Introduction to Computer
Programming Using FORTRAN 77

& Al-Dhaher, K. 13 Garoé & Lafi, A.

& Al-Muhtaseb, H. & Nazzal, & Saeed, M.
& Yazdani, J. & an, Y

AN\
(\0)

August Se$ond Edition
Infmglr and Computer Science Department
e

oll omputer Sciences and Engineering
ing#'ahd University of Petroleum and Minerals

Dhahran, Saudi Arabia

CONTENTS

1 INTRODUCTION 1
1.1 COMPUTER SYSTEM COMPONENTSccoiviuriiieeeeeieiieieeeeeeeeeinnnns.
1.2 PROGRAMS & PROGRAMMING LANGUAGES
L.2.1 PrOGFAMS. ...t
1.3 SOFTWARE LIFE CYCLEccoviitiieieeeeeeireeeee e
1.4 MODULAR SOFTWARE DESIGNccvvviiiiiiiiiiiiieeeeeiennns
1.5 SOFTWARE SYSTEMS AND TOOLS .
1.5 1 EdtOFS.......oooveveeeeiiiiiiiiiiiiiiiiiieeeeen
1.5.2 COMPILEFS ..oz a8
1.5.3 FORTRAN Programs
1.5.4 CONCIUSTON ...
1.6 EXERCISES ...coooueiieiieeieiiiieeeeeeeen)
1.7 SOLUTIONS TO EXERCISES........ccuvvv....
2 DATA TYPES AND OPERA 10
2.1 CONSTANTS ...covvvvvvvrvrnnnns ’ 2

2.1.1 Integer Constants
2.1.2 Real Constants ...
2.1.3 Logical Constant
2.1.4 Character C
2.2

234

2.3.5 EXAINPIES ..o e e ettt ettt e et e et e entteetaeennae s
2.4 LOGICAL OPERATIONS

2.4. 1 LOZGICAL OPEIALOFS ...t et et et et e et e stae et e essaeenseeensaeenseeesaeenseean 18

2.4.2 RelAtiONALl OPEFALOTS.cccuveeeieiiieeie ettt ettt e et e et eeabeeessaeenseeensaeensees 19

2.4.3 LOZICAI EXPFOSSIONSccueieeeeeeie ettt ettt ettt ettt eae et esaeese e enes 19
2.5 ASSIGNMENT STATEMENTeeittiiieeiteenitteniteesiteesiteesiteesiteesiteesateessteesaseesabeesaseesateesaseesaseesaseens 20
2.6 SIMPLE INPUT STATEMENTttiitiiiiiieniteeniteesite e st e st e sttt esateesiteesiteesiteenateesmseenneeesssesbeeensseenaees 22

2.0.1 EXAIPICS ...ttt ettt et 22

i1 — This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

iii

2.7 SIMPLE OUTPUT STATEMENT0ueiiiiiieiiitteeeeeeeeeeiitreeeeeeeeeeiisaeeeeeseeseissreeseseesesstnsseseseseensssrseeeens 23
2,70 EXAIPIES ...ttt h bbbttt eaeere e 23
2.8 A COMPLETE PROGRAMoutvviiiiiiieiieeee ettt e et e e e e e eesaaaae e e e e e seenaaaaeeeeessennnaaseeeeeesennns 24
2.9 EXERCISES ...ttt oottt ettt e et e e ettt e et e e et e e ettt e e eaaaee s sttt e e saateeesaaaaeessneeeesanaaeesansseessaraeeesas 25
2.10 SOLUTIONS TO EXERCISESovvieiiteieeeeeeeeeeetteeeeeeteeeeeeeeeeseaeeeseeaeeeeseaateessseeessssaeessenaeesssnsaeessnnns 30

3 SELECTION CONSTRUCTS

35

3.1 IF-ELSE CONSTRUCTccutitiiiuiiiiiiiitiieitite ettt
T B Y D - 111 SRR
3.1.2 Examples on the IF-ELSE CONSIFUCEc...c.ccceeieiiieiieeieeeeeteeie et

32 IF CONSTRUCTcouiiiiiiiiiiiitiiieiciteieic ettt
32,1 DEfIRILION ...t
3.2.2 Examples on the IF CONSIFUCEc..ccoecveeieiieiiaieeieeiieseeeie e

33 IF-ELSEIF CONSTRUCTcoviuiiiiiiiiiiiiiiinieiciteienc et
3.3 1 DEfIRILION ..ot
3.3.2 Examples on the IF-ELSEIF Construct

3.4 SIMPLE IF CONSTRUCT ...coiiiiieiiiiiieeeeeeeciteeee e eeeitreee e e e eeeirnereeeeeeeaes
3041 DEfIITION ..ot e
3.4.2 Examples on the Simple IF Construct

3.5 EXERCISES ...ttt e et e e e e

3.6 SOLUTIONS TO EXERCISEScccoviiiiiiiiiiiiiiiiiiiiic g

4 TOP DOWN DESIGN

54

4.1 BASIC CONCEPTS OF TOP DOWN DESIGN
4.2 SUBPROGRAM TERMINOLOGYccovvvieeriiieeeiireeeenirieeennnd
4.3 FUNCTION SUBPROGRAMS..........ceeeurreannnns .
4.3.1 Function Headercc............... NN -+ 55
4.3.2 Function Body............cc.cc....... N . O USSR 55
4.3.3 Examples on function SUBDrOZTaEl- «--+«--+«-s+ereeeremieereenseanseaeeaseeaneaaseanseensesseaeeanes 56
4.3.4 FunctionCall..........................
4.3.5 Function Rules
4.3.6 Complete Examples O’f nch
4.4 SPECIAL CASES OF FUNC
4.4.1 Intrinsic Functions
4.4.2 Statement Functi
442.1

5.2

5.2.1 Example on NeSted DO [OOPS............cccccoeriiiiiiiiiiiiiieiiiniiie sttt ettt 89
5.3 THE WHILE LOOP ...ttt e e ettt e e e eaaae e e e e e s s eeataaeeeeeessennnanes 90

5.3.1 Examples 01 WHILE LOODSccccueiiuieiiieiiiesee et eeiie st esiaeesiveesiaaesiveesnseesiveannsee e 91
54 NESTED WHILE LOOPS.......ccoouiiiiiiiiieeteeeee ettt eeeatae et e e e e e eaaae e e e e e esesaaaneeee s 92
5.5 EXAMPLES ON DO AND WHILE LOOPS......ouuviiiiiiiiiieeiiee ettt eeaanes 93
5.6 IMPLIED LLOOPScoiiiiieiieeeee ettt ettt et ettt e e e e e eeaaae e e e e e e e sesataaaeeeeessenaaaseeeeessenannnes 95
5.7 REPETITION CONSTRUCTS IN SUBPROGRAMScooiiutiriieeeeeiiiieeeeeeeeeieiiareeeeeeesesisnneeeseessennnnnees 96
5.8 EXERCISES ... etttttttttttttetetetetee ettt ts ettt stsast st atassastststsesessassssssssssnnnnsnssnnsnnnsnnnns 97
59 SOLUTIONS TO EXERCISEScooiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeee ettt 104

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

85

i

6 ONE-DIMENSIONAL ARRAYS 109
6.1 ONE-DIMENSIONAL ARRAY DECLARATIONccciitiiieeirieeerireeeeireeeeeseresessereeeesssseeessssesssnssnens 109
6.2 ONE-DIMENSIONAL ARRAY INITIALIZATIONccciiuiiiieiteieeeiieeeeeieeeeeeieeeeeeaeeeeeaeeeeeeaneaeeenneens 110
6.2.1 Initialization Using the AsSignment SAt@Ment.................cccooeioueiianieniee e 110
6.2.2 Initialization Using the READ StAtementccoociiviioiiieiieeiee e 111
6.3 PRINTING ONE-DIMENSIONAL ARRAYScuviiiiiuiieeeeieeeeeetteeeeeieeeeeeaaeeeeetteeeeeeaaeaeeeaaeeeeevseeeenes 113
6.4 ERRORS IN USING ONE-DIMENSIONAL ARRAYSooiiiiiiiiiieiiieeecieeeeeeeeeeeeaee e et e e e eeaaens 114
6.5 COMPLETE EXAMPLES ON ONE-DIMENSIONAL ARRAYScuviiiiiiiieeeeiieeeeeieeeeeeiee e e 114
6.6 ONE-DIMENSIONAL ARRAYS AND SUBPROGRAMScccuviiiiiriieeiirieeeeereeeesrreeesireeesseseeesnenneas 116
6.7 EXERCISESeiiiiittiee ettt e ettt e e ettt e e ettt e e e et eeeetaeeeeebaeeeastbeeeessaeaasssseeaanssaeeessssaaessssaaeansseeesnsssens

6.8 SOLUTIONS TO EXERCISEScuttiiiiiiieeeiiieeeiiieeeeeireeeesteeeesteeeesereeesssssessssssesensssesesnssees
7 TWO-DIMENSIONAL ARRAYS
7.1 TWO-DIMENSIONAL ARRAY DECLARATIONcccovvieeeiiiiieeeireeeeeinreeesenveenns
7.2 TWO-DIMENSIONAL ARRAY INITIALIZATION......cotttiiieeeeeeeeieeeeeeeeeeeeaaaans
7.2.1 Initialization Using the Assignment Statement
7.3 INITIALIZATION USING THE READ STATEMENTcovvviiiieeieiiiiieeeeeeeenn
7.4 PRINTING TWO-DIMENSIONAL ARRAYS oevveeeeieeiiiiieeeeeeeeeiinns $
7.5 COMPLETE EXAMPLES ON TWO-DIMENSIONAL ARRAYS
7.6 TwO-DIMENSIONAL ARRAYS AND SUBPROGRAMS.............
7.7 COMMON ERRORS IN ARRAY USAGE......cc.ccovvveeenrnnnnn
7.8 EXERCISESoiiiiiiiieeiiieeeeieee e et ettt e et eivaeeeseeaean
7.9 SOLUTIONS TO EXERCISESvviiiiiiieeiiiiieeeiree e
8 OUTPUT DESIGN AND FILE PROCESSING 147
8.1 OUTPUT FORMATTING
8.1.1 ISpecificationcc.ccovuevuvennnnn.,
8.1.2 F SpecificationN
8.1.3 X Specificationccoccoucuen
8.1.4 Literal Specification
8.1.5 A Specification &
8.1.6
8.2
8.3
8.4
8.6.1 Solutions to Exercises on QUIDUL DESTZNc..cccuveeueenieeeiieeeieeesieeeieeeeiieesiaeeiaeesaeenaee s 168
8.6.2 Solutions t0 EXerciSes ON FIlesS............ccccccccooouiieiiiiiiiiieeieeiieeeeeeeeeee e 170
9 APPLICATION DEVELOPMENT: SORT & SEARCH 174
9.1 SORTING ...vtiieiiteeeette e ettt e ett e e ettt e e e et e e e et e e e eetaeeeeeaaeeeeaseeeeesseeeeeasaesaasaeeeaasseeeensseeeensseaeans 174
9.1.1 A Simple SOrting TECANIQUEc...cccueeeiieeiieeeii et veenaae e siaeenee s 175
9.2 SEARCHING......eeeiiiiiieiiiiiteeeeeeeseittteeeeeeeeeeiareeeeeeeeeetaraseeeeeeeaststaseeeeseeaaesssreseeeeesaaisssreseeeeeanisnrees 176
9.2.1 SeGUENTIAL S@ATCH.c..ccuiiiiiiiiiiiiii e 176
9.3 AN APPLICATION: MAINTAINING STUDENT GRADESuuuuviiieeeeieiirrieeeeeeeeeiitrreeeeeeeeeeinsnneenees 176

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

94 EXERCISEScuiiuiiiiiiieii ettt st st st 178
9.5 SOLUTIONS TO EXERCISESuviiiiiiiiiiiiiiiiiiieie sttt sttt s ene e 180
10 ADVANCED TOPICS
10.1 CHARACTER OPERATIONSeoutiutitiniintiniteueetetentesteetessteseesnensesesaessesaeeueessensensensessensesseensennen 186
10.1.1 Character ASSIGRIMENLceii ettt ettt 186
10.1.2 Comparison of CRAFACIEr SHFINGScc.ccouioiiiieiieeeee ettt 187
10.1.3 EXtraction Of SUDSIFIIZScccoooiiiieeeeeee et
10.1.4 StPING CONCALEMALION. ...ttt ettt
10.1.5 Character INIrinsic FUNCHONSc.cccoociiiiiiiiiiiiiiieie sttt
10.1.6 Function INDEX(CL | C2).....ccoooieiieiieiiiieeeeeeeee et
10.1.7 FURCHON LEN(C) ...
10.1.8 Function CHAR(D)c.ooeveiiiiieiiieeeee e
10.1.9 Function ICHAR(C)coooveiieiiiieeieeeeeeee e
10.1.10 Functions LGE, LGT, LLE, LLT
10.2 N-DIMENSIONAL ARRAYSuuutiiiiieeeieiiiiiieeeeeeeeeiitreeeeeeeeeeinrsreeeeeesersreezees 3
10.3 DOUBLE PRECISION DATA TYPE ...ttt
10.3.1 Double Precision Defilition.............ccccovcuevoeieiioiaieaiees ceeeeneeed
10.3.2 Double Precision Operations...............cccccoeceeeeeeeenncene.,
10.3.3 Double Precision Intrinsic Functions
10.4 COMPLEX DATA TYPEoouiiiiiiiiiiiiiicicicieicccccee g
10.4.1 Complex Data Type Definition
10.4.2 Complex Operations...............c..cc.oeeeevennnenn.
10.4.3 Complex Intrinsic Functions 3
10.5 EXERCISES.....couiiiiiiiiiiiiiieiieieie sttt
10.6 SOLUTIONS TO EXERCISES........cccveuveurennennes

A

OQ\\

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

186

1 INTRODUCTION

ICS101 is an introductory course on computer programming. The goal i se 1S
to teach students the use of computers as tools to solve engineerj ier®ific
problems.

We use many tools in our daily life, from simple things like
to complicated things like watches, radios and TV remote ¢
things like calculators, television sets, video cameras and cently computers
have been emerging as tools that are used in everyd ny other tool we
should know how to use them properly. It would al eful, though not necessary,
to know how they work and what affects their gehdqi
structure of a compass, and that it uses a magnet a
that magnetic fields affect each other, we can unders
another magnet is placed beside it.

screwdrivers,
m@ye complicated

components, and we know
d the behavior of the compass if

Knowing how to use a tool or deyjce 4
should express what we want to
calculator, or turning the knob ofgya
from this device (e.g. read thg su

X unction. There are small computers and big

to the sound from the radio s
Computers vary in siZQf shapyand
computers. Large comteryare referred to as mainframes. Smaller computers are
classified either as magicdputers or microcomputers. Some are used for a specific task,
P
e ar

\ owing what it can do for us, how we
e device (e.g. by pressing a key on a

others are gener, This variation is similar to the variation in many other
devices and to ifferent screwdrivers, radios and cars. The proper tool for
the task shg . A truck should be used to carry heavy machinery, while a car
wou arppeople (and not the other way around).

computer is a powerful machine that can serve hundreds of users that
wonNgon it rough terminals scattered around and connected to the mainframe through a
etwork. The terminals are used by computer users to enter data, write
programs and see their results. All the computing is done by the mainframe.

There are other kinds of computers. Personal computers are getting more popular.
These are computers that are mainly used by a single person at a time. They have
attachments or devices for entering the data and programs, reading the results, as well as
performing the actual computing. When you want to use a computer, big or small, you
should at least know:

e what the computer can do for you (it might also be useful to know what it
cannot do for you);

first Programs & Programming Languages 2

e the problem you want to solve, and understand it well,

e how to solve the problem;

e how to express the solution to the computer (what you want it to do for you);
and

e how to receive and interpret the results.

Remember that the computer is a tool, just like a car for example. If you want to get
somewhere, but you do not know where that place is, or how to get there, the car is
useless. You have to know how to drive the car, in addition to knowing how to get to

your destination from wherever you are. In the remainder of this introduct hapter,
we will briefly describe the basic components of computers, and how jggint with
them.

1.1 Computer System Components

We can think of computers as devices or machines that gre cafgblcWwf performing
certain tasks. A very simple task, for example, is additi erenficomputers might
e ructure. A typical
computer should have input devices to receive inpff frO¥g the user, output devices to
ssing unit to enable it to
perform the needed operations and tasks, and mem e all the data and programs
it needs. An example of an input device is a keyboar a mouse, an output device can
be a video screen or a printer. The phys devices that make up the computer are
called “Hardware”.

1.2 Programs & Progrg

Arabic, English, French ané oth
languages used by people t

imny Languages

puages, are called natural languages. They are
alp with each other. To communicate correctly,

people have to agree on mmWy lafuage. If you go to Japan and start speaking in
Arabic, even if you say mpRythings like “What time is it?”, people will not understand
what you are sayin mon language that is understood by both parties has to be
used.

re grammar rules to control the language (what is linguistically
ot), sometimes different interpretations of the same word or
sen R ible®which could be understood by the duration of breaks between
oice, facial expression, and so on. Some sentences are difficult to

interp in different ways. This problem is called the ambiguity of natural language.
For these reasons - to avoid ambiguity and different interpretations - restricted special
languages that have simpler grammars (structure) and restricted vocabulary, are used to
communicate with machines (computers in particular). These are called computer
programming languages.

Computers are electronic devices. They can only interpret electrical signals. They
can be programmed based on their ability to interpret these electrical signals; by asking
them to perform different tasks when they detect a signal or when they do not detect a
signal. For example, if there are three wires that must have an electrical signal of [+5]

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

first Software Life Cycle 3

volts to indicate that there is a signal [interpreted as ON or 1], and [-5] volts to indicate
that there is no signal [or simply as OFF or 0], the computer can be instructed to
interpret the sequence [000] to be the number zero and [001] to be the number one, and
[010] to be the number two, and [011] to be the number three, and so on. This is called
the binary system. A program expressed in this form is usually said to be written in
machine language. This language is also known as low level language because it is
close to the machine hardware structure.

However, to perform any non-trivial task, thousands and thousands of these data
values and instructions have to be written, and any mistake could lead to yadesirable

there are errors. For this reason, it was suggested to assemble or grou
binary digits into symbols, called mnemonics, and write a program (cg asSembler)

level (in the
§ are easier to

. In a high level
statement in the programs,
and translates it to machine code for the computegto finders

1.2.1 Programs

In section 1.1, we mentioned that compu are machines that perform certain tasks,
such as addition. We have to express what Wsksawe want it to perform, and in what

order. If we tell the computer that w t Wygo add two numbers, it would know how to
do that. For example in FORTRA n sy X =3 + 5. This asks the computer (we
will see how later) to add 3 gnd the value in X. This is a simple command,
or program statement, that § Nputer's ability to perform the addition task or
operation. A sequence of suffi stgemenig

A program is a sequece Qg statements that fully and clearly describes how a problem
should be solved. T, graMs that tell the computer what to do, are usually called
“Software”.

A program s9§

writen in a language that the computer understands. There are
ages used for different purposes. Some of the most widely used

different ki

pro m Qqpes include FORTRAN, PASCAL, C, LISP, COBOL and
P OG. these languages are high level programming languages.

1. ware Life Cycle

The production of software is similar to the production of artifacts in other engineering
fields. A building, for example, might be constructed by laying bricks here and there,
without an overall plan or a blue-print. However except for the simplest of buildings,
the results would not be satisfactory, unsafe to say the least. The correct engineering
method of constructing a building requires that the architect or civil engineers
understand the requirements for constructing the building (e.g. residential), produce a
preliminary design, verify it with the customer and modify the design accordingly,
before the actual building is constructed. The process of software design is similar. The

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

second Software Systems and Tools 4

programmer, or software engineer, should understand and analyze the problem to be
solved well before any program is written. After the problem is analyzed, the approach
for solving the problem should be identified. A solution is then designed and developed.
After a solution is identified, the programmer can start writing the program code. After
the code is written it has to be verified and checked for any mistakes or inconsistencies
with the requirements, and the process is then repeated until the program behaves as
required.

1.4 Modular Software Design

production of large software systems is stepwise refinement or to n.
Stepwise refinement is a form of divide and conquer strategy of pg lving. The
basic idea is to divide the problem being solved into a number o f which
can be described by an algorithm which is simpler and mo eable than an
algorithm that describes the complete problem as a whgle. g ®his approach,
problems that might seem difficult at the beginning are reglicc®y¢o sm@ler problems that
can be handled individually. In large software proje fcr oftware engineers

work on different sub-problems or modules. Wh
combining the modules to construct the solutio
and is usually straight-forward.

In this course, we apply the concepts Qf tgp-downWesign to solve simple scientific
and engineering problems. The knowledge%gain while you develop skills in top-
down design will be valuable for yog i er of problem solving in your field of
study, not only in programming and s velopment.

1.5 Software Systg

To develop software, progr. use certain systems and tools. In this section
we introduce some of t Is w®willbe using in this course. These include an editor
and a compiler. All thes§tooMyare programs used by the computer system to assist the
programmer in develOMgdlrunning and maintaining programs.

t are done, the process of
¢ origpal problem is conducted,

ools

1.5.1 Edit

To write p enter data in the computer, the programmer or user needs to use
a tog dito® The editor allows the user to create and modify files. You can
thi a reserved area to write programs and data, just as you can write it on a

er. However to enable the computer to read your program, it has to be
file, in a form that the computer can interpret. We will see in section1.5.3
the form of a FORTRAN program.

Editors allow their users to add, modify and delete things from a file. These things
include characters, words, lines, pages and so on. There are some editors that offer other
features and facilities. These include checking spelling mistakes, repeating words, lines
and other things. In some systems, you can edit more than one file at the same time.
You can copy from file to file. The features of editors are many and we will not attempt
to enumerate them here. It suffices to know the purpose of using an editor, and that
there are several kinds of editors available for use.

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

second Software Systems and Tools 5

1.5.2 Compilers

In section 1.5.1, we mentioned that an editor enables the programmer to create files of
programs and data according to specific forms. Some programming languages require
that the program be written in a specific form so that it is easy to interpret. The
computer uses a program called a compiler to read the program from a file that the
programmer writes in, and converts the program into machine language. The
FORTRAN compiler requires that the program be written in a specific form so that the
compiler can perform the conversion to machine language.

1.5.3 FORTRAN Programs

FORTRAN (FORmula TRANslation) was developed in the fifties as armging
TRAN

the program file as having
econd position is column
two and so on. Each program statement must be ew line and must be typed
between columns 7 to 72 of the file. The compiler ignQges any characters in columns 73
to 80. Columns 1 to 5 are used to include bel or a statement number, which is used

to identify a specific line or stage 0 program. Column 6 is used for
continuation, which might be needed e ram statement or line is too long to fit in
columns 7 to 72. Any character, zero, placed in column 6, indicates that this

line is a continuation of the ggevi

A “*” or the character “(g ne indicates that the line is a comment line.
The compiler ignores whagls typ®g one® comment line and does not execute it. This is
useful for programmers descriptions of the different parts of their programs.

Each program sh: d with the “END” statement. This signifies the physical end
of the program. QT tatement signals the logical end of the program. While the
END statement %

D

s at the end of the program, the STOP statement may appear
anywhere § > Pram, possibly, to stop execution of the program under certain
congy s' com¥piler sequentially executes each statement in the program.
Ex@ptions {3#s sequential execution is possible using special FORTRAN statements
sucyas GQO, IF and DO. These are used to perform selection and repetition, as we
shall later chapters.

1.5.4 Conclusion

In this course, you will be introduced to the basic concepts of computing and computer
programming. The skills you gain in this course will enable you to start using computers
as tools to solve the engineering and scientific problems you will encounter during your
study. You should keep in mind that what you encounter in this course is but a drop in
the ocean. The field of computer science is growing rapidly. As scientists and engineers,
it is important to educate ourselves in different areas of technology. Without this new

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

second Exercises 6

technology, we will not be able to succeed and excel in our studies. It is also important
to continue educating ourselves by identifying new developments in these areas. This
course is the starting point. You should continue this process in order to remain
competitive. Accordingly, when you study the material in this course, you should
attempt to relate it to your field of study, and consider how the use of such tools can
facilitate and enhance your productivity, and aid in the understanding of the material
that you have already taken as well as the material that you will study in the future.

1.6 Exercises

1. Indicate the following statements as either TRUE or FALSE:
1. Syntax errors are detected during compilation.

2. A compiler is a hardware component that translates p S Qgitten in a
high level language to a machine language.
t

Dividing by zero will cause a compil

If a FORTRAN statement exceeds col
next line can be used to continye the state

9. A computer is a machine used t

10. A compiler checks the sqgt th
machine language.

3. The input unit is the part of the computer that controls ther parts.
4. The last statement in a FORTRAN program s e the§eND statement.
5. FORTRAN is a high level language.

6. A comment statement is used for documefitat urposes.

7. i

8.

en '+ at column # 6 in the
t on that line.

lve problems only.
ogram and converts the program into

11. A program is a set of teMpnstructions.
12. One can use as \ and 'END' statements as he/she wishes in a
single program
2. Which of the followirf§ st ent(s) is/are correct according to FORTRAN:
A. Only col is used for the statement label.
B. Col i for comment.
C. Col is used for the statement label.
is used for the continuation line.

¢O
E. ters C or * in Column 1 is used to comment a line.
3. e

achem of list (A), choose the correct definition from list (B) :

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

second Solutions to Exercises

List A List B

Assembler |1. A machine that converts an assembly language program into machine
language.

Compiler |2. The physical components of a computer.

Software [3. A machine that converts a high level language program into machine
language.

Hardware |4. A fundamental computer component that controls the operations of the

other parts of the computer.

5. Programs used to specity the operations in a computer.

6. A fundamental computer component that performs all arithm nd
logic operations.

7. A program that converts an assembly language progr. hine
language.
8. A program that converts a high level language p to machine
language.

4. For each term in list (A) choose the correct definitio

List A List B
A program 1. isa FORTRAN statement th logical end of the
program.
A computer 2. is a machine that can sglvg all pro®§ems.
END 3. translates programs wrign in an assembly language to a machine
language.
STOP 4. is a machine that Wgs 1 ctions given by the user to solve a
problem.
tions which, when performed, will do a
st ent that indicates the physical end of a
1.7 Soluti xercises
Ans 1.
) 3.F
. 6.T
9.F
12.F
Ans 2.
IIT and V
Ans 3.
Assembler 7
Compiler 8
Software 5

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

second Solutions to Exercises

Hardware 2
Ans 4.
A program 5
A computer 4
END 6
STOP 1
O

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

second Constants 10

2 DATATYPES AND
OPERATIONS

We use computers to manipulate information that consists of lett

special symbols. Such information is the interpretation of data. Alt he Word data
is the plural of datum, many computer specialists use data as a m®g n such as water
and sand. Data can be of different types. The basic datat RYRAN 77 are:

integer, real, character, and logical. In this chapter we gf#tsen pes in detail.

2.1 Constants

A constant is a fixed value of a data type that can ed.

2.1.1 Integer Constants
Integer constants are whole numbers. An ir&nstant does not have a decimal point.

Examples of integer constants are:
32 0 -6201 83 1992

2.1.2 Real Constante

A real constant is a consjht cigfhat has a decimal point. Examples of real
constants are 1.23, -0.Q0 3259263, 5.0, 0.00002, 18., 774.00000, -64.9899 and
h

94000000000000000.0. §he Wgst number in the previous example leads us to the
umbers. 94000000000000000.0 can be written as 9.4 x 10'°

thel presengation in FORTRAN:

Real Number | Decimal Notation | FORTRAN Representation
6.3 x 107 0.000063 0.63E-04

4.932 x 10’ 49320000.0 0.4932E+08

5.7 % 10°° -0.0000057 -0.57E-05

57 %x10° 0.0000057 0.57E-05

5.7 x 10° 5700000.0 0.57E+07

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

second Variables 11

2.1.3 Logical Constants

There are two logical constants; true and false. In FORTRAN, the logical constant frue
is written as .TRUE. and the logical constant false is written as .FALSE..

2.1.4 Character Constants

FORTRAN allows character usage and manipulation. Character constants must be
placed between two consecutive single quotes. A character constant is also referred to as
a character string. The following table shows some character constants and their
representation in FORTRAN:

Character Constant FORTRAN Representatj
THIS IS CHAPTER TWO '"THIS IS CHAPTER TWO'
MORE THAN ONE BLANK '"MORE THAN ONE BLANK'
ISN'T IT? "ISN''T IT?'

1234 AS CHARACTERS '1234 AS CHARACTERS'

Note that if a single quote needs to be included in a€ga Mant, it should be
written as two single quotes.

2.2 Variables

A variable is an object of a certain data tyge ghat takeS value of that type. A variable,
as the name suggests, can change its value®gough certain FORTRAN statements such
as the assignment statement (sectio EAD statement (section 2.6). When
ecific memory location to that variable.
This location must be given a nang®ay ferenced later. The name of such a location
is called a variable name. We sha
using a variable we may
allocating a memory loc

e should not contain special characters ($, 5, ,, 5, L, ~, SGL L)y 1 1, <
’ ‘9 \a | ’ @7 %a &a #: +: ':/9*3 (XY} etC.).
ariable should not contain blanks.

Examples of valid and invalid variable names are given below:

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

second Variables 12

Variable Comment

TRY Valid.

NAME21 Valid.

NAME211 Invalid. Length is more than 6 characters.
A+B Invalid. Special character '+' can not be used.
5TEST Invalid. Name does not start with a letter.
LIV] Valid.

The following subsections present different variable types and how to define them.

2.2.1 Integer Variables

define variable types, irrespective of the first letter of the variabiggnaWya#In such a case,
we must use the INTEGER statement. The general form of this st is as follows:

INTEGER [ist of integer vari

where list of integer variables is a list that has the of bles separated by
commas. The INTEGER statement is a FORT eclaration statement. This
statement must be typed starting in either colu: and must appear at the
beginning of the program before any other executa ent. In fact, all declaration
statements must appear at the beginning of the pigram. The following examples
demonstrate the use of the INTEGER statc@ent:

or a

Example nts

INTEGER BOOKS, NUM, X e integer variables: BOOKS, NUM, X
INTEGER Y1, AB3W o integer variables: Y1, AB3W

INTEGER CLASS, ID, TOTAL ee integer variables: CLASS, ID, TOTAL
INTEGER SUM

ab®to use explicit definition in writing their programs. This
t may arise while running such programs.

It is a good programpin
In implicit de¢§), wehoose a variable name that starts with one of the following

letters: I, J, \ N. Hence, any variable that starts with one of these letters is

consi ‘ as an integer variable unless it is otherwise explicitly stated.

Ex atgPer variables are:

NUMB, N1, LAB, ISUM, JX, KILO, MEMO.

ImpliC inition is assumed when a programmer forgets to use explicit definition.

2.2.2 Real Variables

Real variables can hold only real values. As was the case in integer variable definition,
there are two ways to define a real variable: explicitly and implicitly. The explicit
definition allows us to define variable types irrespective of the first letter of the variable
name, using the REAL statement. The general form of this statement is as follows:

REAL Iist of real variables

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

second Variables 13

where list of real variable is a list that has the names of variables separated by commas.
The REAL statement is a FORTRAN declaration statement. It must be typed starting in
either column 7 or after and must appear in the beginning of the program before any
other executable statement. The following examples demonstrate the use of the REAL
statement:

Example Comments
REAL NOTES, NUM2, IX Three real variables: NOTES, NUM2, IX
REAL M1, AB3 Two real variables: M1, AB3
REAL INSIDE, KD2, SBTOT Three real variables: INSIDE, KD2, S
REAL J1SUM One real variable: JISUM
We should try our best to declare our variables explicitly. If we {#focch ¢ explicit

definition, then FORTRAN compilers assume implicit definitio

In implicit definition, any variable that does not start with one S
L, M, N is considered, implicitly, as a real variable unl typRpf the variable is
explicitly stated. Examples of real variables are:

YNUMB, X1, PERC, SUM, RJX, TOTA
2.2.3 Logical Variables

Logical variables have either a .TRUE. or a .FAL value. There is only one way to

define logical variables - they must be dec%;ilici y. The statement that is used to
a

, A5, EPSLON, PI.

define logical variables is the declarativ L statement. This statement should
be typed starting either in column . 0 must appear at the beginning of the
program before any executable stgtenWyat. Phe general structure of the LOGICAL
statement 1s:

L of logical variables

where list of logical varia
of LOGICAL statemen

S 1S omfhore variables separated by commas. Examples
are given below:

Example " Comments
LOGICAL TEST, FLAG, Q, P Four logical variables: TEST, FLAG, Q, P
LOGICAL M5 One logical variable: M5

|LOGICAL SORTED, LINK Two logical variables: SORTED, LINK

- .
2. Character Variables
Chara variables must be given character constants as their values. Only explicit

definition allows us to define character variables. The declaration statement that is used
in character definition is the CHARACTER statement. As is the case in other types of
declaration statements, the CHARACTER declaration statement must appear at the
beginning of the program and should be typed before any executable statement. The
general form of the CHARACTER statement is as follows:

CHARACTER list of character variables with their lengths

or

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

second Arithmetic Operations 14

CHARACTER?*n list of character variables with their lengths

where list of character variables with their lengths consists of one or more variables
separated by commas. Each variable may be followed by *k, where k is a positive
integer specifying the length of the string that particular variable can hold. If *k is not
specified, the length of that variable is assumed to be n. If n is not specified, the length
is assumed to be 1. The following table shows some examples of CHARACTER
statements.

Example Character variables and their leng

CHARACTER NAME*20 NAME is a character variable of leng
CHARACTER*6 M, WS*3, IN2 M and IN2 are of length 6; WS i
CHARACTER T1, T2, T3 T1, T2 and T3 are of length
CHARACTER 7*8, TEST Z is of length 8 and TES

CHARACTER*12 71, 272 Z1 and Z2 are of length 1

Detailed character manipulation and usage will be €&c apter 10. In the
remainder of this chapter, we present arithmetic andflog®l operations, the assignment
statement, and simple input/output statements.

2.3 Arithmetic Operations

Addition, subtraction, multiplication, d1V and exponentiation (power) are called
arithmetic operations. The followin esent details about these operations.

2.3.1 Arithmetic Operato

In FORTRAN there are ﬁvebam
table with the sequence in w

. ors. These operators are shown in the following

O
' ePvaluated (precedency):

FORTRAN FORTRAN | Math Precedency
Example Notation
ntiation | X ** v x7 1
ication X * Y X Xy 2
X /Y X+Yy 2
X + Y Xty 3
Subtraction X - Y X -y 3

An arithmetic expression consists of one or more arithmetic operations. Operations
that are applied on two operands are called binary operations. Operations that are
applied on one operand are called unary operations. The minus operator '-' may be used
as a unary operator or as a binary one. An operand can be a constant value, a variable
that has been given a value, or a correct expression.

In any arithmetic expression, parentheses have the highest priority (precedence) in
evaluation. In the case of nested parentheses (parentheses inside parentheses),
evaluation starts with the most-inner parentheses. The next higher priority operator is

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

second Arithmetic Operations 15

the exponentiation (also called power) operator '**'. If there are two or more
consecutive exponentiation operators in an arithmetic expression, evaluation of these
exponentiation operations is done from right to left. For example, in the expression
2*#2**3 we start evaluating 2**3 (which is 8) and after that we evaluate 2**8 (which
1s 256). Division and multiplication operators have the same priority, but they are lower
in priority than the exponentiation operator. The addition and subtraction operators have
the same priority which is lower than the priority of multiplication and division
operators. Operators with the same priority are evaluated from left to right with the
exception of the exponentiation operator as explained earlier.

negative number to a real exponent. For example, expressions s
3) ** 2.3 are not allowed in FORTRAN language. To comp

FORTRAN Compilers use the mathematical formula
value of Inx is undefined.

.0) ** 1.5 or (-
is real, most
is negative, the

2.3.2 Integer Operations

An operator between two integer operands is con be an integer operator and
the operation is considered to be an integer operfgon. Integer operations always
produce integer results. The fraction part §€gnored. The following table shows some
examples of integer operations:

Expression | Value
50-23 *27
3 *ED
5*7
8/2

Fraction part is truncated (not 2.6666667)
Fraction part is truncated (not 0.9)

Note @ n I/J * J is not always equivalent to 1. For example, if [and J are
intgfer varMgleg” and the value of I is 17 and the value of J is 6, the expression

es 17 6 * 6. To evaluate this expression we consider operator precedence. Since

with 17 / 6. The two operands are integers and therefore /' here is an integer operator.
The result must be an integer, which in this case evaluates to 2. Now, evaluation
proceeds as 2 * 6 which results in 12 and not 17.

2.3.3 Real Operations

An operator between two real operands is considered to be a real operator and the
operation is considered to be a real operation. Real operations produce real results. The
following table shows some examples of real operations:

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

second Arithmetic Operations

16

Expression | Value

50.0 - 23.0 27.0000000
3.0 **2.0 9.0000000
5.0*7.0 35.0000000
8.0/2.0 4.0000000
8./3.0 2.6666667
9./10. 0.9000000
93/3.2 2.9062500

2.3.4 Mixed-mode Operations

An operator between an integer operand and a real operand is considgs8
mode operator and the operation is considered to be a mixed-mo io% Mixed-
mode operations produce real results. The following table sho qples of mixed-
mode operations:

Expression | Value Comment

50 -23.0 27.0000000

3.0 **2 9.0000000

3*%2.0 9.0000000

4** (.5 2.0000000

50*7 35.0000000

56.7/7 8.1000000

8/2.0 4.0000000}

8.0/3 /‘&

9/10. . gFNnal point can be placed without zero.

17/6*6.0 ‘ igan integer operator and "' is a mixed
mode operator

The number of
the computer u

up to 7 posg
2, E les

Ex&uple 18 valuate the following arithmetic expression
20-14/5*2 %2 **3

wns tathe right of the decimal point in a real number depends on
he eXamples above, we have assumed that the computer allows

Solution:
Expression: 20-14/5%2**2 **3
Priority is for ** from right to left
Step 1: 2 ** 3 = § (integer operation)
Expression: 20-14/5%*2**8§
Priority is for ** from right to left
Step 2: 2 ** 8 =256 (integer operation)
Expression: 20-14/5 * 256

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

second Arithmetic Operations 17

Priority is for / and * from left to right
Step 3: 14 /5 =2 (integer operation)
Expression: 20 - 2* 256

Priority is for *
Step 4: 2 * 256 =512 (integer operation)
Expression: 20 - 512

Priority is for -
Result: -492

Example 2: Evaluate the following arithmetic expression
140/5*2*(7-4)/4)**2
Solution:
Expression: 14.0/5* (2*(7-4)/4) **2
Priority is for expression inside the inner mo
Step 1: (7 -4)=23 (integer operation)
Expression: 14.0/5*(2*3/4)**2
Priority is for expression inside thggffareMfesis
Step2&3: (2*3/4) =(6/4)=1 (2inte tio
Expression: 14.0/5* 1 **2
Priority is for **
Step 4: 1 *¥*2 =1 (integer o
Expression: 14.0/5*1
Priority is for / and m left to right
Step 5: 14.0 / & =¢ag0 (Mixed mode operation)
Expression: 2.8000000 * 1
Priority is fi

Result: 2.800@000
Example 3: Rewrite the foll N expression as a mathematical form
X /W-Z
Solution:
x+Z -z
w

@ following FORTRAN expression as a mathematical form
X **¥(1.0/2.0)/Y **Z

Example 4: Re

Solfftion:

Jx x2

z z

y y
Example 5: Convert the following mathematical expression into FORTRAN
expression. Use minimum number of parenthesis

Ja+b

2 2
a” —-b

Solution:
(A+B)**0.5/(A**2.0-B**2.0)

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

second Logical Operations 18

2.4 Logical Operations

Logical operations evaluate to either .TRUE. or .FALSE.. The following subsections
discuss logical operators, relational operators and logical expressions:

2.4.1 Logical Operators

This section discusses the three logical operators: .AND., .OR. and .NOT.. The .AND.
operator is a binary logical operator that produces .TRUE., if and only if, both its
operands have a .TRUE. value. If any of the operands have a .FALSE. value, the result
of the operation is .FALSE.. The .OR. operator is a binary logical o
produces .FALSE. if and only if both operands have the value .FALSE._oth

P Q P.AND.Q | P.
FALSE. | FALSE. | .FALSE. F
FALSE. | .TRUE. FALSE. T .
TRUE. FALSE. | .FALSE. FALSE.
TRUE. TRUE. TRUE, : FALSE.

