W W

e e

e e

e e

e e

0 1 2 3 6 74 5

4

5

6

7

Memory TilingFigure 8.

to be exposed to the required deleted neighborhood duplex

transitions (0000 to 0011 and 0011 to 0000), such series of

writes is performed in two phases with two passes per

phase. Depending on the row addresses of the W and S

sectors selected to be written simultaneously, either cells e

and s (phase 1) or cells n and w (phase 2) will be subjected

to the required positive and negative duplex transitions

(0000  0011) in their deleted neighborhoods. In the first

pass of the first phase, a sequence of double write

operations (0000  0011) to sectors S and W on rows (0,

1), (2, 3), (4, 5), ... , (r-2, r-1) is performed in r/2 double

write cycles (see Figure 8). This pass will test base cells e

and s for the positive duplex transition 0000 to 0011, while

base cells n and w are only tested for two successive single

transitions from 0000 to 0010 then to 0011. This is

followed by a sequence of verification read cycles (r/2

cycles) to verify the data in the base cells. In the second

pass, a sequence of (0011 to 0000) double write operations

is applied to the same set of W and S sectors (r/2 cycles).

This will test base cells e and s for the negative duplex

transition 0011 to 0000, while base cells n and w are only

tested for two successive single transitions from 0011 to

0001 then to 0000. This is also followed by another

sequence of verification read cycles (r/2 cycles). Thus, in

the first phase, base cells e and s are tested for the positive

and negative duplex transition (0000  0011) in their

deleted neighborhood. This is accomplished in r double

write cycles and r verification read cycles for a total of 2r

cycles. The second phase is similar to the first with the

exception that instead of cells e and s, base cells n and w

are tested for the positive and negative duplex transitions

(0000  0011) in their deleted neighborhoods. This is

accomplished by a different grouping of the two sectors

being written simultaneously (W and S). Thus, in the

second phase the double write operations will be

performed on sectors W and S on rows (1, 2), (3, 4), (5, 6),

... (r-3, r-2), and (r-1, 0).

Traversing arcs which require duplex transitions in the

(S, E), the (E, N), or the (N, W) sectors, will be handled

similarly and each would require 2r double write cycles

and 2r verification read cycles for a total of 4r cycles. In

contrast, traversing arcs which require duplex transitions in

the (S, N), or the (E, W) sectors, is performed in three

phases and requires 3r double write cycles and 3r

verification read cycles for a total of 6r cycles [22]. This is

due to the fact that sectors of these groups fall on the same

row and column which requires slightly different handling.

Thus, for duplex transitions applied to the N, S (or E, W)

deleted neighborhood cells, i.e. traversing the arc 0XX0 

 1XX1 (X00X  X11X), one phase is required to

sensitize DDNPSF faults for the n, s (e, w) base cells, a

second phase for the w (n) base cells and a third phase for

the e (s) base cells. Similar argument holds when using

N,E,W,S as base cells and n,e,w,s as deleted

neighborhood cells. Thus, the arc traversal procedure

performs all the required positive and negative duplex

transitions to the deleted neighborhoods of the base cells

throughout the whole array as well as the necessary

verification reads of the base cells.

A finite state machine (FSM) is designed to step

through the EES and determine the next arc traversal

operation that is to be carried out based on the current

content of the deleted neighborhood. The complexity of

such FSM must be reduced for built-in testing. For a minor

increase in the length of the test sequence, the complexity

of such FSM can be reduced. To achieve this, the optimal

Eulerian subtour 2 shown in Figure 7(b) is replaced with

subtour 2* shown in Figure 9 and Table 4. Subtour 2*

starts at vertex A by traversing the three bi-directional arcs

emanating from A, i.e., AH, AG, and AF. Moving to

vertex B (using the added link shown in Figure 9 as a

dotted line AB) the bi-directional arcs emanating from B,

i.e., BH, BG, and BE are traversed. Then move to C and

so on. The extra links added to subtour 2* (AB, BC, and

CD) would slightly increase the test sequence length but

will lead to a simpler implementation of the FSM as

explained below.

To point at the target cells, x, y  {N,E,W,S} for the

next double write operation, a 4-bit register, NEWS_REG,

is used. The bits of NEWS_REG have a one-to-one

correspondence with the N,E,W,S sectors such that a given

bit is 1 if and only if the corresponding sector is to

undergo a transition write operation. For example,

NEWS_REG=1001 specifies transition double write

operations into sectors N,S. As illustrated by the following

example, the contents of NEWS_REG are simply

determined using two additional 4-bit registers, R1 and R2.

