
tenth Character Operations 186

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

10 ADVANCED TOPICS

In this chapter, we will expand on earlier topics discussed in this book. We introduce

more advanced character operations, N-dimensional arrays, double precision and

complex data types.

10.1 Character Operations

FORTRAN provides the capability of operating on character data. But what kinds of

operations make sense on character strings ? Certainly the arithmetic operators: +, -, *, /

and logical operators: NOT, AND, OR do not make sense with respect to character data.

In this section, we shall highlight the kinds of operations that we can apply on strings.

10.1.1 Character Assignment

Character constants can be assigned to character variables using an assignment

statement. If the length of a character constant is shorter than the character variable

length, blanks are added to the right of the constant. If the length of a character constant

is longer than the character variable length, the excess characters on the right are

ignored.

Example 2: What will be printed be the following program?

 CHARACTER *5 MSG1 , MSG2
 MSG1 = 'GOOD'

 MSG2 = 'EXCELLENT'
 PRINT*, MSG1, MSG2
 END

Solution:
GOOD EXCEL

Notice that MSG1 contains the word GOOD followed by 1 blank; an equivalent

statement would be

 MSG1 = 'GOOD '

 while MSG2 contains 'EXCEL'.

Example 2: What will be printed be the following program?

 CHARACTER *5 MSG1 , MSG2
 MSG1 = 'GOOD1'
 MSG2 = 'EXCELLENT'
 PRINT*, MSG1, MSG2
 END

tenth Character Operations 187

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Solution:
GOOD1EXCEL

Notice that there is no automatic blanks between the values of character variables.

A character variable can be used to initialize another character variable as follows:

 CHARACTER BTYPE1*3 , BTYPE2*3
 BTYPE1 = 'AB+'

 BTYPE2 = BTYPE1

Both variables, BTYPE1 and BTYPE2, contain the character string 'AB+'.

10.1.2 Comparison of Character Strings

To perform the comparison, the following points have to be considered:

1. A collating sequence includes all possible characters from lowest to the highest

values. Two standard sequences are known: ASCII (American Standard Code for

Information Interchange) and EBCDIC (Extended Binary Coded Decimal

Interchange Code). In the following table the number that represent a character is

equal to the sum of its row number and column number. b represents the space

character. Gaps in the tables represent unprintable or control characters.

ASCII Table

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
16
32 b ! “ # $ % & „ () * + , - . /
48 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
64 @ A B C D E F G H I J K L M N O
80 P Q R S T U V W X Y Z [\] ^ _
96 ` a b c d e f g h i j k l m n o
112 p q r s t u v w x y z { | } ~

tenth Character Operations 188

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

EBCDIC Table

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

16

32

48

64 b c . < (+ |

80 & ! $ *) ; 

96 - /  , % _ > ?

112 : # @ „ = “

128 a b c d e f g h i

144 j k l m n o p q r

160 ~ s t u v w x y z

176

192 { A B C D E F G H I

208 } J K L M N O P Q R

224 \ S T U V W X Y Z

240 0 1 2 3 4 5 6 7 8 9

 These sequences are based on the numeric value used to represent a character in

order to store that character in the computer memory. The ASCII and the EBCDIC

sequences use different numeric values for each character. An important point to

note here is that the numeric values associated with alphabetic characters do not

appear in a continuous numeric sequence in either the ASCII or the EBCDIC

character sets. But the numeric values of numeric characters ('0','1', etc.) appear in a

continuous sequence in both character sets. Also note that the numeric characters

appear after the alphabetic characters in the EBCDIC collating sequence while they

appear before in the ASCII collating sequence.

2. All of the relational operators: .EQ. , .NE. , .LT. , .LE. , .GT. and .GE. can be used

to compare character strings.

3. In order to compare two strings they must be equal in length. If one string is

shorter than the other, FORTRAN adds blanks to the right of the shorter string

so that they become of equal length.

4. The comparison of two strings starts from left to right character by character.

5. In order for two strings to be equal, they must be identical, character by character.

For example, the string 'ICS ' is not equal to ' ICS' because of different position

of the blank character.

6. If a character string is less than another character string, it is implied that the first

string precedes the second string in the order indicated in the collating

sequence. Thus 'ABC' is less than 'BCD'.