The .NOT. operator has the highest prior% three logical operators followed by
the .AND. operator. The .OR. openglo owest priority. These operators are

shown in the following table witiRgthe Qgquence in which they are evaluated
(precedency):

N Example | Precedence
1
2
3

Example e following logical expression:
ALSE. .OR. .NOT. .TRUE. .AND. .TRUE.

ALSE. .OR. .NOT. .TRUE. .AND. .TRUE.
priority is for .NOT.

Step 1: .NOT. .TRUE. is .FALSE.

Expression: .FALSE. .OR. .FALSE. .AND. .TRUE.

priority is for . AND.

Step 2: .FALSE. .AND. .TRUE. is .FALSE.

Expression: .FALSE. .OR. .FALSE.

priority is for .OR.

Result: .FALSE.
Example 2: Assume that the following declaration is given:

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

second Logical Operations 19

LOGICAL FLAG
If it is known that the expression

.NOT. FLAG .OR. .FALSE.
has the value .TRUE., what is the value of FLAG?

Solution:
The final result must be .TRUE.. The last step is somevalue .OR. .FALSE. because the
.NOT. operator has higher priority than the .OR. operator. somevalue .OR. .FALSE.

will have the value .TRUE. if and only if the value of somevalue is .TRUE.. But
somevalue is equivalent to .NOT. FLAG, therefore the value of FLAG is .FA

2.4.2 Relational Operators

The values of arithmetic expressions can be compared using relatj
following table shows the different relational operators. Assume al les
initialized:

tors. The

Operator | Math | Example Description

.EQ. = X .EQ. Y

NE. £ N .NE. 8

.GT. > Pl .GT. 7.3

.GE. > SM .GE. TOT

LT. < A+B.LT.A*2.0 the sum of A and B is less than 2A
.LE. < NUM. LE.CLASS 1 is less than or equal to CLASS

A relational expression evalua G \ r .TRUE. or .FALSE.. Relational operators

have lower priority than arifftpe gytors and higher priority than logical operators.
They are evaluated from lef} ! # next subsection presents the use of relational,
logical, and arithmetic o ors i1Mtogital expressions.

2.4.3 Logical ssfons

A logical expresg®Mgvaltugges to .TRUE. or .FALSE.. It may contain different types of
variables and o @ . It nfhy contain arithmetic expressions, logical expressions, and
relational g ¥ Logical expressions are used in selection constructs which are
disc ‘er The evaluation of a logical expression starts with the evaluation
of @i pressions first followed by the relational expressions, and finally the

ssions. The following examples demonstrate the evaluation of logical

Example 1: Given that X has a value of 3.0, Y has a value of 5.0, Z has a value of 10.0,
and FLAG is a logical variable with .FALSE. value, evaluate the following FORTRAN
expression:

NOT. FLAG .AND. X*Y .GT. Z .OR. X+Y .GT. Z

Solution:
Expression: .NOT. FLAG .AND. X*Y .GT. Z .OR. X+Y .GT. Z
Evaluate arithmetic expressions first.

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

third Assignment Statement 20

Expression: .NOT. FLAG .AND. 15.0 .GT.10.0 .OR. 8.0 .GT.10.0
Evaluate relational expressions next.
Expression: .NOT. FLAG .AND. .TRUE. .OR. .FALSE.
Evaluate logical expressions. Start with .NOT..
Expression: .TRUE. .AND. .TRUE. .OR. .FALSE.
Evaluate logical . AND. next.
Expression: .TRUE. .OR. .FALSE.
Evaluate .OR. next
Result: .TRUE.

Example 2: When is the value of the following expression .TRUE.? Assume L are
integers.

K/L*L .EQ.K
Solution:
If K is divisible by L, the value of the expression is .TRUE.. Ot 19y, the value will
be .FALSE..

Example 3: Given that X has a value of 3.0, Y has a v 0
and FLAG is a logical variable with the value .FA
following expressions.
.NOT. FLAG .OR. FLAG
X.GT.Y-Z/2.0
X*Z EQ. 20.0 .OR. FLAG .AND. 1. Z .EQ?
X .GT. Y .AND. X .GT.Z .OR. X &ND X.LT.Z
Z*10 .NE. Y*30 .AND. X .I¢ AG

.NOT. FLAG .AND. FLAG
NOT. .NOT. FLAG

s a value of 10.0,
d the value of each of the

Solution:

Expression Value
.NOT. FLAG .OR. FLAG .TRUE.
X .GT. Y -2 / 2.0 .TRUE.
X*7 .EQ. 20.0 .OR. FLAG .AND. .NOT. Z .EQ. 5.0 .FALSE.
X .GT. Y .AND. X .GT. Z .OR. X .LT. Y .AND. X .LT. % .TRUE.
7Z*10 .NE. Y*30 .AND. X .LE. Y .AND. FLAG .FALSE.
.NOT. FLAG .AND. FLAG .FALSE.
.NOT. .NOT. FLAG .FALSE.

Mignment Statement

The assignment statement in FORTRAN assigns a value to a variable. The general form
of the FORTRAN assignment statement is:
variable = expression

where expression must have a value of the same type as the variable with one
exception: integer values can be assigned to real variables and real values can be
assigned to integer variables. In assigning a real value to an integer variable, the decimal
part is truncated before the value is stored in the variable. In the case of an integer value

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

third Assignment Statement 21

being assigned to a real variable, the integer value is converted to a real value before it
is stored in the variable. The FORTRAN assignment statement is not a mathematical
equation. Therefore, it is possible to write assignment statements such as:

X 1.0
X X + 1.0

where the first statement assigns the value 1.0 to the variable X. The second statement
evaluates the expression X + 1.0 which will be 2.0 and then assigns the result to the
variable X. It should be clear that the old value of X (i.e 1.0) is changed to the new
value (i.e. 2.0).

Example 1: Write FORTRAN assignment statements to store the real numbe 5 into
the variable X1 and 7.0 into the variable Y1.

Solution:
X1 = 3.25
Yl = 7.0
Example 2: Write a FORTRAN assignment statement to s @e‘value stored in
Yl
Solution: .
| X1 = Y1

Example 3: Write a FORTRAN assignment StatenWement X1 by 1.
Solution: a2

X1 =X1 + 1.0

Example 4: Write a FORTRAN assi 7 Mnt to add to X1 the value of Y1.
Solution:

X1 = X1 + Y1

Example 5: Write a FORT Wt statement to store in X1 the contents of X1

times the contents of Y1.

Solution:

(-B + (B ** 2.0 - 4.0 * A * C) ** 0.5) / (2.0 * BA)
(-B - (B ** 2.0 - 4.0 * A * C) ** 0.5) / (2.0 * A)

ROOT2

Example 7: Given SUM as the sum of student grades in an exam and COUNT as the

number of students, write an assignment statement to find the average AVER.
Solution:

AVER = SUM / COUNT

Example 8: Write FORTRAN assignment statements to exchange the values of the
variables X and Y. (Hint: Use a temporary variable T)

Solution:

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

third Simple Input Statement 22

T =X
X =Y
Y =T

Example 9: If the variable NAME is declared as follows:

| CHARACTER NAME * 8

what will the value of NAME be after the following assignment statement is executed?
NAME = "ICS101 FORTRAN'

Solution:
Since the length of the variable NAME is declared as 8, the assignment staf@gent will
assign the first 8 characters of the string constant to NAME. Hencg_th e of

NAME is going to be:

ICS101 F
Example 10: Given the following declaration and assignment stm:

CHARACTER MAJOR * 15

MAJOR = 'FINAL'
what is the value of the variable MAJOR ? V
Solution:

Since the length of the variable NAME is declar®&§a the%assignment statement will
assign the string constant FINAL to the first 5 itions of MAJOR and fill the

remaining 10 positions with blanks.
2.6 Simple Input State K&
usil¥g either the assignment statement or by

reading an input value into the vafflab read an input value from the terminal into a
variable, we must use an in - g\ There are two types of input statements: the
a

formatted READ and the y#f LEAD. This section presents the unformatted
READ statement. The

We may assign a value to a varialle

S
0
forn¥ of the unformatted READ is
AWR*, W5t of variables separated by commas
S

t be noted while using the unformatted READ statement:

ment%tarts reading from a new line.

data values must agree in type with the variables.

e Integer values can be read into real variables but real values must not be read
into integer variables.

e [Extra data on an input line is ignored.

2.6.1 Examples

Example 1: Assume the following declaration:

INTEGER NUM, M1, K, L1, L2, L3, K1, K2
REAL TOT, X1, YY, S, ST, A, X, Y, 2

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

third Simple Output Statement

23

The following table gives examples of READ statements:

Statement Input Line Effect
READ*, NUM, TOT 9 5.08 NUM = 9

TOT = 5.08
READ*, X1, YY 325 27 X1 = 325.0

YY = 27.0
READ*, M1 20.0 ERROR MESSAGE. DATA TYPE MISMATCH
READ*, K, S 18, 0.35E-2 |K = 18

S = 0.35E-2
READ*, ST -23.4 ST = -23.4
READ*, L1, L2, L3 7 6 5 Ll =7

L2 = 6

L3 =5
READ*, A, A 1.0, 2.0 A=2.0
READ*, K1 5 8 Kl =5
READ*, K2 20 9 K2 = 20
READ*, X, Y, % 5 8 X = 5.0

20 9 Y = 8.0
Z = 20.0

Example 2: Assume the following declaration: \ l A

CHARACTER NAME*9,

P2

LOGICAL P1,

STR1*5,

STR2*3

The following table gives examples of REAWents:

Statement Input Lin Effect
READ*, NAME 'AHMED ALI' NAME = 'AHMED ALI'
READ*, STR1, STR2 TRLLY VCLASET STR1 = 'ALI '

7 2. O J STR2 = 'CLA'
|READ*, P1, P2 Il T F |[P1 = .TRUE.

P2 = .FALSE.

2.7 Simpl t Statement
The PRINT _o atement is used to print the values of variables, expressions or

INT*, list of variables, expressions, or constants separated by commas

The following subsection presents some examples on PRINT statement.

2.7.1 Examples

afgtwo types of PRINT output statements: the formatted PRINT
unférmatted PRINT statement. The formatted PRINT statement will

Example 1: In the table below, examples of the PRINT statement are given assuming
the following initializations:

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

third A Complete Program

24

LOGICAL FLAG

INTEGER K, L

REAL S1, S2

FLAG = .TRUE.

K =3

L = 20

S1 = 35.0

S2 =Sl - K - L
Statement QOutput Comments
PRINT*, K, S1 3 35.0000000 Blanks depends thg

computer
PRINT*, L+S2, W 32.0000000 ?2222222[2777779
PRINT*, L, FLAG 20 T
PRINT*, L / K * K 18
PRINT*, L / K * K * 1.0 18.0000000
PRINT*, L * 1.0 / K * K 20.0000000
& Cy

PRINT*,5,6+7, L, 2, Kt3 |5 13 20 2 6 |dBnstants and expressions
PRINT*, 'K= ',K,' L IS ',L |K= 3 L IS 20 Qaracters may be printed
PRINT*, 'THIS TESTS' THIS TESTS
PRINT*, FLAG, .FALSE. T F Logical values either T or F
PRINT* Prints an empty line

Example 2: In the table below, Waf the PRINT statement are given

assuming the following initializations%

CHARACTER*10 LSTNAM

CHARACTER CLASS*5, MAJOR*4

LSTNAM = 'AL-FORTRAN'
CLASS = 'BATAL'
MAJOR = 'ANY1'
) 4
Statement Output Comments
PRINT*, CLASS, MAJOR BATALANY1 No blanks in between
PRINT*, LSTNAM, ' ',MAJOR AL-FORTRAN ANY1 Explicit blank as it is

Thggfollow
Eacly PRINT statement starts printing on a new line.

nts must be noted while using the PRINT statement:

o e spaces in the line are not enough to hold the whole output, printing
continues on the next line.

e A variable that does not have a value will produce question marks if it is
printed.

2.8 A Complete Program

The following program reads three real numbers, prints them, computes their average
and prints it:

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

third Exercises 25

THIS PROGRAM READS 3 REAL NUMBERS
AND COMPUTES AND PRINTS THE AVERAGE

QOO

REAL NUM1, NUM2, NUM3, COUNT, AVER

COUNT = 3.0

READ*, NUM1, NUM2, NUM3

PRINT*, 'THE NUMBERS ARE ', NUM1, NUM2, NUM3

AVER = (NUM1 + NUM2 + NUM3) / COUNT
PRINT*, 'THE AVERAGE IS ', AVER
END

The first three lines are comment lines. We can insert comment lines anywhere in the
program. Each comment line must start with 'C' or '*' in column one.
statement of the program is the REAL declaration statement. It de

variables that are going to be used in the program. The next statement is jgnent
statement that assigns 3.0 to the variable COUNT. The READ s ill read 3
values from the input line and assign them to the variables NU , and NUM3,
respectively. The first PRINT statement is used to print the valu ere read. The

next statement is an assignment statement that comput e. The result is
stored in the variable AVER. The second PRINT statggfen
proper message. The last statement is the END stat

the physical end of the program.

statement signals

If the input line of this program is

[9.0 8.0 10.0

the output is as follows: Y ~

THE NUMBERS ARE 9.0000000 8.0000000 10.0000000
THE AVERAGE IS 9.0000000

In FORTRAN programs, exec 'Nts‘from the beginning of the program and

proceeds statement by statement, efee, unless there is an indication for changing
the sequence. Statements th a the sequence of execution are selection and
repetition statements. SelectBn Wyd1s d in chapter 3 and repetition in chapter 5.

2.9 Exercises

1. Evaluate the f ingw@ithmetic expressions:
1. 4%**2
2. ((3.0/6.0*%4)* (2/4)
1@ 3
.10/ +(2-10/2.0)
2. InWy the statements below are valid FORTRAN statements or not:
1. Y+X=K
2. AB=A*B
3. PRINT*, 1.0,'+,2.0,'=,1.0+2.0
4, X=Y **-3
5. X12345=8.0
6. X=Y=5.0
7. P=(Q+R)*(-(-8))

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

third Exercises 26

8. X3X=8.0
9. READ*, RtA
10. READ*, NUM,NUM
3. What will be printed by the following FORTRAN 77 programs ?

1. INTEGER I, J, K
I = 300
J = 500
K = J/I
PRINT*, K
END

2. INTEGER ONE, TWO, THREE, FOUR, FIVE
ONE =1
TWO = 2
THREE = 3
FOUR = 4
FIVE = THREE + FOUR ** (ONE / TWO)
PRINT*, FIVE
END

3. INTEGER M, N
READ*, M
READ*, N
PRINT*, M, N
END

Assume the input for the program is: ad \

7 9
A N A
4. INTEGER I, J, K, L
READ*, I, J
READ*, K, I
PRINT*, I, J, K,
END
Assume the input for the pr@r-
7 8 9
G W
5. REAL X
X =1.2
X=X+ 1.0
X =X+ 1.0
X =X+ 1.0
PRINT*, X , X, X, X
END
L \ /)
6. REAL A, X
A =8 **x 1/3
X = 25 ** 1/2
PRINT*, X, A
END

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

third Exercises

27

REAL PNM

END

7o INTEGER XLM, NUM1, NUM2

READ*, NUM1, NUM2
PNM = NUM1 / NUM2
XIM = 3 / PNM * 3.00 ** NUM2
PRINT*, PNM, NUM1l, NUM2, XLM

Assume the input

for the program is:

[3,2

4. What is the value of each of the following expressions? Use the following values if

needed: “
REAL A, B
INTEGER K, J
A =2.0
K = -2
B = 3.5
J =1
. 6%J/K*4
2. 9+K/5%A/2
3. A/(B+K)/J
4. FEEJERARE] LK /]
5. D/4%4%%2
6. 2/40*2FKD 42 * 40 %% D
7. 3**2.0*(3.0-1)+2.0*1*3.(&
8. S5*k3/2%%x5/)
9. (5/2)**1.0%*2 Q
10. (1+(32%2-(5-4))
11 ((2+6)/2+3.0/64* /4)
12. 99999 / 100000 - \
13, 2 %% %% 3
14, 9/4 %2 **
15. 900/ 3.

5. Convert the fi

FORTRAN assignment statements into an algebraic form :

1. oW *T)**3+1+1.674E-24 * C
Q 0 *P**0.5%(1.0-P/100.0)
K *B/C-2

6. W the following are valid FORTRAN variable names?

1. CS101GRADE

2. AH/Q

3. PRICE

4. +RATE

5. 2THIRD

6. NUMBI2

7. IDNUMB

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

third Exercises 28

8. WHOLE-SALE-PRICE

9. $FORT
10. Y8X
11. ALL*

7. Indicate the following statements as either TRUE or FALSE:
1. A REAL statement is an executable statement.
2. Compiling the statement Y =2 ** 4 ** 3 SE50 will cause syntax error.
3. The statement INTEGER X,Y,Z implies that XYZ is an integer vari
4. IfJ, K, and L are integers, then the FORTRAN expressions (J + K) nd (J/
L) +(K /L) are equivalent.
The INTEGER statement can appear any where in the pro

6. If K and L are integers, then the FORTRAN expression **2 and
K * (L**2 / K**2) are equivalent.

7. PRINT*,X=5 is a valid FORTRAN 77 statement.
8. Add the minimum number of parentheses to the FO on
A*¥*B**2+B-C/D+
to be equivalent to the mathematical expressi

9]

a(b)2+b—r b
x 2
d cd
9. In the following FORTRAN expression%tors have been numbered :
1 2 3 4 9
A**B**2+B- D *B/C*D

ors are evaluated a cording to FORTRAN 77
bclk in order)

rules. (only write the op X
10. Write a FORTRAN ramW réqd a 3 digit number, then prints the
hundredth, the tenthandWge ones digits. If the input is:

Give the order in whicl thd @

| 728
The outnm&l“
THE HUNDREDS DIGIT = 7
THE TENTH DIGIT = 2
THE ONES DIGIT = 8

urfacefrea and the volume of the sphere. Your program should print the radius,
area and the volume:

1 I.Q rite aMRAN program which reads the radius of a sphere and calculates the
S

Surface area = 4m r 2
4
Volume = 3 zr

12. Convert the following mathematical expressions / assignments to FORTRAN
expressions / assignments. (do not use extra parentheses)

1. 2x+2
2

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

third Exercises 29

3 2b
1
YT
rl r2 r3
5. a=b+—2— 42
c+d
6. 2a+c®
a+ib
7. 1
a2 +5
13. For each of the following FORTRAN expressionsgvritg a valent expression

by deleting all "REDUNDANT" parentheses (i.¢¢ pXgtheses whose deletion does
not change the result of the expression).

. (A*B)*C/((X*Y)**2)

2. ((A+B)**2+(3*C)**3)**(A/B)

3. ((A-B)+C)+(D*E)

4. (C*X)**((2-A)*B)

5. -B+((B**2-(4*(A*C)))§ 0.

14. Write a program that conve nWy expressed in seconds to a correspondence
quantity expressed in ho¥ , nd seconds. If the input is:
18125 |

L
The output should be‘& -

[2 HOURS, 15 MINUTES, 25 SECONDS. |

15. The input da ain program is more than what is required. The data is as
follows: A
19

4 5 12 10

3
7 18 20

6 1 8 1
3 2 9 0
!Write aIﬁTRAN program to read enough data (i.e. using the minimum number
varj

les in the READ statement) to print the following output:

O =
[@NeoNE)]

(your program should have READ and PRINT statements only)

16. 1) The output of the program below is as follows:
|8

Fill in the spaces to get the output shown above

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

second Solutions to Exercises 30

INTEGER K, M, N

K = ————
M= 2
N = 3
PRINT*, M**N**M**K
END
i1) The output of the program below is as follows:
1 4
7 8 10

Fill in the spaces to get the output shown above

INTEGER K1, K2, K3, K4, K5
READ*, --————-—-—

READ*, ——————-

READ*, ———-—-——-

PRINT*, K1, K2

PRINT*, K3,K4,K5

END
Assume the input for the program is: A v
i 5 ¢
7 8
10 11 12
17. Determine whether the following conditions a “ALSE. Assume
A=35B=41,1=-4,J=9,FLAG=.TRUE. needed:
1. (3.0/2.LT.1.5).AND.(4/2.GT.1)
2. .FALSE..AND..TRUE..OR. NG, ..AND..TRUE.)
3. .NOT.FALSE..AND..TRUE.
4. 2.EQ.1.0
5. OR.5*2+2.GT.0
6.
7. 2.0*1
8.
9.
10 AND..NOT.A*I.LE-.14.0
11 ALSE.).AND..TRUE..OR..FALSE.
2 ons to Exercises
Ans
1.5 2.0.0 3. 100000000 4.-3.0
Ans 2.
1. Invalid 2. Valid 3. Valid 4. Invalid 5. Valid
6. Invalid 7. Valid 8. Valid 9. Invalid 10. Valid
Ans 3.
1
4

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

second Solutions to Exercises 31

Error Message
8 5 7 72777772

42 42 42 4.2
12.0 2.0
1.0 3 2 27
Ans 4.
1. -12 2. 9.0 3.1.3333333 4.1.0 5. 0 6.30.0
7.24.0 8.1 9.2.0 10. 64 11. 0.0
12. -1 13. 256 14.2 15. 3.0
Ans 5.
i 3
L. w= %t +1+1674x 102 ¢

1
2. ¢=1012 5(1—1)
1 P 100

3 k=2
c

Ans 6. &
1. Invalid 2. Invalid . i 4. Invalid 5. Invalid
Quva
JALSE

6. Valid 7. Valid 9. Invalid
10. Valid 11. Invalid
Ans 7. *
1. FALSE 2.F \ 4. FALSE 5. FALSE
6. FALSE 7. E
Ans 8.
A ** 2 -C)/(D+A)*B/(C*D)

Ans 9.

0 8 9 3 4 6
Y

INTEGER N, M, J, K

READ*, N

M =N/ 100

N=N-M* 100

J =N/ 10

K=N-J* 10

PRINT*, 'THE HUNDREDS DIGIT = ', M
PRINT*, 'THE TENTH DIGIT ="', J
PRINT*, 'THE ONES DIGIT = ', K
END

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

second Solutions to Exercises

32

Ans 11.

REAL R, PI, SAREA, VOLUME
READ*, R

PI = 3.14159

SAREA = 4 * PI * R ** 2

VOLUME = 4.0 / 3.0 * PI * R *x* 3

PRINT*, 'RADIUS = ', R
PRINT*, 'AREA = ', SAREA
PRINT*, 'VOLUME = ', VOLUME
END

Ans 12.

2*¥X+Y/2
(A+B)/(A-B)) **0.5

B+X*Y/(C+D)+2
2*¥ A+ C**(-6)
(A+B**(1.0/4.0))/(2/(A**2+5))-1

Ans 13.
A*B*C/(X*Y)**2
((A+B)**2 +(3*C)**3)**(A/B)
(A-B+C)+D*E

(C*X)**((2-A)*B) &
B+(B**2-4%A*C)**0.05 |

Ans 14.

R**3/3.0-A*C**(3.0/40)/(2*B) s
1/(1/R1+1/R2+1/R3) 0

INTEGER SECNDS , MINTS , HOURS , QUAN
READ*, QUAN

HOURS = QUAN / 3600

QUAN = QUAN - HOURS * 3600
MINTS = QUAN / 60

SECNDS = QUAN - MINTS * 60

PRINT*, HOURS, 'HOURS',MINTS, '"MINUTES', SECNDS, 'SECONDS'
END

Ans 15. 1‘ ii ‘

INTEGER K1, K2
READ*, K1 , K2

PRINT*, K1 , K2
READ*, K1 , K1 , K2
PRINT*, K1 , K2
READ*, K1 , K1 , K1 , K2
PRINT*, K1 , K2

END

Ans 16.
1) 0
i1)

READ*, K1
READ*, K2
READ*, K3 , K4 , K5

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

second Solutions to Exercises 33

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

third IF-ELSE Construct 35

3 SELECTION CONSTRUCTS

Selection constructs are used to select between blocks of state nding on
certain conditions. Each condition is a logical expressio 2.43) . In
FORTRAN, the IF statement is used to represent selection cO . This chapter
introduces four types of IF constructs: IF-ELSE, IF, IF- e simple IF

constructs.

3.1 IF-ELSE Construct

3.1.1 Definition
The general form of the IF-ELSE conswis as foNpws:

IF (condition) THEN
BLOCKI1

ELSE
BLOCKZ2

ENDIF

tHat evaluates either to .TRUE. or .FALSE..
cor more FORTRAN statements. If a block

BLOCKI and BLOCK? c

where condition is a logic#® exp @
ﬁ\o
enty

contains more than one st acl®tatement must be in a separate line. Statements
of BLOCKI and BLOC be any FORTRAN statements including IF statements,
assignment stateme QW RLIt/output statements, repetition statements, transfer (GOTO)

statements and In"Me above construct, BLOCKI will be executed if condition
has the value . f the®value of condition is . FALSE., BLOCK2 will be executed.
In either cyfE g block is executed. After executing one of the two blocks, control
ement after the ENDIF.

Otds IF and THEN should appear in the same line along with the
e condition should be between parentheses. The keyword ELSE should
appear M a separate line and the construct must end with the keyword ENDIF in a
separate line. BLOCK1 and BLOCK?2 begin, in a new line, after the column in which
IF, ELSE and ENDIF appear. This is known as indentation. Indentation is not a must
but it increases program readability.

3.1.2 Examples on the IF-ELSE Construct
The following examples illustrate the IF-ELSE construct.

Example 1: Write a FORTRAN program that reads two integer numbers and prints the
maximum.

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

third IF Construct 36
Solution:
INTEGER NUM1, NUM2
READ*, NUM1, NUM2
PRINT*, 'INPUT: ', NUM1, NUM2
IF (NUMl .GT. NUM2) THEN
PRINT*, 'MAXIMUM IS ', NUM1
ELSE
PRINT*, 'MAXIMUM IS ', NUM2
ENDIF
END
Example 2: What will be the output of the previous program if the inputgline is as
follows:
| 347 -670
Solution:

The output will be as follows:

RO,

INPUT: 347 -670
MAXIMUM IS 347

Example 3: Write a FORTRAN program that reads an
the number is even or odd. The program should printr

Solution:

] egeWr and finds out if
messtge.

INTEGER K

READ*, K

PRINT*, 'INPUT: ', K

IF(K / 2 * 2 .EQ. K)
PRINT*, 'EVEN'

ELSE
PRINT*,

ENDIF

END

THEN

'ODD'

Example 4: What will be th?Mrevious program if the input is as follows:

| 79

\ 4
Solution: The output wi‘&m fo?ows:
INPUT: 79
ODD
3.2 IFCo ct

3.2,

I
\W sommquire a block of statements to be executed, if a condition is .TRUE..

Ot ise, A the condition is .FALSE., no statements must be executed. In this case we
use t onstruct. The IF construct has the following general form:
IF (condition) THEN
BLOCK
ENDIF

where condition is a logical expression that evaluates to either .TRUE. or .FALSE..
BLOCK consists of one or more FORTRAN statements. A statement in the BLOCK
may be any FORTRAN statement including the IF statement. BLOCK will be executed
if the condition evaluates to .TRUE. . The control then transfers to the first statement
after the ENDIF. If the condition evaluates to .FALSE., control transfers to the first

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

third IF Construct 37

statement after ENDIF, without executing any statement inside the IF construct. The
keywords IF and THEN should appear in the same line along with the condition. The
condition must be between parentheses. As was the case in the previous IF construct,
indentation is not a must but it increases readability.

3.2.2 Examples on the IF Construct

The following examples illustrate the IF construct.

Example 1: Write a FORTRAN program that reads a grade. If the grade is not zero, the
program must add 2 points to the grade. Then, the new grade should be printi.

Solution:

REAL GRADE
READ*, GRADE
PRINT*, 'ORIGINAL GRADE IS', GRADE
IF (GRADE .GT. 0) THEN

GRADE = GRADE + 2.0

o~

PRINT*, 'SCALED GRADE IS ', GRADE
ENDIF
END
Example 2: What will be the output of the previogs am 1f the input line is as
follows: N ‘
| 7.5
Solution: The output is as follows: ‘

ORIGINAL GRADE IS 7.5000000
SCALED GRADE IS 9.5000000

Example 3: What will be the outqu of the previous example if the input

line is as follows:
| 0.0 |

Solution: The output is as foﬁM

|ORIGINAL GRADE IS 0.0000000 |

Example 4: Write a F M\f p‘rogr;m that reads a student ID and his GPA. If the
GPA is greater than g eqal (@ 3.0, the program should print the message 'HONOR'.

Solution: A

REAL GPA

INTEGER ID

READ*, ID, GPA

PRINT*, 'INPUT: ', ID, GPA

IF (GPA .GE. 3.0) THEN
PRINT*, 'HONOR'

ENDIF
END
Example 5: What will be the output of the previous program if the input line is as
follows:
| 918962 2.90 |

Solution: The output is as follows: (Note: Since the condition in the IF statement is not
satisfied, the message HONOR is not printed.)

|INPUT: 918962 2.9000000

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

third IF-ELSEIF Construct 38

3.3 IF-ELSEIF Construct
3.3.1 Definition

Assume you are given a numeric grade. A letter grade is to be printed based on the
standard criteria i.e. if the grade is greater than or equal to 90, letter A is to be printed; if
the grade is greater than or equal to 80, letter B is to be printed and so on . In such a
case, we must use several IF statements. Instead FORTRAN provides a construct that
can select a single block of statements from several blocks based on different
conditions. This construct is the IF-ELSEIF construct and it is used wheg a single
block is to be executed from a choice of several blocks. The general fo&of this

construct is as follows:

IF (condition-1) THEN

BLOCKI1

ELSEIF (condition-2) THEN
BLOCKZ2

ELSEIF (condition-3) THEN
BLOCK3

ELSEIF (condition-n) THEN

BLOCKn
ELSE
BLOCKn+1
ENDIF
v
where condition-i fori=1,2,3, .., n1 ogical expression that evaluates to either

more FORTRAN statements. The
statements including any type of IF
BLOCK]I will be executed if condition-1

.TRUE. or .FALSE.. BLOCKi co
statements in each BLOCK are
constructs. In the IF-ELSEIF cg

.TRUE., BLOCK?2 will be
ENDIF. Otherwise, corfitMg-3 is examined and if it evaluates to .TRUE., BLOCK3
will be executed an sfers to the first statement after the ENDIF. The same
action is applie t of the ELSEIF clauses until a condition evaluates to

.TRUE.. If all ns §aluate to .FALSE., the ELSE part, i.e. BLOCKn+1, is
executed angmgd asses to the first statement after the ENDIF. The ELSE part is
optiogagl. | s are .FALSE and there is no ELSE part, control passes to the
fir Adqypaer the ENDIF, without executing any of the blocks. In summary, the

corregponding to first condition that evaluates to .TRUE. is the only block that is
case, no condition evaluates to .TRUE., the block corresponding to the
ELSE part, if present, is executed. Indentation is not a must but it increases readability.

3.3.2 Examples on the IF-ELSEIF Construct
The following examples illustrate the IF-ELSEIF construct

Example 1: Write a FORTRAN program that reads a student ID and his GPA out of
4.0. The program should print a message according to the following:

| Condition | Message |

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

third IF-ELSEIF Construct

39

GPA>3.5 EXCELLENT
3.5>GPA >3.0 VERY GOOD
3.0>GPA =225 GOOD
25>GPA>20 FAIR
GPA <2.0 POOR
Solution:
REAL GPA
INTEGER ID

CHARACTER*10 STATE
READ*, ID, GPA

PRINT*, 'INPUT: ', ID, GPA

IF (GPA .GE. 3.5) THEN
STATE = 'EXCELLENT'

ELSEIF (GPA .GE. 3.0) THEN
STATE = 'VERY GOOD'

ELSEIF (GPA .GE. 2.5) THEN
STATE = 'GOOD'

ELSEIF (GPA .GE. 2.0) THEN
STATE = 'FAIR'

ELSE
STATE = 'POOR'

ENDIF

PRINT*, ID,' ', STATE

END

Another Solution: Y ‘

REAL GPA

INTEGER ID
CHARACTER*10 STATE
READ*, ID, GPA

PRINT*, 'INPUT: ', ID, GPA
IF (GPA .LT. 2.0) THEN
STATE = 'POOR'
ELSEIF (GPA .LT. 2.5) THEN
STATE = 'FAIR'
ELSEIF (GPA .LT. 3.0) THEN
STATE = 'GOOD'
ELSEIF (GPA .LT. 3.5) THEN
STATE = 'VERY GOOD'
ELSE
STATE = 'EXCELLENT'
ENDIF
PRINT*, ID,' ', STATE
END
EXWT he following table has two columns, the first column gives the sample
input previous program and the second column shows the expected output.
Solution:
Sample Input Expected Output
927322 2.3 |[[TNPUT: 927322 2.3000000
927322 FAIR
[922822 3.4 ||| INPUT: 922822 3.4000000
922822 VERY GOOD
|848000 1.8 ||| INPUT: 848000 1.8000000

848000

POOR

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

third IF-ELSEIF Construct

(899999 3.7 ||| INPUT: 899999 3.7000000
899999 EXCELLENT

(912877 2.0 ||| INPUT: 912877 2.0000000
912877 FAIR

(943245 -2.0 ||| INPUT: 943245 -2.0000000
943245 POOR

(942221 7.0 ||| INPUT: 942221 7.0000000
942221 EXCELLENT

Example 3: Use IF-ELSE constructs to write a FORTRAN program that reads a
student ID and his GPA out of 4.0. The program should print a message a

the following:
Condition Message
GPA>3.5 EXCELLENT
3.5>GPA >3.0 VERY GOOD
3.0>GPA >2.5 GOOD
2.5>GPA>2.0 FAIR
GPA <2.0 POO
Solution:
INTEGER ID
REAL GPA
CHARACTER*10 STATE
READ*, ID, GPA
PRINT*, 'INPUT: ', ID, GPA
IF (GPA .GE. 3.5) THEN
STATE = 'EXCELLENT'
ELSE
IF (GPA .GE. 3.0) THEN
STATE = 'VERY GOOD'
ELSE
IF (GPA .GE. 2.5) THEN
STATE = 'GOOD'
ELSE
IF (GPA .GE. 2.0) THEN
STATE = 'FAIR'
ELSE
STATE = 'POOR'
ENDIF
ENDIF
ENDIF
ENDIF
PRINT*, ID,' ', STATE
END

Example 4: Rewrite the above program using IF constructs.

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

third Simple IF Construct

41

Solution:
INTEGER ID
REAL GPA
CHARACTER*10 STATE
READ*, ID, GPA
PRINT*, 'INPUT: ', ID, GPA
IF (GPA .GE. 3.5) THEN
STATE = 'EXCELLENT'
ENDIF
IF (GPA .GE. 3.0 .AND. GPA .LT. 3.5) THEN
STATE = 'VERY GOOD'
ENDIF
IF (GPA .GE. 2.5 .AND. GPA .LT. 3.0) THEN
STATE = 'GOOD'
ENDIF
IF (GPA .GE. 2.0 .AND. GPA .LT. 2.5) THEN
STATE = 'FAIR'
ENDIF
IF (GPA .LT. 2.0) THEN
STATE = 'POOR'
ENDIF
PRINT*, ID,' ', STATE
END
Example 5: Write a FORTRAN program that readyl thro®Qnteger numbers and finds
and prints the maximum. Use IF-ELSEIF const
Solution:
o A
INTEGER X1, X2, X3, MAXIM
READ*, X1, X2, X3
IF (X1 .GE. X2 .AND. X1 .GE. X3) THEN
MAXIM = X1
ELSEIF (X2 .GE. X3) THEN
MAXIM = X2
ELSE
MAXIM = X3
ENDIF
PRINT*, 'THE NUMBERS ARE ', X1, X2, X3
PRINT*, 'THE MAXIMUM OF THE THREE NUMBERS = ', MAXIM
END
3.4 Simp ORstruct
341 D

it
1mes®e FORTRAN statement must be executed if a condition is TRUE.. In
¢ may use a simple form of the IF construct which is written in a single

e following general form:

IF (condition) STATEMENT

where

condition evaluates to .TRUE. or .FALSE. and STATEMENT is a simple

FORTRAN statement such as an assignment statement, a READ statement, a PRINT
statement, a GOTO statement, or a STOP statement. If condition evaluates to .TRUE.,
STATEMENT is executed and the control passes to the next statement. If condition is
FALSE., STATEMENT is not executed and the control transfers to the next statement.

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

third Simple IF Construct 42

3.4.2 Examples on the Simple IF Construct
The following examples illustrate the simple IF construct.

Example 1: Use simple IF constructs to write a FORTRAN program that reads a
student ID and his GPA out of 4.0. The program should print a message according to
the following:

Condition Message
GPA >3.5 EXCELLENT
3.5>GPA >3.0 VERY GOOD
3.0>GPA >2.5 GOOD
2.5>GPA>2.0 FAIR

GPA <2.0 POOR

Solution: /

INTEGER ID

REAL GPA

CHARACTER*10 STATE

READ*, ID, GPA

PRINT*, 'INPUT: ', ID, GPA

IF (GPA .GE. 3.5) STATE = 'EXCELLENT'
IF (GPA .GE. 3.0 .AND. GPA .LT. 3.5) STATE = 'VERY GOOD'
IF (GPA .GE. 2.5 .AND. GPA .LT. 3.0) STATE = 'GOOD'

IF (GPA .GE. 2.0 .AND. GPA .LT. 2.5) STATE = 'FAIR'

IF (GPA .LT. 2.0) STATE = 'POOR'

PRINT*, ID,' ', STATE

END

Example 2: Write a FORT8AN
and prints the maximum. Us

that reads three integer numbers and finds
NSTructs.

Solution:

INTEGER X1, X2, X3, MAXIM
READ*, X1, X2, X3

PRINT*, 'THE NUMBERS ARE ', X1, X2, X3
MAXIM = X1

IF (X2 .GT. MAXIM) MAXIM = X2

IF (X3 .GT. MAXIM) MAXIM = X3

PRINT*, 'THE MAXIMUM OF THE THREE NUMBERS IS ', MAXIM
END

An&er S’Jtion:

INTEGER X1, X2, X3

READ*, X1, X2, X3

PRINT*, 'THE NUMBERS ARE ', X1, X2, X3

IF (X1 .GE. X2 .AND. X1 .GE. X3) PRINT*, 'MAXIMUM IS ', X1
IF (X2 .GE. X1 .AND. X2 .GE. X3) PRINT*, 'MAXIMUM IS ', X2
IF (X3 .GE. X1 .AND. X3 .GE. X2) PRINT*, 'MAXIMUM IS ', X3
END

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fourth Exercises

43

3.5 Exercises

1. What will be printed by the following programs? If an error message is generated,

which statement causes the error?

1. INTEGER N, M
N = 15
M = 10
IF (M.GE.N) THEN
M=M*+1
IF (N.EQ.M) THEN
N=N+5
ELSEIF (N.GT.0) THEN
N =N + 10
ENDIF
M=M-1
ENDIF
M=M-1
PRINT*, M, N
END
2. LOGICAL 2, B

INTEGER EX1, EX2, EX3
READ*, EX1, EX2, EX3

B = EX2+2.GT.EX3*2
IF (B) THEN

A = .NOT. A
ELSE

B = .NOT. B
ENDIF
PRINT*, A, B

END

Assume the input for the progranm

A = EX1.LE.EX2.0R.EX2.LE.EX3

40 35 20
A N
3. REAL A, B, C
A= -3
B = -4.0
IF (.NOT. A.LT.B) THEN
C=A-B
ELSE
C=A*B
ENDIF
PRINT*, C
END
l L.
4. REAL A, B
INTEGER T

READ*, A, I, B
IF (A.LT.3.0) THEN
PRINT*, A+I
IF (B.LT.2.5) THEN
PRINT*, B**T
ENDIF
ELSE
PRINT*, A*B*T
ENDIF
END

Assume the input for the program is:

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fourth Exercises

44

2.5 2 2.5

INTEGER A, B, C
READ*, A, B, C
IF (A.GT.B) THEN
IF (B.LT.C) THEN
PRINT*, B
ELSE
PRINT*, C
ENDIF
ELSE
PRINT*, A
ENDIF
PRINT*, A, B, C
END

Assume the input for the program is:

-2 -4 -3

6.