The added cost for this simplicity is the slight increase in

the length of subtour 2* as compared to subtour 2.

 Subtour 2* Optimized for Built-in

 Test (k = 4)

Figure 9.
0111

A B C D

E F G H

101111011110

1000010000100001

 BE

 BH

 BG

 CF

 CE

 CH

AH

AG

AF

 DG

 DF

 DE

Table 4 Subtour 2* Traversed
 Arcs

Link Link Link

Example: At vertex A (Figure 9) the pattern of the

deleted neighborhood (N,E,W,S) = (1110). To reach vertex

H, (N,E,W,S) should be (1000). This requires negative

double transition writes to the sectors designated by E,W

(i.e., NEWS_REG should be 0110). This is achieved by the

following simple procedure.

 The deleted neighborhood pattern corresponding to the

starting point (A) is complemented, i.e. 0001, and loaded

into both of R1 and R2. The pattern in R2 is used as a

mask. The following two operations produce the correct

required value of NEWS_REG:

a) step 1: Cyclic Shift Right R1

b) step 2: NEWS_REG = R1 NOR R2

 At this point NEWS_REG contains the right value, 0110,

indicating that E,W are the target sectors for the double

transition write operations required to traverse the bi-

directional arc AH. If steps 1,2 are repeated NEWS_REG

will contain 1010 providing the locations for the transition

writes required for the next bi-directional arc AG. This is

true for all the bi-directional arcs emanating from A, and is

also true for each of B, C, D provided that the proper

value of the starting point is used (i.e., 0010 for B, 0100

for C, and 1000 for D). As shown in Figure 10, after

traversing all bi-directional arcs emanating from A, R1

automatically contains the starting point for vertex B (and

so on). Moreover, the value of NEWS_REG to effect an

internal link, e.g. AB, is obtained by simple ORing of the

contents of R1 and R2. Figure 11 shows a pseudo code for

the partial testing procedure handling subtour 2*.

The same hardware can be used in a similar manner to

step through subtour 1. Using the arc traversal procedure

to traverse arcs of subtour 1, however, requires an

additional link between vertices a (0000) and h (1111).

The DDNPSF graph for the modified subtour 1, designated

subtour 1*, is shown in Figure 12 and the corresponding

pseudo code is shown in Figure 13.

Data written into the two ports in the array test mode are

specified using a two-bit register DATA_REG (1-bit per

port). It is noted that data written to both ports while

traversing the bi-directional arcs within subtour 1* and

subtour 2* are identical for both ports. This is because the

double transitions effected are either both positive or both

negative. However, different data inputs to the two ports

are required for the following uni-directional links:

i. From the end of subtour 1*, where (N,E,W,S) = 1111, to

the beginning of subtour 2*, where (N,E,W,S) = 1110.

ii. The three internal links of subtour 2* (A to B, B to C,

and C to D in Figure 9).

Starting Point R1=0001, Mask R2 = 0001

Cyclic Shift

Right R1

R1

NOR R2

Target

Cells

Traversed Arc

1000 0110 E,W AH

0100 1010 N,W AG

0010 1100 N,E AF

Starting Point R1=0010, Mask R2 = 0010

0001 1100 N,E BE

1000 0101 E,S BH

0100 1001 N,S BG

Starting Point R1=0100, Mask R2 = 0100

0010 1001 N,S CF

0001 1010 N,W CE

1000 0011 W,S CH

Starting Point R1=1000, Mask R2 = 1900

0100 0011 W,S DG

0010 0101 E,S DF

0001 0110 E,W DE

Figure 10 Subtour 2* Bidirectional Arc

Traversals

procedure subtour2*

LOAD R1, "0001" /* R1  0001 */

for i = 1 to 4 do

 LOAD R2, R1 /* R2  R1 */

 repeat 3 times

 Cyclic-Shift-Right R1

 NEWS_REG = R1 NOR R2

 (x,y) = f (NEWS_REG)

 /* From NEWS_REG determine x,y {N,E,W,S} of the

target cells to undergo double transition writes. This is

designated (x,y) = f (NEWS_REG) */

 Traverse_arc(x,y)

 end repeat

 if i < 4 then /* Link steps */

 NEWS_REG = R1 OR R2

 (x,y) = f (NEWS_REG)