7. For clarity, sometimes, we use b to represent a blank.

Example: What will be printed be the following program?

tenth Character Operations 189

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

 CHARACTER WORD1*5 , WORD2*5
 WORD1 = 'MAN'
 WORD2 = 'WOMAN'
 IF (WORD1 .LT. WORD2) THEN
 PRINT*, WORD1
 ELSE
 PRINT*, WORD2
 ENDIF
 END

Solution: To perform the comparison between WORD1 and WORD2 in the above

program, two blanks have to be added to the right of WORD1 to be equal in length with

WORD2; an equivalent statement would be WORD1 = 'MANbb' . Since M is less than

W in the collating sequence the output would be:
MAN

10.1.3 Extraction of Substrings

Each character in a string of size N can be referred to by a number called a character

position. The first position in a string is character position 1 and the last character is

character position N. By specifying a starting position and a stopping position in a

string, we can identify parts of a string called the substring . If TEXT is a character

variable of size N, then TEXT(I:J) is a substring starting with the Ith character of TEXT

and ending with the Jth character of TEXT, where I and J are integer values. J must be

greater than or equal I; otherwise an execution error would occur. In addition, both I and

J must be in the range 1,2,3,...n; otherwise they would not correspond to any character

position within the variable. If I is omitted (i.e. TEXT(:J)), it is assumed to be 1. If J is

omitted (i.e. TEXT(I:)), it is assumed to be N.

Example 1: What will be printed be the following program?

 CHARACTER *10 A , B
 A = 'FORTRAN 77'

 B = 'PASCAL'
 PRINT 10, A(1:4) , A(9:) , B(:3)
10 FORMAT (' ' , A4, 2X, A2, 2X, A3)
 END

Solution:

....+....1....+....2....+....3....+....4.

FORT 77 PAS

Example 2: Vowel Determination: Write a program that reads a character string of

length 100. The program should print all the vowels in the string.

Solution:

 CHARACTER TEXT*100 , VOWELS(5)*1
 READ*, (VOWELS(K), K = 1, 5)
 READ*, TEXT
 DO 10 I = 1, 100
 DO 20 J = 1, 5
 IF (TEXT(I:I) .EQ. VOWELS(J)) PRINT*, VOWELS(J)
20 CONTINUE
10 CONTINUE
 END

Example 3: What will be printed be the above program if the input is:
'A' 'E' 'I' 'O' 'U'

tenth Character Operations 190

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

'CAT + DOG = FIGHT'

Solution:
A

O
I

10.1.4 String Concatenation

New character strings may be formed by combining two or more character strings. This

operation is known as concatenation and is denoted by a double slash placed between

the character strings to be combined.

Example: What will be printed be the following program?

 CHARACTER DAY*2, MONTH*3, YEAR*4
 DAY = '03'
 MONTH = 'MAY'

 YEAR = '1993'
 PRINT 55, MONTH//DAY//YEAR,MONTH//'-'//DAY//'-'//YEAR
55 FORMAT (' ',A9, 5X, A13)
 END

Solution:

....+....1....+....2....+....3....+....4.

MAY031993 MAY-03-1993

10.1.5 Character Intrinsic Functions

Just as there are some intrinsic functions for numeric data such as INT, REAL, SQRT,

and MOD, there are a number of intrinsic functions designed for use with character

strings. These functions are:

10.1.6 Function INDEX(c1 , c2)

The function INDEX takes as arguments two character strings c1 and c2. The functions

returns an integer value giving the first occurrence of string c2 within string c1;

otherwise zero is returned.

Example 1: What will be printed be the following program?

 CHARACTER FRUIT*6
 FRUIT = 'BANANA'
 PRINT*, INDEX(FRUIT,'NA')
 END

Solution:
 3

Example 2: What will be printed be the following program?

 CHARACTER STR*18
 STR = 'TO BE OR NOT TO BE'
 K = INDEX(STR, 'BE')

 J = INDEX(STR(K+1:), 'BE') + K
 PRINT*, K , J
 END

Solution:
 4 17

tenth Character Operations 191

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Notice that the value of J represent the location of the second occurrence of the string

'BE' in STR.

10.1.7 Function LEN(c)

The function LEN takes as an argument one character string c. It returns the integer

length of the string c. The function is used primarily in functions and subroutines that

have character string arguments.

Example 1: What will be printed the following program segment:

 CHARACTER TEXT*10
 PRINT*, LEN(TEXT)

Solution:
10

Example 2: Frequency of Blanks: Write a function that accepts a character string and

returns the number of blanks in the string.