LOGICAL A,B
INTEGER K1, K2

K1 = 10
K2 = 12
A = K1.LT.K2
B = .TRUE.
IF (A) B = .FALSE.
PRINT*, A, B
END
7. EEAL A, B

INTEGER K, L
READ*, A, B, L, K
IF (A .GT. B) THEN
IF (A .LT. L/2) THEN
PRINT*, 'THURSDAY'
ELSE
PRINT*, 'SUNDAY'
ENDIF
ELSE
IF (K/4.GE.B-2) THEN
PRINT*, 'MONDAY'
ELSE
PRINT*, 'TUESDAY'
ENDIF
ENDIF
END

Asgfime the for the program is:
3.0 3.0 4 6

. "

8.

INTEGER RANKX, RANKY
REAL X, Y
READ*, X, Y
IF (X.GT.Y) T
RANKX = 1
RANKY = 2
ELSE
RANKX =
RANKY =
ENDIF
PRINT*, RANKX, RANKY
END

HEN

=N

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fourth Exercises

45

Assume the input for the program is:

4.0 4.0

9. INTEGER SALARY, BONUS, TOTAL
INTEGER AGE, EXP
READ*, IDNO, AGE, EXP, SALARY

IF (AGE.GE.40 .OR. EXP.GT.10)
BONUS = SALARY/8 + 450.0

THEN

ELSE

BONUS = SALARY/10 + 350.0
ENDIF
TOTAL = SALARY + BONUS
PRINT*, IDNO, BONUS, TOTAL
END

Assume the input for the program is:

|834567 38 12 40000

AN

2. Write a FORTRAN program that reads the value of a real nu
value of (DELTA) is negative, then the program prints
OUT OF RANGE) . Otherwise, the program compuigl’the
and prints the result.

3. Write a complete FORTRAN program that readg the

computes the value of X where:
Va—b+24?

negative number under the squa

cr WRELTA) . If the
e tNUMBER IS

riables A, B and C, then

e program should print the appropriate
BY ZERQ", or, "NEGATIVE NUMBER

X =
The program should take care gf r; of dividing by zero or getting a
I ot.
)

messages accordingly (i.e.
UNDER SQUARE ROQYJ™).
messages. If no error occ ht

N N7,

4. Consider the following ctu he® A is a real variable :

@ § crrors occur, the program should print both
m should print the value of X.

IF (A.LE.10) THEN
IF (A.LT.5) THEN
PRINT*, 'AAA'
ELSEIF (A.LT.4) THEN
PRINT*, 'BBB'
ELSEIF (A.GT.6) THEN
PRINT*, 'CCC'
ELSE
PRINT*, 'DDD'
ENDIF

ENDIF

The chon that causes AAA to be printed is (A <5).
1. What is the condition that will cause BBB to be printed?
2. What is the condition that will cause CCC to be printed?
3. What is the condition that will cause DDD to be printed?

5. Assume that V1 and V2 are LOGICAL variables and STATEMENTI,
STATEMENT?2 and STATEMENT3 are any valid FORTRAN statements. Given the

following IF-structure:

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fourth Exercises 46

IF (V1) THEN
STATEMENT1

ELSEIF (.NOT. V2) THEN
STATEMENT?Z2

ELSE
STATEMENT3

ENDIF

choose the equivalent structure(s) from the following:

Lo IF (.NOT. V1) THEN
IF (.NOT. VZ2) THEN
STATEMENT2
ELSE
STATEMENT3
ENDIF
ELSE
STATEMENT1
ENDIF

IT. IF (.NOT.V2) THEN
STATEMENT?Z2
ELSEIF (V1) THEN
STATEMENT1
ELSE
STATEMENT3
ENDIF

III. IF (V1) THEN
STATEMENT1
ELSE
IF (.NOT. V2) THEN
STATEMENT?Z2
ELSE
STATEMENT3
ENDIF
ENDIF

6. Consider the following WQWrogram segment :

| (A.GT.B .OR. A.EQ.B) PRINT*, A
Which one(s) of the %ng‘segments is(are) equivalent to the above?

I. IF (A.GE.B) THEN
PRINT*, A
ENDIF
TII. IF (A.GT.B .AND. A.EQ.B) THEN
PRINT*, A
ENDIF
[TIT. IF (.NOT. (A.LT.B)) THEN
PRINT*, A
ENDIF

7. What values of X cause the value of A to be changed in the following statement?
| IF (X.LT.3.0 .AND. 7.0.LT.X) A = A + 1 |

8. Write a complete FORTRAN program that reads a real number into a real variable
NUM. If NUM is non-zero prints the value of its reciprocal (1/NUM) . Otherwise,
prints the message "RECIPROCAL NOT DEFINED".

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fourth Exercises 47

9. Give the FORTRAN statements that perform the steps indicated below :
1. Ifyis not positive, and 3.5>x>1.5 then print the value of y.
2. If time is greater than 15.0, increment time by 1.0.

3. If dist is less than 50.0 and time is greater than 10.0, increment time by 2.0.
Otherwise, increment time by 2.5.

4. Interchange the value of a and b (i.e. a gets the value of b and b gets the old
value of a, if both a and b are positive.

5. If grade is greater than or equal to 4.0 then increment a by 1.0. If grade is
greater than or equal to 3.0 but less than 4.0 then increment b by 1.0 rade is
greater than or equal to 2.0 but less than 3.0 then increment ¢ b
increment d by 1.0.

10. Assume CONDI1, COND2, COND3, and COND4 are
expressions. Consider the following program segment.

logical

IF (COND1) THEN
IF (COND2) THEN
PRINT*, 'RIYADH'
ELSE
IF (COND3) THEN
PRINT*, 'JEDDAH'
ELSE
PRINT*, 'KHOBAR'
ENDIF
ENDIF
ELSEIF (COND4) THEN
PRINT*, 'TAIF'

ELSE
PRINT*, 'DHAHRAN'
ENDIF
If the output of the above segnen‘is :

| KHOBAR

What are the logical Value@l,{ONDL COND3 and COND4?
11. Write a program tha§rea®y an integer number N and prints YES if the following
expression is s .
O0<N<100 and N>50
12. Write program which reads an integer number between 10 and 99 and
jts @ nb&yeversed. For example, if the number read is 87, then the program
utput Mgsigbe 78.

the following IF statements carefully. Each of Blocks A, B, C, D, E, F, G,
sents a block of FORTRAN statements.

Lo IF (CONDITION) THEN
A
ELSE
B
ENDIF
€
END

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fourth Exercises 48

IT. IF (CONDITION) D
E
END

III. IF (CONDITION) THEN

F

ELSEIF (CONDITION) THEN
G

ELSE
H

ENDIF

END

Assuming that X has a value 0.0, which block(s) are executed in progra ments
(1), (i1) and (ii1) , if CONDITION is the expression listed below?

i) X.GE.0
ii) X.LE.0
iii) X.GT.0

iv) X.LT.0
14. Write a FORTRAN program that reads three injc¥grsg®, Bend C. The program
checks if A, B, and C are in increasing order off in easing order and prints an

appropriate message. If the integers are order®then the program prints

UNORDERED. For example, if the input is

| 345 |

The program prints x

| INCREASING ORDER |

15. A year between 1900 and 1999 | %\year if it is divisible by 4 and not by 100

or if it is divisible by 400. W, FRTRAN program which will read a year and

determine whether the y®g i or NOT. The program should print one of the
following messages accg

|THE YEAR IS OUT OF RANGE |

or N

|THE YEAR IS A LEAP YEAR |

o NN

THE YEAR IS NOT A LEAP YEAR |
16. ysi thefol[Qying IF statement:

IF (X.GE.Y) THEN
PRINT*, X
ELSE
PRINT*, Y
ENDIF

In each of the following program segments, fill the spaces by relational or logical
operators (.EQ., .NE., .LT., LE., .GT., .GE., .AND., .OR., .NOT.) such that each of
the program segments below gives the same output as the program segment above.

Lo IF (X - -————- Y) PRINT*, X
IF (X - -———- Y) PRINT*, Y

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fourth Solutions to Exercises 49

II. IF (X.GT.Y) THEN
PRINT*, X
ELSEIF (X ---—-- Y) THEN
PRINT*, X
ELSE
PRINT*, Y
ENDIF
III. IF (X --———- W o X.EQ.Y) THEN
PRINT*, X
ELSE
PRINT*, Y
ENDIF

17. Write a program that reads any two positive integer numbers and fi
the two numbers. The program then checks if the larger numbe
smaller one. If it is divisible the program should print the wo
larger number is not divisible by the smaller number, the fgog checks if both
numbers are odd and prints BOTH ODD.

3.6 Solutions to Exercises

Ans 1.
9 15
F T
1.0
4.5

, X
S

MONDAY .

2 1
834567 5450 4545 \
Ans 2. \

READ*, DELTA
IF (DELTA .LT. 0.0) THEN

PRINT*, 'NUMBER IS OUT OF RANGE'
ELSE

PRINT*, DELTA ** 0.5
ENDIF
END

o)

READ*, A , B , C
D=2A-B + 2 * A *xx 3
IF (C .EQ. 0 .OR. D .LT. 0) THEN

IF (C .EQ. 0) PRINT*, 'DIVISION BY ZERO'

IF (D .LT. 0) PRINT*, 'NEGATIVE UNDER SQUARE ROOT'

ELSE
X = D ** 0.5/ C
PRINT*, X

ENDIF

END

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fourth Solutions to Exercises

50

Ans 4.
1. Never 2.10 2A >6 3.6 2A =25
Ans 5.
I and III
Ans 6.
I and III
Ans 7.

No values for X,
A can't be changed according to this condition

Ans 8. n

REAL NUM

READ* , NUM

IF (NUM .NE. 0) THEN
PRINT*, 1 / NUM

ELSE
PRINT*, 'RECIPROCAL NOT DEFINED'
ENDIF
END
Ans 9.
1.

b4

|IF(Y .LT. 0 .AND. (X .GT. 1.5 .AND. X .LT. 3.5))PRINT*,Y

2.

|IF(TIME .GT. 15.0) TIME = TIME + 1

3.

A\

IF(DIST .LT. 50.0 .AND. TIME .GT. 10.0) THEN
TIME = TIME + 2.0

ELSE
TIME = TIME + 2.5

ENDIF

K. O .

IF(A .GT. 0 .AND. B .GT. 0) THEN
T = A
A =B
B=T
ENDIF
A 4

IF(GRADE .GE. 4.0) THEN
A=A+ 1.0

ELSEIF(GRADE .GE. 3.0) THEN
B=B+ 1.0

ELSEIF(GRADE .GE. 2.0) THEN
C=¢C+ 1.0

ELSE
D=D+ 1.0

ENDIF

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fourth Solutions to Exercises

51

Ans 10.
CONDI1: T
COND2: F
COND3: F
COND4 : Canbe Tor F
Ans 11.
READ*, N

IF (N .GT. 50 .AND. N .LT. 100) THEN
PRINT*, 'YES'

ENDIF

END

Ans 12. ggs E

INTEGER REV

READ*, K

IF (K .GT. 10 .AND. K .LE. 99) THEN
REV = (K - K / 10 * 10) * 10 + K / 10
PRINT*, REV

ELSE
PRINT*, 'NUMBER IS OUT OF RANGE'
ENDIF
END
A 4
Ans 13.
X.GE. 0)A,C iii) F
X.LE. 0)A,C iii) F
X.GT.0 1)B, i) H
X.LT.0 1)B i) H

Ans 14. L

READ*, A , B , C

IF (A .GE. B .AND. B .GE. C) THEN
PRINT*, 'DECREASING ORDER'

ELSEIF(A .LE. B .AND. B .LE. C) THEN
PRINT*, 'INCREASING ORDER'

ELSE
PRINT*, 'UNORDERD'

ENDIF

INTEGER Y
READ*, Y
IF(Y .GE. 1900 .AND. Y .LE. 1999) THEN
IF(Y/4*4.EQ.Y.AND.Y/100*100.NE.Y.OR.Y/400*400.EQ.Y)
PRINT*, 'THE YEAR IS A LEAP YEAR'
ELSE
PRINT*, 'THE YEAR IS NOT A LEAP YEAR'
ENDIF
ELSE
PRINT*, 'THE YEAR IS OUT OF RANGE'
ENDIF
END

THEN

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fourth Solutions to Exercises 52

Ans 16.
1) X.GE. Y 1) X .EQ. Y 111)) X .GT.Y .ORX.LT.Y
Ans 17.

READ*, M , N
IF(M .GE. N) THEN

MAX = M

MIN = N
ELSE

MAX = N

MIN = M
ENDIF

IF(MAX / MIN * MIN .EQ. MAX) THEN
PRINT*, 'DIVISABLE'
ELSE
IF (MAX/2*2 .NE. MAX .AND. MIN/2*2 .NE. MIN) THEN
PRINT*, 'BOTH ODD'
ENDIF
ENDIF
END

\\(\
R
(JO

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fourth Subprogram Terminology 54

4 TOP DOWN DESIGN

Many problems consist of a number of tasks. One good techni
problems is to identify the tasks, decompose each task into su
sub-tasks by smaller and simpler solutions. Ultimately, the main S the sub-tasks
are converted to program code. In this chapter, we int ce th@top” down design
technique based on problem decomposition and thcgfhean ghplement such a
technique.

4.1 Basic Concepts of Top Do esli

Top down design is a technique that reduces the plexity of large problems. The
technique is based on the divide-and-con strategy, wherein the problem tasks are
divided into sub-tasks repetitively. The &I tasks stops when the sub-tasks are
relatively easy to program. The term [vowPefinement or step-wise refinement also
refer to the top-down design technigye.

In FORTRAN, each sub—@sk implemented by a separate module. FORTRAN
uses two types of program meglu utines and functions. These modules are also
called subprograms. A tygffal RQR program consists of a main program with

several subprograms. Egchubprogram represents a sub-task in the top down design
solution.

ess has many advantages:

be independently implemented and tested.

2. S gdeveloped by others can be used. For example, a huge library of
F@N mbprograms known as IMSL (International Mathematical and
Stat Library) i1s available. The IMSL library has efficient, well tested
subffrograms for common problems in matrix manipulation, algebraic

ations, statistical computations, .. etc.

3. The size of the program is reduced, since identical code segments in the main
program are replaced by a single subprogram.

4.2 Subprogram Terminology

There are several new terms with which we should be familiar with while using
subprograms. The program file usually consists of a program called the main program
and all the associated subprograms. These subprograms may appear before or after the
main program. A subprogram is called or invoked by another subprogram or the main

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fourth Function Subprograms 55

program. The calling program passes information to the subprogram through arguments
or parameters. The subprogram returns information to the calling program. In the case
of a function, the information which is a single value, is returned as the value of the
function name. In the case of a subroutine, the information is returned through some or
all the arguments. The arguments that appear in the description of the subprogram are
called dummy arguments and those that appear in the calling statement are called actual
arguments. Every subprogram consists of a header followed by a body. The subprogram
body has a statement called the RETURN statement to return execution control to the
calling program. There may be more than one RETURN statements in a subprogram. A
subprogram ends with an END statement.

4.3 Function Subprograms

A function subprogram is the description of a function consistin

4.3.1 Function Header
The function header is the first statement of the func
type FUNCTION fname (a4

n has the following format:
nts)

argu
where
type is the type for the function name (, INTEGER ..);
fname is the name of the function;

a list of arguments is the optional INgof my arguments.

If the type of the function is
INTEGER or REAL, as i the
variable also apply to functi
empty parentheses () appeqg@with

4.3.2 Function Bogy
The function bogmgs

statements, if @
L

body must gmg
funion bo}l A typical layout of a function is as follows:

10 \fied, the function type is assumed as either
@ &f variables. The rules that apply in naming a

here are no arguments to a function, then the

llar to a FORTRAN program. It consists of declaration
e b&inning, followed by executable statements. Each function
END statement. The RETURN statement must appear in the
pnce. This statement is used to transfer Control from the function

&
TYPE FUNCTION FNAME (A LIST OF DUMMY ARGUMENTS)
DECLARATION OF DUMMY ARGUMENTS AND VARIABLES TO BE USED IN THE
FUNCTION

EXECUTABLE STATEMENTS
FNAME = EXPRESSION

RETURN
END

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fourth Function Subprograms 56

4.3.3 Examples on function subprograms

Example 1: Write a real function VOLUME that computes the volume of a sphere
(4/3m7) given its radius.

Solution:

REAL FUNCTION VOLUME (RADIUS)

REAL RADIUS, PI

PI = 3.14159

VOLUME = 4.0 / 3.0 * PI * RADIUS ** 3
RETURN

END

Example 2: Write a logical function ORDER that checks whether th [nt integer
numbers are ordered in increasing or decreasing order.

Solution:

LOGICAL FUNCTION ORDER (X, Y, Z)
INTEGER X, Y, %

LOGICAL INC, DEC

DEC = X .GT. Y .AND. Y .GT. %
INC = X .LT. Y .AND. Y .LT. Z
ORDER = INC .OR. DEC

RETURN

END

Example 3: Write a function subprogram wte tlZe function f(x) defined below.
f(x)=2x*+4x +2 if X
f(x)=0 if 5
fx)=3x+1 if >
*

Solution: . :

FUNCTION F (X)
REAL F, X
IF (X .LT. 5) THEN
F =2 %X **2 + 4 * X + 2
ELSEIF (X .EQ. 5) THEN

F =20
ELSE
F=3*X+1
ENDIF
RETURN
END
4.3. nction Call

Let us consider a program consisting of a main program and a function subprogram.
The execution of the program begins with the main program. For each call to a function,
control is transferred to the function. After the function is executed, the RETURN
statement ensures that control is transferred back to the calling program. The execution
of the main program then resumes at the location the function is called.

Example: In the following two tables, correct and incorrect function calls to the
functions defined in Examples 1, 2 and 3 are given. We assume that in the calling

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fourth Function Subprograms 57

program the function names VOLUME, F are declared as REAL, and ORDER as
LOGICAL. We also assume A = 5.0, B = 21.0, where A and B are real numbers:

Examples of correct function calls:

Function Call Function Value

ORDER(3, 2, 4) .FALSE.

ORDER(3, 4 * 3, 99) .TRUE.

F(A) 0.0

F(3 + F(2.0)) 64.0

VOLUME(B) 38808.0

F(A +B) 79.0

Examples of incorrect function calls:

Incorrect Error Message

Function Call
ORDER(3.0, 2, 4) Argument | referenced as real but defined

F(3.2,3.4) More than one argument to functy
VOLUME(5) Argument 1 referenced as integ
4.3.5 Function Rules
The following rules must be observed in writing p ith function subprograms:
e Actual and dummy arguments must matchg type, order and number. The
names of these arguments may or not be the same.
e Actual arguments may be gxpymglo nstants or variable names. Dummy
arguments must be variab a and should never be expressions or
constants.

e The type of the funcon
the function descripig

st be the same in both the calling program and

e The result from (h8unct1
should be stored

e A return state

subprogram, to be returned to the calling program,
tiyfunction name.

ransfers control back to the calling program. Every function

should § ne return statement.
e Th ay be placed either before or after the main program.
o alled or invoked as part of an expression.
A N function cannot call itself.
4.3 mplete Examples on function subprograms

Example 1: The sum of three integer numbers: Write an integer function SUM to sum
three integer numbers. Also write a main program to test the function SUM.

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fourth Function Subprograms 58

Solution:

C MAIN PROGRAM
INTEGER X, Y, Z, SUM
READ*, X, Y, Z
PRINT*, SUM (X, Y, Z)
END

C FUNCTION SUBPROGRAM
INTEGER FUNCTION SUM(A, B, C)
INTEGER A, B, C
SUM = A + B + C

RETURN

END
The execution starts with the reading of variables X, Y and Z in the matf he
execution of the expression SUM(X, Y, Z) transfers control to the i M. The
value of the actual arguments X, Y and Z is passed to the dummy a ts 9B and C

table statement

nt®l to the main
M(X, Y, Z) and

respectively. In the function SUM, execution begins with the fir:
which computes the value of SUM. The return statement
program. The print statement in the main program prints ##€ v
the execution ends. Assume that the input to the above

7 39 |

then the output of the program is a I A

— o

[19 |
Example 2: Reverse a Two Digit Number i 0 digit‘zteger number is to be reversed.
A two digit number ranges between 10 an . Write a function that first checks if the
number is a two digit number and t s number with the digits reversed. The
function should return an error code - the@wrgument is not a two digit number. Write
a main program to test the functi

. L 4
Solution:
The main program invokedl fun&gon SNUM after reading a number. If the value
returned from the functifn 1l , an error message is printed. Otherwise, the number and
its reversed value inted” Notice the use of two RETURN statements in the

<

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fourth Special Cases of Functions 59

INTEGER FUNCTION RVSNUM (NUMBER)
INTEGER NUMBER, RDIGIT, LDIGIT
IF (NUMBER .LT. 10 .OR. NUMBER .GT.99) THEN

RVSNUM = -1
RETURN
ENDIF
LDIGIT = NUMBER / 10
RDIGIT = NUMBER - LDIGIT / 10 * 10
RVSNUM = RDIGIT * 10 + LDIGIT
RETURN
END
C MAIN PROGRAM

INTEGER NUMBER, RVSNUM, RNUM
READ*, NUMBER

RNUM = RVSNUM (NUMBER)

IF (RNUM .EQ. -1) THEN

PRINT*, 'INPUT ERROR : ', NUMBER
ELSE
PRINT*, 'ORIGINAL NUMBER IS ', NUMBER
PRINT*, 'REVERSED NUMBER IS ', RNUM
ENDIF
END
If the input to this program is ‘ v

|78

then the output is: $

ORIGINAL NUMBER IS 78
REVERSED NUMBER IS 87

If the input to this programis .‘ S o

[123 |

. v
then the output is: Al

| INPUT ERROR : 123 |
Note that the actual argum W)ressions. If the function is invoked with the
statement PRINT™*, RVS%4), ®e value 42 is printed.

4.4 Special Ggsks &f Functions

of Rynctions that do not require subprogram description. These
into two groups:

These are predefined functions that are available from the FORTRAN language. Certain
functions, such as the trigonometric functions, are frequently encountered in
programming. Instead of developing them repeatedly in each program, the language
provides these functions. For example, MOD(M,N) is an intrinsic function that requires
two integer arguments M and N. The result of the function MOD is an integer value
representing the remainder when M is divided by N. A list of commonly used intrinsic
functions is given below.

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fourth Special Cases of Functions 60

Function Function Value Comment
SQRT(X) Square Root of X X is a real argument
ABS(X) Absolute Value of X

SIN(X) Sine of angle X Angle is in radians
COS(X) Cosine of angle X Angle is in radians
TAN(X) Tangent of angle X Angle is in radians
EXP(X) e raised to the power X

LOG(X) Natural Logarithm of X X is real

LOG10(X) Logarithm of X to base 10 X is real

INT(X) Integer value of X Converts a real to an integ
REAL(K) Real value of K Converts an integer t
MOD(M, N) | Remainder of M/N Modulo functio

Common Intrinsic Functions

4.4.2 Statement Functions

In engineering and science applications, we frequently gficoun®g fugttions that can be
written in a single statement. For example, f(x)= g+ simple function. In such
cases, FORTRAN allows us to write a statement, furfetion Mgtead of writing a function
subprogram. A statement function is defined 1 inning of a program after
declaration statements. As a non-executable staterMgat, it should appear before any

executable statement. The general form of%men is as follows:
n

fname (a list of arguments) = expresgi

where
fname is the name of't
a list of argument®ig t1A Ml list of dummy arguments; and
expression compyfs [uncg®n value.

The type of the stateme tion may be declared in the declaration statements. If the

type of the function jgnofdec®ed, it is implicitly defined.

tement functions:

hitement function to compute the area of a triangle, given its two

[REAL AREA
AREA (SIDE1, SIDE2,ANGLE) = 0.5 * SIDE1 * SIDE2 * SIN (ANGLE)

EXW Write a statement function to compute the total number of seconds, given
the time tn hours, minutes and seconds.

Solution:

REAL TOTSEC
TOTSEC (HOUR, MINUTE, SECOND) = 3600 * HOUR +60 * MINUTE + SECOND

Example 3: Write a statement function to compute the function f{x,y) = 3x* + 5xy
Solution:

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fifth Subroutine Subprograms 61

REAL F
F(X, Y) = 3 * X **x 2 4+ 5 x X * Y

Example 4: Write a logical statement function to check if three different integer
numbers are in increasing or decreasing order.

Solution:

LOGICAL ORDER
ORDER(X,Y,Z2) = X.GT.Y .AND. Y .GT. Z .OR. X.LT.Y .AND. Y.LT.Z

Example 5: Temperature Conversion: Convert temperatures from one unit into another
using statement functions. Write a main program to test the functions based gn a code.
If the code is 1, convert from centigrade to Fahrenheit. If code is 2, co from
Fahrenheit to centigrade. Otherwise, print an error message.

Solution: n

REAL FTEMP, CTEMP, TEMP, VALUE
INTEGER CODE
C FUNCTION FTEMP CONVERTS FROM CENTIGRADE TO FAHRENHEIT

FTEMP (TEMP) = TEMP * 9 / 5 + 32
C FUNCTION CTEMP CONVERTS FROM FAHRENHEIT TO CENTIGRADE
CTEMP (TEMP) = (TEMP - 32) * 5 / 9

READ*, CODE, VALUE
IF (CODE .EQ. 1) THEN

PRINT*, VALUE , ' C = ' , FTEMP(VALUE), ' F'
ELSEIF (CODE .EQ. 2) THEN

PRINT*, VALUE , ' F = ' , CTEMP(VALUE), ' C'
ELSE

PRINT*, 'INPUT ERROR'
ENDIF
END

The statement functions FTEMP ag@hC P‘convert the argument value to Fahrenheit
and centigrade respectively.’The en functions are placed immediately after the
declaration statements. The ygaRgs PIWE and VALUE are read. Based on the value
of CODE, the appropriat t&nt ction is invoked and the converted value is
printed.

4.5 Subro

A function prod
produce mg
resu

bprograms

result. In many instances, we would like a subprogram to
¢ result. Subroutines are designed to produce zero, one or many
pnsists of a subroutine header and a body.

ubroutinc®®iffer from functions in the following ways:
A giibroutine may return a single value, many values, or no value.

e To return results, the subroutine uses the argument list; thus, the subroutine
argument list consists of input arguments and output arguments.

e Since the results are returned through arguments, a subroutine name is used for
documentation purposes only and does not specify a value.

e The general form of the subroutine header is as follows:

SUBROUTINE SNAME (a list of dummy arguments)

where

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fifth Subroutine Subprograms 62

SNAME is the name of the subroutine; and
a list of dummy arguments is optional.

e A subroutine is called or invoked by an executable statement, the CALL
statement. The general form of the statement is as follows:

CALL SNAME (a list of actual arguments)

A subroutine is similar to a function in several ways. The subroutine actual and
dummy arguments must match in type, number and order. At least one RETURN
statement must be present to ensure transfer of control from a subroutine to the calling
program.

Consider a program that consists of a subroutine and a main prog
CALL statement in the main program, control is transferred to the s
subroutine is executed, the RETURN statement ensures that contr:

to the calling program, to the statement immediately following t statement.
4.5.1 Examples on Subroutine Subprogra
Example 1: Write a subroutine that exchanges the val arguments.

Solution: ‘

SUBROUTINE EXCHNG (NUM1, NUMZ2)
REAL NUM1, NUM2, TEMP
TEMP = NUM1

NUM1 = NUM2
NUM2 = TEMP
RETURN

The subroutine EXCHNG can be 'N}%ing the CALL statement. An example
illustrating a call to the subr%utin is given below:

as real in the calling program and have the
C statement

Assume the variables X,
values 3.0 and 8.0 respecti

after execution will e the value of X and Y. During the execution of the CALL
acttRl argument X is passed to the dummy argument NUMI and
ment Y is passed to the dummy argument NUM?2. At this point,
is transferred to the subroutine EXCHNG. The subroutine

variable Y would be 3.0.

Example 2: Write a subroutine that takes three different integer arguments X, Y and Z
and returns the maximum and the minimum.

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fifth Subroutine Subprograms 63

Solution:

SUBROUTINE MINMAX (X, Y, Z, MAX, MIN)
INTEGER X, Y, Z, MAX, MIN

MIN = X

MAX = X

IF (Y .GT. MAX) MAX =Y
IF (Y .LT. MIN) MIN =Y
IF (Z .GT. MAX) MAX = Z
IF (z .LT. MIN) MIN = Z
RETURN

END

Examples illustrating calls to the subroutine MINMAX is given below:

Example 3: Assume the variables A, B, C are declared as integer
program and have the values 4, 6, 8 respectively. Also assume that IN are
integer variables. After the following CALL statement
| CALL MINMAX (A, B, C, MAX, MIN) |
, B, C) and the

the names of the

is executed, the value of MAX will be 8 (the maximum o

value of MIN will be 4 (the minimum of variables A, B

actual arguments may be similar or different from th

but the type must be the same.

Example 4: [f the following CALL statement

| CALL MINMAX (C+4, -1, A+B, MAX, MIN) |
v

is executed, the value of MAX will be 12 aXlthe value of MIN will be -1, since the first

three actual arguments in the CALLgstai®geny are evaluated to 12, -1 and 10

respectively. Note here that the actu gumgnts can be expressions.

Example S: Sum and Average: Viglg aQgbroutine to sum three integers and compute
their average. The subrouting shé @ kirn the sum and average of the three numbers.

Write a main program to tes
Solution:

c MAIN PROGRAM
INTEGER X, Y, 7, TOTAL
REAL AVERAG
READ*, X, Y, Z
CALL SUBSUM (X, Y, Z, TOTAL, AVERAG)

PRINT*, 'TOTAL IS ', TOTAL
PRINT*, 'AVERAGE IS ' , AVERAG
END

€ SUBROUTINE SUBPROGRAM

SUBROUTINE SUBSUM(A, B, C, TOTAL, AVG)
INTEGER A, B, C, TOTAL
REAL AVG

TOTAL = A + B + C
AVG = TOTAL / 3.0
RETURN

END

The subroutine SUBSUM has three dummy arguments A, B, C and returns two results,
the value of the fourth argument TOTAL and the fifth argument AVERAG. The CALL
statement in the main program invokes the subroutine.

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fifth Subroutine Subprograms 64

Arguments X, Y, Z, TOTAL and AVERAG in the main program are the actual
arguments. Note that, before the subroutine is called, arguments X, Y and Z have values
and arguments TOTAL and AVERAG do not have a value. Arguments A, B, C,
TOTAL and AVERAG in the subprogram are the dummy arguments. X, Y and Z are
input arguments, TOTAL and AVERAG are output arguments.

The execution starts with the reading of variables X, Y and Z in the main program.
The execution of the CALL statement transfers control to the subroutine SUBSUM.
The value of the actual arguments X, Y and Z is passed to the dummy arguments A, B
and C respectively. Since TOTAL and AVERAG in the main prograg are not
initialized, no value is passed to the corresponding arguments in the subprog In the
subroutine SUBSUM, execution begins with the first executable s

computes the value of argument TOTAL. The next statement com average of
the three arguments. The return statement returns control to the mat , >

The values of arguments A, B, C, TOTAL and AVERA subroutine are
passed back to the arguments X, Y, Z, TOTAL and AV G 1 ain program

respectively. The print statement in the main program of TOTAL and
AVERAG, and the execution ends.

If the input to this program is

[20, 60, 40

then the output is: t

TOTAL IS 120
AVERAGE IS 40.0000000

Example 6: Integer and Real Part. M The integer and decimal parts of a
real number are to be separated. For BgmpM if the number is 3.14, the integer part is
3 and the decimal part is 0.14. routine SEPNUM to separate the real and
integer parts. *

Solution: J \

C SUBROUTINE SUBPROGRAM
SUBROUTINE SEPNUM (NUMBER, IPART, RPART)
REAL NUMBER, RPART
INTEGER IPART
IPART = INT (NUMBER)
RPART = NUMBER - IPART
RETURN
END
C MAIN PROGRAM
REAL NUMBER, PART2
INTEGER PART1
READ*, NUMBER
CALL SEPNUM (NUMBER, PART1, PART2)

PRINT*, ' INTEGER PART OF ', NUMBER, ' IS ', PART1
PRINT*, ' DECIMAL PART OF ', NUMBER, ' IS ', PART2
END

The subroutine has three dummy arguments: argument NUMBER represents the real
number to be separated, argument IPART is the integer part of NUMBER and argument
RPART represents the real part of the number.

If the input to this program is

[57.231

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fifth Exercises 65

then the output is:

INTEGER PART OF 57.2310000 IS 57
DECIMAL PART OF 57.2310000 IS 0.2310000

If the subroutine SEPNUM is invoked with the statement

| CALL SEPNUM(3.14, PART1, PART2)

then the value of PART1 is 3 and value of PART?2 is 0.14.

4.6 Common Errors in Subprograms

There are several common errors that occur in the use of subprograms.
such errors through an example. The following program computes the ne
the current salary and the number of years of service. If the number o
than five, the salary is to be incremented by 8%, otherwise, the i 4%. The
program uses a function INCSAL to compute the new salary. Thgre veral®errors in
the program.

When the program is executed, the following error mes appe

o Error #1: INCSAL is an unreferenced symbol. tungti 1d return a single
result stored in the function name. But in fufcti CSAL, the function name
INCSAL is not assigned any value.

o Error #2: Function INCSAL referenced ger but defined to be real.

The type of the function name in the main prO®gam is, by default, integer but its
type in the function definition is reQ)

C FUNCTION SUBPROGRAM
REAL FUNCTION INCSAL (SALARY, YEARS)
REAL SALARY, NSAL
INTEGER YEARS
IF (YEARS .GT. 5) THEN
NSAL = SALARY * 8 / 100 + SALARY
ELSE
NSAL = SALARY * 4 / 100 + SALARY
ENDIF
END
C MAIN PROGRAM
REAL SALARY, YEARS
READ*, SALARY, YEARS
PRINT*, INCSAL (SALARY, YEARS)
END

ent does not match with its type in function subprogram. Mismatch of
uments 1S a common error in calls to both subroutines and functions.

e Error #4: RETURN statement is missing. The RETURN statement is missing
in function INCSAL. This error may not be reported by many compilers.

ErRgr #J) Ar@ument number 2 in call to INCSAL - real argument was passed
but ger argument expected. The type of argument number 2 in the calling
st

g

4.7 Exercises

1. (a) Which of the following statement(s) is (are) FALSE?
1. A function may contain more than one RETURN statement.
2. A subroutine may return one value, many values, or no value.

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fifth Exercises

66

3. A subroutine cannot call itself in FORTRAN.

4. The statement function is a non-executable statement.
5. A function may return more than one value.

6. A program may contain more than one subprogram.
7. A subroutine cannot call another subroutine.

8. The order and type of arguments in a subroutine call and the corresponding

subroutine statement must be the same.
9. Use of subroutines increases the complexity of programming.
10.A function transfers results back to the calling program in the argument
2. What is printed by the following programs ?

1. INTEGER A, B, X, Y, Z, F
A =2
B =3
X = F(4, A)
Y =B * 3
7 = F(Y, X)
PRINT*, X, Y, B, Z
END

INTEGER FUNCTION F (X,Y)
INTEGER X, Y, Z

only.

Z = 2*Y

F = X+7Z

RETURN

END

. A-n_ISL_A

2. INTEGER OP

REAL X, Y, CALC

READ*, X, OP, Y

PRINT*, CALC (X, OP, Y)

READ*, X, OP, Y

PRINT*, CALC (X, OP, Y)

END

REAL FUNCTION CALC (ARG1l,0P,ARG2)

INTEGER OP

REAL ARGl, ARG2

IF (OP .EQ. 1) THEN
CALC = ARGl + ARG2

ELSEIF (OP .EQ. 2) THEN
CALC = ARGl - ARG2

ELSE
CALC = 0

ENDIF

RETURN

END

- K
Assume the input is

1.0,5,7.0
5.0,2,4.0

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fifth Exercises

67

LOGICAL DIV
INTEGER N,
READ*, N, J
IF (DIV (N, J))THEN
PRINT*, 'YES'
ELSE
PRINT*, 'NO'
ENDIF
END
LOGICAL FUNCTION
INTEGER N, J
DIV=N-N/J* J .EQ.
RETURN
END

J

DIV (N, J)

0

Assume the input is

18 4

4. INTEGER K ,
K =1
PRINT*,
END
INTEGER FUNCTION EVL
INTEGER M, K

K =2
EVL =
RETURN
END

EVL

EVL (K), K

(M)

M * K

INTEGER A, B

REAL FUN

READ*, A, B

A = FUN(A, B)

B = FUN(B, A)
PRINT*, FUN (A, B)
END

REAL FUNCTION FUN (X, Y)
INTEGER X, Y

FUN = X ** 2 4+ 2 * Y
RETURN

END

Assume the inpujfy, ‘

1, 2

A —"

6. INTEGER A, B, C
G(A,B,C A
READ*,
PRINT*,

END

*

G
* B-4 * C
€

+ B, B+ C,

)
A, B,
G(A

C + A)

Assumﬁe input is

4 5 3

7. LOGICAL F
INTEGER X, Y,
F(X, Y, 2) .GT.
) PRINT*,
) PRINT*,

) PRINT*,

Y .AND.

X .GT. 2z
X
Y
Z

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fifth Exercises

68

Assume the input is

[10 30 5

8. INTEGER A,B,P,Q, G
G(A,B) = A*A + B
READ*, P, Q
A=1
B =2
PRINT*, G(P,Q), G(Q,P), G(P+2, Q+2)*G(B,A)
END

Assume the input is

| 2 3

9. LOGICAL FUNC
INTEGER K, L
FUNC (K,L) = K .GE. L
READ*, X, L
IF (FUNC (K,L)) THEN

SUM = J + K + M
FUN = SUM /3.0
RETURN

END

INTEGER FUN, FUS, J,
FUS(J, K) = J * K /
PRINT*, FUS (FUN(2, 3, 4), FUN(5, 6, 7))
PRINT*, FUN(FUS(2, 3), FUS(4, 5), FUS(6, 7))
END

K
2

PRINT*, K
ELSE
PRINT*, L

ENDIF

END
Assume the input is I (
80 90

A N __________ 4

10. INTEGER K, I

K = -9

L = 10

PRINT*, MOD (ABS (K),L)

END
11. REAL A, B, DIST, X, Y

DIST (X,Y) = SQRT(X ** 2 + Y ** 2)

READ*, A, B

PRINT*, DIST(A - 3.0, DIST(A, B) - 6.0)

END

.

12. INTEGER FUNCTION FUN (J, K, M)

REAL SUM

Assume the input is

| 6.0 8.0

13. REAL F, G, A, B, X, Y
F(A , B) = A + B
G(X) = X ** 2
READ*, Y
PRINT*, G(Y), G(F(Y, Y + 2))
END

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fifth Exercises

Assume the input is

[3.0

14. LOGICAL COMP
REAL X, Y, Z, A, B, C
COMP (A, B, C) GE. B .AND. A .GE. C
READ*, X, Y, Z

I
>

IF (COMP(X, Y, 7)) PRINT*, X

IF (COMP(Y X, 7)) PRINT*, Y

IF (COMP(Z, X, Y)) PRINT*, 7

END
Assume the input is &
[35.0 90.0 65.0
15. INTEGER A,B,C

A=1

B = 2

C =3

PRINT*, A, B, C

CALL CHANGE (A, B)
PRINT*, A, B, C

END

SUBROUTINE CHANGE (A, B)
INTEGER A,B,C

C =B

B =A+ B

A = C

RETURN

END

- N .

16. INTEGER TOT

REAL A, B

A = 5.5

B =4.5

CALL ADD (A, B, TOT)
PRINT*, TOT

END

SUBROUTINE ADD (X, Y, SUM)
INTEGER SUM

REAL X, Y

IF (X.LT.Y) THEN
SUM = X + Y

ELSE

SUM = X - Y
ENDIF

RETURN

END

L \ Y

17. INTEGER JJ
JJ =1
CALL TRY1 (JJ, 3)
CALL TRY1 (JJ,4)
CALL TRY1 (JJ,5)
PRINT*, JJ
END
SUBROUTINE TRY1 (X,Y)
INTEGER X,Y,TRY2, N

TRY2 (N) = N-3
X = TRY2 (Y)+2*X
RETURN

END

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fifth Exercises

70

18.

INTEGER X, Y, H
H=2

CALL K (X,Y)
PRINT*, H, Y, X
END

SUBROUTINE K (H, Y)
INTEGER H, Y
REAL X

READ*, H, Y
H=H / (Y+H)

Y = H+3

X = Y+2/3
PRINT*, H, Y, X
RETURN

END

Assume the input is

53 2

19.