 Double Transition Write x,y

 end if

end for

end subtour2*

Figure 11. Pseudo Code for the partial testing procedure

handling Subtour 2*

bcdefg
011010011010010111000011

 0000a

 1111 h

L
I
N
K

Figure 12. DDNPSF Graph for Subtour 1*

In subtour 1*, arcs connected to vertices b and c require

6r read/write cycles, while all other arcs require only 4r

cycles. Thus, including the r cycles required for the link

from vertex a to vertex h, procedure subtour 1* requires a

total of 57r cycles. In procedure subtour 2*, traversing the

3 arcs from each of vertices A, B, C, or D requires 14r

cycles (6r + 4r + 4r). In addition, each of the 3 links A to

B, B to C, and C to D requires r/2 double write cycles.

Thus, subtour 2* requires a total of 57.5 r cycles.

4.5 Comparator Test: Since the two coincidence

comparators are used throughout the array test in addition

to the fact that their layout follows the tight array design

rules (same bit line pitch), the test procedure starts by

testing the operation of these comparators. Using a simple

single stuck-at fault model, each comparator is fully tested

using a total of "q + 2" patterns. Each pattern is first

written into two specific memory sectors in one double

write cycle. That pattern is then applied to the inputs of the

comparators (Figure 3) using one verification read cycle.

Since both comparators are tested simultaneously using the

two ports, a total of " q + 2 " double write cycles and q +2

verification read cycles are required for the test.

The pseudo code for the complete memory array test

procedure is shown in Figure 14. In the overall array test

procedure of Figure 14, each initialization step (e.g., step

1 or step 5) is performed in 2r cycles, since two sectors

will be written by both ports per cycle. Furthermore, the

link operation of step 3, even though it can be performed

in r/4 operations using the two ports, it will be performed

in r/2 double write operations to maintain simple BIST

logic [22]. Thus, a total of {468r + q + 2} read/write

cycles, i.e. O(n), are required by the array test algorithm

{(2*{2r + 2*[57r + r/2 + 57.5r] + 2r}) + q + 2}.

5.0 ADDRESS DECODER FAULTS

According to the DPRAM model, each port has its own

row decoder and column decoder. Since multiple cells are

accessed during the array test algorithm, some decoder

faults are not detectable by this test. Therefore, dedicated

tests to verify decoder operation must be used. For fault

free decoder operation, each address in the address space

should access one and only one memory cell which is not

accessed by any other address. In addition, each cell

should be uniquely accessed by the same address from

either port. To reduce the test algorithm complexity, the

row and column decoders are independently tested. It is

assumed that a decoder fault does not change the decoder

circuit into a sequential one [28]. In addition, decoder

faults are assumed to affect both the read and the write

operations equally.

5.1 Dual-Port Decoder Fault Model

Definition 2: Let Ra and Rb be the sets of all possible

row lines of ports a and b respectively. A row line rx

which is accessed from port a (b), i.e. rx  Ra (rx  Rb),

is said to match another row line ry if and only if ry is

accessed by the other port b (a), i.e. ry  Rb (ry  Ra),

and both rx and ry access the same set of memory

cells. If rx matches ry we write (rx  ry).

Let A = {0 .. (r-1)} be the set of all row addresses. Two

mapping functions a and b map this set of row addresses

onto the set of row lines for each of the two ports (one to

one and onto mapping). Thus; for fault free row decoder

operation:

 a : A  Ra,

 b : A  Rb, and

procedure subtour1*

for i = 1, 2

 LOAD R1, "0001"

 LOAD R2, R1

 repeat 3 times

 Cyclic-Shift-Right R1

 NEWS_REG = R1 NOR R2

 repeat 2 times

 (x,y) = f (NEWS_REG)

 /* From NEWS_REG determine x,y  {N,E,W,S} of the

target cells to undergo double transition writes.*/

 Traverse_arc(x,y)
 NEWS REG NEWS REG_ _

 end repeat

 end repeat

 if i = 1 then Link_ah /* Write 1111 into deleted

neighborhood */

end for

end subtour1*

Figure 13. Pseudo Code for the partial testing

procedure handling Subtour 1*

procedure array_test

 0. Comparator Test

 1. Initialize the memory array M to all 0's.

 2. procedure_subtour1*

 3. link to subtour 2* /* This step is accomplished by

writing 0 to all cells labeled S */

 4. procedure_subtour2*

 5. Initialize M such that (N,E,W,S) = 0000 and

 (n,e,w,s) = 1111

 6. repeat steps 2 through 4

 7. Interchange the role of N,E,W,S and n,e,w,s and

repeat steps 1 to 6

end array_test

Figure 14. Pseudo Code for the Overall Memory Array

Test Procedure

 a(i)


 b(i) i  A,

Thus; rx  Ra,  ry  Rb such that rx  ry (x  A).