Solution:

 INTEGER FUNCTION NB(X)
 CHARACTER * (*) X
 NB = 0
 DO 10 I = 1 , LEN(X)
 IF (X(I:I) .EQ. ' ') NB = NB + 1
10 CONTINUE
 RETURN
 END

10.1.8 Function CHAR(i)

The function CHAR takes as an argument an integer value i and returns the ith

character in the collating sequence.

Example: What is the output of the following program?

 INTEGER N

 N = 65
 PRINT*, CHAR(N)
 END

Solution: Assuming ASCI code representation the program will print
A

10.1.9 Function ICHAR(c)

ICHAR the function is the reverse of function CHAR. It takes as an argument a single

character c and returns its position in the collating sequence. The first character in the

collating sequence corresponds to position 0 and the last to n-1, where n is the number

of characters in the collating sequence.

Example 1: What is the output of the following program?

 INTEGER J
 J = ICHAR('C') - ICHAR('A')
 PRINT*, J
 END

Solution: Assuming ASCI code representation the program will print
 2

tenth N-Dimensional Arrays 192

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Example 2: Character Code Determination: What is the output of the following

program?

 CHARACTER CH(26)*1
 INTEGER CODE(26)
 READ*, CH
 DO 10 I = 1, 26
 CODE(I) = ICHAR(CH(I))
10 CONTINUE
 PRINT*, CODE
 END

Assume the input is
'A' 'B' 'C' 'D' 'E' 'F' 'G' 'H' 'I' 'J' 'K' 'L' 'M' 'N' 'O' 'P' 'Q'

'R' 'S' 'T' 'U' 'V' 'W' 'X' 'Y' 'Z'

Solution:
193 194 195 196 197 198 199 200 201 209 210 211 212 213 214 215 216

217 226 227 228 229 230 231 232 233

10.1.10 Functions LGE, LGT, LLE, LLT

These functions allow comparisons to be made based on an ASCII collating sequence.

They produce one of the two logical values: .TRUE., .FALSE.. Each function takes as

arguments two character strings. The function LGE(STRG1, STRG2) is true if STRG1

is greater than or equal to STRG2. The LGT, LLE, LLT functions perform the

comparisons greater than , less than or equal and less than respectively. For example,

LLT('ABC', 'XYZ') would produce a .TRUE. value.

10.2 N-Dimensional Arrays

In chapter 5, one-dimensional and two-dimensional array data structures were

introduced. FORTRAN provides for arrays of up to seven dimensions. A two

dimensional array data structure is one that varies in two attributes, a three dimensional

array data structure is one that varies in three attributes, a four dimensional array data

structure is one that varies in four attributes, and an N dimensional array data structure

is one that varies in N attributes. Because of similarities between two and higher

dimensional arrays, this section presents three dimensional arrays only. Higher

dimensional arrays are treated similarly. An example of three-dimensional arrays is the

grades of students in several classes for several quizzes; such an array is declared in

FORTRAN as

 REAL GRADES (50 , 5 , 4)

Where we have 50 students, 5 quizzes and 4 classes. In three dimensional arrays, as in

two-dimensional arrays, the elements are stored column-wise with the first subscript

changing fastest, the second subscript changing more slowly, and the third subscript

changing the slowest. For the array declaration

 REAL A (2 , 2 , 2)

The elements are stored in the following order:

A(1,1,1)

A(2,1,1)

A(1,2,1)

tenth Double Precision Data Type 193

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

A(2,2,1)

A(1,1,2)

A(2,1,2)

A(1,2,2)

A(2,2,2)

To access a three-dimensional array, a nesting of three DO loops is common. Also an

implied DO loop can be used.

Example

If we have the declaration:

 INTEGER A (3, 4, 5)

then the following three READ statements do the same job of storing data in the three

dimensional array A:

 READ*, A

 READ*,((A((I, J, K), I = 1, 3), J = 1, 4), K = 1,5)

 DO 10 K = 1, 5
 DO 10 J = 1, 4
 DO 10 I = 1, 3
 READ* , A (I, J, K)
10 CONTINUE

10.3 Double Precision Data Type

Some applications require that calculations are performed with more precision than is

normally provided by the real data type. The real data type has only seven significant

digits, while the double precision data type has fourteen digits of significance.