END

SUBROUTINE F (A, B)
REAL A, B

CALL G (B,2)
B=2A+8B
A=A-B

RETURN

END

SUBROUTINE G (C, D)
REAL C, D
C=0C+D

D=2C - D
RETURN
END

20.

INTEGER JJ

JJ =1

CALL TESTI1
PRINT*, JJ

END

SUBROUTINE TESTI1
INTEGER JJ

JJ = 2

CALL TEST2
RETURN

END

SUBROUTINE TEST?2
INTEGER JJ

JJ 3

RETURN

END

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fifth Exercises

71

21. REAL A, C

A =05

CALL SUBPRO (A, C)

PRINT*, A, C

END

SUBROUTINE SUBPRO (A, B)

REAL A, B, C, X

C(X) = X*2-2

B = C(A)

RETURN

END

o

22. SUBROUTINE CHANGE (W,X,Y,Z)

INTEGER W,X,Y,Z

W =X
X =Y
Y = Z
Z =W
RETURN
END

INTEGER A, B

READ*, A, B

CALL CHANGE (A * 2,
PRINT*, A * 2, B *
END

B * 3, A, B)
3

. . ‘
Assume the input is

13

4

a v

23. INTEGER X, Y

X =3

Y = X*3

PRINT*, X, Y

CALL CHANGE (X,Y)

PRINT*, X, Y

END

SUBROUTINE CHANGE (X, Y)

INTEGER X, Y

X =X+ 1

Yy =X -1

PRINT*, X, Y

RETURN

END

€« 3\ °V

24. LOGICAL FLAG

REAL X, Y

FLAG = .TRUE.

READ*, X, Y

CALL LOGIC (X, Y, FLAG)

PRINT*, X, Y, FLAG

END

SUBROUTINE LOGIC (FLAG, X, Y)

LOGICAL Y

REAL X, Y

IF (.NOT. Y) THEN
FLAG = X**2+FLAG**2

Y = .NOT. Y
ELSE

FLAG = (FLAG + X)
ENDIF
RETURN

END

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fifth Exercises

72

Assume the input is

4 5
25. REAL A, B, C
READ*, A,B
CALL FIRST (A,B,C)
PRINT*, A,B,C
END
SUBROUTINE FIRST (X,Y,Z)
REAL X, Y, Z
X =X + Y
Y =Y - X
CALL SECOND (X, Y, Z)
RETURN
END
SUBROUTINE SECOND (N,M, L)
REAL N, M, L
L = THIRD (N,M)
RETURN
END
REAL FUNCTION THIRD (J,K)
REAL J,K
THIRD = J - K
RETURN
END
Assume the input is \D

1 1

26. INTEGER A, B
LOGICAL FLAG
READ*, A, B
FLAG = A .GT. B
CALL SUB(A, B)
PRINT*, A, B, FLAG
END
SUBROUTINE SUB (A, B)
INTEGER A, B, T
LOGICAL FLAG
T = A
A =B
B =T
FLAG = A .GT. B
RETURN

27. SUBROUTINE COMP (M , N)
INTEGER M, N
M=M+ N
N=M+N
RETURN
END
INTEGER M, N
READ*, M, N
CALL COMP (
PRINT*, M,
END

M, N)
N

Assume the input is

1 2

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fifth Exercises

73

28. SUBROUTINE MIDTERM (A, B)
INTEGER A, B, C
IF (A . LT. B) THEN

C =A

A =B

B = €
ENDIF
RETURN

END

INTEGER A, B, C
READ*, A, B, C
PRINT*, A, B, C
CALL MIDTERM (B, A)
PRINT*, A, B, C

END

Assume the input is

17 23 31
29. INTEGER B, C
REAL A

READ*, A, C

CALL BEST (A, REAL(C), B)

PRINT*, A, B, C

CALL BEST (A, B + 2.0 , C)
PRINT*, A, B, C

END

SUBROUTINE BEST (ONE, TWO, THREE)
REAL ONE, TWO

INTEGER THREE

THREE = ONE + TWO

RETURN

END

.] A J
Assume the input is Al
l9.5, 4
e A ¥ 7 A\

30. REAL X, Y, A, B

F(A, B) =A / B * 2

CALL MYSUB(F (4.0, 1.0), X, Y)

PRINT*, X, Y, F(X, X)

END

SUBROUTINE MYSUB (X, Y, Z)
REAL X, Y, 7
IF (X .LT. 0.0) THEN
Z = X
ELSEIF (X .EQ. 0.0) THEN
7 =X+ 2.0

ELSE

Z =X/ 2.0
ENDIF
Y =72 * X
RETURN
END

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fifth Exercises

74

31. INTEGER NUM1, NUM2
READ*, NUM1, NUM2
CALL EXCHNG (NUM1,
PRINT*, NUM1, NUM2
END
SUBROUTINE EXCHNG
INTEGER NUM1, NUM2,
LOGICAL COND
IF (.NOT. COND (NUM1,
TEMP = NUM1
NUM1 = NUM2
NUM2 = TEMP
ENDIF
RETURN
END
LOGICAL FUNCTION COND (X, Y)
INTEGER X, Y
COND =X .GE.
RETURN
END

NUMZ2)

(NUM1,
TEMP

NUM2)

NUM2)) THEN

0 .AND. Y .GT. X

Assume the input is

PS. N T

[3, -2

3. Which of the following functions may be us
numbers K and M?

ed t 1ﬁ&max1mum of two integer

A. INTEGER FUNCTION MAXA (K, M)

INTEGER K, M

MAXA = K

IF (K.GT.M) MAXA = K

RETURN

END

. .

B. INTEGER FUNCTION MAXC (K, M)

INTEGER K, M

IF (M.GE.K) THEN

MAXC = M
ELSE
MAXC = K

ENDIF

RETURN

END

d N N

€. INTEGER FUNCTION MAXB (K, M)

INTEGER K, M

MAXB = K

IF (M.GT.K) MAXB = M

RETURN

END

4. erﬁ logical function subprogram FACTOR that takes two arguments and checks

if the first argument is a factor of the second argument. Write a main program to test

the function.

5. Write a function subprogram to reverse a three digit number. For example, if the

number is 243, the function returns 342. Write a main program to test the function.

6. Write a function subprogram called AREA to compute the area of a circle. The

argument to the function is the diameter of the circle. Write a main program to test

the function.

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fifth Exercises 75

7. Write a logical function subprogram that checks whether all its three arguments are
non-zero. Write a main program to test the function.

8. Write the functions in problems 4, 5, 6, and 7 as statement functions.
9. Consider the following statement function IXX (J,K) = J-J/K*K. Which one of the
following intrinsic (built-in) functions is the same as the function IXX ?
i) MOD
i) MAX
iii) MIN
iv) SQRT
10. Rewrite the following function as a STATEMENT FUNCTION.

A. REAL FUNCTION AREA (CIRCUM)
REAL CIRCUM, RADIUS, PI
PI = 3.14159
RADIUS = CIRCUM/ (2.0*PI)
AREA = RADIUS **2*PI
RETURN
END

B. REAL FUNCTION X (A, B, C, D)
Y = A **% 2 - B ** 2
7 =C ** 3 + 1 / D ** 2
X =Y/ 7%
RETURN
END

. 4‘

C. REAL FUNCTION AREA (R)
AREA = 2 * 3.14 * R ** 2
RETURN
END

11. Write a function subplrov Wat computes the cost of postage according to
the following: SR 0.5 ,2ht @less than an ounce, SR 0.10 for each additional

ounce, plus a SR 5 charge if the customer wants fast delivery. The arguments
to the function t of the package and a logical variable FAST indicating
in program to test the function.

ram that takes the three sides of a triangle and returns the
C. For a right triangle, then the function returns an integer value 1;

type u. J
iangle, the value returned is 2; for an equilateral triangle, the
functlo s a value 3; otherwise, a value 0 is returned.
13 ich gf the followmg functions return the maximum of the integers K, L and M?

INTEGER FUNCTION F1 (K,L,M)
INTEGER K, L, M
F =K

IF (F .ILT. L) F = L
IF (F .LT. M) F = M
Fl = F

RETURN

END

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fifth Exercises 76

IT.

INTEGER FUNCTION F2 (K, L, M)
INTEGER K, L, M
IF (K .GE. L .AND. K .GE. M) THEN

F2 = K

ELSEIF (L .GE. M) THEN
F2 = L

ELSE
F2 = M

ENDIF

RETURN

END

IITI. INTEGER FUNCTION F3 (K,L,M)

LOGICAL F4
INTEGER K, L, M
F4(K,L,M) = K .GE. L .AND. K .GE. M

K
IF (F4(K,L,M)) F3 = K
IF (F4(L,K,M)) F3 = L
IF (F4(M,L,K)) F3 = M
RETURN
END

14. Given the following program which has some errorCV

INTEGER FUNCTION TEST (A, B)

X = (A + B) ** 2

Y =B * 2

RETURN

END

REAL TEST

PRINT*, TEST (1, 2, 3)
END

Which of the following statementS{g corgt?

I. Function name TEST is of ty®gutc®gr in function description but is a real in the
calling program. L 4

II. Function name TEST j N a value in the function description.
III. Argument types matchi.
la

IV. The number gfact ments is more than the number of dummy arguments.

15. Rewrite the fmn broutine as a function subprogram.

SUBROUTINE DIVIDE (M, N, FACTOR)
LOGICAL FACTOR

INTEGER M, N

IF (N /M * M .EQ. N) THEN

FACTOR = .TRUE.
ELSE

FACTOR = .FALSE.
ENDIF
RETURN

END

16. Rewrite the following function subprogram as a subroutine. (Hint: The statement

function is part of the function subprogram).

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fifth Solutions to Exercises 77

REAL FUNCTION SO (A, B, C)
REAL A, B, C, FUN

FUN (A, B, C) =A / B + C

SO = FUN (A, B, C) / FUN (C, B, A)
RETURN

END

17. Write a subroutine that takes three arguments A, B, C and returns the arguments in
increasing order. Write a main program to test the subroutine.

18. Write a subroutine that takes a numeric grade of a student and prints the letter grade
based on the following policy:

numeric grade | letter grade
above 90 A
above 80 B
above 70 C
above 60 D
below 61 F

19. Write a subroutine that computes and getulhs th@ydiameter, area, and the
circumference of a circle given its radius.

20. Write the functions in problems 4, 5, 6, and 7 as s

21. Write a subroutine subprogram that tak@gthe three sides of a triangle and prints one
of the following types of the triguglgmgehNggngle, isosceles triangle, or equilateral
triangle.

4.8 Solutions to Exe S

Ans 1. \
Statements 5, ¢, nd are FALSE.

Ans 2.

53.0000000
44

30
7011 21 5

90

9
5.0000000

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fifth Solutions to Exercises 78

11
9.0000000 64.0000000
90

1 23
2 3 3

12

0 3 3.0
2 3 0

-4.0 5.0 :‘
1
5.0 8.0
8 36

39
4 3
4 3

90 50 T

2.0 -1.0 3.0

3 6T &
3 5

17 23 31

17 @23

9.500000 \
9.50800008% 17 24
32.00000008. 4.0000000 2.0000000
Ans 3.

OX

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fifth Solutions to Exercises

Ans 4.
LOGICAL FUNCTION FACTOR (AR1, AR2)
INTEGER AR1, AR2
IF (AR2 / ARl * AR1 .EQ. AR2)THEN
FACTOR = .TRUE.
ELSE
FACTOR = .FALSE.
ENDIF
RETURN
END
C MAIN PROGRAM

LOGICAL FACTOR
INTEGER AR1, AR2

READ*, AR1, AR2

PRINT*, FACTOR (AR1, AR2)
END

s VA

INTEGER N, REV

READ*, N

IF (N .GE. 100 .AND. N .LT. 1000)THEN
PRINT*, REV (N)

ELSE
PRINT*, 'OUT OF RANGE'

ENDIF

END

INTEGER FUNCTION REV (N)
INTEGER N, K, J, M

K=N/ 100

N =0N-K * 100

J =N/ 10

M=DN-J* 100

REV = M * 100 + J * 10 + K
RETURN

END

Ans 6. Ig ; ;

REAL FUNCTION AREA (D)
REAL D, R

R=D/ 2

AREA = R ** 2 * 3.14
RETURN

END

REAL D

READ*, D

PRINT*, AREA (D)

END

4

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fifth Solutions to Exercises

80

Ans 7.

LOGICAL FUNCTION TEST (A, B, C)
REAL A, B, C

TEST = A .NE.O .AND. B .NE. 0O .AND. C .NE.

RETURN
END
C MAIN PROGRAM

LOGICAL TEST

REAL A, B, C

READ*, A, B, C

IF (TEST (A, B, C)) THEN

PRINT*, 'ALL NUMBERS ARE NON-ZERO'
ELSE

PRINT*, 'NOT ALL NUMBERS ARE NON-ZERO'
ENDIF

END

Ans 8.

AV AN

INTEGER AR1l, AR2, REV
LOGICAL FACTOR

REAL AREA
FACTOR (AR1, AR2) = AR2 / ARl * ARl .EQ.AR2
REV(N) = (N - N / 10 * 10) * 100 +

*(N - N / 100 * 100) / 10 * 10 + N / 100
AREA (D) = (D / 2) ** 2 * 3,14
TEST (A, B, C) = A.NE.O .AND. B.NE.O .AND.

C.NE.O

Ans 9. \

N\

Ans 10.
A. REAL AREA
AREA (CIRCUM) = 3.14159 * (CIRCUM/ (2.0 * 3.14159)) ** 2
B. REAL X
X(A, B, C, D) = (A ** 2 - B ** 2) / (C ** 3 + 1 / D ** 2)
C. REAL AREA
AREA (= 2 *x 3,14 * R **x 2

Ans 11. 0)

REAL FUNCTION COST (WEIGHT, FAST)
LOGICAL FAST
IF (WEIGHT .LT. 1) THEN

COST = 0.5
ELSE
COST = 0.5 + (WEIGHT - 1) * 0.10
ENDIF
IF (FAST) COST = COST + 50
RETURN
END
LOGICAL FAST
READ* WEIGHT, FAST

PRINT*, COST (WEIGHT, FAST)
END

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fifth Solutions to Exercises

81

Ans 12.

INTEGER FUNCTION TTYPE (A, B, C)
REAL A, B, C
C ASSUMING C IS THE LARGEST SIDE

) S

IF (SQRT(C) .EQ. SQRT (A + B)) THEN
TTYPE = 1
ELSEIF(A .EQ. B .AND. A .EQ. C) THEN
TTYPE = 3
ELSEIF(A .EQ. B .OR. B .EQ. C .OR. C .EQ. A) THEN
TTYPE = 2
ELSE
TTYPE = 0
ENDIF
RETURN
END
Ans 13.
I, II and III.
Ans 14.
I, IL, IIT and IV.
Ans 15.
LOGICAL FUNCTION FACTOR (M, N
INTEGER M, N
IF (N / M * M .EQ. N) THEN
FACTOR = .TRUE.
ELSE
FACTOR = .FALSE.
ENDIF
RETURN
END
Ans 16. ‘EL_!;:ISE;.

SUBROUTINE ANS (A,B,C, SO)

REAL A, B, C, SO, FUN
FUN (A, B, C) =A / B + C
SO = FUN (A, B, C) / FUN (C, B, A)
RETURN
END
))

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fifth Solutions to Exercises

Ans 17.

SUBROUTINE ORDER (A, B, C)
INTEGER A, B, C, T
IF (A .GT. B) THEN

T = A
A =3B
B=T
ENDIF
IF (A .GT. C) THEN
T = A
A =C
C=T
ENDIF
IF (B .GT. C) THEN
T =B
B =C
C =T
ENDIF
RETURN
END
INTEGER A, B, C
READ* , A, B, C
CALL ORDER (A, B, C)
PRINT*, A, B, C
END

A4
Ans 18. V‘

SUBROUTINE LGRADE (MARK)
REAL MARK
IF (MARK .GE. 0 .AND. MARK .LE. 100) THEN
IF (MARK .GT. 90) THEN
PRINT*, 'A'
ELSEIF (MARK .GT. 80) THEN

PRINT*, 'B'
ELSEIF (MARK .GT. 70) THEN
PRINT*, 'C'

ELSEIF (MARK .GT. 60) THEN
PRINT*, 'D'
ELSE
PRINT*, 'F'
ENDIF
ELSE
PRINT*, 'MARK OUT OF RANGE'
ENDIF
RETURN
END

SUBROUTINE CIRCLE (R, D, A, C)
REAL R, D, A, C

D=R / 2
A=22.0/7.0*R **x 2
C=2%* 22,0/ 7.0*R
RETURN

END

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fifth Solutions to Exercises

Ans 20.
of problem 4

SUBROUTINE FACTOR (AR1, AR2, FLAG)
INTEGER AR1, AR2

LOGICAL FLAG

FLAG = AR2 / ARl * ARl .EQ. AR2
RETURN

END

of problem 5.

SUBROUTINE FIND (N, REV)
INTEGER N, REV

M =N/ 100

N=N-M* 100

J =N/ 10

K=N-J* 10

REV = K * 100 + J * 10 + M
RETURN

END

of problem 6. GV

SUBROUTINE CIRCLE (D, AREA)

R=0D/2

AREA = 22.0 / 7.0 * R ** 2
RETURN

END

of problem 7. K

SUBROUTINE CHECK (A, B, C, TEST)
LOGICAL TEST

TEST = A .NE. 0 .AND. B .NE. 0 .AND. C .NE. 0
RETURN

END

Ans 21. Jw

SUBROUTINE TTYPE (A, B, C)
REAL A, B, C
C ASSUMING C IS THE LARGEST SIDE
IF (SQRT(C) .EQ. SQRT (A + B)) THEN

PRINT* , 'RIGHT TRIANGLE'
ELSEIF (A .EQ. B .AND. A .EQ. C) THEN
PRINT* , 'EQUILATERAL TRIANGLE'
ELSEIF (A.EQ.B .OR. B.EQ.C .OR. C.EQ.A)THEN
PRINT* , 'ISOSCELES TRIANGLE'
ELSE
PRINT* , 'NONE OF THE OTHER TYPES'
ENDIF
RETURN

END

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fifth Solutions to Exercises 85

5 REPETITION

While writing a program, it may be necessary to execute a stat
statements repeatedly. Repetition is supported in FORTRAN

known as a /oop.

In a repetition construct, a group of statements, w,
called the loop body. A single execution of the
repetition construct must ferminate after a finite nuiiber
of the loop is decided through what is known as t 1
made whether to execute the loop for another Wgration through the termination
condition. In the case of a DO loop, the n r of itera¥ions is known before the loop is
executed; the termination condition checks ther this number of iterations have been
executed. In the case of a WHILE 1 a Wision is made in every iteration.

called an iteration. Every
iterations. The termination

Repetition constructs are very nd €xtensively used in solving a significant
number of programming probl etWs consider the following example as an

illustration of such constructs.
Example : Average Com a%As e that we were asked to write a FORTRAN
program that reads the ga®g of § students in an exam. The program is to compute and
print the average ofathdara®s. Without repetition, the following program may be

considered as a s O
Solution:

REAL X1, X2, X3, X4, X5, X6, X7, X8
REAL SUM, AVG

READ*, X1
READ*, X2
READ*, X3
READ*, X4
READ*, X5
READ*, X6
READ*, X7
READ*, X8

SUM = X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8
AVG = SUM / 8.0

PRINT*, AVG

END

The variable SUM is a real variable in which we store the summation of the grades. The
statements are considerably long for just 8 students. Imagine the size of such statements

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fifth The DO Loop 86

when the number of students is 100. It is highly inefficient to use 100 different variable
names.

From the example above, let us try to extract the statements where repetition occurs.
The reading and assignment statements are clearly such statements. We can do the
reading and addition in these statements, individually, for each grade. The following
repetitive segment can be used instead of the long read and assignment statements :

SUM = 0

REPEAT THE FOLLOWING STATEMENTS 8 TIMES
READ*, X
SUM = SUM + X

In each iteration, one grade is read and then added to the previous gra
iteration, however, there are no previous grades. Therefore, SUM is init
meaning that the summation of the grades is zero, before any grade ' "

finy number of
bove, can be

This repetitive solution is more efficient since it can be udggd
students. By reading the number of students N, the repetitign co
changed, to find the sum of the grades of N students, as f%&

SUM = 0

READ*, N

REPEAT THE FOLLOWING STATEMENTS N TIMES
READ*, X

SUM = SUM + X

The repetition construct above is not written ip the &TRAN language. To implement
this construct in FORTRAN, we can use@fo types of loops: the DO Loop and the
One very basic feature of4@he

WHILE loop.

5.1 The DO Loop

iterations (the number of ti C I
loop execution begins. Thdgeneryfo

p repetitive construct is that the number of
s executed) is known (computed) before the
of the DO loop is:

DO N index = initial, limit, increment
BLOCK OF FORTRAN STATEMENTS
N CONTINUE
The CONTINY en&ndicates the end of the DO loop.

The numb i terations) the loop is executed is computed as follows :
mber es a Do loop is Executed = {MW ‘1
Increment

ed logic of the DO loop is as follows:

e If the increment is positive, the value of the initial must be less than or equal to
the value of the limit. If the increment is negative, the value of the initial must
be greater than or equal to the value of the /imit. Otherwise, the loop will not be
executed. If the values of the initial and the limit are equal, the loop executes
only once.

e In the first iteration, the index of the loop has the value of initial .

e Once the CONTINUE statement is reached, the index is increased or decreased
by the increment and the execution of the next iteration starts. Before each

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fifth The DO Loop 87

iteration, the index is checked to see if it has reached the [limit. If the index
reaches the /imit, the loop iterations stop. Otherwise, the next iteration begins.

Consider the following example as an illustration of the DO loop :

DO 15 K = 1, 5, 2
PRINT*, K
15 CONTINUE

The loop above is executed { 3 1~l+1_ 3 times. Thus, the values index K takes during

the execution of the loop are 1, 3, and 5. Note that the value of K incremegts by 2 in
each iteration. In the beglnnlng, we make sure that the initial is less than the YWt since

the value of the increment is positive. The execution of the loop begins e of
K, which is 1, is printed. The CONTINUE statement returns the g (0]
statement and the execution of the loop takes place for the second value of
K as 3. This continues for the third time with K as 5. Once t on is over, the
control goes back and the index K gets incremented again tg 7, w ore than the

limit. The execution of the loop stops and control trans ement following
the CONTINUE statement. Note that the value of K oug€ide

The following rules apply to DO loops:

e The index of a DO loop must be a valigbk of cit®er INTEGER or REAL

types.
e The parameters of the loop, n , initia® limit, and increment can be
expressions of either INTEGER EAL types. Although it depends on the
nature of the problem bei recommended that the type of the

parameters match the type of t
e The value of the DO Ig

7

cannot be modified inside the loop. Any

attempt to modify ¥4 g the loop will cause an error.

e The increment m ot Wg zergghtherwise an error occurs.

o If the index is a1 er variable then the values of the parameters of the DO
loop will be integer values before execution starts.

x after the execution of the loop is either the value that has
found to exceed the limit (for a positive increment) or the
been decremented and found to be less than the limit (for a
ent).

gh its DO statement. It is possible to branch out of a DO loop before all
iterations are completed. This type of branching must not be used unless
necessary.

e [t is possible to have a DO loop without the CONTINUE statement. The
statement number, which is given to the CONTINUE statement, can be given
to the last FORTRAN statement in the loop, except in the case when the last
statement is either an IF, GOTO, RETURN, STOP or another DO statement.

e In the DO loop construct, in the absence of the increment, the default increment
is +1 or +1.0 depending on the type of the index.

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fifth The DO Loop 88

e In the case when the increment is positive but the initial is greater than the limit,
a zero-trip DO loop occurs. That is, the loop executes zero times. The same
happens when the increment is negative and the initial is less than the /imit.
Note that a zero-trip DO loop is not an error.

e The same continue statement number can be used in both a subprogram and the
main program invoking the subprogram. This is allowed because subprograms
are considered separate programs.

e The parameters of the loop are evaluated before the loop execution begins.
Once evaluated, changing their values will not affect the executing
For an example, consider the following segment. Changing DO loop
inside the loop should be avoided while writing application prog

REAL X, Y

Y = 4.0

DO 43 X = 0.0, Y, 1.5
PRINT*, X
Y=Y+ 1.0
PRINT*, Y

43 CONTINUE

In the above loop, the value of Y which corres
starts with 4. Therefore, and according to the
40-00

n the limit in the DO loop,
we ned earlier, this loop is

parameters (initial, limit, and

1

executed { }1:3 times. The values of

increment) are set at the beginning of the 109 and they never change for any iteration of
the loop. Although the value of Y clianggsi pteration within the loop, the value of
the limit does not change. The followM@ exdgples illustrate the ideas explained above:

5.1.1 Examples on DO

Example 1: Consider the follogi m.
DO 124 M = 1, 100, 0.5
PRINT*, M
124 CONTINUE
PRINT*, M
END

In the above p8
assigned g
mea

e progham then computes and prints the factorial of M.

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fifth Nested DO Loops 89

Solution:
INTEGER M, TERM, FACT
READ*, M
IF (M.GE.0) THEN
FACT = 1
TERM = M
DO 100 M = TERM, 2, -1
IF (TERM.GT.l) THEN
FACT = FACT * TERM
100 CONTINUE
PRINT*, 'FACTORIAL OF ', M, ' IS ', FACT
ELSE
PRINT*, 'NO FACTORIAL FOR NEGATIVES'
ENDIF
END

To compute the factorial of 3, for example, we have to pe
multiplication: 3 * 2 * 1. Notice that the terms decrease by 1

reaches 1. Therefore, the header of the DO loop forces the re
TERM, which represents the number of terms, reaches the 1.

5.2 Nested DO Loops

DO loops can be nested, that is you may havega
However, one must start the inner loop after star
loop before ending the outer loop. It is allowed to ha

to stop when

O lodfyinside another DO loop.
ter loop and end the inner

s many levels of nesting as one

wishes. The constraint here is that inner s must finish before outer ones and the
indexes of the nested loops must be differ e following section presents some
examples of nested DO loops.

5.2.1 Example on Nest ops

Example 1: Nested DO Loog e following program.

DO 111 M =1, 2
DO 122 J =1, 6 , 2
PRINT*, M, J
122 CONTINUE
111 CONTINUE
END

\d .
_The output ﬁh&o} program is:

NNMNNNRRR
gwWwrRrUOWR

Example 2: The above program can be rewritten using one CONTINUE statement as

follows:.
DO 111 M =1, 2
DO 111 J =1, 6 , 2
PRINT*, M, J
111 CONTINUE

END

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fifth The WHILE Loop 90

Notice that both do loops has the same label number and the same CONTINUE
sStatement.

Example 3: The above program can be rewritten without any CONTINUE statement as

follows:
DO 111 M =1, 2
po 111 =1, 6 , 2
111 PRINT*, M, J
END

Notice that the label of the do loop will be attached to the last statement in the do loop.

5.3 The WHILE Loop

The informal representation of the WHILE loop is as follows :

WHILE condition EXECUTE THE FOLLOWING
block of statementS.

In this construct, the condition is checked before executing tements. The
block of statements is executed only if the condition, yghi gical expression,
evaluates to a frue value. At the end of each iter ol returns to the
beginning of the loop where the condition is checked ag®@ Depending on the value of
the condition, the decision to continue for anotheg itcfiati ade. This means that the
number of iterations the WHILE loop makes dep condition of the loop and
could not always be computed before the execution ®gthe loop starts. This is the main

difference between WHILE and DO repetRugfi constructs.

Unlike other programming languggesggacht SCAL and C, standard FORTRAN
does not have an explicit WHILE s eMyfor repetition. Instead, it is built from the
IF and the GOTO statements.

In FORTRAN, the IF-TREN t 1s used to perform the test at the beginning of
the loop. Consider an IF sta‘m, has the following structure :

IF (condition) THEN
block of statements
ENDIF

If the condition g ﬂg‘the block of statements is executed once. For the next
iteration, since @ bd to¥go to the beginning of the IF statement, we require the
GOTO staigmgnt N\ J#¥s the following general form :

GOTO statement number |

A OTO Ment transfers control to the statement that has the given statement
nurNger. Ushg the IF and the GOTO statements, the general form of the WHILE loop
is as S:

n IF (condition) THEN
block of statements
GOTO n
ENDIF

n is a positive integer constant up to 5 digits and therefore, ranges from 1 to 99999. It is
the label of the IF statement and must be placed in columns 1 through 5.

The execution of the loop starts if the condition evaluates to a .TRUE. value. Once
the loop iterations begin, the condition must be ultimately changed to a .FALSE. value,

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fifth The WHILE Loop 91

so that the loop stops after a finite number of iterations. Otherwise, the loop never stops
resulting in what is known as the infinite loop. In the following section, we elaborate
more on the WHILE loop.

5.3.1 Examples on WHILE Loops

Example 1: Computation of the Average: Write a FORTRAN program that reads the
grades of 100 students in a course. The program then computes and prints the average
of the grades.

Solution: o

REAL X, AVG, SUM
INTEGER K
K =0
SUM = 0.0
25 IF (K.LT.100) THEN
READ*, X
K=K+ 1
SUM = SUM + X
GOTO 25
ENDIF
AVG = SUM / K
PRINT*, AVG
END

Note that the variable K starts at 0. The value of ented after the reading of a
grade. The IF condition presents the loop from readiMg any new grades once the 100th
grade is read. Reading the 100th grade cal K to be incremented to the value of 100
as well. Therefore, when the condjtio cked in the next iteration, it becomes
.FALSE. and the loop stops.

ividing the variable SUM by the variable K.

Example 2: The Factorial: s the same as the one discussed in Example 2

of Section 5.2. In this cont eWrNMHMwmm@ﬂWHEEbW
Solution:
INTEGER M, TERM, FACT
READ*, M
IF (M.GE.0) THEN
FACT = 1
TERM = M
3 IF (TERM.GT.1) THEN
FACT = FACT *TERM
TERM =TERM - 1
GOTO 3
ENDIF
PRINT*, 'FACTORIAL OF ', M, ' IS ', FACT
ELSE
PRINT*, 'NO FACTORIAL FOR NEGATIVES'
ENDIF
END

Note the similarities between both solutions. The WHILE loop starts from M (the value
we would like to compute the factorial of) and the condition of the loop makes sure that
the loop will only stop when TERM reaches the value 1.

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

fifth Nested WHILE Loops 92

Example 3: Classification of Boxers: Write a FORTRAN program that reads the
weights of boxers. Each weight is given on a separate line of input. The boxer is
classified according to the following criteria: if the weight is less than or equal to 65
kilograms, the boxer is light-weight, if the weight is between 65 and 85 kilograms, the
boxer is middle-weight and if the weight is more than or equal to 85, the boxer is a
heavy-weight. The program prints a proper message according to this classification for
a number of boxers by reading their weights repeatedly from the input. This repetitive
process of reading and classification stops when a weight of -1.0 is read.

Solution: Q

REAL WEIGHT
READ*, WEIGHT

11 IF (WEIGHT.NE.-1.0) THEN
IF (WEIGHT.LT.0.OR.WEIGHT.GE.400) THEN
PRINT*, ' WEIGHT IS OUT OF RANGE '
ELSEIF (WEIGHT.LE.65) THEN
PRINT*, ' LIGHT-WEIGHT '
ELSEIF (WEIGHT.LT.85) THEN
PRINT*, ' MIDDLE-WEIGHT '
ELSE
PRINT*, ' HEAVY-WEIGHT '
ENDIF
READ*, WEIGHT
GOTO 11
ENDIF
END

the READ statement. The executiorgf 0 ps when a value of -1.0 is read. This
value is called the end marker or thc\§gentirRyl, since it marks the end of the input. A
sentinel must be chosen from outyg ¢ My ge of the possible input values.

*
5.4 Nested WHIL X

WHILE loops may begn®&ed, tNat is you can put a WHILE loop inside another
WHILE loop. However,fpne Wust start the inner loop after starting the outer loop and
end the inner loog b nding the outer loop for a logically correct nesting. (The
nt to the nested DO loop example given earlier.)

Note that in this example, the condition th&sfhe iterations of the loop depends on
n

following program.

M =1
22 IF(M .LE. 2) THEN
J =1
11 IF (J .LE. 6) THEN
PRINT*, M, J
J=J+ 2
GOTO 11
ENDIF
M=M+ 1
GOTO 22
ENDIF
END
The output of the above program is:
1 1
1 3
1 5

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

sixth Examples on DO and WHILE Loops 93

2 1
2 3
2 5

There are two nested WHILE loops in the above program. The outer loop is controlled
by the variable M. The inner loop is controlled by the variable J. For each value of the
variable M, the inner loop variable J takes the values 1, 3 and 5.

5.5 Examples on DO and WHILE Loops

Example 1: Evaluation of Series: Write a FORTRAN program that evaluates the
following series to the 7th term.

N .
2.3
i=1
(Summation of base 3 to the powers from I to N. Assume N h tth 7)
Solution: a \

INTEGER SUM
SUM = 0
DO 11 K = 1, 7
SUM = SUM + 3 ** K
11 CONTINUE
PRINT*, SUM

END
Example 2: Alternating Sequences/ Serie ternatii% sequences, or series, are those
which have terms alternating their signs _fr osjtive to negative. In this example, we

find the sum of an alternating series:

Question: Write a FORTRAN proggamNat eValuates the following series to the 100th
term.
*
1-3+5-7+9-11+13, Q+

Solution:
It is obvious that the rmWgiffer by 2 and start at the value of 1.

INTEGER SUM, TERM, NTERM

SUM = 0

TERM = 1

DO 10 NTERM = 1, 100
SUM = SUM + (-1) ** (NTERM + 1) * TERM
TERM = TERM + 2

10 CONTINUE
PRINT*, SUM
END

NotiMummation statement inside the loop. The expression (-1) ** (NTERM + 1)
is positive when NTERM equals 1, that is for the first term. Then, it becomes negative
for the second term since NTERM + 1 is 3 and so on.
Example 3: Series Summation using a WHILE loop: Question: Write a FORTRAN
program which calculates the sum of the following series :

1 2 3 4 99

—+—+—+—+L +—
2 3 4 5 100

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

sixth Examples on DO and WHILE Loops 94

Solution:
REAL N, SUM
N =1
SUM = 0
10 IF (N.LE.99) THEN
SUM = SUM + N / (N + 1)
N =N+ 1
GOTO 10
ENDIF
PRINT*, SUM
END
In the above program, if N is not declared as REAL, the expression N/(in the

summation inside the loop, will always compute to zero.

Example 4: Conversion of a WHILE loop to a DO loop: Convert thegmioWgg LE
loop into a DO loop.

REAL X, AVG, SUM

INTEGER K

K =20

SUM = 0.0

25 IF (K.LT.100) THEN

READ*, X
K=K+ 1
SUM = SUM + X
GOTO 25

ENDIF

AVG = SUM / K

PRINT*, AVG

END

In the WHILE loop, K starts with t
by 1 in each iteration. The termingigg dition is that the value of K must exceed 99.

In the equivalent program @in @‘

incremented by 1 in each iter K
Solution: Q

The equivalent prografg u a DO loop is as follows:

REAL X, AVG, SUM

INTEGER K

SUM = 0.0

DO 25 K = 0, 99, 1
READ*, X
SUM = SUM + X

25 CONTINUE

AVG = SUM / 100

PRINT*, AVG

END

An important point to note in this example is the way the average is computed. The
statement that computes the average divides the summation of the grades SUM by 100.
Note that the value of the K is 100 because the loop stops when the value of K exceeds
99. Keeping in mind that the increment is 1, the value of K after the loop terminates is
100. However, it is not recommended to use the value of the index outside the DO loop.

It is also important to note that any other parameters such as:

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

sixth Implied Loops 95

| DO 25 K = 200, 101, -1

would also have the same effect. Note that the variable K exits the loop with the value
100 in this case as well.

It is not always possible to convert a WHILE loop into a DO loop. As an example,
consider the WHILE loop in the Classification of Boxers example. There, we cannot
accomplish the conversion because the number of times the WHILE loop gets executed
is not known. It depends on the number of data values before the end marker.

5.6 Implied Loops

Implied loops are only used in READ and PRINT statements. The jmpli op is
written in the following manner :

READ*, (list of variables, index = initial, limit, increment)
PRINT*, (1list of expressions, index = initial, limit, increment)

As in the case of explicit DO loops, the index must be eit
expression. The variables in the READ statement can b e hcluding array
elements. The expressions in the PRINT statement ca of as well. All the
rules that apply to DO loop parameters also apply togniRligl loop parameters. Usage of
implied loops is given in the following examples :

integer or real

Example 1: Printing values from 100 to 87: Th o segment prints the integer
values from 100 down to 87 in a single line.

| PRINT*, (K, K = 100 , 87 , -1)

Output NP

|lOO 99 98 97 96 95 94 93 92 91 90 89 88 87

?

»
s that the value of K decreases from 100 to
is printed. The value of K is printed

Notice that the increment is -1, Wi
87. In each iteration, theg val @

{87—1100—‘+1= 14 times. S&N

value of the index, whi ks in each iteration. Consider the following explicit DO
loop version of the iMuglicQ loop :

gdex of the loop, the value printed here is the

\
DO 60 K = 100, 87 , -1
PRINT*, K
60 CONTINUE

‘Outp: ‘ ‘ ‘

100
99
98

87

The two loops are equivalent except in terms of the shape of the output. In the implied
loop version, the output will be printed on one line. In the explicit DO loop version, the
output will be printed as one value on each line.

Example 2: Printing more than one value in each iteration of an implied loop: The
following segment prints a percentage sign followed by a + sign three times :

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

sixth Repetition Constructs in Subprograms 96

| PRINT*, ('$' , '+' , M =1, 3) |

This produces the following output:
S+5+5+ |

Notice that the parenthesis encloses both the % and the + signs, which means they both
have to be printed in every iteration the loop makes.

Example 3: Nested Implied Loops: An implied loop may be nested either in another
implied loop or in an explicit DO loop. There is no restriction on the number of levels of
nesting. The following segment shows nested implied loops.

| PRINT*, ((K, K=1, 5, 2), L =1, 2)

Nested implied loops work in a similar manner as the nested DO 1
important point to note here is the double parenthesis before the

the value of K to be printed (%w +1=3 iterations. Ho

inside the L loop, the K loop is executed 3 times in e
is printed 6 times. Therefore, the output of the imglicfl versiORyis:

[1 3 5 1 3 5 |

5.7 Repetition Constructs @p\ograms

Subprograms in FORTRAN are S rate programs during compilation.