This implies that each port accesses a total of r distinct

rows. In addition, one and only one row line is accessible

by each valid address, and conversely, each address

accesses exactly one row line. Moreover, the above

mapping functions guarantee that each row of array

memory cells is accessible from both ports by the same

unique address whether the accessing port is a or b.

Similar definitions and mapping functions apply for the

column address decoder as well.

There are six types of expected DPRAM decoder faults.

These can be broadly classified into two main categories:

single-port decoder faults (SPDF) and cross port decoder

faults (CPDF).

a) Single-port Decoder Faults (SPDF): This category

includes four types of faults typically found in single-port

RAMs:

1. A row (column) line which is not accessed by any

address.

2. A row (column) address that accesses no row (bit) line.

3. One address which accesses more than one row

(column) line (one to many).

4. A row (column) line accessed by more than one address

(many to one).

b) Cross Port Decoder Faults (CPDF): Faults in this class

result from interaction between the access ports. The

following two faults belong to this class:

5. An address of one port accesses a row (column) line

belonging to the other port.

6. Address mismatch faults, where the same address to

both ports selects two row (column) lines that are not

matching.

None of the single-port decoder faults can stand alone

[15], but rather a combination of such faults will exist

together. For cross port decoder faults, only the last fault

(address mismatch) can stand alone. Possible fault

combinations are shown in Figure 15. Following the same

notation of De Goor & Verruijt [15], fault type A

combines faults 1 & 2, fault B combines faults 2 & 3, fault

C combines faults 1 & 4, and fault type D combines faults

3 & 4. Extending this notation to accommodate the dual-

port case, fault combinations E, F, G, H and I are

illustrated in Figure 15. Fault type E combines faults 1 &

5, fault F shows a case where fault 5 is combined with

itself (5 & 5) from both ports, faults G, H and I show

various forms of combining faults 3, 4 & 5.

Fault 5 maps a row address of one port into the row line

belonging to the other port. This, however, does not mean

that cells on the erroneously selected row are accessible

from the first port. This is due to the fact that to access a

cell, both its row line and column line should be properly

selected by the same accessing port. In case of fault 5, only

the row line is erroneously accessed by the first port, while

the column line is accessed by the second port. As an

example, let row address i of port a actually selects row

line i of port b. Consider the case where port a is reading

some cell (i,k) on row i and column k (whose content is x)

while port b is writing (x) data into another cell (l,k)

with a different row address l but on the same column

Fault A

RowAdd.

a. Single Port Decoder Faults

Aa = Address at Port a,

Ab = Address at Port b,

 Ra = Rows of Port a, and

 Rb = Rows of Port b,

LEGEND:

Address Mismatch Fault

w

x

y

z

w

x

y

z

AbAa Ra Rb

Fault-Free Address Mapping

w

x

y

z

w

x

y

z

AbAa Ra RbAbAa Ra Rb

Fault I

w

x

y

z

w

x

y

z

AbAa Ra Rb

Fault H

w

x

y

z

w

x

y

z

b. Cross Port Decoder Faults

Fault F

AbAa Ra Rb

w

x

y

z

w

x

y

z

Figure 15. Row Decoder Faults in Dual Port RAMs

AbAa Ra Rb

Fault E

w

x

y

z

w

x

y

z

w

x

y

z

AbAa Ra Rb

Fault G

w

x

y

z

i

j

Fault D

 RowAdd.

Fault C

j

i

 RowAdd.

Fault B

j

i

RowAdd.

address k. Port b will write (x) not only into cell (l,k) but

also into cell (i,k) accessed for reading by port a. Data read

by port a will depend on the memory type. In case of

DRAMs, the data read will be some stuck-at value. For

SRAMs, data read will be noise and layout dependent. A

similar argument holds for fault 5 on column decoders.