10.3.1 Double Precision Definition

To declare variables of double precision type we use DOUBLE PRECISION statement

as follows:

 DOUBLE PRECISION LIST OF VARIABLES

or

 REAL*8 LIST OF VARIABLES

10.3.2 Double Precision Operations

The operations that are done on variables declared as double precision will be carried

out internally with fourteen significant digits. All the operations that are done on real

data type, can also be done on double precision data type such as addition, subtraction,

multiplication, division, and exponentiation. Expressions that involve mixed types like

double precision, real, and integer will be converted automatically to double precision.

Reading double precision variables is possible and up to fourteen digits to the right

of the decimal point are taken from the input stream. Printing double precision values is

also possible and the output will show fourteen digits to the right of the decimal point if

no formatting is used. The FORMAT statement can be used to print double precision

tenth Complex Data Type 194

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

values, the D specification may be used to print double precision numbers. Dw.d

format specifier is used where w represents the total width and d represents the number

of digits to the right of the decimal point.

10.3.3 Double Precision Intrinsic Functions

There is a large number of mathematical functions that has real arguments and/or real

results. There exists an extension to these functions to work with double precision with

only one simple change, which is prefixing the function name with the letter D like

DSIN(DX), DLOG(DX), DEXP(DX), DABS(DX), etc. DX indicates that the argument

to these functions is of the type double precision.

10.4 Complex Data Type

Some applications require that calculations are performed using complex numbers

rather than real numbers. A complex number is represented by two real numbers where

the first is the real part and the second is the imaginary part.

10.4.1 Complex Data Type Definition

To declare variables of complex type, the following declaration statement should be

used in your program:

 COMPLEX LIST OF VARIABLES

10.4.2 Complex Operations

The complex constants appear in the program as two real numbers separated by a

comma and enclosed between a pair of parentheses as shown below:

Example 1

 COMPLEX VALUE
 VALUE = (2.0, 3.0)

The operations that are done on variables defined as complex will be carried out in the

same way as defined mathematically. Here is the definition of some of these operations:

Addition (a+ib) + (c+id) = (a+c) + i (b+d)

Subtraction (a+ib) - (c+id) = (a-c) + i (b-d)

Multiplication (a+ib) * (c+id) = (ac-bd) + i (ad+bc)

Division

()

()

()

()

()

()

a ib

c id

ac bd

c d
i

cb da

c d

where i















 

2 2 2 2

1

When a complex variable is read, two real numbers are taken from the input stream; one

for the real part and the other for the imaginary part. Printing a complex variable will

result also in two real numbers representing the real part and the imaginary part. If

formatting is to be used then two FORMAT specifies are needed of type F.

10.4.3 Complex Intrinsic Functions

There is a large number of mathematical functions that has real arguments and/or real

results. There exists an extension to these functions to work with complex type with

only one simple change which is prefixing the function name with the letter C like

eleventh Exercises 195

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

CSIN(CX), CLOG(CX), CEXP(CX), CABS(DX), etc. CX indicates that the argument

to these functions is of the complex type. In addition there are four functions for

complex type which are:

Function Description

REAL(CX) gives the real part of the argument

AIMAG(CX) gives the imaginary part of the argument

CMPLX(X,Y) gives the complex number X + i Y

CONJG(CX) gives the conjugate of the argument

10.5 Exercises

1. What will be printed by the following programs?

1. CHARACTER X(1:2)*2
 READ*, X
 PRINT 11, X
11 FORMAT (1X, 2X, I2, 2X, I2)
 END

Assume the input is:
'12' '34'

2. CHARACTER INPUT*60, SPACE*1
 INTEGER KK, JJ
 INPUT = 'THIS IS A TEST.'

 SPACE = ' '
 KK = 1
10 JJ = INDEX(INPUT(KK:),SPACE)

 KK = KK + JJ
 PRINT*, INPUT(:KK-1)
 IF (KK.LT.INDEX(INPUT,'.')) GOTO 10
 END

3. CHARACTER STR*10
 INTEGER LL, J, NUM
 STR = '1234'
 LL = INDEX(STR,' ')
 NUM = 0
 DO 10 J = LL-1,1,-1
 NUM = NUM + (ICHAR(STR(J:J)) - ICHAR('0'))*10**J
10 CONTINUE
 PRINT*, NUM
 END