Therefore, repetition constructs in SHgpro s are given the same treatment as in
programs. The following is a e that shows how repetition is used in
subprograms. *

Example: Count of Integer. ange that are Divisible by a given Value: Write a

function subprogram thqtR€ceiveWwthr®e integers as input. The first and second input
integers make the rangRof Wglues in which the function will conduct the search. The
function searches fc (ntegers in that range that are divisible by the third input
integer. The fun eturig the count of such integers to the main program. The main
program reads s of Ynput. Each line consists of three integers. After each read,

the main pffOONg Is the function, passes the three integers to it and receives the
out, 0 @ | pri®ts that output with a proper message :

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

sixth Exercises 97

Solution:

INTEGER K, L, M, COUNT, J, N

DO 10 J =1, 5
READ*, K, L, M
N = COUNT(K , L , M)
PRINT*, 'COUNT OF INTEGERS BETWEEN',K, 'AND', L
PRINT*, 'THAT ARE DIVISIBLE BY', M, 'IS', N
PRINT*

10 CONTINUE

END

INTEGER FUNCTION COUNT (K , L , M)

INTEGER K, L, M, INCR, NUM, J

INCR =1
NUM = 0
IF (L .LT. K) INCR = -1

DO 10 J = K, L, INCR
IF (MOD(J , M) .EQ. 0) NUM = NUM + 1

10 CONTINUE
COUNT = NUM
RETURN
END
If we use the following input: GV
2 34 2
-15-30 5
70 32 7
0 20 4
-10 10 10
: v
The typical output would be as follows: Y
COUNT OF INTEGERS BETWEEN 2 AND 34
THAT ARE DIVISIBLE BY 2 IS 12
COUNT OF INTEGERS BETWEEN -15 AND -30
THAT ARE DIVISIBLE BY 5 IS 4
COUNT OF INTEGERS BETWEEN 70 AND 32
THAT ARE DIVISIBLE BY 7 IS 6
COUNT OF INTEGERS BETWEEN 0 AND 20
THAT ARE DIVISIBLE BY 4 IS 6
COUNT OF INTEGERS BETWEEN -10 AND 10
THAT ARE DIVISIBLE BY 10 IS 3
Re e (e Wid about the subprogram being a separate entity from the main

ram invow#S it. Accordingly, note the following in the above example:

pr
allowed to use the same statement number in the main program and
programs of the same file. Notice the statement number 10 in both the main
program and the function subprogram

e [t is also allowed to use the same variable name as index of DO loops in the
main program and the subprogram. Notice the variable J in the above

5.8 Exercises
1. What will be printed by the following programs?

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

sixth Exercises 98
1. LOGICAL FUNCTION PRIME (K)
INTEGER N, K
PRIME = .TRUE.
DO 10 N =2, K/ 2
IF (MOD(K , N) .EQ. 0) THEN
PRIME = .FALSE.
ENDIF
10 CONTINUE
RETURN
END
LOGICAL PRIME
PRINT*, PRIME (5), PRIME (8)
END
V= O N
2. INTEGER FUNCTION FACT (K)
INTEGER K, L
FACT = 1
DO 10 L. = 2 , K
FACT = FACT * L
10 CONTINUE
RETURN
END
INTEGER FUNCTION COMB (N , M)
INTEGER FACT
IF (N .GT.M) THEN
COMB = FACT(N) / (FACT (M) * FACT (N-M))
ELSE
COMB = 0
ENDIF
RETURN
END
INTEGER COMB
PRINT*, COMB (4 , 2)
END
3. INTEGER K, M, N
N =0
DO 10 K = -5, 5
N =N + 2
DO 20 M =3, 1
N =N + 3
20 CONTINUE
N =N + 1
10 CONTINUE
PRINT*, N
END

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

sixth Exercises

99

4. INTEGER ITOT, N
READ*, N
ITOT =1

10 IF (N .NE. 0) THEN
ITOT = ITOT * N
READ*, N
GOTO 10
ENDIF
READ*, N
20 IF (N .NE. 0) THEN
ITOT = ITOT * N
READ*, N
GOTO 20
ENDIF

PRINT*, ITOT
END

Assume the input is / \ ’

g O woO N

INTEGER FUNCTION CALC (A, B)
INTEGER A,B,R, K

R =1
DO 10 K=1,B
R = R*A

10 CONTINUE

CALC = R

RETURN

END

INTEGER CALC

READ*, M, N

PRINT*, CALC (M, N)

END

Assume té?lns 'g

EBE

6. INTEGER KK, J, K
KK = 0

2 IF (KK.LE.O) THEN
READ*, J , K
KK = J - K

GOTO 2

ENDIF
PRINT*, KK, J, K
END

Assume the input is

2 3

-1 2

3 3

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

sixth Exercises 100

BN
w o

7. INTEGER K, J
K = 2
25 IF (K.GT.0) THEN
DO 15 J = K, 3, 2
PRINT*, K, J
15 CONTINUE
K=K-1
GOTO 25
ENDIF
END

8. INTEGER N, C
LOGICAL FLAG
READ*, N
FLAG = .TRUE.

C =N *x* 2

22 IF (FLAG) THEN

cC=(C+N) /2
FLAG = C.NE.N
PRINT*, C
GOTO 22

ENDIF

END

Assume the input is v \

|4

9. INTEGER N, K
READ*, N
K = SORT (REAL (N))
33 IF (K*K .LT. N) THEN
K=K+ 1
GOTO 33
ENDIF
PRINT*, K*K
END

Assume the inpuﬁ
| 6

. W

10. INTEGER J, K
DO 10 K = 1,2
PRINT*, K
Do 10 J = 1,3
10 PRINT*, K, J
END

11. INTEGER X, K, M
M= 4
DO 100 K = M ,M+2
X =M+ 2
IF (K.LT.6) THEN
PRINT*, 'HELLO'
ENDIF
100 CONTINUE
END

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

sixth Exercises 101

12. INTEGER SUM, K, J, M

SUM = 0

DO 1 K =1,5,2

DO 2 J =17,-2,-3
DO 3 M = 1980,1989,2
SUM = SUM + 1

3 CONTINUE
2 CONTINUE
1 CONTINUE

PRINT*, SUM

END

13. LOGICAL T, F
INTEGER BACK, FUTURE, K

BACK = 1

FUTURE = 100

T = .TRUE.

F = .FALSE.

DO 99 K = BACK,FUTURE, 5
T = (T.AND..NOT.T) .OR. (F.OR..NOT.F)
F = .NOT.T

FUTURE = FUTURE*BACK* (-1)
99 CONTINUE
IF (T) PRINT*, 'DONE'
IF (F) PRINT*, 'UNDONE'
END

2. Find the number of iterations of the WHIL@ in each of the following
programs: o2

1. INTEGER K, M, J
K = 80
M =5
J = M-M/K*K
10 IF (J.NE.O) THEN
PRINT*, J
J = M-M/K*K
M=M+1
GOTO 10
ENDIF
END

N,

2. REAL W
INTEGER L
W=2.0
L=5%*TW
100 IF (L/W.EQ.((L/4.0)*W)) THEN
PRINT*, L
L =1+ 10
GOTO 100
ENDIF
END

3. Which of the following program segments causes an infinite loop?

(1) J =0
25 IF (J.LT.5) THEN
J=J+ 1
GOTO 25
ENDIF
PRINT*, J

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

sixth Exercises

102

II. J=0
25 IF (J.LT.5) THEN
J=J+1
ENDIF
GOTO 25
PRINT*, J
III. X = 2.0
5 X =X + 1
IF (X.GT.4) X =X + 1
GOTO 5
PRINT*, X
IV. M =2
K =1
10 IF (K.LE. M) THEN
20 M=M+ 1
K=K+ 2
GOTO 20
ENDIF
GOTO 10
m
v X =1
4 IF (X.GE.1) GOTO 5
5 IF (X.LE.1) GOTO 4
| "
Vi. J =1
33 IF (J.GT.5) THEN
GOTO 22
ENDIF
PRINT*, J
J=J+1
GOTO 33
22 STOP
4. Convert the following WﬁM DO loops :
I. ID = N
10 IF (ID.LE.891234) THEN
PRINT*, ID
ID = ID + 10
GOTO 10
ENDIF
€« 2 7V
II. L =1
SUM =0
3 IF (L.LE.15) THEN
g = o
2 IF (J.LE.O) THEN
SUM =SUM+J
J=J+1
GOTO 2
ENDIF
L = L+3
GOTO 3
ENDIF
PRINT*, SUM

5. What will be printed by the following program :

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

sixth Exercises

103

INTEGER ISUM, K, N
ISUM = 0
READ*, N
DO 6 K = 1,N
ISUM = ISUM +(-1)** (K-1)
6 CONTINUE
PRINT*, ISUM
END
If the input is:
a.
E
b.
|8
c.
[51 |
d. . \\
|98 |
6. The following program segments may or may not e M‘[ify the errors (if
any). ‘
1. INTEGER K, J
DO 6 K = 1,4
DO 7 J = K-1,K
PRINT*, K
6 CONTINUE
7 CONTINUE
END
2. INTEGER K, J
K =10
J = 20
1 IF (J.GT. K) THEN
K = K/2
GOTO 1
ENDIF
END

7. Write a FORT; mgram to calculate the fo

200 E(_l)k ks_flj

2.

k=1
8. Write a p
ber
ve

etween the two integers.(Note: M may

llowing summation:

m that reads the values of two integers M and then prints all the odd

be less than or equal to N or vice-

9. Write a program that prints all the numbers between two integers M and N which are
divisible by an integer K. The program reads the values of M, N and K.

10. Write a program that prints all the perfect squares between two integers M and N.

Your program should read the values of M and N.

of an integer, example 25 =5 x 5)

(Note: A perfect square is a square

11. Using nested WHILE loops, print the multiplication table of integers from 1 to 10.

Each multiplication table goes from 1 to 20. Your

output should be in the form :

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

sixth Solutions to Exercises 104

1 *1 =1

1%2=2

1 % 20 = 20

10 * 1 = 10
- 20

10 * 2

10 * 20 = 200

12. Rewrite the program in the previous question using nested DO loops.

13. Complete the PRINT statement in the following program to produce thg indicated
output. k

DO 1 K = 1,5
PRINT*,
1 CONTINUE
END

OUTPUT: AN

ES
* =k Kk %k
* k=%
*k k=%
* ok Kk k=

14. Complete the following program in order to gwd output.

DO 10 K = 10, (1) ; (2)
PRINT*, ((3) , L = (4) , K)
10 CONTINUE
END

N4
The required output is : “

5 6 7 8 9 10
5 6 7 8 9
5) 7 8
5 6 7
5 6
5
5.9 Solution xercises
Ans 1.
T
2
33
25
7 4 3
10 50
10
7
5
4

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

sixth Solutions to Exercises

105

11
12
13

21
22
23

HELLO
HELLO

60
DONE

Ans 2.
1.76
2. INFINITE LOOP

Ans 3.
I, iur,1v, v

Ans 4.
I) o A‘

\BQQ\

DO 10 ID = N , 891234 , 10
PRINT*, ID

10 CONTINUE
» RO
SUM = 0
po3L=1, 15, 3
po2J=-L, 0, 1
SUM = SUM + J
2 CONTINUE
3 CONTINUE
v
Ans 5.
@)0 C)1 D)0
Anfl6

IMPROPER NESTING OF DO LOOPS
2) INFINITE LOOP

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

sixth Solutions to Exercises

106

Ans 7.

REAL SUM

INTEGER K

SUM = 0

DO 10 K =1 , 200

SUM =
10 CONTINUE

SUM + (-1) ** K * (REAL(5*K) / (K+1))

PRINT*, SUM

END
Ans 8.
INTEGER M , N , TEMP
READ*, M , N
IF(M .LT. N) THEN
TEMP = N
N = M
M = TEMP
ENDIF
DO5L =M, N
IF(L/2 * 2 .NE. L) PRINT*,L
5 CONTINUE
END
Ans 9. . I \
INTEGER M , N , K , TEMP
READ*, M , N , K
IF(M .LT. N) THEN
TEMP = N
N = M
M = TEMP
ENDIF
DO5L =M, N
IF(L/K * K .EQ. L) PRINT*,L
5 CONTINUE
END
Ans 10. ‘:!g:j1‘~> “'
INTEGER M , N , TEMP
READ*, M , N
IF(M .LT. N) THEN
TEMP = N
N =M
M = TEMP
ENDIF
DO5L =M, N
IF(INT(SQRT (REAL (L)) ** 2 .EQ. L)) PRINT*,L
5 CONTINUE

END

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

sixth Solutions to Exercises 107

Ans 11.
INTEGER I, J
I =1
10 IF(I .LE. 10) THEN

Ans 12. 'iI; E;

INTEGER I, J
DO 10 T =1 , 10
DO 10 J =1 , 20

PRINT*, I, ' *x ', J, ' = ', I*xJ
10 CONTINUE
END
Ans 13. ‘ ii:
|PRINT*, ('*', J =1, K-1), '=' , ('*', M =1, 5-K)
Ans 14. “‘N,
1)5 2)-1 3)L 4)5

\\(\
R
(JO

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

sixth One-Dimensional Array Declaration 109

6 ONE-DIMENSIONAL ARRAYS

It is fairly common in programs to read a large quantity of input the data

and produce the computations as output. Such large amounts ata annot be
stored in simple variables. We need bigger data structures to stor ta in memory.
For example, consider a problem to compute the average, ad®s of a number
of students as input, and list the grades of those stud ayprage. The grades
must be stored in the memory while reading becauge, erage is computed,
they have to be processed again (to list those belo e). For a large number of
students, simple variables cannot be used to stor e require structures such
as arrays. In this and the following chapter, we oduce data structures that allow

storage of large amounts of data.
In the previous chapters, we learnt thaMle represents a single location in the
|

memory. Unlike variables, a one-di y (1-D array) represents a group of

memory locations. Each member g arraWwis called an element. An element in an

array is accessed by the array g ll!! oMpwed by a subscript (also called an index)
a

enclosed in parentheses. Sutf® 1p eger constants or expressions that indicate the
location of the element withg . Bl elements of an array store the same type of
data. Thus all elements jng inte®¥er alray will contain integer values. In FORTRAN,
arrays must be declared qthcginning of a program or a subprogram.

6.1 One-DjmgnS¥pnal Array Declaration

ed using a declaration statement. If an integer array is to be

TEGER declaration statement is used. Similarly, for declaring
aracter arrays, the respective declaration statement is used. Before

required by that array. Therefore, all arrays must be declared.
Example 1: Declaration of an integer array LIST consisting of 20 elements.

INTEGER LIST (20)

Example 2: Declaration of a logical array FLAG that consists of 30 elements.

LOGICAL FLAG (30)

Example 3: Declaration of a character array NAMES that consists of 15 elements with
each element of size 20.

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

sixth One-Dimensional Array Initialization 110

| CHARACTER NAMES (15)*20 |

Example 1, declares an array LIST consisting of 20 elements. The first element has the
subscript 1 and the last element has the subscript 20. We may also declare arrays with
subscript beginning from any integer, positive or negative, other than 1.

Example 4: Declaration of a real array YEAR used to represent rainfall in years 1983
to 1994.

| REAL YEAR (1983 : 1994) |

The array YEAR has 12 elements. If an array is declared in the format array name
(m:n), we have to ensure that » must be greater than m. Also note that both d n can
be either positive or negative integer as long as » is greater than m.

Example S : Declaration of a real array TEMP with subscript rangi
| REAL TEMP (-20:20)

A total of 41 elements in this array can be found using the formu -? + 1 where n is
20 and m is -20.

The declaration statement DIMENSION is also g#Sed deglare arrays. This
statement assumes that the type of the array is implic fined:” The DIMENSION
statement can be combined with an explicit type sfatem®y declaring the type of the
array. If an array is declared using the DIMEN aten®nt, and if the type of the
array is not mentioned, it is decided implicitly by tM@first character of the array name,
as in the case of undeclared variables.

Example 6 : Declaration of arrays usingﬁi 'MENSION statement.

DIMENSION ALIST (100), KIT(-3:5), XYZ(15)

INTEGER XYZ

REAL BLIST (12), KIT
In this example, arrays ALI®T, nd KIT are of type REAL. Array XYZ is of
type INTEGER. Since the) JALIST is not specified, it is treated as a real
variable using the default e for Wapli®it variables.

6.2 One-Di jortal Array Initialization

The purpose o g aNays is to specify the number of elements in each array. By
declaring an_g memory space required by the array is only reserved and not
be filled with data using either the assignment statement or the

initialized. %
A\

Ingialization Using the Assignment Statement

The follOwing statements illustrate the initialization of arrays using the assignment
statement, in different ways:

Example 1: Declare a real array LIST consisting of 3 elements. Also initialize each
element of LIST with the value zero.
Solution:

REAL LIST (3)

DO 5 K = 1, 3

LIST(K) = 0.0
5 CONTINUE

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

sixth One-Dimensional Array Initialization 111

Example 2: Declare an integer array POWER2 with subscript ranging from 0 up to 10
and store the powers of 2 from 0 to 10 in the array.

Solution:

INTEGER POWER2 (0:10)
DO 7 K = 0, 10
POWER2 (K) = 2 ** K
7 CONTINUE

6.2.2 Initialization Using the READ Statement

An array can be read as a whole or in part. To read the whole array, we
name of the array without subscripts. We can read part of an arrayb
specific elements of the array in the READ statement. We may also imMtied

loop in reading arrays. Implied loops provide an elegant approac dily arrays of
varying lengths.
The rules that apply in reading simple variables also apply ingga arrays. Each
READ statement requires a new line of input data. If th in tD@ input line is not
enough, the READ statement ensures that the data gl r the immediately
following input line or lines, until all the elements of ghe D statement are read.
X o/N§

e 4. The four input data

use the

Example 1: Read all the elements of an integergrr
values are in a single input data line as follows

|10, 20, 30, 40

Solution 1: (Without Array Subscript) x

INTEGER X (4)
READ*, X

A
Solution 2: (Using an Implied Lo&

INTEGER X (4), K
READ*, (X(K), K =1, 4)

Both READ statements d a fmﬂ:lements of the array X. However, in both
solutions, only one REAR st8gment is executed. Ideally, the four input data values may
be placed in one in inQ If the four values of the input data appear in more than one
input line, then 1
equivalent wit p difference. The READ statement in Solution 2 may be used to
g0f the array or fewer than four elements by modifying the implied
ple, we will read one input data value per line.

read all fo 0
Xa
2 d all the elements of an integer array X of size 4. The four input data

Solution:

INTEGER X (4), J
DO 22 J =1, 4
READ*, X (J)

22 CONTINUE

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

sixth One-Dimensional Array Initialization 112

Notice the layout of the input data. Since four READ statements are executed in the DO
loop, four input data lines are required each with one data value. The input data for this
example can also be used for the previous example (Example 1) but the input of the
previous example cannot be used for the current one. The next three examples further
illustrate reading of one-dimensional arrays.

Example 3: Read an integer one-dimensional array of size 100.

Solution 1: (Using a WHILE Loop)

INTEGER A (100), K
K = 0
66 IF (K.LT.100) THEN
K=K+ 1
READ*, A (K)
GOTO 66
ENDIF

Note that we require 100 lines of input with one data value pe '%e the READ
statement is executed 100 times.

Solution 2: (Using a DO Loop) A

INTEGER 2 (100), K
DO 77 K = 1, 100
READ*, A (K)
77 CONTINUE

Note again that we require 100 lines of input with\e data value per line since the
READ statement is executed 100 times.

Solution 3: (Using an implied Loopm

INTEGER A (100), K
READ*, (A(K), K = 1, 100)

Note that we require one ith data values since the READ statement is
WY ven in 100 lines with one data value per line,

executed only once. Even 1
the implied loop will co rea he put.
Example 4: Read the fir. ements of a logical array PASS of size 20. The input is:

|TFT, |

Solution:

LOGICAL PASS(ZO)
INTEGER K
READ*, (PASS(K), K = 1, 5)

-
Ex@mple 5:0Read the grades of N students into an array SCORE. The value of N is the
St

fir. ta value followed by N data values in the next input line. Assume the input
1s:
6
55, 45, 37, 99, 67, 58
Solution:
INTEGER SCORE (100), K, N
READ*, N

READ*, (SCORE(K), K = 1, N)

In this example, the value of N is 6 and the six grades in the second input line are stored
as the first six elements of the array SCORE. The rest of the array SCORE is not

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

sixth Printing One-Dimensional Arrays 113

initialized. Note that the value of N may range from 1 to 100 depending on the first data
value in the input. If the input data were given as follows:

4
42, 77, 89, 70

the value of N will be 4 and only four elements of the array SCORE are initialized. We
assume here that the value of N will never go beyond 100 and that there will k+/ data
values in the input where & represents the first data value.

6.3 Printing One-Dimensional Arrays

Just as in the case of reading an array, printing an array without subscripts oduce
the whole array as output. If some elements of the array are not i 1 ore
printing, question marks appear in the output indicating elements ot have a
value. Each PRINT statement starts printing in a new line. If the 1i enough

to print the array, the output is printed in more than one line.
Example : Read an integer array X of size 4 and print:

i. the entire array X in one line;

ii. one element of array X per line; and

iii. array elements greater than 0.

Solution:

INTEGER X (4), K
READ*, X
C PRINTING THE ENTIRE ARRAY IN ONE LINE
PRINT*, 'PRINTING THE ENTIRE ARRAY'
PRINT*, X
C PRINTING ONE ARRAY ELEMENT PER LINE
PRINT*, 'PRINTING ONE ARRAY ELEMENT PER LINE'
DO 33 K =1, 4
PRINT*, X (K)
33 CONTINUE
C PRINTING ARRAY ELEMENTS GREATER THAN O
PRINT*, 'PRINTING ARRAY ELEMENTS GREATER THAN 0
DO 44 K = 1, 4
IF (X(K) .GT. 0) PRINT*, X (K)
44 CONTINUE
END

If the inpuif® N

7, 0, 2, -4

the‘utput oﬂ!Ee program is as follows:

PRINTING THE ENTIRE ARRAY

7 0 2 -4

PRINTING ONE ARRAY ELEMENT PER LINE

7

0

2

-4

PRINTING ARRAY ELEMENTS GREATER THAN O
7

2

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

seventh Complete Examples on One-Dimensional Arrays 114

6.4 Errors in Using One-Dimensional Arrays

There are many errors that may occur in the use of arrays. These errors may appear, if
the following rules are not followed:

e Array subscripts must not go beyond the array boundaries.

e Array subscripts must always appear as integer expressions.

e The value assigned to an array element, either using the READ statement or the

assignment statement, must match in type with the array type. This rule, as in
the case of simple variables, does not hold for integer and real variab

e Arrays must be declared before its elements are initialized.

We will now illustrate a few errors through examples. Assume lloWing
declarations:
INTEGER GRADE (25), LIST(3)

LOGICAL MEM (20)
CHARACTER TEXT (5) * 3

The following statements illustrate incorrect initializ

Initialization Typ@of

GRADE (26) = 0.0 26 is out of range
LIST(2.0) = X * 3 ipt 2.0 is not an integer
TEXT (4) = 100 array @ X T is a character array
MEM (3) = 'WRONG' array MEM is a logical array
READ*, (GRADE(K), XK = 1, 100) y GRADE has only 25 elements
ARR(2) = 3 l ARR is not declared as an array

6.5 Complete Exanp

In this section, we illustr \
examples.

Example 1: Counti bers: Read an integer N and then read N data values
into an array. Pri t of those elements in the array that are odd.

Solution:

INTEGER A (50), COUNT, N , K
READ*, N, (A(K), K = 1, N)
COUNT = 0
DO 44 K = 1, N
IF (MOD (A(K), 2) .EQ. 1) COUNT = COUNT + 1

One-Dimensional Arrays

one-dimensional arrays through complete

44 CONTINUE
PRINT 'COUNT OF ODD ELEMENTS = ', COUNT
END

If the input is:

[7, 35, 66, 83, 22, 33, 1, 89 |

The value of variable N in this example is 7. The next seven input data values are placed
in the array. There are 5 odd values among the seven elements of the array. For the
given input, the output is as follows:

|COUNT OF ODD ELEMENTS = 5 |

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

seventh Complete Examples on One-Dimensional Arrays 115

Example 2: Reversing a One-Dimensional Array: Write a FORTRAN program that
reads an integer one-dimensional array of size N. The program then reverses the
elements of the array and stores them in reverse order in the same array. For example,
if the elements of the array are:

33 20 2 88 97 5 71
the elements of the array after reversal should be:
71 § 97 88 2 20 33
The program prints the array, one element per line.

Solution: “

INTEGER NUM(100), TEMP
READ*, N, (NUM(L), L = 1, N)
DO 41 K =1, N / 2

TEMP = NUM (K)

NUM (K) = NUM(N + 1 - K)

NUM(N + 1 - K) = TEMP
41 CONTINUE

DO 22 L =1, N
PRINT*, NUM (L)
22 CONTINUE
END

Note that we used an implied loop to read the a
Since the problem asks for an array of size N to be r

O loop to print the array.
we first read N and then use an

implied loop to read N elements into the . One common mistake here is to declare
an array of size N. This is not allowed Si the size of an array in a declaration
statement must be an integer consta t 1iWhe case of subprograms where it may

be a dummy argument as we shall gee Wyan SRample later in this chapter). The array is
reversed by exchanging the ele ofWhe array. The expression N+1-K gives the
index of the element corresﬁ from the end of the array. Thus, using this
expression, the first ele X ged with the last, the second element is
exchanged with the se last #d so on. This operation is called swapping. The
swapping of elements in y stops at the middle element.

ne-Dimensional Arrays: Write a FORTRAN program that
ger array X of size 10 elements and prints the maximum
the array.

Example 3: Manjgyla

reads a one-digg 3
element and gs 1"

INTEGER X (10), MAX, INDEX, K

READ*, X
MAX = X (1)
INDEX = 1

DO 1 K =2, 10
IF (X(K) .GT. MAX) THEN
INDEX = K
MAX = X (K)
ENDIF
1 CONTINUE
PRINT*, 'MAXIMUM:', MAX, ' INDEX:', INDEX
END

In the above program, we need to keep track of the position of the maximum element
within the array. The variable MAX stores the current maximum and the variable

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

seventh One-Dimensional Arrays and Subprograms 116

INDEX represents the position of the maximum element in the array. Whenever a new
maximum is found by the IF statement condition, we update both variables MAX and
INDEX.

Example 4: Printing Perfect Squares: Read 4 data values into an array LIST (of size
10) and print those values that are perfect squares (1, 4, 9, 25 .. are perfect squares).
Assume that the input is:

[81, 25, 10, 169

Solution:
INTEGER LIST(10), N, K
LOGICAL PSQR
C STATEMENT FUNCTION TO CHECK FOR PERFECT SQUARES
PSQR (N) = INT (SQRT (REAL(N))) ** 2 .EQ. N
READ*, (LIST(K), K = 1, 4)
K =0
55 IF (K .LE. 4) THEN
IF (PSQR(LIST(K))) PRINT*, LIST (K)
K=K+ 1
GOTO 55
ENDIF
END

In this example, only four elements of the arr ST Nnitialized by the READ
statement. The other six elements are not initi ice the use of the logical
statement function PSQR that checks whether its a ent N is a perfect square. The
simple IF statements check if the four el ts of the'array LIST are perfect squares.
For the given input, the output is as folloyes:! g R

81
25
169
. . &
6.6 One-Dlmensz s and Subprograms
One-dimensional arrays be pMsed Yo a subprogram or can be used locally within a

subprogram. In both the\gasthe array must be declared within the subprogram. The
size of such an arr. be declared as a constant or as a variable. Variable-sized
declaration of o 1 nal arrays in a subprogram is allowed only if both the
variable size is my drgument and the array itself is a dummy argument. The
following strate the use of one-dimensional arrays in a subprogram.

Ex e atidn of Array Elements: Read 4 data values into an array LIST (of
siz@10) andprint the sum of all the elements of array LIST using a function SUM.

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

seventh One-Dimensional Arrays and Subprograms 117

Solution:

INTEGER LIST(10), SUM, K
READ*, (LIST(K), K = 1, 4)
PRINT*, SUM(LIST, 4)
END
INTEGER FUNCTION SUM (MARK, N)
INTEGER N, MARK (N)
SUM = 0
DO 13 J =1, N
SUM = SUM + MARK (J)
13 CONTINUE
RETURN
END

In this example, four elements of the array LIST are read by the REA
function SUM is called and the sum of the first four elements of a

argument is passed as the size of the array. In function SUM, th
the declaration of the array MARK. The declaration INTEQER
the size of the array MARK is the value of N. This typ#” o
functions and subroutines only. The elements of the ga
result is returned as the function value.

are added and the

If the input to this program is as follows:
|19, 25, 10, 82 |
the output would be as follows: @ -
[136 |
'm?ional Arrays: Write a program that
ctio® gets A, B, and N as arguments. A and B
size. N is an integer that represents the size
W the elements of A and B. If all elements of A
of B, the function returns the value .TRUE..

Example 2: 4 Function to Compa
has a logical function COMPAR. Tke
are integer one-dimensional arra

of arrays A and B. The funcﬁ
are equal to the correspon & '
arrays (each of maximum size 100). Only N elements of

program then calls the function COMPAR. If the value
ne of the arrays. Otherwise, it prints the two arrays.

each array are read.
returned is . TR rint.

O

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

seventh One-Dimensional Arrays and Subprograms 118

Solution:

LOGICAL FUNCTION COMPAR (A, B, N)
INTEGER N, A(N), B(N), K
COMPAR = .TRUE.
DO 10 K = 1, N
IF (A(K).NE.B(K)) THEN
COMPAR = .FALSE.
RETURN
ENDIF
10 CONTINUE
RETURN
END
LOGICAL COMPAR
INTEGER A (100), B(
READ*, N, (A(K), K
IF (COMPAR (A, B,N))
PRINT*, 'A = B = ', (A(K), K=1,N)
ELSE
PRINT*, 'A = ', (A(K),
PRINT*, 'B = ', (B(K),
ENDIF
END

=

main program from the

Notice how the array declarations are different gin
' ram while it is declared

subprogram. Array A is declared as A(100) in the fain
with variable size as A(N) in the subprogram.

Example 3: Counting Negative Numbers within a Que-Dimensional Array: Write a
subroutine FIND that takes a one-din®Qiflonal array and its size as two input
arguments. It returns the count of the neggtiv on-negative elements of the array.

Solution: R

SUBROUTINE FIND (A, N, COUNT1, COUNT2)
INTEGER N, A (N), COUNTl, COUNT2, K
COUNT1 = 0
COUNT2 = 0
DO 13 K = 1,N
IF (A(K).LT.0) THEN
COUNT1= COUNT1 + 1
ELSE
COUNT2= COUNT2 + 1
ENDIF
13 CONTINUE
RETURN
END

VariableVINTl counts the negative numbers in the array. The variable COUNT2
the pg¥n-negative integers in the array.

4: Updating the Values in a One-Dimensional Array: The two input
arguments to a certain subroutine UPDATE is an array A of real numbers and its size
N. The subroutine replaces the value of every element in A with its absolute value.
Write the subroutine UPDATE and a main program which will invoke (call) the
subroutine. The maximum size of the array is 100.

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

seventh Exercises

119

Solution:

SUBROUTINE UPDATE (A, N)

INTEGER K, N

REAL A (N)

DO 44 K = 1,N

A(K) = ABS (A(K))

44 CONTINUE

RETURN

END

INTEGER J, N

REAL A (100)

READ*, N, (A(J),J=1,N)

PRINT*, 'THE ORIGINAL ARRAY: ', (A(J),J=1,N)

CALL UPDATE (A, N)
PRINT*, 'THE NEW ARRAY: ', (A(J),J=1,N)
END

6.7 Exercises
1. What is printed by the following programs?

A

80 CONTINUE
IF(z (1) .AND. Z(2) .AND. Z(3)) THEN
PRINT*, 'EQUAL ARRAYS '
ELSE
PRINT*, 'DIFFERENT ARRAYS'
ENDIF
END

1. INTEGER A (3), J
A(l) = 1
DO 30 J = 2, 3
A(J) = 3 * A(J - 1)
30 CONTINUE
PRINT*, A
END
LV 2 hd
2. INTEGER X (3), Y(3), K
LOGICAL 7 (3)
READ*, X
READ*, Y
DO 80 K = 1, 3
7 (K) = X(K) .EQ. Y(K)

Assume the inpme pr&ram is:
1, 7

S,
Ty 5y 4

- AN | L4

3. INTEGER A(4), B(4), G, K, N
G(K) = K ** 2
READ*, A
DO 60 N = 1, 4

B(N) = G(A(5 - N))

60 CONTINUE
PRINT*, B
END

Assume the input for the program is:

|10, 20, 30, 40

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

seventh Exercises

120

4. SUBROUTINE FUN (A)
INTEGER A (4), TEMP
TEMP = A (1)
A(l) = A(2)
A(2) = A(3)
A(3) = A(4)
A(4) = TEMP
RETURN
END

INTEGER LIST (4)
READ*, LIST
CALL FUN (LIST)
PRINT*, LIST
END

Assume the input for the program is:

13, 6, 9, 2

5. INTEGER X (3), Y(3)
LOGICAL EQUAL
READ*, X
READ*, Y
IF (EQUAL (X, Y))THEN
PRINT*, 'EQUAL ARRAYS '
ELSE

ENDIF
END
LOGICAL FUNCTION EQUAL (X, Y)
INTEGER X (3), Y(3), K
LOGICAL Z (3)
DO 45 K =1, 3
Z(K) = X(K) .EQ. Y(K)
45 CONTINUE

RETURN
END

PRINT*, 'DIFFERENT ARRAYS'

EQUAL = Z (1) .AND. Z(2) .AND.

Tg 5p 4
- A ¥ A4

Assume the input for the pgg
1, 5, 17

6. INTEGER A (2),
READ*, A, D(1
READ*, B, D(2)
READ*, C, D(3
PRINT*, A
PRINT*, B
PRINT*, C
PRINT*, D
END

Assumﬁe input for the program is:

1,2,3,4,5
6,7,8,9,10
11,12,13,14,15
16,17,18,19,20

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

seventh Exercises

121

7. INTEGER A (3), K
READ*, A
DO 10 K = 1,3
A(3) = A(3) + A(K)
10 CONTINUE
PRINT*, A (3)
END
Assume the input for the program is:
|10,20, 30
8. INTEGER X (5), Y(5), N, K
READ*, N, (X(K),Y(K),K=1,N)
DO 5 K=X(N),Y (N)
PRINT*, ('X',6J=X(K),Y(K))
5 CONTINUE
END

Assume the input for the program is:

14,1,2,3,3,3,4,2,4

O

10

30

NTEGER A(0:4), K
DO 10 K = 1,2
READ*, A
CONTINUE
READ*, (A(K), K = 0,2)
DO 30 K = 1,20,3
A(MOD(K,4)) = A(MOD(K,5))
CONTINUE
PRINT*, A

END

Assume the input for the program iSLAV

1,2,3,4,5,6,7,8

9,10,11
12,13,14,15
18,19,20
4 W AW
10. LOGICAL X (0:4)
INTEGER J, K
X (0) = .TRUE.
DO 30 J = 0,4
K = MOD(J+1,5)
X (K) = .NOT. X(J)
30 CONTINUE
PRINT*, X
END

LN A

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

seventh Exercises

122

11. INTEGER A (5), B(5), K
REAL F, 7
READ*/ (A(K),K=1,4), (B(K),K=1,4)
7z = F(A,B)
PRINT*, 7
END

REAL FUNCTION F (L,M)
INTEGER L (5), M(5), K
F=20
DO 10 K = 1,4
IF (L(K).EQ.M(L(K))) THEN
F=M(K) + K
ELSE
RETURN
ENDIF
10 CONTINUE
F=F+K
RETURN
END

Assume the input for the program is: - “

13,1,2,4,1,2,3,4

12. INTEGER A(100), I, J, N
REAL ENDAVE
DO 2 I=1,4
READ*, N, (A(J),J=1,N)
PRINT*, ENDAVE (A, N)
2 CONTINUE
END
FUNCTION ENDAVE (X, V)
INTEGER V, X (V)
REAL ENDAVE

ENDAVE = (X(1)+X(V)) / 2.0
END
Assume the input for the progrgnw
45731
573145
3154
12
- A} A4
13. INTEGER FUNCTION SUM (X,N)
INTEGER J, N
REAL X (N), %
Z =0
DO 10 J = 1,N
72 = 7 +X(J)
10 CONTINUE
SUM = %
RETURN
END

INTEGER SUM

REAL A (4), B(4)

READ*, A, B

PRINT*, SUM (A,2)/SUM(B, 3)
END

Assume the input for the program is:

45342110

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

seventh Exercises 123

14. SUBROUTINE EXCESS (RESULT, OPA, OPB, N)
INTEGER OPA (10), OPB(10), RESULT (10), CARRY
CARRY = 0
DO 10 K = N, 1,-1

RESULT (K+1) = MOD (OPA (K)+OPB (K) +CARRY, 10)
CARRY = (OPA(K)+OPB (K)+CARRY) / 10

10 CONTINUE
RESULT (1) = CARRY
RETURN
END
INTEGER A(10), B(10), C(10)

READ*, N
READ*, (A (K),
READ*/ (B(K) ,K=
CALL EXCESS (C, A,
PRINT*, (C (K), K=
END

Assume the input for the program is: N -

[colI NN

56709 4
37520 8

F N F
15. SUBROUTINE INTER (A, NA, B, NB, C, NC)
INTEGER NA, NB, A(NA), B(NB), C(NA), K, M, NC
NC =0
DO 10 K = 1, NA
DO 20 M = 1, NB
IF (A(K).EQ. B(M)) THEN
NC = NC + 1
C(NC) = A(K)
GOTO 10
ENDIF
20 CONTINUE
10 CONTINUE
RETURN
END
INTEGER X (9)
READ*, NX, (
READ*, NY, (
CALL INTER (
PRINT*, (Z(J
END

Ispilisils
Il
[
2
be
—_——

Assume the inpme pr&ram is:

5 12 23 45 65 67 84
4 84 64 12 21

e follo program segments may or may not have errors. For each one of the
ment 1dent1fy the errors(if any). Assume the following declarations :

INTEGER M (
LOGICAL L

A, DO 5 K = 2,5,2
READ*, M(K-1)
5 CONTINUE

Assume the input for the program is:

|20, 40,50, 30, 60

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

seventh Exercises 124

b. DO 10 K = 1,4
M(K+1) = -K
10 CONTINUE
END

3. Consider the following subroutine :

SUBROUTINE CHECK (A,B,C,N)
INTEGER A (10), B(5)

C=0
DO 10 M = 1,N
C = C + A(M)*B (M)
10 CONTINUE
RETURN
END

If the only declaration and assignment statement in the mai ar®the
following: A

INTEGER X (5), M(10), A

A =3
Which of the following CALL statements is correct gpsMging t X and M have
some value ? A
) CALL CHECK (M, X, C) |
|| A N
|B) CALL CHECK (M(10),X(5),C,5)
A\ ____3
[C) CALL CHECK (M, X, B, A+2)
A A ‘
[D) CALL CHECK (M, X,N,2) |
A N
[E) CALL CHECK |
4. The following function returns T, Winteger number X is found in an integer
array A which has N eleme ct®ns FALSE otherwise. Complete the missing
line. ¢
LOGICAL FUNCTION FOUND (A, X, N)
INTEGER N, A(N), X, K
DO 20 K=1,N
IF(A(K) .EQ. X) THEN
FOUND = .TRUE.
ENDIF
20 CONTINUE
FOUND = .FALSE.
RETURN
END
5. follglving subroutine has 4 parameters: A, N, X and Y, where A is an integer
a of size N and X and Y are integer numbers. The subroutine changes each

element of A that has the value X by the value Y. Complete the missing line.

SUBROUTINE CHANGE (A, N, X, Y)

INTEGER N, A(N), X, Y, K

DO 20 K=1,N
IF (A(K) .EQ. X) THEN
ENDIF

20 CONTINUE
RETURN
END

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

seventh Solutions to Exercises 125

6. Write a program to initialize a real 1-D array SERIES with the first 8 terms of the
series 1,4, 16, 64,

7. Write a logical function subprogram ZERO that takes a 1-D integer array LIST of
size 5 and checks if all the elements of array LIST are zero. Write a main program to
test the function.

8. Write a program to read a 1-D integer array X and check if all the elements of array X
are in increasing order. Print a proper message.

9. Write a subroutine REVRSE to reverse a 1-D real array DAT with 5 elements. Write
a main program to test the subroutine.

10. Write a program which reads the elements of three 1-Dimensional g
C each of size N (where N<10). The program stores these eleme arrdy D
of size M (where M = 3xN) such that the elements of D array

A(1) B(1) C(1) A(2) B(2) C(2) ... A(N) B(N)

11. Write a program that reads a 1-D integer array of 1@§elem®ys ®nd prints the

element that appears the maximum number of tiggs. ther is more than one
element, it prints the first one only).

15 another 1-D array AR2 of
mber & occurrences of the array

12. Write a program to read a 1-D array ARI1 of si
size 75. The program then finds and prints
ART1 in the array AR2.

13. Write a program that reads ten inte and stor® them into a one-dimensional
array X.. The main program then ca®®ya subroutine SUMS passing it the one-
dimensional array. The subroutt ut e sum S of all the ten elements and

the sum of the square of these tenglueWFinally the main program prints the sum
S and the sum of the squares

6.8 Solutions to

Ans 1.

1.

2.

3. \

< 6' 1 2

6 7 8
11 12 13 14
3 9 15

7. 120

8. X
XX
XXX

9. 2020 13 13 13

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

seventh Solutions to Exercises 126

100. FFTFT
11. 13.0

12. 3.0
6.0
2.5
2.0

13. 2
14. 12942302

15. 12
Ans 2.
a) End of file encountered (The program needs 2 lines OQ

b) Subscript out of range; m(5) is undefined

Ans 3.
C
Ans 4. ‘
RETURN
Ans 5. q
A(K) = Y

Ans 6. - S 5

REAL SERIES (8)
INTEGER K
DO 12 K =1, 8
SERIES (K) = 4** (K-1)
12 CONTINUE
END

Ans 7. \\ DI

LOGICAL FUNCTION ZERO (LIST, N)
INTEGER N, LIST(N), K

ZERO = .TRUE.
K=20
18 IF (K .LE. N .AND. ZERO) THEN

IF(LIST(K) .NE. 0) ZERO = .FALSE.
K=K+ 1
GOTO 18

ENDIF

RETURN

END

LOGICAL ZERO
INTEGER LIST (5)
IF (ZERO(LIST, 5)) THEN

PRINT*, 'ALL ELEMENTS ARE ZEROS'
ELSE

PRINT*, 'NOT ALL ELEMENTS ARE ZEROS'
ENDIF
END

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

seventh Solutions to Exercises

127

Ans 8.