5.2 Decoder Test Procedures: To reduce the complexity

of the test algorithm as well as simplify the BIST logic,

row and column decoders are tested separately. The

algorithm consists mainly of two test procedures which

utilize the capability of simultaneous access by both ports

to minimize the test time. To test row decoders, two march

tests are performed on the memory cells of particular

columns. The first test scans two different columns, each

accessed by one port, in two opposite directions, while the

second scans a single column, accessed by both ports, in

the same direction.

Similar test procedures are used for column decoders

with the march tests applied to the memory cells of

specific rows rather than columns. The test algorithm is of

O(r) for row decoders and O(q) for column decoders, i.e.

O(n) decoder test algorithms.

5.2.1 Row Decoder Test Procedure 1 Figure 16 shows

the pseudo code for this test procedure. The notation

Read_x_(i,j) (Write_x_(i,j)) is used to indicate a read

(write) operation with expected (input) data x (x  {0,1})

through port  ( {a,b}) from (to) the memory cell

whose row and column addresses are i and j respectively.

The procedure initializes the memory cells of two

distinct columns by the two ports to some background data

(all 0's or all 1's). After initialization, the memory cells of

both columns are scanned simultaneously by both ports in

opposite row address directions where the background data

are verified and the complement data are written. This

amounts to performing two independent march tests of a

total length 5r on these two columns simultaneously. Thus,

the test procedure fully detects fault types A, B, C, and D

[15]. This procedure also detects fault types E, F, G, H and

I except for the case where fault 5 corresponds to some

address x of one port mapping into row r-x-1 (or column q-

x-1) on the other port. In addition, address mismatch faults

are not detected by this procedure. Such faults will be

detected by the second test procedure.

5.2.2 Row Decoder Test Procedure 2: In this procedure,

the test is performed only on a single column which is

accessed by both ports. This column is first initialized to

some background data (all 0's). The column cells are then

scanned in an ascending order of row addresses, verifying

their contents through read operations by both ports. Then,

one port is used to write complementary data which is then

also verified by a read operation from both ports. The test

procedure verifies that data written to some row address by

any port is also readable by both ports using the same

address. For test regularity, this test procedure uses the

double write operation used in the decoder_1 procedure.

Thus, in addition to the test column (l), some other dummy

column (m) is written into. This regularity leads to a

simpler BIST logic implementation. The pseudo code of

this procedure is shown in Figure 17. In addition to

detecting address mismatch faults, this procedure detects

faults of type E, F, G, H and I which escape detection by

the previous procedure.

For the row decoder, the first procedure takes 5r cycles

while the second procedure takes 6r cycles for a total of

11r cycles. Similarly column decoder test of length 11q

Procedure Decoder_1

/* Initialize the memory cells of two distinct columns l
and m to all 0's.*/

initialize_columns (l,m,0);

 for i = 0 to r-1 do

 Read_0_a(i,l), Read_0_b(r-i-1, m);

 /* Double Read by both Ports */

 Write_1_a(i,l), Write_1_b(r-i-1, m);

 /* Double Write by both Ports */

 end_for

 for i = 0 to r-1 do

 Read_1_a(r-i-1, l), Read_1_b(i,m);

 /* Double Read by both Ports */

 Write_0_a(r-i-1, l), Write_0_b(i,m);

 /* Double Write by both Ports */

 end_for

end Decoder_1

Figure 16. Row-decoder Test Procedure Decoder_1.

Procedure Decoder_2;

/* Initialize the memory cells of the test column "l" to

all 0's for test regularity, a dummy column "m" is also

initialized to all 0's.*/

 initialize_columns (l,m,0);

 for i = 0 to r-1 do

 Read_0_a(i,l), Read_0_b(i,l);

 /* Double Read Operation by both Ports */

 Write_1_a(i,l), Write_1_b(i,m);

 /* A Write Operation on Port a*/

 Read_1_a(i,l), Read_1_b(i,l);

 /* Double Read Operation by both Ports */

 Write_0_b(i,l), Write_0_a(i,m);

 /* A Write Operation on Port b*/

 Read_0_a(i,l), Read_0_b(i,l);

 /* Double Read Operation by both Ports */

 end_for

end Decoder_2

Figure 17. Row-decoder Test Procedure Decoder_2.

will be required for a total of 11(r+q) cycles for both

decoders which is of order O(n).

Since the array test algorithm requires (468r + q + 1)

read and write cycles, the total number of read and write

operations required for both the array and decoder tests is

(479 r + 12 q + 1). For p = 1 and r = q = n , this

amounts to (491 n + 1) operations.