4. CHARACTER*7 STR, SUB*6
 INTEGER L, K
 L = 3
 SUB = 'AA'
 STR = '++++++++'

 K = INDEX(SUB,' ')
 IF (K.NE.0) L = LEN(STR) - K + 1
 STR (L/2+1:) = SUB(:K-1)
 PRINT*, STR, K, L
 END

eleventh Exercises 196

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

5. CHARACTER*1 A, B
 A = 'B'
 B = 'C'
 PRINT 11, B
11 FORMAT(1X,'B=',A)
 END

6. CHARACTER*8 F, K, X
 F(K) = K(1:2)//'REF'//K(6:8)
 X = 'CANDEULL'
 PRINT*, F(X)
 END

7. INTEGER FUNCTION LENGTH(A)
 CHARACTER *(*) A
 LENGTH = LEN(A)
 RETURN
 END
 CHARACTER*9 A, B, C*6
 INTEGER LENGTH
 READ*, A, B, C
 PRINT*, (LENGTH(A)+LENGTH(B)+LENGTH(C))/5
 END

Assume the input is:
 'AN' 'EASY' 'EXAM'

8. CHARACTER X*9, Y*4
 INTEGER L
 X = 'ABDABDA'
 Y = 'HIJK'
10 L = INDEX(X, 'A')
 IF (L.NE.0) THEN
 X(L:L) = '*'
 GOTO 10
 ENDIF
 PRINT*, LEN(X), X//Y
 END

9. CHARACTER*30 S1, S2
 S1 = 'TODAY IS SATURDAY'

 S2 = 'EXAM 201 + EXAM 101'
 PRINT 11, S1(10:)
 PRINT 22, S2(10:)
11 FORMAT(' ',10X,A)
22 FORMAT(A)
 END

10. LOGICAL LEQ, X, Y, EQAL(4)
 CHARACTER*20 L(8)
 INTEGER K, L
 LEQ(X,Y) = .NOT.X.AND..NOT.Y
 READ*, L
 K = 1
 DO 10 J = 1,7,2
 EQAL(K) = LEQ(LGT(L(J),L(J+1)), LLT(L(J),L(J+1)))
 K = K + 1
10 CONTINUE
 PRINT*, EQAL
 END

Assume the input is:

eleventh Exercises 197

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

 'EXAM DAY','VACATION DAY','SUCCESS','FAILURE'

 'EASY','DIFFICULT','BE HAPPY','BE HAPPY'

11. INTEGER WC, CC, J, K
 CHARACTER SENT*30, BLANK
 WC = 0
 SENT = 'I HAVE FORTRAN CLASSES.'
 J = 0

 BLANK = ' '
 CC = INDEX(SENT(J+1:),' .') - 1
10 K = INDEX(SENT(J+1:),BLANK)
 IF (K.NE.0 .AND. J.LT.CC) THEN
 WC = WC + 1

 J = K
 GOTO 10
 ENDIF
 IF (CC.NE.0) WC = WC + 1
 CC = CC - WC + 1
 PRINT*, WC, CC, J
 END

12. CHARACTER*1 FUNCTION LCHAR(STR)
 CHARACTER*20 STR
 INTEGER LAST
 LAST = 20
 10 IF (STR(LAST:LAST).EQ.' ') THEN
 LAST = LAST - 1
 GOTO 10
 ENDIF
 LCHAR = STR(LAST:LAST)
 RETURN
 END
 CHARACTER LCHAR*1, LINE*20
 READ*, LINE
 PRINT*, LCHAR(LINE)
 END

Assume the input is:
 'GOOD FINAL EXAM'

eleventh Exercises 198

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

13. SUBROUTINE INSERT(STR,SUBSTR,AFTER,RESULT,FLAG)
 CHARACTER *(*) STR, SUBSTR, AFTER, RESULT
 LOGICAL FLAG
 INTEGER IPOS
 IPOS = INDEX(STR,AFTER)
 IF (IPOS.EQ.0) THEN
 FLAG = .FALSE.
 RETURN
 ENDIF
 FLAG = .TRUE.
 LENAFT = LEN(AFTER)