INTEGER X (3)

READ*, X

IF(X(1) .LT. X(2) .AND. X(2) .LT. X(3)) THEN
PRINT*, 'INCREASING ORDER'

ELSE
PRINT*, 'NOT INCREASING ORDER'

ENDIF

END

Ans 9.

SUBROUTINE REVERSE (DAT)
REAL DAT (5), TEMP

TEMP = DAT (5)
DAT (5) = DAT (1)
DAT (1) = TEMP
TEMP = DAT (2)
DAT (2) = DAT (4)
DAT (4) = TEMP
RETURN

END

REAL DAT (5)

READ*, DAT

CALL REVERSE (DAT)
PRINT*, DAT

END

Ans 10. ol \

10

INTEGER A (10) , B(10) , C(10) , D(30), N, M, K, J

READ*, N

M=23*N

J=1

READ*, (A (K)

DO 10 K = 1 ,
D (J)
D(J+1)
D (J+2)
J=J+ 3

CONTINUE

PRINT*, (D(K) , K = 1 ,M)

END

=0
-
=
w
=
0
A
=z
a
>
0
o,
=z

Il
QW

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

seventh Solutions to Exercises

128

Ans 11.
INTEGER A (10) , FREQ(10) , MAXFRQ , Loc, I, J
READ*, A
DO 10 I =1 ,10
FREQ(I) = O
10 CONTINUE

30
20

40

DO 20 I =1 ,10
DO 30 J =1 ,10
IF(A(J) .EQ. A(I)) FREQ(I) = FREQ(I) + 1
CONTINUE
CONTINUE
MAXFRQ = FREQ (1)
Loc =1
DO 40 J =1 ,10
IF (MAXFRQ .LT. FREQ(J)) THEN
MAXFRQ = FREQ (J)
LOoC = J
ENDIF
CONTINUE
PRINT*, ' THE ELEMENT WITH IS MAX APPEARANCE IS ',A(LOC)
END

Ans 12. ‘gv

20

10

INTEGER COUNT , AR1(15),AR2(75), K, COUNT, M
LOGICAL FOUND
READ*, AR1
READ*, AR2
COUNT = 0
DO 10 K=1,61

FOUND = .TRUE.

DO 20 M = K,K+14

IF (ARl (M-K+1) .NE. AR2(M)) FOUND=.FALSE.

CONTINUE

IF (FOUND) COUNT = COUNT+1
CONTINUE
PRINT*, 'COUNT = ' , COUNT

END

‘v
Ans 13. “:‘~§‘
S S2, J

20

INTEGER X (10) , ,
READ*, (X(J), J =1,10)
CALL SUMS (X , S ,S2)

PRINT*, ' THE SUM OF VALUES =', S
PRINT*, ' THE SUM OF THE SQUARE OF VALUES =', S2
END
SUBROUTINE SUMS (X , S ,S2)
INTEGER X (10) , S , S2, K
S =0
S2 =0
DO 20 K =1 ,10
S =S + X(K)
S2 = S2 + X(K) ** 2
CONTINUE
RETURN
END

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

seventh Two-Dimensional Array Declaration 130

7 TWO-DIMENSIONAL ARRAYS

A two-dimensional array (2-D array) is a tabular representation

rows and columns. A two-dimensional array of size m x n represgnt trix consisting
of m rows and n columns. Figure 1 shows a two-dimensional arr. ize 2 x 3. An
element in a two-dimensional array is addressed by its r n; for example,
X(2,1) refers to the element in row 2 and column 1 whi

4 2 5

6 7

Figure 1 : A two-dimensional Rgay X of size 2x3

Two-dimensional arrays can be picture a group of one-dimensional arrays. If we
consider a one-dimensional array as 1y a two-dimensional array X of size 2

x 3 can be considered as consistt ee one-dimensional arrays; each one-
dimensional array containing 2 eleg
a single address, the compgger

array with column 1 first, fo ey Jumn 2 and so on. Figure 2 shows the storage
of array X (Figure 1) in thqhem®y.

A 4 _\ Column 1

6
2 l Column 2
7
5

Ox
3 :] Column 3

Figure 2 : Storage of the Two-Dimensional Array X in Memory

7.1 Two-Dimensional Array Declaration

Two-dimensional arrays must be declared using declaration statements like INTEGER,
REAL etc. or the DIMENSION statement. The array declaration consists of the name
of the array followed by the number of rows and columns in parentheses. This
information in the declaration statements is required in order to reserve memory space.

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

seventh Two-Dimensional Array Initialization 131

For example, if an array X is declared with 2 rows and 3 columns, there are six elements
in the array. Therefore, six memory locations must be reserved for such an array.

Example 1 : Declaration of an integer array MAT consisting of 3 rows and 5 column.
| INTEGER MAT (3,5) |

Example 2 : Declaration of a character array CITIES that consists of 9 elements in 3
rows and 3 columns and each element is of size 15.

| CHARACTER CITIES (3,3) * 15 |

Example 3 : Declaration of arrays using the DIMENSION statement.

DIMENSION X (10,10), M(5,7), Y(4,4)
INTEGER X
REAL M

In this example, arrays M and Y are of type REAL. Array X is
Note that the type of arrays M and Y is specified in the two declgra
type of Y is not specified and is taken as REAL by default.

Example 4 : More array declarations: Consider the folloWg clarafons :

DIMENSION C(10,10), NUM(0:2, -2:1), VOL(4,2)

INTEGER ID (3, 3)

REAL MSR(100,100), Z(4:7,8)

CHARACTER WORD (5,5) *3, C

LOGICAL TF (5,7)
Arrays ID, NUM are integer arrays. Array; R, V&Z are real arrays. Array ID has
a total of 9 elements in its 3 rows and 3 mns. The starting subscript value of row
and column of each array is assumgd e ess it is specified otherwise. In the
declaration of arrays NUM and Z, thcgartitgsubscript is different than 1. Array NUM
has 12 elements with rows numb a 1, 2; and columns numbered as -2, -1, 0, 1.
Array Z has 32 elements wigh r bered from 4 up to 7 and columns numbered
from 1 up to 8. Array WORIN after array that has 5 rows and 5 columns, and
stores 3 characters in e ay C is a character array and can store 1
character in each of its ments (10 rows and 10 columns). Array TF is a logical
array with 35 elem i s and 7 columns; each can store either a .TRUE. or a
.FALSE. value.

:—P

7.2 TwggDMpghsional Array Initialization

| @ray can be initialized in two possible ways. We can initialize
eitifer WS or by columns. Initializing row after row is known as row-wise
izatiogy) Similarly, initializing column after column is known as column-wise
BOn. Remember, a two-dimensional array is always stored in the memory as a
one-dimensional array column by column. The initialization may be done using
assignment statements or READ statements.

7.2.1 Initialization Using the Assignment Statement

Example 1: Declare an integer array ID consisting of 3 rows and 3 columns and
initialize array ID row-wise as an identity matrix (i.e. all elements of the main diagonal
must be 1 and the rest of the elements must be 0).

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

seventh Initialization Using the READ statement 132

Solution:

INTEGER ID(3,3), ROW, COL
C INITIALIZING ROW-WISE
DO 17 ROW = 1, 3
DO 17 COL = 1, 3
IF (ROW .EQ. COL) THEN

ID(ROW, COL) = 1
ELSE

ID(ROW, COL) = 0
ENDIF

17 CONTINUE

In this example, nested do loops are used. In fact, we need the nested loops t to each
element of a two-dimensional array. Note here that the index of the p is
ROW which is also the row subscript of array ID. The inner
corresponds to the columns (the use of the variables ROW, has no
significance; we could have used any other INTEGER variable how the value
f ROW is 1,
is means the first
lized. Since we

row has been initialized. Similarly, the next two
initialized row after row, the array ID is initialized r

In general, if the outer loop index is the row sgbsdipt, tig we are moving row-wise
inside the array. Similarly, if the outer loop inde mn subscript, then we are
moving column-wise inside the array.

Example 2 : Declare a real array X consm? rows and 3 columns and initialize

array X column-wise. Each element gf 1d be initialized to its row number.
Solution: $

REAL X (2, 3)
INTEGER J, K
C INITIALIZING COLUMN-WISE
DO 27 J =1, 3
DO 27 K = 1, 2
X(K, J) = K
27 CONTINUE

DN Nsing the READ statement

#c-dimensional arrays, a two-dimensional array can be read as a
nd the entire array, we may just use the name of the array without
#Ch case, the array is read column-wise. We can read part of an array by
ecific elements of the array in the READ statement. We can either read
t column-wise. Remember that each READ statement requires a new line of
input data. If the data in the input line is not enough, the READ statement ensures that
the data is read from the immediately following input line or lines, until all the elements
of the READ statement are read

Example 1: Read all the elements of an integer array MATRIX of size 3x3 column-
wise (i.e. the first element of input data is the first element of the first column of
MATRIX, the second element of input data is the second element of the first column,
the third element of input is the third element of the first column, the fourth element of
input is the first element of the second column, and so on).

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

seventh Initialization Using the READ statement 133

The input data is given as follows:

3 4 8
5 9 2
1 6 0
The contents of array MATRIX after reading the input data is as follows:
3 5 1
4 |9 6
8 |2 0
Solution 1: (Without Array Subscripts) a

INTEGER MATRIX (3, 3)
C READING COLUMN-WISE
READ*, MATRIX

Solution 2: (Using Implied Loops) S , ;

INTEGER MATRIX (3, 3), J, K
C READING COLUMN-WISE
READ*, ((MATRIX(K,J), K =1, 3), J =1, 3)

Solution 3: (Using DO and Implied Loop) ‘gv

INTEGER MATRIX (3, 3), J, K
C READING COLUMN-WISE
DO 28 J =1, 3
READ*, (MATRIX(K,J), K = 1, 3)
28 CONTINUE

In all the three solutions, the array MAT%@ad column-wise. In Solution 1, the
array MATRIX is read without an ot such cases, the computer reads the
array column-wise, since all arrays ore®in the memory column-wise. In Solution
2, the outer loop index is J which s with the column. Hence, the array is read
column-wise. In Solution 3®the
read column-wise. The diff b

only one READ statemeffgis ex®ute® and, therefore, only one input line of data is
required. If the input dat@is given in one line, then data is read from the next line or
ft

the one after, until is read. In Solution 3, since three READ statements are
executed, a mini e lines of input data is required.

Example 2:

e elements of an integer array X of size 3x5 row-wise (i.e. the
data is the first element of the first row of array X, the second
s the second element of the first row, the third element of input is the

€

of input'1s the first element of the second row and so on).
The input data is given as follows:

7 5 9 3 2
4 6 5 9 2
1 2 7 6 0

The contents of array X after reading the input data is as follows:
7 5 9 3 2
4 6 5 9 2
1 2 7 6 0

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

seventh Printing Two-Dimensional Arrays 134

Solution 1 : (Using Implied Loops)

INTEGER X (3, 5), J, K
READ*, ((X(K, J) , J=1, 5, K=1, 3)

Solution 2 : (Using DO and an implied Loop)

INTEGER X (3, 5), J, K
C READING COLUMN-WISE
DO 33 K =1, 3
READ*, (X(K,J), J = 1, 5)
33 CONTINUE

In both solutions, the array X is read row-wise, since the outer loop index g
corresponds to the row of array X. The difference between the two solution

Solution 1, only one READ statement is executed and, therefore, only of
data is required. If the input data is not given in one line, then data i the next
line or the one after, until all data is read. In Solution 2, since thr tements

are executed, a minimum of three lines of input data is required.

7.4 Printing Two-Dimensional Array

Just as in the case of reading a two-dimensionalga printing an array without
subscripts will produce the whole array as output. I8 suclg case, the array is printed
column-wise. If some elements of the array are itialized before printing, question
marks appear in the output indicating elements tha not have a value. Each PRINT
statement starts printing in a new line. If ine is nO¥ long enough to print the array,
the output is printed in more than one line.

Example: Read a 3 x3 integer array un-wise and print:

1. the entire array row-wighin Qge line;

i1 the entire array ¢olu in one line;
1ii. one row per li \
iv. one colum line ;

3

v. the sumof CQum

cPQ

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

eighth Complete Examples on Two-Dimensional Arrays 135

Solution:

INTEGER WHT (3, 3),
C READING WHT COLUMN-WISE
READ*, WHT
C PRINTING THE ENTIRE ARRAY WHT ROW-WISE
PRINT*, 'PRINTING THE ENTIRE ARRAY ROW-WISE'
PRINT*, (WHT(K, J), J =1, 3), K =1, 3)
C PRINTING THE ENTIRE ARRAY WHT COLUMN-WISE
PRINT*, 'PRINTING THE ENTIRE ARRAY COLUMN-WISE'
PRINT*, WHT
C PRINTING ONE ROW OF WHT PER OUTPUT LINE
PRINT*, 'PRINTING ONE ROW PER LINE'

SUM, J, K

DO 35 K = 1, 3
PRINT*, (WHT (K,J), J = 1, 3)
35 CONTINUE

C PRINTING ONE COLUMN OF WHT PER OUTPUT LINE

PRINT*, 'PRINTING ONE COLUMN PER LINE'
DO 45 J = 1, 3
PRINT*, (WHT(K,J), K = 1, 3)
45 CONTINUE
C PRINTING THE SUM OF COLUMN 3
SUM = 0
DO 55 K = 1, 3
SUM = SUM + WHT (K , 3)
55 CONTINUE
PRINT*, 'SUM OF COLUMN 3 IS', SUM
END
If the input is - \
5, 2, 0
3, 1, 8
4, 6, 7
The contents of WHT after reading ge OIBNSI
4
L
1 6
0 8 7

The output of the progra‘ 1S Wy, follows :

PRINTING THE

ENTIRE ARRAY ROW-WISE

5 3 4 2 1 6 0 8 7
PRINTING THE ENTIRE ARRAY COLUMN-WISE

5 2 0 3 1 8 4 6 7
PRINTING ONE ROW PER LINE

5 3 4

2 1 6

0 8 7
PRINTING ONE COLUMN PER LINE

5 2 0

3 1 8

4 6 7

SUM OF COLUMN 3 IS 17

7.5 Complete Examples on Two-Dimensional Arrays

In this section, we illustrate the use of two-dimensional arrays through complete
examples.

Example 1: More on Reading Two-Dimensional Arrays: Write a FORTRAN program
that reads a two dimensional array of size 5 x 4 row-wise. Each value is read from a

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

eighth Complete Examples on Two-Dimensional Arrays 136

separate line of input. The program then prints the same array column-wise such that
the elements of the first column are printed on the first line of output and the elements of
the second column are printed on the second line of output and so on.

Solution :

INTEGER TDIM(5 , 4) , ROW , COL
DO 10 ROW = 1, 5
DO 12 COL = 1, 4
READ*, TDIM(ROW , COL)
12 CONTINUE
10 CONTINUE
DO 30 COL = 1, 4
PRINT*, (TDIM(ROW , COL), ROW = 1 , 5)
30 CONTINUE
END

Let us first consider the reading segment. Reading is done using tv§
outer loop index corresponds to the rows of the two-dimensio
corresponds to the columns. Hence, the array TDIM is regd ro

Note that the

data value per line.

In the printing segment, we used an implied loo
we were asked to print each column on one line
must be printed using one and only one PRINT st BUsing two nested DO loops
will cause each element to be printed on a_separate 11y Therefore, we used an implied
loop for the elements of the columns. Cons the case of the first column. The value of
COL is fixed to 1 by the DO loop wherggmgth ¢ of ROW in the implied loop varies
from 1 to 5 covering all the elementS theQgst column. The same logic applies to the
rest of the columns.

Consider next the follow‘a; % as a substitute for the reading segment in the

DO loop. Remember that
tells us that each column

above program.

READ*, ((TDIM(ROW,COL), COL= 1, 4), ROW= 1, 5) |

In the previous reading gg
given one in each linct

t, we used nested DO loops and the data values were
e, we use nested implied loops. When using nested implied
vided either on one line or on multiple lines. This results
nested DO loops, we execute 5 x 4 =20 READ statements and
gnput from a different line. In the nested implied loops, we execute

the index of the outer loop indicates the way the array is read or printed.
oop index represents the row, the array is read or printed row-wise. If the
outer loop index represents the column, the array is read or printed column-wise.
Example 2: Summation of Even Numbers in a Two-Dimensional Array: Write a
FORTRAN program that reads a two-dimensional array of size 3 x 4 column-wise. It
then computes and prints the sum of all even numbers in the array.

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

eighth Two-Dimensional Arrays and Subprograms 137

Solution:
INTEGER A (3,4), SUM, J, K
READ*/ ((A(K/J)/ K = l/ 3)/ J = 1/ 4)
SUM = 0
DO 1 K =1, 3
DO 2 J =1, 4
IF (MOD(A(K,J), 2) .EQ. 0) THEN
SUM = SUM + A (K,J)
ENDIF
2 CONTINUE
1 CONTINUE
PRINT*, SUM
END

In this example, after reading the array column-wise, we go to each ele
A using the nested DO loops. The intrinsic function MOD is u

Example 3 : Manipulating Two-Dimensional Arrays: Wri
reads a two-dimensional array of size 3 x 3 row-wise. e pr

element in the array and changes each element of thega Vv sublracting the minimum
from each element. Print the updated array row-wisefgn on®gutput line.

Solution:
INTEGER A (3,3), MIN, J, K
READ*I ((A(KIJ)I J - 1! 3)! K = 1! 3)
MIN = A(1,1)
DO 3 K =1, 3
DO 3 J =1, 3
IF (A(X,J) .LT. MIN) THEN
MIN = A(K,J)
ENDIF
3 CONTINUE

DO 4 K =1, 3
DO 4 J =1, 3
A(K,J) = A(K, J) - MIN
4 CONTINUE
PRINT*, ((A(K,J), J =1, 3), K=1, 3)
END

7. -Dimensional Arrays and Subprograms

Two-dimensional arrays can be passed to a subprogram or can be used locally within
the subprogram. Unlike one-dimensional arrays, it is not recommended to pass a
variable-sized two-dimensional array to a subprogram (even though this does not
produce an error, it may give wrong results). Whenever a two-dimensional array is
passed to a subprogram, the row and column size of the array may be declared using a
constant in both the main and the subprogram.

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

eighth Common Errors in Array Usage 138

Example 1: Counting Zero Elements: Read a 3 x 2 integer array MAT row-wise. Using
a function COUNT, count the number of elements in MAT with the value equal to 0.

Solution:

INTEGER MAT (3,2), COUNT, J, K
READ*, (MAT (K, J), J =1, 2), K =1, 3)
PRINT*, 'COUNT OF ELEMENTS WITH VALUE O IS ', COUNT (MAT)
END
INTEGER FUNCTION COUNT (MAT)
INTEGER MAT (3,2), J, K
COUNT = 0
DO 77 K = 1, 3
DO 77 J =1, 2
IF (MAT (K, J) .EQ. 0) COUNT = COUNT + 1
77 CONTINUE

RETURN
END

The input of the program is “

[12, 0, 1, 9, 2, 0

The output of the program is as follows: AJ

|COUNT OF ELEMENTS WITH VALUE 0 IS 2

In this example, another possibility is to call the OUNT by passing three
arguments: MAT, M and N where M and N are s representing the row and
the column size of array MAT. The declaration of MAT within the function COUNT
may then be given as follows: INTEGER T(M,N). This type of variable-sized two-
dimensional array declaration is allowe suprogram. However, the use of such

declarations is not recommended du g s veyond the scope of this book.

Example 2: Addition of Matrices:] subroutine CALC(A, B, C, N) that receives 2
two-dimensional arrays A a@i B [(F x 10. It returns the result of adding the two

nctio

arrays (matrices) in another same size.
Solution:

11t
SUBROUTINE CALC (A, B, C, N)
INTEGER A (10,10), B(10,10), C(10,10), N
DO 10 K = 1,N
DO 15 J = 1,N

C(K,J) = A(K,J) + B(K,J)
15 CONTINUE
10 CONTINUE
RETURN
END

7.Mmon Errors in Array Usage

We have already seen errors that may occur in the use of one-dimensional arrays in the
previous chapter. Such errors can occur in using two-dimensional arrays as well. The
following errors are commonly seen while using arrays :

1. Array declaration is missing: All arrays must be declared. Otherwise, a message
would appear as 'FUNCTION array name IS NOT DEFINED.' Since the array
declaration is missing, the computer assumes it to be a function. Therefore, the
misleading message appears.

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

eighth Exercises 139

2. Array subscript is out-of-bounds: This error occurs when an array subscript is

outside the range of the array elements. For example, for a one-dimensional
array X declared as INTEGER X(10), the expression X(12) would produce an
error. Similarly, in a 2-D array Y declared as INTEGER Y (-3:2, 5), the
expression Y(-5,1) would produce an error.

Array subscript is not an integer: All array subscripts must be integers. This
error occurs when an array subscript is real. For example, for a one-dimensional
array X declared as INTEGER X(10), the expression X(2.0) would produce an
error. Similarly, in a 2-D array Y of size 3x2, an expression Y(1,30) would
produce an error.

Array size is a variable in the main program: All array sizes
constants, if the array is declared in the main program. Thigg curs when

declared in a main program as INTEGER X(N) woul ¢ an error. In a
subprogram, a declaration such as INTEGER X(Ngy bng as both X
and N are dummy arguments. Similar declargfon made for two-
dimensional arrays as long as the array name, e and its row-size
are dummy arguments. Such declarations (fof§ exa¥gple INTEGER Y (M,N)) are
valid in a subprogram but may not be u e to r&sons beyond the scope of
this book.

7.8 Exercises K‘
1. What is printed by the following W

i

INTEGER X (3,3), J

READ*, X
PRINT*, X

PRINT*, (X(J,J), J = 1, 3)
PRINT*, (X(J,3), J =1, 3)

END

Assume the input is: \\)

1, 5; 7
Ty 5 4
3, 8, 9
N §F

2. REAL B(2,3), F

INTEGER J, K

F(X, Y) =X +Y * 2

READ*, ((B(J,K), K=1, 2), J =1, 2)

DO 2 g =1, 2

B(J,3) = F(B(J,1), B(J,2))

2 CONTINUE

PRINT*, B

END

Assume the input is:

10, 20, 30, 40

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

eighth Exercises 140

3. SUBROUTINE ADD (A, B, C)
INTEGER A(2,2), B(2,2), C(2,2) , J, K
DO 33 J =1, 2
DO 22 K =1, 2

C(J,K) = A(J,K) + B(J,K)
22 CONTINUE
33 CONTINUE
RETURN
END

INTEGER X (2,2), Y(2,2), Z(2,2)
READ*, X, Y
CALL ADD (X, Y, 2Z)

PRINT*, 7
CALL ADD (Z, Y, X)
PRINT*, X
END
Assume the input is: < i (
3, 6, 9, 2
7, 4, 5, 1
a A w——
4. INTEGER A (3,3) , J, K
READ*, ((A(K,J),K=1,3),J=1,3)
PRINT*, A
PRINT*, ((A(K,J),J=1,2),K=1,3)
PRINT*, A (3,2)
PRINT*, (A(K,2),K=3,1,-2)
END
Assume the input is: a0 \
12 3
4
56 7 8
9
- W
5. INTEGER A (2,2) , J, K
READ*, A

DO 3 J = 1,2
PRINT*, (A(J,K), K=1,2)

3 CONTINUE

END

-
Assume the input is:
12 34
AN A}

6. INTEGER TDAR(3 3), ODAR(10), ROW, COL, J, K, M, N

NUM(M,N) =M + N - 1

READ*, TDAR
READ*, ROW, COL
DO 10 J = 1,3

DO 10 K = 1,3

ODAR (NUM (J,K)) = TDAR(J,K)
10 CONTINUE
PRINT*, ODAR (NUM(ROW,COL)), ODAR (NUM(COL,ROW))

END

Assume the input is:

96 4321857
2 3

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

eighth Exercises

141

7 INTEGER A (2,2), B(2,2), C(2,2), X, Y, K, M
D(M,N) =M + N
READ*, A, B
DO 35 K = 1,2
DO 35 M = 1,2
X = A(K,M)
Y = B(K,M)
C(M,K) = D(X,Y)
35 CONTINUE

DO 22 K = 1,2
PRINT*, (C(K,M), M=1,2)
22 CONTINUE
END

Assume the input is:

3726
5841

8. INTEGER A (10,10), B(10), L,
READ*, N, ((A(K,L),K=1,N),L=
PRINT*, C(A,B,N)

END
REAL FUNCTION C (A, B,N)
INTEGER A (10,10),B(10), L, N

C =0.0
DO 44 L = 1,N
IF (L/3*3 .NE.L) B(L) = A(L,L)
C = B(L) * A(L,L)
44 CONTINUE
RETURN
END

Assume the input is: \Av

|3111222333444
r—

9. INTEGER A (5,5), J, K, M, N
READ*, N, ((A(K,J),J=1,N),K=1,N)
CALL TEST (A, N, M)
PRINT*, M
END
SUBROUTINE TEST (
INTEGER X (5,5), Y,
z = X(1,1)
DO 10 K = 1,Y
DO 10 J =1, Y
IF (Z.GT.X(K,J))Z=X(K,J)
10 CONTINUE
RETURN
END

X,Y,Z)
z, J, K

AsMe thanput is:

[3136-304509-1

2. Assume the array declaration :

| INTEGER Z (10,10)

is given. Which of the following READ statements will read the array column-wise

if the data is given one value per line ? :

[1. READ*, 7

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

eighth Exercises 142

II DO 20 J = 1,10
READ*, (Z(K,J),K=1,10)
20 CONTINUE

III. DO 10 K = 1,10
DO 10 J = 1,10
READ*, Z(J,K)
10 CONTINUE

3. Complete the missing parts in the program given below to construct the following

matrix :
0 0 01
0010
A =
0100
O
INTEGER A (4,4), K, L B
DO 10 K =1,4
DO 10 (1)
IF ((2)) THEN
A(K,L) = (3)
ELSE
A(K,L) = (4)
ENDIF
10 CONTINUE
END
4. Write a program to initialize row-wise € elementgf areal 2-D array PRD of size 3
x 4 with the product of its row and co ers. Print this array column-wise.
5. Write a function subprogram ID es a 2-D integer array IMAT of size 3 x

3 and initializes the array as
function. 'S

6. Write a program to read X‘
row in a 1-D array an

arrays ROW and CO

ram that reads an (8§x10) 2-D REAL array TAB row-wise
N tageRf elements in array TAB that are perfect squares. (Hint: 25
ce25=5x)95).

program that reads an integer N and then reads a two dimensional

ose sy is the maximum. Assume N is less than or equal to 10. For example, if N
1S MAT is as follows:

2 1 4
3 57
8 2 9

then the output should be:

4 7 9

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

eighth Solutions to Exercises

143

7.9 Solutions to Exercises

Ans 1.
I. 157751389
159
389
. 10.0 30.0 20.0 40.0 50.0 110.0
3. 1010 14 3
17 14 19 4
4. 123456789
142536
6
6 4
5 13
2 4
6. 1 1
7. 8 15
6 7

8. 12.0
9. 3

Ans 2.

1,11, 111 .
Ans 3 \L
HL=1,4 Q L¥*Q.5

Ans 4. - s

\BQQ\

40

REAL PRD (3, 4)
INTEGER J, K

po 10 K=1, 3
DO 20 J =1, 4
PRD(K, J) = K * J
20 CONTINUE

10 CONTINUE
PRINT*, PRD
END

~

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

eighth Solutions to Exercises

144

Ans 5.
SUBROUTINE IDINIT (IMAT)
INTEGER IMAT (3,3), J, K
DO 77 K=1, 3
po 77 J =1, 3
IMAT (K, J) = 0
IF (K .EQ. J) IMAT(K, J) = 1
77 CONTINUE
RETURN
END
INTEGER IMAT (3,3), K
READ*, IMAT
CALL IDINIT (IMAT)
DO 77 K =1, 3
PRINT*, IMAT (K,1),IMAT (X,2),IMAT (K, 3)
77 CONTINUE
END

55

66

INTEGER X (3,4) , ROW(3) , COL(4), J, K
READ*, X
DO 55 K =1, 3
ROW(K) = O
DO 55 J =1, 4
ROW (K) = ROW(K) + X (K, J)
CONTINUE
DO 66 J =1, 4
COL(J) = 0
DO 66 K = 1, 3
COL (J) = COL(J) + X(K, J)
CONTINUE

PRINT*, ROW
PRINT*, COL
END

o *J)

10

30
20

INTEGER CNT, I, J
REAL TAB(8,10)
DO 10 I =1 ,8

READ*, (TAB(I,J), J =1,10)
CONTINUE
CNT = 0
DO 20 I =1 ,8

DO 30 J =1 ,10

IF (INT (SQRT (TAB (I, J)))**2.EQ.TAB (I, J)))CNT=CNT+1

CONTINUE
CONTINUE
PER = CNT / 80.0 * 100
PRINT*, ' THE PERCENTAGE = ' , PER

END

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

eighth Solutions to Exercises

145

Ans 8.
INTEGER MAT (10,10) , N , SUM , MAXSUM , COL, I, J
READ*, N
DO 10 I =1 ,N
READ*, (MAT(I,J), J =1,N)
10 CONTINUE
SUM = 0
COL = 1
DO 20 K =1 ,N
SUM = SUM + MAT (X, I)
20 CONTINUE
MAXSUM = SUM
DO 30 J =2 , N
SUM = 0
DO 40 K =1 , N
SUM = SUM + MAT (K, J)
40 CONTINUE
IF(SUM .GT. MAXSUM) THEN
MAXSUM = SUM
Com = J
ENDIF
30 CONTINUE
PRINT*, (MAT (K,COL) ,K = 1, N)

END

N\

\\(\
R
(JO

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

eighth Output Formatting 147

8 OUTPUT DESIGN AND FILE
PROCESSING

8.1 Output Formatting

The print statement we have been using in the previous chapters
statement. In list-directed output, the output list determine
printed output. In other words, we have no control ov e f the output. To
control the manner in which the output is printed o output in a more
readable form, we use FORMAT statements. To us§l a AT statement, we must
modify the PRINT statement by replacing the '*'qgitlla FORMAT statement label. The
general form of a formatted PRINT statement is

sdirected output
iscppearance of

| PRINT K, expression list

The FORMAT statement number k id@a format to be used by the print
statement. The statement number tive INTEGER constant up to five
digits. Recall that statement numberg algplac® in columns 1 through 5. The expression
list specifies the value(s) to bAe pri& eneral form of the FORMAT statement is

|x FORMAT (specification list)

A FORMAT statemeng] aWable statement. It can appear anywhere in the
program before or aftey tiassocCiated print statement. The specification list in the
cQifies®oth the vertical spacing and the horizontal spacing to be

used when printigg an ut. The first character of the specification list, called the

carriage contr. ctergyis used to control the vertical spacing. The rest of the
specificationghist ts of various format specifications and controls the horizontal

ovides format specifications for blank spaces, integer, real, character
es. Commas are used to separate specifications in the specification list.
Befo gMing the line, the computer constructs each output line internally in a memory
area called the output buffer. The length of each line in the buffer is 133 characters. The
first character is used to control the vertical spacing and the remaining 132 characters
represent the line to be printed. The buffer is filled with blanks before it is used to
construct an output line.

The following are some of the carriage control characters used to control the vertical
spacing:

e ' ':single spacing (start printing at the next line)

e '0':double spacing (skip one line then start printing)

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

eighth Output Formatting 148

e '-":triple spacing (skip 2 lines then start printing)
e '1':new page (move to the top of the next page before printing)
e '+': no vertical spacing (start printing at the beginning of the current line

irrespective of what was printed before)

The six format specifications presented below allow the control of horizontal spacing.
In the following sections we will use

.. 4o lee 42t 3t .. 4L |

as a header to the output to indicate the horizontal spacing, Notes that the abave line is
not part of the output.

8.1.1 | Specification

The I specification is used to print integer expressions. g®q&ral form of I
specification is {Iw}, where w is a positive integer represeniggg the Rgm®®r of positions
to be used to print the integer value. To find the m nugber of positions
necessary to print a number, we count the number of thes#teger including the
minus sign. For example, if we want to print -25, thdlvallf w should be at least 3. In
the case where the value of w is more than 3, the printed right-justified. If
the value of w is less than 3, the number -25 e printed and asterisk (*)
characters appear in the output. In this case, the numb&yof asterisks is equal to w.

In other words, to print an integer num®&gusing I specification, we start filling the
positions from right to left. The ext i he left of the integer (if any) will be
filled with blanks. If the positions are Wgt h to represent the number, the positions
are filled with asterisks indicatin h&gpecification is not enough to print the integer
number. *

Example 1: What is the mi egffication needed to print each of the following

integers?

5, 67,-57, 1000, 123456
Solution:
Q Number | I specification

345 13

0 67 12
-57 13

1000 14

123456 16

Example 2: What will be printed by the following program?

INTEGER M
M = -356
PRINT 10, M
10 FORMAT (' ', 1I4)
END
Solution:
A R)
-356

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

eighth Output Formatting 149

Notice that the carriage control character ' ' did not appear in the output. This characters
indicates that the output line is single spacing.

Example 3: If the FORMAT statement in the previous example is modified as follows:

| FORMAT ('1', 16) |
What will be printed?

Solution:

The printed output in this case will start on a new page, because of the carriage control
character '1":

(new page) S:

T T S T

-356

Example 4: [f the FORMAT statement in the previous example Wd as})llowss

| FORMAT ('-', 13) |

What will be printed? v

Solution:
|

6 00 00 0ds0 0009700 000%0000%000080000%0000%0

* K %

Notice that the printed output in this cas@ffas two ezlpty lines before the data. The
reason is the carriage control charagter g Wi eans triple spacing. Moreover, the
data is printed as three asterisks becRge tiyformat specification 13 is not enough for
the number -356.

Example 5: Assume K = 44 @ = [2. The following PRINT statements will
produce the shown outputs. A

a. PRINT 10, K
10 FORMAT (' ', I4)
. 9

T T T T
-244

4 N 9
b. PRINT 20, K, M
20 FORMAT (' ', I5, 1I6)
T D - T
-244 12

A —

c. PRINT 30, K

PRINT 35, M
30 FORMAT (' ', I3)

35 FORMAT ('0', I2)

B e TG I Y S
* % %

12

d. PRINT 40, K + M

40 FORMAT (' ', I5)

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

eighth Output Formatting

Do o 1. + 2. +
-232
e. PRINT 50, K / M
50 FORMAT (' ', I3)
F T N N S~ S S
A0
f. PRINT 60, M + 1.0
60 FORMAT (' ', I3)
ERROR MESSAGE: TYPE MISMATCH
g. PRINT 70, =345
70 FORMAT (' ', I7)
A ..\ WA s
s R 7 S S
-345
A —"
h. PRINT 80, -39 / 3 * 2
80 FORMAT (' ', I3)
L\ N v
coootfoooolooootooooZooootoooc
-26
A - 4
i. PRINT 90, K
PRINT 95, M
90 FORMAT (' ', I4)
95 FORMAT ('+', 1I8)
A N
B e AP
-244 12
J. PRINT 98, K
PRINT 98, M
98 FORMAT (' ', I4)
/ A U
B A R~ A G I S
-244
12

‘ >
8.1.2 F Specifica &
to print real values. The general form of the F specification
a poRtive integer representing the total number of positions to be
humber and d represents the number of positions to be used to
of the real number. Note that w must satisfy the relation w > d +

The F specification 1

used to print thS

print the fi 1
1.

find tRe number of positions needed to print a real number, we count the number
of sT9g t digits in the real number including the decimal point and the minus sign.
For example, if we want to print -91.35, we need a total of six positions, two of them to
the right of the decimal point, so the specification should be at least F6.2. To print the
real number, we count from right to left d positions and place the decimal point at
position d+1. We start placing the integer part of the real number from right to left and
the fractional part of the real number from left to right. The extra positions to the left of
the decimal point (if any) are filled with blanks, while the extra positions to the right of
the decimal point (if any) are filled with zeros. If the number of positions to the left of
the decimal point is not enough to represent the integer part of the real number, all w
positions are filled with asterisks. If the number of positions to the right of the decimal

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

eighth Output Formatting 151

point is not enough to represent the fractional part of the real number, the number will
be rounded to just fill the specified number of decimal positions.

Example 1: What is the minimum F specification needed to print the following real

numbers?:
823.67509, 0.002, .05, -.05, -0.0008
Solution:
Number F specification
823.67509 F9.5
0.002 F5.3
.05 F3.2
-.05 F4.2
98. F3.0
98.0 F4.1
-0.0008 F7.4
Example 2: What will be printed by the following progw R
REAL X
X = 31.286
PRINT 10, X
10 FORMAT ('1', F6.3)
END
Solution: & -
The printed output on a new page is is fﬂw
Fo0oodlooootoooolooootooooBooooifoooolo

31.286
Example 3: [f the FORMA ®sta @ in the previous example is modified as follows:
| FORMAT (' ', F8.3

)
L 4
What will be printed? -
Solution:
+1+A2+ 3 +....4.
31.286
ExamMMAT statement in the previous example is modified as follows:
| FORMAT (' ', F8.4) |
~
WWrinted?
Solut
+ Teveeteeea2een it 3. t.... 4.

31.2860

Example S: If the FORMAT statement in the previous example is modified as follows:
| FORMAT (' ', F5.3) |

What will be printed?

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

eighth Output Formatting 152

Solution:

6P 0 00 0dbo 600000 0B00000000d0 000 0000Ro

* ok Kk kK

Example 6: [fthe FORMAT statement in the previous example is modified as follows:

| FORMAT (' ', F6.2) |
What will be printed?
Solution:
coootoooolioosooiooooloonoifoooodooootonoonls
31.29
Example 7: Assume X = -366.126, Y = 6.0 and Z = 20.97. The fol T
statements will produce the shown outputs.
a. PRINT 10, X
10 FORMAT (' ', F11.5)
- W
T T P I
-366.12600
a -~ S A
b. PRINT 20, X
20 FORMAT (' ', F8.3)
P | A N
R T TI R ~ SRTIRIG R R o
-366.126
A N

c. PRINT 30, %

PRINT 35, Y
30 FORMAT (' ', F4.1)
35 FORMAT ('0', F4.2)

W W
B T R R~ RETIIG DR R
21.0
6.00
__am— 4
d. PRINT 40, X / Y
40 FORMAT (' ', F7.3)
. N
P T R S ETTG S 4
-61.210
| _Am— A}

e. PRINT 50, Y + 0.00001
50 FORMAT (' ', F7.5)
— ¥ N N
R I R R~/ SRTIG SRR DR/
6.00001
— Y N
£. PRINT 60, 2 - 5
60 FORMAT (' ', F5.2)
B T R D~ S SRTIUUIG DR
15.97
g. PRINT 70, 7
70 FORMAT ('+', I5)
|ERROR MESSAGE: TYPE MISMATCH |
h. PRINT 80, -144 / 24 + 35.2
80 FORMAT (' ', F4.1)

oot tee 2t 3.t 4. |

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

eighth Output Formatting

29.2
i. PRINT 85, Y
PRINT 85, 2
85 FORMAT (' ', F6.2)
B T~ NG I Y S
6.00
20.97
j. PRINT 90, Y
PRINT 95, 2
90 FORMAT (' ', F6.2)
95 FORMAT ('-', F6.2)
L W 'V
B T G IO Y
6.00
20.97

8.1.3 X Specification

The X specification is used to insert blanks between t
general form of this specification is nX, where n isg p
number of blanks.

valges tend to print. The
1ve integer representing the

Example 1: The following program:

REAL A, B
A= -3.62
B = 12.5
PRINT 5,

5 FORMAT (' ',
END

prints thefollowing output: ’ S

A, B

F5.2, F4.1)

Lt ... 4.
—3 6212 5

se the two printed values are not separated by blanks. If
usmg X specification as follows:

F4.1)

The output is not readab b

| FORMAT (. , 3X,

tatements print the same output.

[L0 FORMAT (' ', I2)

is equivalent to

|10 FORMAT (1X, I2)

and

[20 FORMAT (' ', 2X, F4.1)

is equivalent to

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

eighth Output Formatting 154

|20 FORMAT (3X, F4.1) |

8.1.4 Literal Specification

The literal specification is used to place character strings in a FORMAT statement as
part of the specification list. The character string must be enclosed between two single
quotation marks.