6.0 CONCLUSION

The testability problem of dual port memories has been

investigated. A functional model is defined and

architectural modifications to enhance the testability of

such chips are described. The modifications allow multiple

access of memory cells for increased test speed with

minimal overhead on both silicon area and device

performance. New fault models are proposed and efficient

O(n) test algorithms are described for both the memory

array and the address decoders. In addition to the classical

static neighborhood pattern sensitive faults, the array test

algorithm covers a new class of pattern sensitive faults,

Duplex Dynamic Neighborhood Pattern Sensitive faults

(DDNPSF) which accounts for the simultaneous dual

access property of the device. The efficiency of the

proposed scheme together with the reduced area and

performance overhead makes it a viable and promising

approach for future DPRAM designs.

ACKNOWLEDGMENTS

Support of King Fahd University of Petroleum &

Minerals is greatly acknowledged. Thanks are also due to

A. Abdul-Wahab and A. Hamzah for their help, and to S.

Ghanta for helpful discussions.

REFERENCES

1. A. Tuszynski, "Memory Testing," in "Advances in CAD

for VLSI,", series editor T. Ohtsuki, Vol. 5 on "VLSI

Testing" (edited by T. W. Williams), Elsvier Science

(North Holland), 1986, pp. 161-228.

2. P. Mazumder, and J. K. Patel, "Parallel Testing for

Pattern-Sensitive Faults in Semiconductor Random-Access

Memories", IEEE Trans. Computers, Vol. 38, No. 3,

March 1989, pp.394-407.

12. H. Shinohara, et. al., " Flexible Multiport RAM

Compiler for Data Path," IEEE J. of solid state circuits,

vol. 26, no. 3, Mar 1991

13. J. V. Sas, et. al. "Testability Strategy and Test Pattern

Generation for Register Files and Customized Memories,"

Microprocessors and Microsystems, vol. 14., No. 7, pp.

444-456, Sept. 1990.

15. A. J. Van De Goor, "Testing Semiconductor

Memories, Theory and Practice," John Wiley, 1991.

16. M. J. Raposa, "Dual-port Static RAM Testing," IEEE

International Test Conf., 1988 , pp. 362-368.

17. B. Nadeau-Dostie, A. Silburt and V. K. Agrawal,

"Serial Interfacing for Embedded-Memory Testing," IEEE

D & T of Computers, Apr 90, pp. 52-64.

18. V. C. Alves and M. Nicolaidis "Detecting Complex

Coupling Faults in Multi-Port RAMs," IMAG Research

Report No RR978, Feb. 1991.

19. V. C. Alves, M. Nicolaidis,, P. Lestrat, and B.

Courtois, "Built-In Self-Test for Multi-Port RAMs," IEEE

ICCAD-91, November 1991, pp.248-251.

20. K. T. Le and Kewal K. Saluja, "A Novel Approach for

Testing Memories Using a Built-In Self-Testing

Technique," IEEE ITC-86, pp. 830-839.

21. K. Kinoshita, and K. A. Saluja, "Built-In Testing of

Memory Using an On-Chip Compact Testing Scheme,"

IEEE Trans. on Computers, Vol. C-35, No. 10, October

1986, pp. 862-870.

22. A. Amin, M. Y. Osman, R. E. Abdel-Aal, and H. Al-

Muhtaseb "An O(n) BIST Algorithm for Detection of

Duplex Dynamic Pattern Sensitive Faults in Dual Port

Memories," KFUPM CCSE Tech Report 015, July, 1993.

24. K. K. Saluja, and K. Kinoshita, "Test Pattern

Generation for API Faults in RAM," IEEE Trans. on

Computers, Vol. C-34, No. 3, March 1985, pp.284-287.

25. Y. You and J. P. Hayes, "A self-testing dynamic RAM

chip," IEEE Journal of Solid State Circuits, Feb.1985, pp.

428 - 435.

26. A. Gibbons, "Algorithmic Graph Theory," Cambridge

Univ Press, U. K. 1989.

27. H. D. Oberleet. al., "Enahnced Fault Modeling for

DRAM Test and Analysis," 1991 VLSI Test Symp., April

1991, pp. 149-154.

28. S. M. Thatte and J. A. Abraham, "Testing of

Semiconductor Random Memory," Proc. 7th Annual Int'l

Conf. on Fault Tolerant Computing, 1977, pp. 81-87.