 LENWOR = LEN(SUBSTR)
 LENSTR = LEN(STR)
 INSPOS = IPOS+LENAFT

 RESULT = STR(:INSPOS)//SUBSTR//STR(INSPOS:)
 RETURN
 END
 CHARACTER STR*13, S1*7, S2*3, RES1*22, RES2*28
 LOGICAL FLAG
 READ*, STR
 READ*, S1, S2
 CALL INSERT(STR,S1,S2,RES1,FLAG)
 READ*, S1, S2
 CALL INSERT(RES1,S1,S2,RES2,FLAG)
 IF (FLAG) THEN
 PRINT 5, RES2
 ELSE
 PRINT 6
 ENDIF
5 FORMAT(' ','RESULT = “',A,””)
6 FORMAT(' ','NO MATCH')
 END

Assume the input is:
 'ICS 101 EXAM'

 'FORTRAN', '101'
 'FINAL','101'

14. CHARACTER*4 ONE, TWO, THREE, FOUR
 ONE = '+'
 TWO = ONE // ONE
 THREE = ONE // TWO

 FOUR = TWO // (ONE // ONE)
 PRINT*, 'ONE =', ONE
 PRINT*, 'TWO =', TWO
 PRINT*, 'THREE=',THREE
 PRINT*, 'FOUR =',FOUR
 END

eleventh Exercises 199

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

15. CHARACTER CH*3
 INTEGER A(3),I, J, K, L, M, N
 READ*, (A(J),J=1,2)
 L = 1

 M = 2
 N = 1
 CH = 'ICS'
 DO 10 I = 1,2
 DO 20 J = L,M,N
 PRINT*, (CH(K:K),K=1,A(J))
20 CONTINUE
 K = L

 L = M
 M = K
 N = -1
10 CONTINUE
 END

Assume the input is:
1 2

2. How many characters one can store in each variable in the following declaration?

CHARACTER*10 A, B(-2:3), C(2,5:10)*5

3. Assume that the only declaration statements in a FORTRANprogram are the

following:

INTEGER A(1:10),B(3,5)
CHARACTER*7 NUM(50), NAME, CH, C

Which of the following statement(s) is (are) correct FORTRAN statement(s) ?
1. NUM(2)(2:2) = '2'

2. A(3:3) = 2

3. (A(K) = A(K)+2, K = 1,10)

4. NAME(:3) = NAME(3:)
5. NUM(2) = B(2,2)

4. From the INPUT strings :
'THIS' 'ASY' 'VERY' 'EXAM'

generate the message
THIS IS EASY

by completing the print statement in the following program

CHARACTER A(2,2)*4
READ*, A
PRINT*,_________________________________
END

Hint (Use substring and concatenation of the INPUT strings)

5. Complete the missing parts to produce the expected output:

CHARACTER*11 NAME, COURSE*6
NAME = 'COMPUTER'
COURSE = 'ICS101'
NAME(__(1)__) = COURSE(__(2)__)
PRINT*, NAME
END

The expected output :
COMPUTER101

eleventh Exercises 200

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Q6) A palindrome is a word of text that is spelled the same forward and backward. The

string 'RADAR' is an example of palindrome. Write a FORTRAN program to tell

whether an INPUT string of length 60 is a palindrome or not.

7. Write a FORTRAN program that will do the following :

 Read N, the number of students.

 Read N data lines, each line contains a student ID, major, course code and grade.

The program stores the data into a two-dimensional character array (CLASS) of

size 204 such that each element has a length of 7 characters.

 Print all those students who have a major CE and a course code ICS101 and a

grade A.

8. Write a FORTRAN program which reads a character string STR of length 7

characters, and an integer array LIST of 7 elements. Then the program should print

the string in the order of the numbers stored in the array LIST.

For example: If STR = 'RNFROTA' and LIST = 3 5 1 6 4 7 2

Then your program outputs the 3rd, 5th, 1st,... characters from STR.

The output should look like the following (Use FORMAT)

....+....1....+....2....+....3....+....4.

DECODED STRING = FORTRAN

Assume the following data:
'RNFROTA'

3,5,1,6,4,7,2

9. Write a FORTRAN program that accepts a string INPUT (at most 60 characters

long), and a string PAT (exactly one character long). Then it should find the number

of times string PAT is found in the string INPUT and replace every occurrence of

PAT by '*'.

10. Consider the following FORTRAN statements

CHARACTER * 3 STR*5, X
STR = 'APPLE'

Which of the following statements will place the string APL in variable X?
i. X = STR(1:1)//STR(3:3)//STR(4:4)

ii. X = STR(1:1)//STR(3:4)

iii. X = STR(1:2)//STR(3:4)
iv. X = STR(:2)//STR(3:)

11. Write a FORTRAN program that:

 a) Reads a sentence of upto 70 characters long.

 b) Replaces each blank within the sentence by the character '$' and prints out the

new sentence.

 c) Places each vowel in the sentence into a new character string called NEW and

prints out the string NEW.