Example 1: What will be printed by the following program?

REAL AVG
AVG = 65.2
PRINT 5, AVG
5 FORMAT (' ' ,'THE AVERAGE IS = ', F4.1)
END
Solution: n :
T T 2 B I Y

THE AVERAGE IS = 65.2

Example 2: The following program prints the messaW top of a new
page.

PRINT 30
30 FORMAT ('1', 'FORTRAN77')
END
The output printed at the a new page is: t
I S B
FORTRAN77

8.1.5 A Specification

The A specification is used to py L
specification is Aw, where ® op %
has more than w character

line. On the other hand, j strin@ has’ tewer than w characters, its characters are right-

justified in the output ling wityblanks to the left. The integer w may be omitted. If w is
omitted, the number acters is determined by the length of the character string.

ter expressions. The general form of the A
Mhe length of the character string. If the string

Example 1: Wi w
PRINT 55, 'ICS-101'

55 FORMAT (' ',A7)
END
So ﬁon:A'
D O A UG IO Y
ICS-101

Example 2: What will be printed by the following program?
CHARACTER TEXT*5

TEXT = 'KFUPM'
PRINT 55, TEXT, TEXT, TEXT

55 FORMAT (' ', A, 3X, A3, 3X, A9)
END

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

eighth Specification Repetition: Another Format Feature 155

Solution:
S ! [N S R CURNG PR Y. S
KFUPM KFU KFUPM

8.1.6 L Specification

The L specification is used to print logical expressions. The general form of L
specification is Lw. The letter T or F is printed if the logical expression is true or false
respectively. The printed letter is right-justified.

Example 1: What will be printed by the following program? a
PRINT 5, .TRUE.
5 FORMAT (' ', L1l)
END
Solution: S ; (
T T P I
T

Example 2: What will be printed by the following progm

LOGICAL X, Y

X = .TRUE.
Y = .FALSE.
PRINT 15, X, X
15 FORMAT (' ', L1, 2X, L5)
PRINT 20, Y, Y
20 FORMAT (' ', L1, 2X, L7)
END
Solution: q §
VN
D e TG I Y S
T T
F F

epttifion: Another Format Feature

entical specifications, we can replace them by an integer

8.2 Specificati

If we have consec

be replaced by 4(12, 3X). The following pairs of FORMAT
g use of repetition constants:

FORMAT ('0', 3X, I2, 3X, I2)

is eWto

[10 FORMAT ('0', 2(3X, I2))
and
[20 FORMAT (' ',F5.1, F5.1, F5.1, 5%, I3, 5X, I3, 5X, I3, 5X, I3)

is equivalent to

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

eighth File Processing 156

|2O FORMAT (' ',3F5.1,4(5X, I3))

8.3 Carriage Control Specification

The carriage control character is normally specified as the first character in the format
specification list. It can be specified as a blank or the characters 0,1,-, +. But in the case
where it is not specified as part of the specification list, the first character in the buffer
output is taken as the carriage control character. If the first character of the buffer output
is one of the carriage control characters (a blank, 0, 1, +, -), then the proper action is
taken. If the first character is not among the carriage control characters, the
is system dependent. The following example illustrates a specification
carriage control character is missing:

Example:
PRINT 10
10 FORMAT ('1995")
END
The output, on a new page, would be as follows: / 5 ’
56 00%Fco0oo0looootooooBoocotfoooc J PP
995

Notice that the first character 'l' was consid }w page carriage control
character.

8.4 File Processing

In many applications, the amount o
interactively is not efficient, thus a &

the program is run; making th@da'
in many real applications jgfa

analysis and computatio

and/ or produced is huge. Providing data
y to handle data is needed, namely, files.
e repetitive use of the same data every time
W ask very tedious. The third reason is that data

8.4.1 Openin

Before using a inpu§or output, it must be prepared for that operation. Files that
are used for_in st exist prior to their usage. To prepare a file for input, the
following stqggment must precede any read statement from that file:

OPEN (UNIT = INTEGER EXPR, FILE = FILENAME, STATUS = 'OLD')
whe UNIequals an integer expression in the range of 0 to 99. Avoid using 5 and 6 as
unit s since they are already assigned for the keyboard and the screen. The

filename is a character string containing the actual name of the file followed by the file
extension. In the IBM mainframe, the file name is separated from the file extension by a
space and if the extension is omitted, it is assumed to be FILE. Upon opening a file for
reading, the reading will take place from the beginning of the file.

Files that are used for output may not exist before being used. If the file does not
exist, it will be created whereas if it exists its contents will be erased. To prepare a file
for output, the following statement must precede any write statement to that file:

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

eighth File Processing

157

OPEN (UNIT = =

INTEGER EXPR, FILE FILENAME,

STATUS

'NEW'")

or

OPEN (UNIT

INTEGER EXPR, FILE

FILENAME,

STATUS ='UNKNOWN"')

The second statement is preferred in our system because the first one assumes that the

file does not exist and, therefore, if it exists an error occurs.

Example 1: Assume that you want to use file POINTS DATA as an input file. The
following statement will then appear before any read statement from the file:

OPEN (UNIT = 1,

FILE = 'POINTS DATA',

STATUS

'OLD")

Example 2: Assume that you want to use file RESULT DATA as an outp

e. The

following statement will then appear before any write statement to the fi

OPEN (UNIT = 1,

FILE = 'RESULT DATA',

STATUS = 'UNKNOWN')

8.4.2 Reading from Files

To read from a file, the file must have been opened. The REQD sta
following form: /

€

will be in the

*)

VARIABLE LIST

READ (UNIT,
where UNIT is the same value that is used in the offen st
are exactly the same as the ones you have alrea
data is taken from the file.

Example 1: Find the sum of three exam g taken
Solution: o AN

ent. The rules of reading
e only difference being that

INTEGER EXAM1, EXAM2, EXAM3, SUM

OPEN (UNIT = 10, FILE = 'EXAM DATA', STATUS = 'OLD')
AD (10, *) EXAM1, EXAM2, EXAM3

SUM = EXAM1 + EXAM2 + EXAM3

PRINT*, SUM

END

In many cases, the
some calculations

ata Values in a file is not known and we would like to do

values the file contains.

For these cases, the read

numUgr
statement will IOB

END NUMBER) VARIABLE LIST

@)el of the statement where control will be transferred after all the
IS T

ind the average of real numbers that are stored in file NUMS DATA.

(UNIT, *,
where nu
dat d.
Ex@mple 2
Ass t

we do not know how many values are in the file and that every value is

stored on a separate line.

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

eighth File Processing 158

Solution:

REAL NUM, SUM, AVG
INTEGER COUNT

OPEN (UNIT = 12, FILE = 'NUMS DATA', STATUS = 'OLD')
SUM = 0.0
COUNT = 0

333 READ(12, *, END = 999) NUM
SUM = SUM + NUM
COUNT = COUNT + 1
GOTO 333
999 AVG = SUM / COUNT
PRINT*, AVG
END

8.4.3 Writing to Files
To write to a file, the file must have been opened using an Orn and the

WRITE statement must be used in the following form:
| WRITE (UNIT, *) EXPRESSION LIST |

where UNIT is the same value that is used in the OPE e rules of writing
to a file are exactly the same as those of the print,s * in the WRITE
statement indicates that the output is free formattef. at is needed, the format
statement number is used instead.

Example: Create an output file CUBES DATA th

integers from I to 20 inclusive.
Solution: ; S)

INTEGER NUM
OPEN (UNIT = 20, FILE = 'CUBES DATA', STATUS = 'UNKNOWN')
DO 22 NUM = 1, 20

WRITE (20, *) NUM, NUM**3

ontains the table of the cubes of

22 CONTINUE
END
Format statement could e the write statement in the same way it is used with

the print statement. The in wrlte statement is replaced with the format statement
number.

8.4.4 Wor ith Multiple Files

In any ro than one file may be open at the same time for either reading or
it un1 number that is used in one file should not be used with any other
¢ program The number of the files that can be open at the same time is
e number of units, which is dependent on the computer you are using.

Example: Create an output file THIRD that contains the values in file FIRST followed
by the values in file SECOND. Assume that every line contains one integer number and
we do not know how many values are stored in files FIRST and SECOND.

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

ninth Exercises

159

Solution:
INTEGER NUM
OPEN (UNIT = 15, FILE = 'FIRST', STATUS = 'OLD')
OPEN (UNIT = 17, FILE = 'SECOND', STATUS = 'OLD')
OPEN (UNIT = 19, FILE = 'THIRD', STATUS = 'UNKNOWN')
123 READ(15, *, END = 456) NUM
WRITE (19, *) NUM
GOTO 123
456 READ(17, *, END = 789) NUM
WRITE (19, *) NUM
GOTO 456
789 STOP
END

8.4.5 Closing Files

After using a file in our program, that file must be closed. The op

computer we are using normally closes all the files that
program execution. But in some cases, we may need to re
than one time. This can be done by closing the file after
then re-opening the file to read the same data again.

files that were created by our program. This is achiefled
file then re-opening it as an input file. The CLOSE sfteme

€

arc

closing the file as an output
ooks as follows:

CLOSE (UNIT)

where unit is the same value that is used iyt open&ement. You can only close files

that are already open.

8.4.6 Rewinding Files

After reading from the file the rea
In certain situations, we mayghee
is done by closing the file t €
thing is through the REW S

d moves forward towards the end of the file.
reading from the beginning of the file which
p it again. Another method of doing the same

REWIND (UNIT)

where unit is the sa
that are open for 1< OTRNY.

8.5 E
E

es on Output Design
e printed by each of the following programs?

e mat is used in the open statement. You can rewind files

REAL X
X = 123.8367
PRINT 10, X, X, X

10 FORMAT (' ', F7.2, 2X, F6.2, F9.5)
END

This Copy was edited & prepared by Husni Al-Muhtaseb as part of

KFUPM open Course initiative

ninth Exercises

160

INTEGER J, K, N

K = 123

J = 456

N = 789

PRINT 10, K

PRINT 11, J

PRINT 12, N
FORMAT (' ', I3)
FORMAT ('+', 3X, I3)
FORMAT ('+', 6X, I3)
END

10
11
12

REAL X1, X2

INTEGER N1, N2

READ*, X1, X2

READ*, N1, N2

PRINT 10, X1, X2

PRINT 11, N1, N2

PRINT 12, X1/X2

FORMAT ('1',F5.2, 2X, F3.1)
FORMAT ('0', I3, 2X, 1I2)
FORMAT ('+', 12X, F6.2)
END

Assume the input for the above program is: ‘ z

81

.6 9.2

-125 48

A\

PRINT 20, -35, 0.0, 12 * 10.0, 125 / 5
FORMAT (1X, I3, ‘+’, F3.1, ‘IS NOT EQUAL’, F6.1,'-',I2)

END

33
44

LOGICAL FLAG, P, O

READ*, P, Q

FLAG = .NOT. P .AND. .NOT. Q
PRINT 33, P, 'AND', O

PRINT 44, P .OR. Q, FLAG
FORMAT (' ', L2, 2X, A, L3)
FORMAT ('-', L1, 2X, L1)

END

[T

Assume the in@above program is:
F

AN W 4

40
50

REAL X, Y

INTEGER N

X = 25.0

Y = -35.0

N = -35

PRINT 40, X, SORT (X)

PRINT 50, Y, ABS(Y)

PRINT 60, N, ABS(N)

FORMAT (' ', 'X=', 2X, F4.1, 2X, 'SQUARE ROOT = ', F4.1)
FORMAT (' ', 'Y=', 2X, F5.1, 2X, 'ABSOLUTE VALUE = ',F5.1)
FORMAT (' ', 'N=', 2X, I3, 2X, 'ABSOLUTE VALUE = ', I2)
END

CHARACTER*6 CITY

CITY = 'RIYADH'

PRINT 1, 'THE CAPITAL IS', 2X, CITY
FORMAT (' ', A, 2X, A4)

END

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

ninth Exercises

161

8. INTEGER ARR (5), K
READ*, (ARR(K), K = 1, 5)
DO 70 K = 1, 5
PRINT 10, ARR (K

70 CONTINUE

10 FORMAT (' ', I4)
END

)

Assume the input for the above program is:

l10 20 30 40 50

9. INTEGER ARR (5), K

READ*, (ARR(K), K = 1, 5)

PRINT 10, (ARR(K), K = 1, 5)
10 FORMAT (' ', 5I2)

END

Assume the input for the program is:

[10 20 30 40 50

10. INTEGER ARR(5), K .
READ*, (ARR(K), K =1, 5)
PRINT 10, (ARR(K), K = 1, 5)
10 FORMAT (' ', 5(I2,2X))
END
Assume the input for the program is: q -
[10 20 30 40 50
" 4

11. REAL MAT (2,3), I, J

DO 10 I= 1,
10 CONTINUE

55 FORMAT (' ', 3(F4.1, 2X))
END

READ*, ((MAT(I, J), I=1,2),J=1,3)
2

PRINT 55, (MAT(I, J), J=1,3)

Assume the input for the W

10 20 30 40

60
v

50
12. REAL A (30), B(30), DOT, Z
INTEGER K, N
READ*, N, (A(K), B(K), K=1,
Z = DOT (N, A, B)
PRINT 10, Z
10 FORMAT ('1', 'DOT PRODUCT = ',
END
REAL FUNCTION DOT (M, X, Y)
INTEGER M, I
REAL X (M),Y (M), SUM
SUM = 0.0
DO 123 I =1, M
SUM = SUM + X (I)* Y(I)
123 CONTINUE
DOT = SUM
RETURN
END

Assume the input for the program is:

4 1 2 3 4 5 6 7 8

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

ninth Exercises 162

13. INTEGER N1, N2
REAL S1, S2
READ*, N1, N2

READ*, S1

READ*, S2

READ*, N1
1 FORMAT ('O', 14, '+', 12, 2X, '=', I4)
2 FORMAT (' ', A, 3X, F5.2)
3 FORMAT ('+', 7X, F10.2)

PRINT 1, N1, N2, NI1+N2

PRINT 2, 'Sl1l', S1

PRINT 3, S2

END
Assume the input for the program is: & ;S
37

101 4113 25.0
-30.459 210.0
427.5 48

23

2. Indicate the validity of the following statements: gv
1. The FORMAT statement can be placed any€herg b n the declaration

statements and the END statement of a FORT rogram.

2. Two or more PRINT statements can re t@ the sMme format statement. For
example, if X and Y are real variables then th g program segment:

PRINT 5, X
PRINT 5, Y
5 FORMAT (4X, F5.2)

is correct.

3. Complete the following progra oNigr to get the required outputs:

1L o REAL X

X = 5.98
PRINT 1, X
PRINT 2, X

1 FORMAT (

2 FORMAT (
END

The required OL‘ ‘

+

x 5.980 X=6. o
— A W
2. INTEGER B

REAL A, C

A= 3.1

B = 12.5

C = 127.66

PRINT 1520, A, B, C
1520 FORMAT ()

END

— —

The required output is:

500% 0000400007 000080000%000080000% 00000
3.10 12 127.7

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

ninth Exercises 163

3. REAL A,
INTEGER J
A = -5.62705
J = 23
PRINT 5, A, J

5 FORMAT ()
END

The required output is:

cHFoooollooooiFooooPooooioooodooootonools
-5.63 23

4. INTEGER 7

REAL X, Y

X = 5.00

Y = 59.996

Z = 3125

PRINT 5, X, Y, %
5 FORMAT ()

END
The required output is: /\)
R I ITI R D~ SRTURIG IR
X= 5.00 Y= 60.00 7= ***

| AN

5. PRINT 1, 'FORTRAN'

PRINT 2, 'I LIKE'
1 FORMAT ()
2 FORMAT ()

END

A N

THE REQUIRED OUTPUT IS:

5000%0000dhco000%0000%00600%0000D0000%0000H0
I LIKE FORTRAN

6. INTEGER Y

REAL X

X = -20.2451

Y = 25

PRINT 6, X, 'AND', Y
6 FORMAT

END

(
The required 0\@ ‘
5000%F0o000doooo0¥Fooo00Bc00o0 oo

-20.25 AND 25

B S ST O

rite Mam segment to print the heading "FORTRAN-77--LANGUAGE"
enteregat the top of a new page. assume the output line contains 80 characters.

5. Wri rogram that reads any real number, separates the integer and real parts of the
number and prints it in the format shown below. For example, if the input is as
follows:

[123.45

your formatted output should be as follows:

R I U 2/ RTTTTRNG IUUDRR DR S
123.450=123+0.450

6. Consider the following program

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

ninth Exercises 164

INTEGER X
REAL Y
X = 469
Y = 17.38
PRINT2, X, Y

2 FORMAT ()
END

Given the following format statements below:

la. 2 FORMAT (5X, I3, 2X, F4.1)
|b. 2 FORMAT (6X, I3, 2X, F4.1)
lc. 2 FORMAT (1X, I8, F6.1)

Which of the above FORMAT statements can be used in place h RMAT
statement in the program to print the output as follows?

B R T~/ SG SR T o
469 17.4
7. The output of the program given below is as follows m
T T P I
TEST = —-3.527 M=***
M = 2531 TEST = -3.5270
M = -3.53 M=2531
Place the proper FORMAT statement nup#rs with me PRINT statements such that
the output is as given above.
REAL TEST
INTEGER M
TEST = -3.527
M = 2531

PRINT A , TEST, M
PRINT B , M, TEST
PRINT C , TEST, M

10 FORMAT (2X, 'TEST = ',F6.3, 2X, 'M=', I3)
20 FORMAT(ZX 'M = ',F8.2, 2X, 'M=', I4)
30 FORMAT('0','M =',I5, 2X, 'TEST = ', F7.4)
END
8.5.2 on F|LES
1. %de loWeng statement:
*, END =

th followmg statements is (are) correct about the above statement?

1. The value of A will be read from the area after Assume the input for the program
is:.

2. At the end of the file, this read statement will transfer control to statement labeled
10.

3. The value of A will be read from the file linked to unit 8.
2. Which of the following statements is/are FALSE about files:

1. The statement that assigns unit number 9 to the input file "DATA" is:

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

ninth Exercises

165

|OPEN (UNIT = 9, FILE = 'DATA', STATUS = 'OLD')

2. The OPEN statement for a data file must precede any READ or WRITE

statements that uses that file.
3. A statement that reads two numbers from a file may look like:

|[READ (9, *, END = 31) K, L

4. The OPEN statement for a file should be executed only once in the program.
5. A statement that writes two numbers into a file may look like:

|PRINT (9, *) X, L

6. A file is a collection of data records.
7. A file is usually used only once.

8. A file can be opened at the same time with two different unit g
9. Two files with the same unit number can not be opened at
10. We store data in files when we do not need them any ggore.
3. What will be printed by the following programs? / R

Lo INTEGER M, K

OPEN (UNIT = 10, FILE = 'INPUT DATA', STATUS = 'OLD')
READ (10, *, END = 10) (M, K = 1,100)
10 PRINT*, M, K-1
END
Assume that the file INPUT DATA' contadggghe foll(hng:
123
45
6 78 9
6
L 2 ‘ ;
2. INTEGER J, K

OPEN (UNIT = 3, FILE = 'FF1', STATUS = 'OLD')
DO 50 J=1,100
READ (3,*,END = 60) K

50 CONTINUE

60 PRINT*, 'THE VALUES ARE:'
PRINT*, K, J
END

The contem 'FF1' are:

20 50 67 45 18 -2 -20
88 66 77 105 55 300

—

3. INTEGER M
OPEN (UNIT = 10, FILE = 'INPUT',STATUS = 'OLD')
READ (10,*) M
20 IF (M.NE.-1) THEN
PRINT*, M
READ (10, *, END = 30) M
GOTO 20
ENDIF
PRINT*, 'DONE'
30 PRINT*, 'FINISHED'
END
Assume that the file 'INPUT' contains the following :
[7

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

ninth Exercises

166

I &> 0w

o~

INTEGER N, K
OPEN (UNIT
READ*, N

DO 10 K=1,N
PRINT*, N
READ (12, *, END
CONTINUE
PRINT*, N
CONTINUE

END

FILE =

12, "INFILE',

N

15)
10

15

STATUS

'OLD")

Assume the input for the program is:

|4

aX® T

Given that the file 'INFILE' contains the following data

Y

2
3
& AN y
5 INTEGER A, B
OPEN (UNIT = 10, FILE = 'INPUT DATA', STATUS = 'OLD')
OPEN (UNIT = 11, FILE = 'OUTPUT DATA', STATUS = 'NEW')
READ*, A, B
READ (10, *) A,B,A
WRITE (11,*) A, B
READ (10, *, END = 10) A, B
10 WRITE (11,*) A, B
END
Assume the input for the program isvl‘v
10 11
Assume that the file 'INPUT@AWS the following data
4 5
6 7
8
What will be written jn (R ARNOUTPUT DATA' file ?
6. INTEGER S, T, U
OPEN (UNIT = 10, FILE = 'INPUT',STATUS = 'OLD')
10 READ (10, *, END = 30) S, T
U =S5
T =U
U =S5
IF (S.NE.T) THEN
U =1
ELSE
U =0
ENDIF
GOTO 10
30 PRINT*, U, S, T
END
Assume the file 'INPUT' contains the following data:
3
4
5
6
7

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

ninth Exercises

167

8
7. INTEGER X (6), M, K
OPEN (UNIT = 10, FILE = 'INPUT1', STATUS = 'OLD')
OPEN (UNIT = 11, FILE = 'INPUT2', STATUS = 'OLD')
M= 0
10 M=M+ 1
READ (10, *) X (M)
IF (X(M).GT.0) GOTO 10
20 M=M+ 1
READ (11, *) X (M)
IF (X(M).GT.0) GOTO 20
PRINT 1, (X(K),K=1,M)
1 FORMAT (' ',12,12,12,12,12,12)
END

Assume you have two files 'INPUT1' and 'INPUT2' with the followi t
INPUT1 | INPUT2

3 6
8 0
0 7
5 0
8. INTEGER N, K
OPEN (UNIT=22, FILE = 'INPUT', STATUS = 'OLD')
33 READ (22,*) N
IF (N.EQ.0) GOTO 44
PRINT*, ('*', K=1,N)
GOTO 33
44 PRINT*, 'HISTOGRAM'
END

Given that the file INPUT' contaj&fo‘wing data

Aloadv o

associated to

s 12. Write a FORTRAN 77 program to do the above

. A set of three real nu %e}adgom the file TEST and the number associated to
the file is 10. Thﬂl hen written to a new file called REST and the number

operations.
5. Write a (g 7 program to copy an old file "TEST1" to a new "TEST2". It is
asgne @ pacyline of "TEST1" contains a student ID and his garde out of 100.
e nungig¥ data lines in the old file is not known.

is:

ite a EWRTRAN 77 program which will read values from a data file, the file name

and its type i1s DATA.
1. Open the INPUT file.
2. Open a new output file called: ODD DATA.

. open a new output file called: EVEN DATA. It is not known exactly how
many data there is in the INPUT file.

4. Use the read (... END =..) to read the values from the file one by one and
. If the value is odd, write it in the file: ODD DATA.
. If the value is even, write it in the file: EVEN DATA.

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

ninth Solutions to Exercises 168

7. A file called INPUT is assumed to contain an unknown number of lines, however, we
know that every line contains exactly two numbers. Write a program that reads each
line from file INPUT and prints the smaller of the two numbers in a file called
SMALL and the larger in a file called BIG.

8. The following incomplete program was written to compare two files 'INFOR1' and
'INFOR2'. If the data in the files is the same then the program prints the message
'SAME FILES'. Otherwise the program prints 'DIFFERENT FILES'. Each line in
both files contain two integer numbers followed by one logical value. Assume both

files have the same number of records. Complete the program: A
INTEGER X1, X2, X3, X4
LOGICAL (1) (2) ,FLAG
OPEN (UNIT = 1, FILE = 'INFOR1', STATUS = 'OLD')
(3)
FLAG = (4)
10 READ (1,*,END = (5)) X1, X2, VALl
READ (2,*) X3, X4, VAL2
IF (X1.EQ.X3 .AND. (6)) THEN
GOTO 10
ELSE
FLAG = .FALSE.
ENDIF
20 IF (FLAG) THEN
PRINT*, (7)
ELSE
PRINT*, (8)
ENDIF
END

8.6 Solutions to Exercids \y
8.6.1 Solutions to E‘(er Output Design

&\

e 3.t .4,
123 84 123 84123 83670
| T P
123456789
-

3'\J
(new page)
B U R SRR~ NS SrUPUPEPIG IR SRR %
81.60 9.2
*xx 48 8.87
4,

et ool L 20000t 0 3000 Ll L4

-35+0.0IS NOT EQUAL 120.0-25

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

ninth Solutions to Exercises 169

5.
60 070 00 0ds + 0 2o + 3 + 4
T AND F
T F
6.
T B
= 25.0 SQUARE ROOT = 5.0

= -35.0 ABSOLUTE VALUE = 35.0
= -35 ABSOLUTE VALUE = 35

5.5.0 090 0.0 0db5 00 BP0 0.0 0000 0IED 0.0 0806 0 0IR0 0.0 6
THE CAPITAL IS RIYA

8.
i

50 1 + 2 o o 3 + 4

10

20

30

40

50
> A Q)

V'S
5000%0000dhco000%0000%00600%0000D0000%0000H0
1020304050
10. {\ g
A

0000%c 1.+ 200 0+0.0.3000.+....4

AN

(new page)

6000%0000dc000%000020000%000080006050000%0
DOT PRODUCT = 100.0

13.

R U U 2/ ETTRNG IR DY S
23+** = 124
S1 wwwwts 427 .50

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

ninth Solutions to Exercises

170

Ans 2.
1. VALID
2. VALID
Ans 3.
1.
1 FORMAT (5X, 'X=',F5.3)
2 FORMAT ('+', 14X, 'X=', F3.1)
2.

|1520 FORMAT (3X, F4.2, 2X, I2, 1X, F5.1)
3.
|5 FORMAT (' ', 9X, F5.2, 5X, I2)
z= ', 13)

4.
7'\
B FORMAT (3X, 'X= ', F4.2,1X, 'Y= ',2X,F5.2, 2X%,'
> R
1 FORMAT (' ', 8X, A)
2 FORMAT ('+', 1X, A)
6. t
|6 FORMAT (' ', 4X, F6.2, 3X, A, 3X, I2)
Aus 4. A\Y
PRINT 10
10 FORMAT ('1', 30X, 'FORTRAN-77--LANGUAGE')

REAL X, RPART
INTEGER IPART

READ*, X
IPART = X
RPART = X - IPART
PRINT 5, X, IPART, RPART
5 FORMAT (' ', ¥7.3, '=', I3, '+', F5.3)
END
Ans
b
Ans
(a) 10
(b) 30
(c) 20
8.6.2 Solutions to Exercises on Files
Ans 1.
2 3

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

ninth Solutions to Exercises 171

Ans 2.
4 5 7 8 10
Ans 3.
6 10
THE VALUES ARE:
88 3
7
3
9
4
DONE
FINISHED
4
2
3
65
85
077
38060
skkskkk
kk
skkskk
HISTOGRAM
Ans 4. L
REAL RN1, RN2, RN3
OPEN(UNIT = 10, FILE = 'TEST', STATUS = 'OLD')
OPEN(UNIT = 12, FILE = 'REST', STATUS = 'UNKNOWN')
READ (10, *) RN1, RN2, RN3
WRITE (12, *) RN1, RN2, RN3
END
5) v
Ans 5.
‘ INTEGER 1D, GRD
OPEN(UNIT = 1, FILE = 'TEST1', STATUS = 'OLD')
OPEN(UNIT = 2, FILE = 'TEST2', STATUS = 'UNKNOWN')
5 READ (1, *, END = 10) ID, GRD
WRITE (2, *) ID, GRD
GOTO 5
10 PRINT*, 'DONE'
END

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

ninth Solutions to Exercises 172

Ans 6.
INTEGER NUM
OPEN(UNIT = 20, FILE = 'INPUT DATA', STATUS = 'OLD')
OPEN(UNIT = 30, FILE = 'ODD DATA', STATUS = 'UNKNOWN')
OPEN(UNIT = 40, FILE = 'EVEN DATA', STATUS = 'UNKNOWN')
100 AD (2 * END = 200) NUM
IF (MOD(NUM, 2) .EQ. 1) THEN
WRITE (30, *) NUM
ELSE
WRITE (40, *) NUM
ENDIF
GOTO 100
200 PRINT*, 'DONE'
END
Ans 7. '!I; E;
INTEGER N1, N2
OPEN(UNIT = 11, FILE = 'INPUT', STATUS = 'OLD')
OPEN(UNIT = 12, FILE = 'SMALL', STATUS = 'UNKNOWN')
OPEN(UNIT = 13, FILE = 'BIG', STATUS = 'UNKNOWN')
20 AD (1 * END = 25) N1, N2
IF (Nl .LT. N2) THEN
WRITE (12, *) N1
WRITE (13, *) N2
ELSE
WRITE (12, *) N2
WRITE (13, *) N1
ENDIF
GOTO 20
25 PRINT*, 'DONE'
END
s "\
1. VALI1 *
2. VAL2 \’
3. OPEN(=2, ='INFOR2', STATUS ='OLD")
4. TRUE.

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

ninth Sorting 174

9 APPLICATION
DEVELOPMENT: SORT &
SEARCH

In this chapter, we introduce a number of applications developc®yin RQRTRAN. The
methodology we follow to develop these applications wg shoWn as we consider
each application in detail.

Sorting and Searching are two applications discugsedgthis chapter. When sorting,
we sort (order) elements of a list in either creas or a decreasing order.
Searching, on the other hand, is the process of fin ent within a list.

9.1 Sorting

Sorting is the process of orderin
ascending) or decreasing (or descen

m of any list either in increasing (or
. Here, we discuss a method for sorting a
list of elements (values) into or rding to their arithmetic values. It is also
possible to sort elements thgg ha cler values since each character has a certain
arithmetic value for its repre t will be discussed in details in Chapter 10.

Sorting in increasing orqr medys th#® the smallest element in value should be first in
the list. Then comes the cxmallest element, followed by the next smallest and so on.
Figure 1 shows thre unsorted (unordered) list, the list sorted in increasing order,
creasing order The exact reverse happens in sorting a list in
liteM@ture, one can find a number of well established techniques
(sorting). Techniques such as insertion sort, bubble sort, quick

for achiev S
sort, c t, o®. differ in their complexity and speed. In the following section,
wefihtroduc ple sorting technique and its FORTRAN implementation.

decreasing ord

nsorted Increasing order Decreasing order
73 18 89
65 40 73
52 52 65
18 65 65
89 65 52
65 73 40
40 89 18

Figure 1: Unsorted and sorted lists

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

ninth Sorting 175

9.1.1 A Simple Sorting Technique

The idea of this sorting technique is to select the minimum (or the maximum depending
on whether the sorting is in increasing or decreasing order) value within the list and
assign it to be the first element of the list. Next, we take the remaining elements and
select the minimum among them and assign it to be the second element. This process is
repeated until the end of the list is reached. To select the minimum within a list of
elements, one has to compare all the elements and keep the minimum value updated.

In the following subroutine, this sorting technique is implemented. Tw:
used in this procedure. The first moves through the elements of the arr.
other and stops at the element before the last element in the array, f these
elements comparisons are conducted between that element and th ay. So,
the second loop moves over the rest of the array elements starti lement next to
the one being considered in the first loop. For example, if ghe firSglo8y is at element
number 3, the second loop would move over the element e last. Within the
second loop, element 3 is compared with all the remagfin starting from the
fourth element to the last to make sure that element }is than all of them. If element
5, for example, was found to be less than elemery 3,@ve s the two elements. As we
move ahead with the first loop, we are sure that t we leave is the smallest
among the elements that follow it. The FORTRAN§gubroutine that implements this
sorting technique is as follows: Y

SUBROUTINE SORT (A, N)
INTEGER N, A(N), TEMP, K, L
DO 11 K =1, N - 1
DO 22 L = K+1, N
IF (A(K).GT.A(L)) THEN

TEMP = A (K)
A(K) = A(L)
A(L) = TEMP
ENDIF
22 CONTINUE
11 CONTINUE
RETURN
END

of thepll

v
Let us now Vve subroutine when the value of N is 5 and the array A consists

312141910
Aft>he figh pass (the first iteration of the K-loop), the list becomes:
2 (3141910
After the second iteration of the K-loop, the list becomes:
2 101419 |3

Notice that the 0, the smallest within the 4 remaining elements is the one swapped to the
second position. After the third iteration of the K-loop, the list becomes:

2101319 |4
After the fourth iteration of the K-loop, the list becomes:

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

ninth An Application: Maintaining student grades 176

9.2 Searching

As part of any system, information or data might need to be stored in some kind of data
structure. One example is one-dimensional arrays. Assume that information about
students in some university is stored. Assume again that the IDs of students registered in
the current semester are stored in an array STUID. Suppose that an instructor asks the
registrar to check whether a student, who has an 882345 as his ID, is registered this
semester or not. For the registrar to conduct this check, he has to search with@@ythe array
STUID for the student who has the ID 882345.

A number of search techniques are well known in compute
techniques locate a value within a set of values stored in some da
searching technique, namely sequential search, is introduced in

9.2.1 Sequential Search

Sequential search starts at the beginning of a list (a
sequentially to see if it is the one being searched. Thj s continues until either the
element is found or the list ends, that is all the elemeifs in list have been checked.

The FORTRAN function that implements t m follows. The function

SEARCH searches for the element K in the array AN size N. If the element is found,
the index of the element is returned. Otherv, a zero value is returned.

INTEGER FUNCTION SEARCH (A, N, K)
INTEGER N, A(N), K, J

LOGICAL FOUND

SEARCH = 0

J = 1
FOUND = .FALSE.
10 IF (.NOT. FOUND .AND. J .LE. N) THEN
IF (A(J) .EQ. K) THEN
FOUND = .TRUE.
SEARCH = J
ELSE
J=J+ 1
ENDIF
GOTO 10
ENDIF
RETURN
END
WIign the e eEent K is found, the function returns with the position of K. Otherwise,
afteNgll thggflements have been checked, the function returns with the value zero.

9.3 An Application: Maintaining student grades

Question: Write a program that reads 1Ds of students together with their grades in some
exam. The number of students is read first. The input is given such that each line
contains the ID of the student and his grade. Assume the following input :

7

886767 94
878787 35
898982 82
867878 63

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

ninth An Application: Maintaining student grades 177

867676 55
898777 75
886788 22

After reading the IDs and the grades, the program must allow us to interactively do the
following:

1. SORT according to ID

2. SORT according to GRADES

3. CHANGE a GRADE

4. EXIT the program
Solution:

We will first write a subroutine MENU that gives us the various optio Wthe
problem and also reads an option. The subroutine MENU is as follcm

SUBROUTINE MENU (OPTION)
INTEGER OPTION
PRINT*, 'GRADES MAINTENANCE SYSTEM '

PRINT*, ' 0. EXIT THIS PROGRAM'

PRINT*, ' 1. SORT ACCORDING TO ID '
PRINT*, ' 2. SORT ACCORDING TO GRADES '
PRINT*, ' 3. CHANGE A GRADE '

PRINT*, ' ENTER YOUR CHOICE :'

READ*, OPTION

RETURN

END

We will now rewrite the subroutine SOR@ince we ;eed to sort one array and also
make the corresponding changes tggan: For example, if we are sorting the
array of grades, the swapping of ele is array must be reflected in the array of
IDs as well. Otherwise, the grade udent would correspond to the ID of another.

After sorting, we will pring, th ys in the subroutine. The new subroutine
TSORT is as follows: 3

SUBROUTINE TSORT (A, B, N)
INTEGER N, A(N), B(N), TEMP, J, K, L
DO 11 K = 1, N - 1
DO 22 L = K+1, N
IF (A(K).GT.A(L)) THEN

TEMP = A (K)
A(K) = A(L)
A(L) = TEMP
TEMP = B (K)
B(K) = B(L)
B(L) = TEMP
ENDIF
22 CONTINUE

11 CONTINUE
PRINT*, 'SORTED DATA : '
DO 33 J =1, N
PRINT*, A(J), B(J)
33 CONTINUE
RETURN
END

Note that we are sorting array A but making all the corresponding changes in array B.
To this subroutine, we can pass the array of grades as array A and the array of IDs as
array B. The subroutine then returns the array of grades sorted but at the same time

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

ninth Exercises 178

makes the corresponding changes to the array of IDs. If to this subroutine, we pass the
array of IDs as array A and the array of grades as array B, the subroutine returns the
array of IDs sorted but at the same time makes the corresponding changes to the array of
grades.

To change a grade, we are given the ID of the student. We need to search the array of
IDs for the given ID. We can use the function SEARCH we developed in Section 9.2.
We can pass the array of IDs to the dummy array A and the ID to be searched to the
dummy argument K. Note that the function SEARCH returns a zero if the ID being
searched is not found.

Using the subroutines MENU and TSORT, and the function SEARCH, velop
the main program as follows :

INTEGER GRADES (20), ID(20)
INTEGER SEARCH, SID, NGRADE, OPTION, K, N
PRINT*, 'ENTER NUMBER OF STUDENTS'

READ*, N
DO 10 K = 1, N
PRINT*, 'ENTER ID AND GRADE OF STUDENT ', K

READ*, ID(K), GRADES (K)
10 CONTINUE
CALL MENU (OPTION)
15 IF (OPTION .NE. 0) THEN
IF (OPTION .EQ. 1) THEN
CALL TSORT (ID, GRADES, N)
ELSEIF (OPTION .EQ. 2) THEN
CALL TSORT (GRADES, ID, N)
ELSEIF (OPTION .EQ. 3) THEN
PRINT*, 'ENTER ID \& THE NEW GRADE'
READ*, SID, NGRADE
K = SEARCH(ID, N, SID)
IF (K.NE.O) THEN

GRADES (K) = NGRADE
ELSE
PRINT*, 'ID : ' ,SID, ' NOT FOUND'
ENDIF
ELSE
PRINT*, 'INPUT ERROR '
ENDIF
CALL MENU (OPTION)
GOTO 15
ENDIF
END
Th: in Wt reads the two arrays ID and GRADES each of size N. Then it
disgllays the u and reads an option from the screen into the variable OPTION using
subMutine JENU. If the input option is 1, the subroutine TSORT is called in order to
sort [IDS™11 the input option is 2, the subroutine TSORT is called in order to sort the

grades. If the input option is 3, the ID to be searched (SID) and the new grade
(NGRADE) are read, and the function SEARCH is invoked. If the ID is found, the
corresponding grade in array GRADES is changed. Otherwise, a message indicating
that the SID is not found is printed. The main program runs until option 4 is chosen.

9.4 Exercises

1. Modify the application given in Section 9.3 as follows:

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

ninth Exercises 179

a. Add an option that will list the grade of a student given his ID.

b. Given a grade, list all IDs who scored more than the given grade.

c. Add an option to find the average of all the grades.

d. Add an option to find the maximum grade and the corresponding ID.
e. Add an option to find the minimum grade and the corresponding ID.
f. Add an option to list the IDs of all students above average.

. The seating arrangement of a flight is stored in a data file FLIGHT containing six

lines. each line contains three integers. a value of 1 represents a reserved geat, and a
value of 0 represents an empty seat. the contents of flight are: &

[oNeoN N S NeN

cor OO
o RO

write an interactive program which has a menu with th @ytions:
0. Exit

1. Show number of empty seats
2. Show Empty seats

3. Reserve a seat

4. Cancel a seat

The program first reads from the HT and stores the data in a two-

a. If option 1 is chosen, the mai

.If option 2 is chose

dimensional integer array seats of row-wise. then:

rafypasses the array seats to an integer function
NEMPTY which returnthe If empty seats. Then the main program prints

this number.
pogram passes the array seats to a subroutine
t umber of empty seats and the positions of all empty
al integer array EMPTY of size 18 x 2. Then, the main

, the user is prompted to enter the row number and the column
to be reserved. the main program then passes these two integers

served or if the row or column number is out of range the function returns
the value .false. to the main program. The main program then prints the message
SEAT RESERVED or SEAT NOT AVAILABLE respectively.

. If option 4 is chosen, the user is prompted to enter the row number and the column

number of the seat to be canceled. the main program then passes these two integers
together with the array SEATS to a logical function CANCEL which cancels a seat if
it is reserved and returns the value .true. to the main program. if the requested seat is
already empty or if the row or column number is out of range the function returns the

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

tenth Solutions to Exercises 180

value .false. to the main program. The main program then prints the message SEAT
CANCELED or WRONG CANCELLATION respectively.

e. If option 0 is chosen, the main program stops immediately if no changes were made
to the array seats. otherwise, the main program closes the data file flight and then
opens it to write into the data file the new seating arrangement stored in the array
seats before stopping.

9.5 Solutions to Exercises

1. For each of the following subprograms, appropriate changes must be
subroutine MENU on page 190 and the main program on page 192.

SUBROUTINE LISTGR(ID, GRADES, N)
INTEGER N, GRADES (N), ID(N), SID, SEARCH, K
PRINT*, 'ENTER STUDENT ID'
READ*, SID
C USING SEARCH FUNCTION ON PAGE 189
K = SEARCH(ID, N, SID)
IF (K .NE. 0)THEN

PRINT*, 'GRADE OF ID #', SID,' IS ', GRADE (K)
ELSE

PRINT*,'ID #', SID,' DOES NOT EXIST'
ENDIF
RETURN

END

b. PN

SUBROUTINE LISALL (ID, GRADES, N)
INTEGER N, GRADES (N), ID(N), SGR, SEARCH, K
PRINT*, 'ENTER STUDENT GRADE'
READ*, SGR
PRINT*, 'ID OF STUDENTS WITH GRADE = ', SGR
DO 10 K = 1, N
IF(GRADE (K) .GE. SGR) PRINT*, ID(K)
10 CONTINUE
RETURN
END

T 6

REAL FUNCTION AVERAG (GRADES, N)
INTEGER N, GRADES (N), K
REAL SUM
SUM = 0
DO 10 K =1, N
SUM = SUM + GRADE (K)
10 CONTINUE
AVERAG = SUM / N
RETURN
END

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

tenth Solutions to Exercises

181

d.
SUBROUTINE LISMAX (ID, GRADES, N)
INTEGER N, GRADES (N), ID(N), INDEX, MAXGRD, K
INDEX = 1
MAXGRD = GRADES (1)
DO 10 K = 1, N
IF(GRADES (K) .GT. MAXGRD) THEN
MAXGRD = GRADES (K)
INDEX = K
ENDIF
10 CONTINUE
PRINT*, 'MAXIMUM GRADE = ', MAXGRD
PRINT*, 'ID OF STUDENT WITH MAXIMUM GRADE = ', ID(INDEX)
RETURN
END
e. 4‘ S i;
SUBROUTINE LISMIN(ID, GRADES, N)
INTEGER N, GRADES (N), ID(N), INDEX, MINGRD, K
INDEX = 1
MINGRD = GRADES (1)
DO 10 K = 1, N
IF (GRADES (K) .LT. MINGRD) THEN
MINGRD = GRADES (K)
INDEX = K
ENDIF
10 CONTINUE
PRINT*, 'MINIMUM GRADE = ', MINGRD
PRINT*, 'ID OF STUDENT WITH MINIMUM GRADE = ', ID(INDEX)
RETURN
END
f. A E; >

SUBROUTINE LISIDS (ID, GRADES, N)
INTEGER N, GRADES (N), ID(N), K
REAL AVERAG, AVG

C USING AVERAGE FUNCTION IN PART C

10

AVG = AVERAG (GRADES, N)
PRINT*, 'ID OF STUDENTS ABOVE AVERAGE'
DO 10 K =1, N

IF(GRADE (K) .GT. AVG) PRINT¥*, ID(K)
CONTINUE
RETURN
END

(O A

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

tenth Solutions to Exercises 182

Ans 2.

INTEGER SEATS (6,3), EMPTY(18,2), NEMPTY, OPTION,ROW,CLMN

INTEGER J, K
LOGICAL RESERV, CANCEL, CHANGE
OPEN (UNIT=40, FILE = 'FLIGHT', STATUS = 'OLD')
DO 10 J = 1, 6
READ (40, *) (SEATS (J,K), K=1,3)
10 CONTINUE
CHANGE = .FALSE.
CALL MENU (OPTION)
15 IF (OPTION .NE. 0)THEN
IF (OPTION .EQ. 1)THEN
PRINT*, 'THE NUMBER OF EMPTY SEATS = ', NEMPTY (SEATS)
ELSEIF (OPTION .EQ. 2)THEN
CALL ESEATS (SEATS, EMPTY, N)
PRINT*, 'EMPTY SEATS:'
DO 20 J = 1, N
PRINT*, (EMPTY (J,K), K = 1, 2)
20 CONTINUE
ELSEIF (OPTION .EQ. 3)THEN
PRINT*, 'ENTER NEEDED SEATS ROW AND COLUMN NUMBER'
READ*, ROW, CLMN
IF (RESERV (SEATS, ROW, CLMN))THEN
PRINT*, 'SEAT RESERVED'

CHANGE = .TRUE.
ELSE

PRINT*, 'SEAT NOT AVAILABLE'
ENDIF

ELSEIF (OPTION .EQ. 4)THEN
PRINT*, 'ENTER ROW# AND COLUMN# OF THE SEAT TO CANCEL'
READ*, ROW, CLMN
IF (CANCEL (SEATS, ROW, CLMN))THEN

PRINT*, 'SEAT CANCELED'
CHANGE = .TRUE.
ELSE
PRINT*, 'WRONG CANCELLATION'
ENDIF

ELSE
PRINT*, 'WRONG OPTION'

ENDIF

CALL MENU (OPTION)

GOTO 15

ENDIF
IF (CHANGE) THEN

CLOSE (40)

OPEN (UNIT=40, FILE = 'FLIGHT', STATUS = 'OLD')

DO 25 J =1, 6
WRITE (40, *) (SEATS (J,K), K = 1, 3)

25 CONTINUE
ENDIF
END

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

tenth Solutions to Exercises

183

SUBROUTINE MENU (OPTION)
INTEGER OPTION

PRINT*, '*x*** FLIGHT RESERVATION ****x!
PRINT*, '1. NUMBER OF EMPTY SEATS'
PRINT*, '2. EMPTY SEATS '

PRINT*, '4. CANCEL SEAT'
PRINT*, '5. EXIT'

PRINT*, ' ENTER YOUR OPTION:'
READ*, OPTION

RETURN

END

4
4
4
PRINT*, '3. RESERVE SEAT'
4
4

35
30

INTEGER FUNCTION NEMPTY (SEATS)
INTEGER SEATS (6,3), J, K
NEMPTY = 0
DO 30 J =1, 6
DO 35 K=1, 3
IF (SEATS (J,K) .EQ. 0)THEN
NEMPTY = NEMPTY + 1
ENDIF
CONTINUE
CONTINUE
RETURN
END

a T

45

SUBROUTINE ESEATS (SEATS, EMPTY, N)
INTEGER N, SEATS(6,3), EMPTY(18,2), J, K
N =1
DO 40 J =1, 6
DO 45 K =1, 3
IF (SEATS (J,K) .EQ. O)THEN
EMPTY (N,1)= J EMPTY (N, 2)= K
N=N+1
ENDIF
CONTINUE
CONTINUE
N=N-1
RETURN
END

-~ \ ¥

LOGICAL FUNCTION RESERV (SEATS, ROW, CLMN)
INTEGER SEATS (6,3), ROW, CLMN
RESERV = .FALSE.
IF(ROW .GE. 1 .AND. ROW .LE. 6)THEN
IF(CLMN .GE. 1 .AND. CLMN .LE. 3)THEN
IF (SEATS (ROW,CLMN) .EQ. 0)THEN

SEATS (ROW,CLMN) = 1
RESERV = .TRUE.
ENDIF
ENDIF
ENDIF
RETURN

END

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

tenth Solutions to Exercises 184

LOGICAL FUNCTION CANCEL (SEATS, ROW, CLMN)

INTEGER SEATS (6,3), ROW, CLMN
CANCEL = .FALSE.
IF(ROW .GE. 1 .AND. ROW .LE. 6)THEN
IF(CLMN .GE. 1 .AND. CLMN .LE. 3)THEN
IF (SEATS (ROW,CLMN) .EQ. 1)THEN

SEATS (ROW, CLMN) = 0
CANCEL = .TRUE.
ENDIF
ENDIF
ENDIF
RETURN
END

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

tenth Character Operations 186

10 ADVANCED TOPICS

In this chapter, we will expand on earlier topics discussed in this
more advanced character operations, N-dimensional arrays, odo rectSion and
complex data types.

10.1 Character Operations

FORTRAN provides the capability of operating ongch er data. But what kinds of
operations make sense on character strings ? Certainlly the metic operators: +, -, ¥,/
and logical operators: NOT, AND, OR do not ma jth respect to character data.
In this section, we shall highlight the kinds of operati¥gs that we can apply on strings.

10.1.1 Character Assignment

Character constants can be assig hWCter variables using an assignment
statement. If the length of a charagteMgonst®nt is shorter than the character variable
length, blanks are added to the rigft' 8 onstant. If the length of a character constant
is longer than the charactc® ya % gth, the excess characters on the right are
ignored. X
Example 2: What will b&ed the following program?

CHARACTER *5 MSGl , MSG2

MSGl = 'GOOD'
MSG2 = 'EXCELLENT'
PRINT*, MSGl, MSG2

END

| Solugien: I ‘ ‘

GOOD EXCEL |

| MSG1 = 'GOOD ' |
while MSG2 contains 'EXCEL'.
Example 2: What will be printed be the following program?

CHARACTER *5 MSGl , MSG2
MSGl = 'GOOD1'

MSG2 = 'EXCELLENT'
PRINT*, MSGl, MSG2

END

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

tenth Character Operations 187

Solution:

| GOOD1EXCEL

Notice that there is no automatic blanks between the values of character variables.
A character variable can be used to initialize another character variable as follows:

CHARACTER BTYPE1*3 , BTYPE2*3
BTYPE1 'AB+!
BTYPE2 BTYPE1

Both variables, BTYPE1 and BTYPE2, contain the character string 'AB+'".
10.1.2 Comparison of Character Strings

To perform the comparison, the following points have to be consider

Information Interchange) @ and EBCDIC (Extended BI
Interchange Code). In the following table the number
equal to the sum of its row number and column
character. Gaps in the tables represent unprintable o

ASCII Table
0Ol 1([21]3

N
n
N
\1

0
16
32
48
64
80
96

112

o
S
o R0
OO0 —~

I =12
LB [>1Z|V
O [~ [~

ol =a
N _"NH"
—r—ﬂ/r*/\.

-}

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

tenth Character Operations 188

EBCDIC Table
O 1234 |5]6|7|8|9|[10]11]12[13]14]15
0
16
32
48
64| b e | .| <] (C|+]]
80 | & IS *1)] | =
9 | - | / . | %] ?
112 A @] ‘o NS
128 a|blc|d]e g | h|i
144 Jjlk| 1l |m|n plql|r
160 ~|s|t|lu|v | w|x]|y]|z
176
192l { |A|B|C|D|E|F|G|H]|I
208/ } |J|K|L|{M|N|JO|P|Q]|R
224 \ S| T|U|VIW|X]|Y
2400 0 [1 |2 [3 |4 |56 |78

These sequences are based on the numeric val sed to represent a character in
order to store that character in the co er memory. The ASCII and the EBCDIC
sequences use different numeric valges egch character. An important point to
note here is that the numeric v ciated with alphabetic characters do not
appear in a continuous numerg uen® in either the ASCII or the EBCDIC
character sets. But the nymerj % < numeric characters ('0','1", etc.) appear in a
continuous sequence in% W sets. Also note that the numeric characters
|

appear after the alphab acteggin the EBCDIC collating sequence while they
appear before in the collfiting sequence.

erators: .EQ., .NE., .LT., .LE., .GT. and .GE. can be used

to comp strings.

3. In order o strings they must be equal in length. If one string is
shg e other, FORTRAN adds blanks to the right of the shorter string
SO ome of equal length.

parison of two strings starts from left to right character by character.

o€ for two strings to be equal, they must be identical, character by character.
or example, the string 'ICS ' is not equal to ' ICS' because of different position
of the blank character.

6. If a character string is less than another character string, it is implied that the first
string precedes the second string in the order indicated in the collating
sequence. Thus 'ABC' is less than 'BCD'.

7. For clarity, sometimes, we use b to represent a blank.
Example: What will be printed be the following program?

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

tenth Character Operations 189

CHARACTER WORD1*5 , WORD2*5

WORD1 = 'MAN'

WORD2 = 'WOMAN'

IF (WORD1 .LT. WORD2) THEN
PRINT*, WORD1

ELSE
PRINT*, WORD2

ENDIF

END

Solution: To perform the comparison between WORD1 and WORD2 in the above
program, two blanks have to be added to the right of WORDI1 to be equal in lgngth with
WORD?2; an equivalent statement would be WORD1 ='MANDbb' . Since M ss than

W in the collating sequence the output would be:
|MAN

10.1.3 Extraction of Substrings

Each character in a string of size N can be referred to by a num
position. The first position in a string is character positi last character is
character position N. By specifying a starting positigg’an ing position in a
string, we can identify parts of a string called the g:ONggfe . If TEXT is a character
variable of size N, then TEXT(I:J) is a substring starfing wiWthe Ith character of TEXT
and ending with the Jth character of TEXT, whe integer values. J must be
greater than or equal I; otherwise an execution error Wguld occur. In addition, both I and
J must be in the range 1,2,3,...n; otherwis y would*hot correspond to any character
position within the variable. If I is omitte&XT(:J)), it is assumed to be 1. If J is
omitted (i.e. TEXT(I:)), it is assume

Example 1: What will be printed begth@gllovng program?

d a character

CHARACTER *10 A , B
A = 'FORTRAN 77
B = 'PASCAL'
PRINT 10, A(1:4) , A(9:) , B(:3)
10 FORMAT (' ' , A4, 2X, A2, 2X, A3)
END
Solution: !\
5000%0000dhco000%0000%00600%0000D0000%0000H0
FORT 77 PAS

Exagple % el Mgtermination: Write a program that reads a character string of
len@th 100. Negdrogram should print all the vowels in the string.

SolRgtion:

CHARACTER TEXT*100 , VOWELS (5)*1

READ*, (VOWELS(K), K = 1, 5)

READ*, TEXT

DO 10 I = 1, 100

DO 20 J =1, 5
IF (TEXT(I:I) .EQ. VOWELS(J)) PRINT*, VOWELS (J)

20 CONTINUE
10 CONTINUE

END

Example 3: What will be printed be the above program if the input is:
|'A' 'E' 'I' 'O' 'U'

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

tenth Character Operations 190

FIGHT'

| 'cAT + DOG

Solution:

A
o]
I

10.1.4 String Concatenation

New character strings may be formed by combining two or more character strings. This
operation is known as concatenation and is denoted by a double slash placed between

the character strings to be combined. g

Example: What will be printed be the following program?

CHARACTER DAY*2, MONTH*3, YEAR*4

DAY = '03"

MONTH = 'MAY'

YEAR = '1993"

PRINT 55, MONTH//DAY//YEAR,MONTH//'-'//DAY//'-'//YEAR
55 FORMAT (' ',A9, 5X, Al3)

END
Solution: ‘v >
B O TG I e S
MAY031993 MAY-03-1993

10.1.5 Character Intrinsic Functions (

umeric data such as INT, REAL, SQRT,
ns designed for use with character

Just as there are some intrinsic functions
and MOD, there are a number of igtr
strings. These functions are:

10.1.6 Function IND X(

The function INDEX takes
returns an integer value
otherwise zero is ret

Example 1: What w

sgwo character strings c1 and c2. The functions
t occurrence of string c2 within string cl;

mted be the following program?

CHARACTER FRUIT*6

FRUIT = 'BANANA'

PRINT*, INDEX (FRUIT, 'NA')
END

So
|

0n:

XM What will be printed be the following program?

CHARACTER STR*18

STR = 'TO BE OR NOT TO BE'
K = INDEX(STR, 'BE')
J = INDEX (STR(K+1:),
PRINT*, K , J

END

= 'BE') + K

4

Solution:
4

17

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

tenth Character Operations 191

Notice that the value of J represent the location of the second occurrence of the string
'BE'in STR.

10.1.7 Function LEN(c)

The function LEN takes as an argument one character string c. It returns the integer
length of the string c. The function is used primarily in functions and subroutines that
have character string arguments.

Example 1: What will be printed the following program segment:

CHARACTER TEXT*10
PRINT*, LEN (TEXT)

Solution:
|10

Example 2: Frequency of Blanks: Write a function that accepts a ter Wing and
returns the number of blanks in the string.

Solution: I 3

INTEGER FUNCTION NB (X)
CHARACTER * (*) X
NB = 0
DO 10 I = 1 , LEN(X)
IF (X(I:I) .EQ. ' ') NB = NB + 1
10 CONTINUE
RETURN
END
10.1.8 Function CHAR(i) \/
The function CHAR takes as an.,a en®an integer value i and returns the ith

character in the collating sequencg
Example: What is the outpu’

ing program?

INTEGER N
N = 65
PRINT*, CHAR (N)
END

Solution: Assum@d@ representation the program will print

10.1 @ ICHAR(c)
ICWAR th ion is the reverse of function CHAR. It takes as an argument a single

d returns its position in the collating sequence. The first character in the
uence corresponds to position 0 and the last to n-1, where n is the number
of characters in the collating sequence.

Example 1: What is the output of the following program?

INTEGER J

J = ICHAR('C') - ICHAR('A')
PRINT*, J

END

Solution: Assuming ASCI code representation the program will print

| 2

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

tenth N-Dimensional Arrays 192

Example 2: Character Code Determination: What is the output of the following
program?

CHARACTER CH(26) *1
INTEGER CODE (26)

READ*, CH
DO 10 I = 1, 26
CODE (I) = ICHAR(CH(I))

10 CONTINUE
PRINT*, CODE
END

Assume the input is a
'A' 'B' 'C' 'D' 'E' 'F' 'G' 'H' 'I' 'J' 'K' 'L' 'M' 'N' 'O' 'P' 'Q'
'R' 'S' 'T' 'U' 'V' 'W' 'X' 'Y' 'Z'

Solution: A S

193 194 195 196 197 198 199 200 201 209 210 211 212 213 214 215 216
217 226 227 228 229 230 231 232 233

10.1.10 Functions LGE, LGT, LLE, LLT

These functions allow comparisons to be made based gff a llating sequence.
They produce one of the two logical values: .TRUE{ . E.. Each function takes as
arguments two character strings. The function LOE(RTR TRG2) is true if STRG1
is greater than or equal to STRG2. The LG functions perform the
comparisons greater than , less than or equal and than respectively. For example,

LLT('ABC', 'XYZ') would produce a .TR‘%
10.2 N-Dimensional A

o-dimensional array data structures were
arfays of up to seven dimensions. A two

In chapter 5, one-dimensional
introduced. FORTRAN prgvidd
dimensional array data struc i

tes. Because of similarities between two and higher
ection presents three dimensional arrays only. Higher

is one that varies i
dimensional arrgggs
dimensional arwg

grades of s

FORBA as

| REAL GRADES (50 , 5 , 4) |

WIWV(% 50 students, 5 quizzes and 4 classes. In three dimensional arrays, as in
two- ional arrays, the elements are stored column-wise with the first subscript
changing fastest, the second subscript changing more slowly, and the third subscript
changing the slowest. For the array declaration

| REAL A (2 , 2 , 2) |

The elements are stored in the following order:
A(1,1,1)
A(2,1,1)
A(1,2,1)

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

tenth Double Precision Data Type 193

A(2,2,1)
A(1,1,2)
A(2,1,2)
A(1,2,2)
A(2,2,2)
To access a three-dimensional array, a nesting of three DO loops is common. Also an
implied DO loop can be used.
Example
If we have the declaration:
| INTEGER A (3, 4, 5)

then the following three READ statements do the same job of stor
dimensional array A:

| READ*, A |
y A U |
| READ*, ((A((I, J, K), I =1, 3), J =1, 4), K =1,5) |
1 &

DO 10 K = 1, 5
DO 10 J = 1, 4
DO 10 I =1, 3
READ* , A (I, J, K)

10 CONTINUE

10.3 Double Precision M

s ate performed with more precision than is
e real data type has only seven significant
b has fourteen digits of significance.

Some applications require that calg

normally provided by the regl dg % :
digits, while the double prec1s Rl

10.3.1 Double P e ition

To declare variables of dQublc®precision type we use DOUBLE PRECISION statement
as follows:
| DOUBLE PRECISION LIST OF VARIABLES |

or
| REAL*S LIST OF VARIABLES |

1003.2 uble Precision Operations

The ons that are done on variables declared as double precision will be carried
out internally with fourteen significant digits. All the operations that are done on real
data type, can also be done on double precision data type such as addition, subtraction,
multiplication, division, and exponentiation. Expressions that involve mixed types like
double precision, real, and integer will be converted automatically to double precision.
Reading double precision variables is possible and up to fourteen digits to the right
of the decimal point are taken from the input stream. Printing double precision values is
also possible and the output will show fourteen digits to the right of the decimal point if
no formatting is used. The FORMAT statement can be used to print double precision

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

tenth Complex Data Type 194

values, the D specification may be used to print double precision numbers. Dw.d
format specifier is used where w represents the total width and d represents the number
of digits to the right of the decimal point.

10.3.3 Double Precision Intrinsic Functions

There is a large number of mathematical functions that has real arguments and/or real
results. There exists an extension to these functions to work with double precision with
only one simple change, which is prefixing the function name with the letter D like
DSIN(DX), DLOG(DX), DEXP(DX), DABS(DX), etc. DX indicates that the argument
to these functions is of the type double precision.

10.4 Complex Data Type

Some applications require that calculations are performed usi
rather than real numbers. A complex number is represented by 3
the first is the real part and the second is the imaginary part.

10.4.1 Complex Data Type Definition

used in your program:

COMPLEX LIST OF VARIABLES

To declare variables of complex type, the followi] ration statement should be

10.4.2 Complex Operations

The complex constants appear in the two real numbers separated by a
comma and enclosed between a pair arcgheses as shown below:

Example 1
COMPLEX VALUE
VALUE = (2.0, 3.0)

The operations that are dog on Wgia defined as complex will be carried out in the
same way as defined mafgen®yically. Here is the definition of some of these operations:

Addition + (ct+id) = (atc) + 1 (b+d)
Subtraction a+ib§- (ct+id) = (a-c) +1 (b-d)
Multiplicatio +ib) * (c+id) = (ac-bd) + i (ad+bc)

(a+ib) _ (ac+bd) (cb—da)
(c+id) (2+d*) (FF+d?)

where = x/—_l

When a’Complex variable is read, two real numbers are taken from the input stream; one
for the real part and the other for the imaginary part. Printing a complex variable will
result also in two real numbers representing the real part and the imaginary part. If
formatting is to be used then two FORMAT specifies are needed of type F.

10.4.3 Complex Intrinsic Functions

There is a large number of mathematical functions that has real arguments and/or real
results. There exists an extension to these functions to work with complex type with
only one simple change which is prefixing the function name with the letter C like

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

eleventh Exercises 195

CSIN(CX), CLOG(CX), CEXP(CX), CABS(DX), etc. CX indicates that the argument
to these functions is of the complex type. In addition there are four functions for
complex type which are:

Function Description

REAL(CX) gives the real part of the argument
AIMAG(CX) gives the imaginary part of the argument
CMPLX(X,Y) | gives the complex number X +iY
CONJG(CX) gives the conjugate of the argument

10.5 Exercises

1. What will be printed by the following programs?

1. CHARACTER X (1:2) *2
READ*, X
PRINT 11, X

11 FORMAT (1X, 2X, I2, 2X, I2)
END

Assume the input is: &

|'12' '34'

2. CHARACTER INPUT*60, SPACE*1
INTEGER KK, JJ
INPUT = 'THIS IS A TEST.'
SPACE = '
KK = 1
10 JJ = INDEX (INPUT (KK:), SPACE)
KK = KK + JJ
PRINT*, INPUT (:KK-1)
IF (KK.LT.INDEX (INPUT,'.')) GOTO 10

END

3. CHARACTER STR*10

INTEGER 11, J, NUM

STR = '1234"

LL = INDEX(STR,' ')

NUM = 0

DO 10 J = LL-1,1,-1

NUM = NUM + (ICHAR(STR(J:J)) - ICHAR('0'))*10**J

10 CONTINUE

PRINT*, NUM

END
4. CHARACTER*7 STR, SUB*6

INTEGER 1, K

L =3

SUB = 'AA'

STR = "4+4+++++++"

K = INDEX(SUB,' ')

IF (K.NE.O) L = LEN(STR) - K + 1

STR (L/2+1:) = SUB(:K-1)

PRINT*, STR, K, L

END

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

eleventh Exercises

196

11

CHARACTER*1 A, B
A = 'B'

B = 'C'

PRINT 11, B
FORMAT (1X, 'B=",A)
END

CHARACTER*S8 F, K, X

F(K) = K(1:2)//'REF'//K(6:8)
X = 'CANDEULL'

PRINT*, F (X)

END

INTEGER FUNCTION LENGTH (A)

CHARACTER * (*) A

LENGTH = LEN (A)

RETURN

END

CHARACTER*9 A, B, C*6

INTEGER LENGTH

READ*, A, B, C

PRINT*, (LENGTH (A)+LENGTH (B)+LENGTH (C)) /5
END

Assume the input is: I (

'AN' 'EASY' 'EXAM'

A - 3
8. CHARACTER X*9, Y*4
INTEGER L
X = 'ABDABDA'
Y = 'HIJK'
10 L = INDEX (X, 'A'")
IF (L.NE.O) THEN
X(L:L) = '*!
GOTO 10
ENDIF
PRINT*, LEN(X), X//Y
END
. Ul M4
9. CHARACTER*30 S1, S2
S1 = 'TODAY IS SATURDAY'
S2 = 'EXAM 201 + EXAM 101"
PRINT 11, S1(10:)
PRINT 22, S2(10:)
11 FORMAT (' ',10X,R)
22 FORMAT (R)
END
I 4 .~ 4
10. LOGICAL LEQ, X, Y, EQAL(4)
CHARACTER*20 L (8)
INTEGER K, L
LEQ(X,Y) = .NOT.X.AND..NOT.Y
READ*, L
K =1
DO 10 J =1,7,2
EQAL(K) = LEQ(LGT(L(J),L(J+1)), LLT(L(J),L(J+1)))
K=K+ 1
10 CONTINUE
PRINT*, EQAL
END

Assume the input is:

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

eleventh Exercises 197

'EXAM DAY', 'VACATION DAY', 'SUCCESS', 'FAILURE'
'EASY', 'DIFFICULT', 'BE HAPPY', 'BE HAPPY'

11. INTEGER WC, CC, J, K
CHARACTER SENT*30, BLANK
WC = 0
SENT = 'I HAVE FORTRAN CLASSES.'
J=0
BLANK = ' '
CC = INDEX(SENT(J+1:),' .') - 1
10 K = INDEX (SENT (J+1:), BLANK)

IF (K.NE.QO .AND. J.LT.CC) THEN
WC = WC + 1
J =K
GOTO 10

ENDIF

IF (CC.NE.O) WC = WC + 1

CC =CC - WC + 1

PRINT*, WC, CC, J

END

12. CHARACTER*1 FUNCTION LCHAR (STR)
CHARACTER*20 STR
INTEGER LAST

LAST = 20

10 IF (STR(LAST:LAST).EQ.' ') THEN
LAST = LAST - 1
GOTO 10

ENDIF

LCHAR = STR(LAST:LAST)

RETURN

END

CHARACTER LCHAR*1, LINE*20
READ*, LINE

PRINT*, LCHAR (LINE)

END

Assume the input is: AV‘

| 'GOOD FINAL EXAM'

cPQA\ v

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

eleventh Exercises

198

13. SUBROUTINE INSERT (STR, SUBSTR,AFTER,RESULT, FLAG)
CHARACTER * (*) STR, SUBSTR, AFTER, RESULT
LOGICAL FLAG
INTEGER IPOS
IPOS = INDEX (STR,AFTER)

IF (IPOS.EQ.0) THEN

FLAG = .FALSE.
RETURN
ENDIF
FLAG = .TRUE.

LENAFT = LEN (AFTER)

LENWOR = LEN (SUBSTR)

LENSTR = LEN (STR)

INSPOS = IPOS+LENAFT

RESULT = STR(:INSPOS)//SUBSTR//STR (INSPOS:)
RETURN

END

CHARACTER STR*13, S1*7, S2*3, RES1*22, RES2%*28
LOGICAL FLAG

READ*, STR

READ*, S1, S2

CALL INSERT (STR,S1,S2,RES1, FLAG)
READ*, S1, S2

CALL INSERT (RES1,S1,S2,RES2,FLAG)
IF (FLAG) THEN

PRINT 5, RES2

ELSE

PRINT 6

ENDIF

FORMAT (' ', 'RESULT = “',A,”")
FORMAT (' ', 'NO MATCH')

END

oy U1

Assume the input is: . I ‘

'ICS 101 EXAM'
"FORTRAN', '101'
"FINAL', '101"

A N SN W

14. CHARACTER*4 ONE, TWO, THREE, FOUR
ONE = '+
TWO = ONE // ONE
THREE = ONE // TWO
FOUR = TWO // (ONE // ONE)

PRINT*, 'ONE =', ONE
PRINT*, 'TWO =', TWO
PRINT*, 'THREE=', THREE
PRINT*, 'FOUR =', FOUR
END

N — 4

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

eleventh Exercises 199

15. CHARACTER CH*3
INTEGER A(3),I, J, K, L, M, N
READ*/ (a(J),Jd=1,2)

L=1
M= 2
N =1
CH = 'ICS'

DO 10 I = 1,2
DO 20 J = L,M,N
PRINT*, (CH(K:K),K=1,A(J))

20 CONTINUE
K = L
L =M
M = K
N = -1
10 CONTINUE
END
Assume the input is: X 5 ’ A
[1 2 |

2. How many characters one can store in each variable in)e\owia declaration?
|CHARACTER*10 A, B(-2:3), C(2,5:10) |

3. Assume that the only declaration statements z RTRANprogram are the
following:

INTEGER A (1:10),B(3,5)
CHARACTER*7 NUM (50), NAME, CH,

Which of the following statement(s) is (areerect FORTRAN statement(s) ?

1. NUM(2) (2:2) = '2"

2. A(3:3) = 2

3. (A(K) = A(K)+2, K = 1,10)

4. NAME(3) = NAME (3:)
NUM(2) = B(2,2)

4. From the INPUT strings AV)

|'THIS' 'ASY' 'VERY' 'EXAM' |

generate the message “

|THIS IS EASY |

by completing Ment in the following program

CHARACTER A (2,2) *4
READ*, A
PRINT*,

string and concatenation of the INPUT strings)

5.Co e the missing parts to produce the expected output:
CHARACTER*11 NAME, COURSE*6

NAME = 'COMPUTER'

COURSE = 'ICS101'

NAME ((1)) = COURSE((2))

PRINT*, NAME

END

The expected output :
|COMPUTER101

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

eleventh Exercises 200

Q6) A palindrome is a word of text that is spelled the same forward and backward. The
string 'RADAR' is an example of palindrome. Write a FORTRAN program to tell
whether an INPUT string of length 60 is a palindrome or not.

7. Write a FORTRAN program that will do the following :

e Read N, the number of students.

e Read N data lines, each line contains a student ID, major, course code and grade.
The program stores the data into a two-dimensional character array (CLASS) of
size 20x4 such that each element has a length of 7 characters.

e Print all those students who have a major CE and a course code IC and a

grade A.
8. Write a FORTRAN program which reads a character strin ength 7
characters, and an integer array LIST of 7 elements. Then the 1d print

the string in the order of the numbers stored in the array LIST®
For example: If STR ='RNFROTA'"and LIST=3516 4
oS Ty

Then your program outputs the 3rd, Sth, Ist,... charagyfs

The output should look like the following (Use F(‘R

500 0970 6.0 0dbo 0.6 DA 006000 09E0 000800000
DECODED STRING = FORTRAN

Assume the following data:

'RNFROTA'
3,5,1,6,4,7,2

9. Write a FORTRAN program thaRg@Cceg a string INPUT (at most 60 characters

aracCter long). Then it should find the number

long), and a string PAT (exactlygne
of times string PAT is f@lnd tithg INPUT and replace every occurrence of
PAT by "*'.

10. Consider the followin@mAN tements

CHARACTER * 3 STR*5, X
STR = 'APPLE'

Which of the folmm'nents will place the string APL in variable X?

i. X = STR(1:1)//STR(3:3)//STR(4:4)
ii X = STR(1:1)//STR(3:4)
iii. X = STR(1:2)//STR(3:4)
iv. X = STR(:2)//STR(3:)
11.@Vrite a RAN program that:
D ds a sentence of upto 70 characters long.

¢ b) Replaces each blank within the sentence by the character '$' and prints out the
new sentence.

e ¢) Places each vowel in the sentence into a new character string called NEW and
prints out the string NEW.

Note: The sentence is terminated by a full stop.
Vowels are alphabets A, E, I, O and U.

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

eleventh Solutions to Exercises 201

10.6 Solutions to Exercises

Ans 1.
1. ERROR: TYPE MISMATCH IN FORMAT
2. THIS
THIS IS
THIS IS A
THIS IS A TEST.
3. 43210
4, ++AA 3 5
5. B=C
6. CAREFULL
7. 4
8. 9*BD*BD* HIJK
9. EXAM 101 SATURDAY
10. F F F T
11. 1 -1 0
12. M
13. RESULT ="ICS 101FINAL RTRAN EXAM'
14. ONE =+
TWO =+ Q
THREE=+
FOUR=+ *
15. 1 \
IC
IC A
Ans 2. Q

P

Ans 3
1 and 4
Ans 4.
| PRINT*, A(1,1)//' '//A(1l,1) (3:4)//' E'//A(2,1)
Ans 5.
(1) 9:10
(2) 4:6

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

eleventh Solutions to Exercises

202

Ans 6.

CHARACTER INPUT*60

LOGICAL PALIN

INTEGER K

READ*, INPUT

PALIN = .TRUE.

K =1

IF (PALIN .AND. K .LE.
IF (INPUT (K:K)
K=K+ 1
GOTO 10

ENDIF

PRINT*,

END

10 30) THEN

.NE. INPUT(61-K:61-K))

PALIN

PALIN .FALSE.

Ans 7.

CHARACTER*7 CLASS (20, 4)
LOGICAL CONDl, COND2, COND3
INTEGER K, N
READ*, N
DO 10 K = 1, N
READ*, (CLASS(K,J),
CONTINUE
DO 20 K =1, N
COND1 = CLASS (K,2) .EQ. 'CE'
COND2 = CLASS(K,3) .EQ. 'ICS101'
COND3 = CLASS (K,4) .EQ. 'A'
IF (COND1 .AND. COND2 .AND. COND3)

Jg=1, 4)

10

20
END

PRINT*, CLASS (K, 1)

CONTINUE

Ans 8.

CHARACTER STR*7

INTEGER LIST (7)

INTEGER K

READ*, STR

READ*, (LIST(K), K =

PRINT1, (STR(LIST (K):
1 FORMAT (1X, 'DECODED STRING

1, 7)
LIST (K))

14
—)
4

K=1,
7A)

)

Ans 9.

A

CHARACTER INPUT*60, PAT*1
READ*, INPUT
READ*, PAT
NT = 0
K = INDEX (INPUT, PAT)
IF (K .NE. 0) THEN
NT = NT + 1
INPUT (K:K) =
GOTO 10
ENDIF
PRINT*,
END

10

LS |

'THE NUMBER OF TIMES PAT OCCURRED

, NT

Ans 10.
ITamd II

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

eleventh Solutions to Exercises

203

Ans 11.

CHARACTER SENT*70, NEW*70,
INTEGER K, M
READ*, SENT
VOWLS = 'AEIOU'
NEW = ' !
10 K = INDEX (SENT , ' ')
IF (K .NE. 0) THEN
SENT (K:K) = 'S
GOTO 10
ENDIF
PRINT*, SENT
M= 0
DO 20 K =1, 70

IF (INDEX (VOWLS , SENT (K:K)) .NE.

M=M+1

NEW (M:M) = SENT (K:K)

ENDIF
20 CONTINUE
PRINT*, NEW
END

VOWLS*5

0)

\\(\
R
(JO

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

THEN

Index

-, 14
" 160
- 160
'+, 160
'0', 160
'1", 160
* 14
#% 14
+, 14
.AND., 17, 18
.EQ., 19
.FALSE., 10
.GE., 19 CHARACTER, 13
.GT,, 19 acter Assignment, 201
.LE., 19 character constant, 10
LT, 19 character position, 204
NE., 19 character variables, 13
.(N)ng.,717, 18 ’ CLOSE, 172
UK, column-wise, 142
.OR., 18 \ comment, 6
.TRUE, 10 comparison, 202
/, 14 | compiler, 3, 5
;:g,argy Ll complex type, 210

> constant, 9

continuation, 5
CONTINUE, 93
COS, 61

A specificatio

—D—

D specification, 209

data, 9

Declaration of a character array, 118
Declaration of a logical array, 118
Declaration of a real array, 118
Declaration of an integer array, 117

arithmetic operations, 13
Arithmetic Operators, 14
array declaration, 141

arrays,.l 17 declaration statement, 11, 12, 13
ascending, 189 declaration statement., 117
ASCII, 202 decreasing, 189
assgmbler, 3 digits, 10
assignment statement, 20 DIMENSION, 118, 141
division, 13
DO, 91,92

double precision, 209

204

Index

205

double spacing, 160
dummy arguments, 56

—F—

EBCDIC, 202
editor, 5

END, 6, 56
evaluation, 14

EXP, 61

explicit definition, 11
exponentiation, 13

F specification, 163
FILE, 170

files, 169

FORMAT, 159, 209, 210
function, 56

function body, 56
functions, 55

GOTO, 97

Hardware, 2
header, 56
high level language, 3

—I—

L
I specification, 160
ICHAR, 207

IF, 36, 42
IF-ELSE, 35
IF-ELSEIF, 38
IF-THEN, 97
implicit definition, 1

Implied loops, 102

increment, 93
index, 1 Q
initi;

D
63

input statement, 22
INT, 61

INTEGER, 11

integer constant, 9
integer operator, 15
integer variable, 11
intrinsic function, 61
intrinsic functions, 205

—K—
keyboard, 2

—]—
L specification, 168
LEN, 206
LGT, 207
limit, 93

literal specification, 167

LLE, 207

LLT, 207

LOG, 61

LOG10, 61

LOGICAL, 12

logical constant, 10 Q

logical expression, 19
Logical operations, 17
Logical variableg12
loop, 91

loop body

—M—

m , 94
main e, 1

memory?y
microcomputers, 1
minicomputers, 1
gd-mode operator, 15
MOD, 61

mouse, 2

multiplication, 13

—N—

N dimensional array, 208
natural language, 2
nested DO loops, 95
Nested implied loops, 103
Nested WHILE Loops, 99
new page, 160

— 00—

one-dimensional array, 117
OPEN, 169, 171

order, 189

outer loop, 95

output arguments, 63
output buffer, 159

output devices, 2

output statements, 24

—P—

parameters, 56
parameters of DO loop, 93
Personal computers, 1

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Index

206

power, 14

precedence. See priority

precedency, 14

PRINT, 24, 159

printer, 2

printing an array, 121

Printing Two-Dimensional Arrays, 145
priority, 14, 18, 19

program, 3, 5

READ, 22, 170
reading arrays, 119
REAL, 12, 61

real constant, 9

real operator, 15

real variable, 12
relational expression, 19
relational operators., 19
Repetition, 91
RETURN, 56, 63
REWIND, 172
right-justified, 160
row-wise, 142

S

scientific notation, 9
screen, 2

Searching, 189
Sequential search, 191
SIN, 61

single quote, 10

single spacing, 160 ¢

Software, 3

Sorting, 189

special characters, 11
SQRT, 61

statement, 5
statement function, 61
statement number, 10
step-wise refinement
STOP, 6

subprogram, 9 @ 49

subprograms, 55, 103

subroutine, 63

subroutines, 55

subscript, 117

substring, 204

subtraction, 13

successive refinement. See topdown design
swapping, 124

—T—

TAN, 61

termination condition, 91
three-dimensional array, 208
top down design, 55
top-down design, 4

triple spacing, 160
two-dimensional arraygl4

unary ope ns, J4

—V—
—W—
WHILE, 91
WHILE loop, 96
WRITE, 171
—X—
X specification, 166
—7—

zero-trip, 94

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