Note: The sentence is terminated by a full stop.

 Vowels are alphabets A, E, I, O and U.

eleventh Solutions to Exercises 201

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

10.6 Solutions to Exercises

Ans 1.

1. ERROR: TYPE MISMATCH IN FORMAT

2. THIS

 THIS IS

 THIS IS A

 THIS IS A TEST.

3. 43210

4. ++AA 3 5

5. B=C

6. CAREFULL

7. 4

8. 9*BD*BD* HIJK

9. EXAM 101 SATURDAY

10. F F F T

11. 1 -1 0

12. M

13. RESULT = 'ICS 101FINAL FORTRAN EXAM '

14. ONE =+

 TWO =+

 THREE=+

 FOUR =+

15. I

 IC

 IC

 I

Ans 2.

A) 10

B) 60

C) 60

Ans 3

1 and 4

Ans 4.

 PRINT*, A(1,1)//' '//A(1,1)(3:4)//' E'//A(2,1)

Ans 5.

(1) 9:10

(2) 4:6

eleventh Solutions to Exercises 202

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Ans 6.

 CHARACTER INPUT*60
 LOGICAL PALIN
 INTEGER K
 READ*, INPUT
 PALIN = .TRUE.
 K = 1
10 IF(PALIN .AND. K .LE. 30) THEN
 IF (INPUT(K:K) .NE. INPUT(61-K:61-K)) PALIN = .FALSE.
 K = K + 1
 GOTO 10
 ENDIF
 PRINT*, PALIN
 END

Ans 7.

 CHARACTER*7 CLASS(20,4)
 LOGICAL COND1, COND2, COND3
 INTEGER K, N
 READ*,N
 DO 10 K = 1, N
 READ*, (CLASS(K,J), J = 1 , 4)
10 CONTINUE
 DO 20 K = 1 , N
 COND1 = CLASS(K,2) .EQ. 'CE'
 COND2 = CLASS(K,3) .EQ. 'ICS101'
 COND3 = CLASS(K,4) .EQ. 'A'
 IF(COND1 .AND. COND2 .AND. COND3) PRINT*,CLASS(K,1)
20 CONTINUE
 END

Ans 8.

 CHARACTER STR*7
 INTEGER LIST(7)
 INTEGER K
 READ*, STR
 READ*, (LIST(K), K = 1 , 7)
 PRINT1, (STR(LIST(K): LIST(K)), K = 1 , 7)
1 FORMAT(1X, 'DECODED STRING = ', 7A)
 END

Ans 9.

 CHARACTER INPUT*60, PAT*1
 READ*, INPUT
 READ*, PAT
 NT = 0
10 K = INDEX(INPUT, PAT)
 IF (K .NE. 0) THEN
 NT = NT + 1
 INPUT(K:K) = '*'
 GOTO 10
 ENDIF
 PRINT*, 'THE NUMBER OF TIMES PAT OCCURRED = ', NT
 END

Ans 10.

I amd II

eleventh Solutions to Exercises 203

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Ans 11.

 CHARACTER SENT*70, NEW*70, VOWLS*5
 INTEGER K, M
 READ*, SENT
 VOWLS = 'AEIOU'

 NEW = ' '
10 K = INDEX(SENT , ' ')
 IF (K .NE. 0) THEN
 SENT(K:K) = '$'
 GOTO 10
 ENDIF
 PRINT*, SENT
 M = 0
 DO 20 K = 1 , 70
 IF (INDEX(VOWLS , SENT(K:K)) .NE. 0) THEN
 M = M + 1

 NEW(M:M) = SENT(K:K)
 ENDIF
20 CONTINUE
 PRINT*, NEW
 END

204

Index

-, 14

' ', 160

'-', 160

'+', 160

'0', 160

'1', 160

*, 14

**, 14

+, 14

.AND., 17, 18

.EQ., 19

.FALSE., 10

.GE., 19

.GT., 19

.LE., 19

.LT., 19

.NE., 19

.NOT., 17, 18

.OR, 17

.OR., 18

.TRUE, 10

/, 14

1-D, 117

2-D array, 141

—A—

A specification, 167

ABS, 61

actual arguments, 56

Addition, 13

arguments, 56

arithmetic expression, 14

arithmetic operations, 13

Arithmetic Operators, 14

array declaration, 141

arrays, 117

ascending, 189

ASCII, 202

assembler, 3

assignment statement, 20

—B—

binary operations, 14

binary system, 3

—C—

CALL, 64

carriage control, 159, 169

central processing unit, 2

CHAR, 206

CHARACTER, 13

Character Assignment, 201

character constant, 10

character position, 204

character variables, 13

CLOSE, 172

column-wise, 142

comment, 6

comparison, 202

compiler, 3, 5

complex type, 210

constant, 9

continuation, 5

CONTINUE, 93

COS, 61

—D—

D specification, 209

data, 9

Declaration of a character array, 118

Declaration of a logical array, 118

Declaration of a real array, 118

Declaration of an integer array, 117

declaration statement, 11, 12, 13

declaration statement., 117

decreasing, 189

digits, 10

DIMENSION, 118, 141

division, 13

DO, 91, 92

double precision, 209

Index 205

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

double spacing, 160

dummy arguments, 56

—E—

EBCDIC, 202

editor, 5

END, 6, 56

evaluation, 14

EXP, 61

explicit definition, 11

exponentiation, 13

—F—

F specification, 163

FILE, 170

files, 169

FORMAT, 159, 209, 210

function, 56

function body, 56

functions, 55

—G—

GOTO, 97

—H—

Hardware, 2

header, 56

high level language, 3

—I—

I specification, 160

ICHAR, 207

IF, 36, 42

IF-ELSE, 35

IF-ELSEIF, 38

IF-THEN, 97

implicit definition, 11

Implied loops, 102

increment, 93

index, 93, 117, 205

initial, 93

inner loop, 95

input arguments, 63

input devices, 2

input statement, 22

INT, 61

INTEGER, 11

integer constant, 9

integer operator, 15

integer variable, 11

intrinsic function, 61

intrinsic functions, 205

—K—

keyboard, 2

—L—

L specification, 168

LEN, 206

LGT, 207

limit, 93

literal specification, 167

LLE, 207

LLT, 207

LOG, 61

LOG10, 61

LOGICAL, 12

logical constant, 10

logical expression, 19

Logical operations, 17

Logical variables, 12

loop, 91

loop body, 91

—M—

main program, 56, 94

mainframe, 1

memory, 2

microcomputers, 1

minicomputers, 1

mixed-mode operator, 15

MOD, 61

mouse, 2

multiplication, 13

—N—

N dimensional array, 208

natural language, 2

nested DO loops, 95

Nested implied loops, 103

Nested WHILE Loops, 99

new page, 160

—O—

one-dimensional array, 117

OPEN, 169, 171

order, 189

outer loop, 95

output arguments, 63

output buffer, 159

output devices, 2

output statements, 24

—P—

parameters, 56

parameters of DO loop, 93

Personal computers, 1

Index 206

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

power, 14

precedence. See priority

precedency, 14

PRINT, 24, 159

printer, 2

printing an array, 121

Printing Two-Dimensional Arrays, 145

priority, 14, 18, 19

program, 3, 5

—R—

READ, 22, 170

reading arrays, 119

REAL, 12, 61

real constant, 9

real operator, 15

real variable, 12

relational expression, 19

relational operators., 19

Repetition, 91

RETURN, 56, 63

REWIND, 172

right-justified, 160

row-wise, 142

—S—

scientific notation, 9

screen, 2

Searching, 189

Sequential search, 191

SIN, 61

single quote, 10

single spacing, 160

Software, 3

Sorting, 189

special characters, 11

SQRT, 61

statement, 5

statement function, 61

statement number, 105

step-wise refinement. See topdown design

STOP, 6

subprogram, 94, 125, 149

subprograms, 55, 103

subroutine, 63

subroutines, 55

subscript, 117

substring, 204

subtraction, 13

successive refinement. See topdown design

swapping, 124

—T—

TAN, 61

termination condition, 91

three-dimensional array, 208

top down design, 55

top-down design, 4

triple spacing, 160

two-dimensional array, 141

—U—

unary operations, 14

UNIT, 170

—V—

variable name, 10

Variables, 10

—W—

WHILE, 91

WHILE loop, 96

WRITE, 171

—X—

X specification, 166

—Z—

zero-trip, 94

