
sixth One-Dimensional Array Declaration 109

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

6 ONE-DIMENSIONAL ARRAYS

It is fairly common in programs to read a large quantity of input data, process the data

and produce the computations as output. Such large amounts of input data cannot be

stored in simple variables. We need bigger data structures to store such data in memory.

For example, consider a problem to compute the average, given the grades of a number

of students as input, and list the grades of those students below average. The grades

must be stored in the memory while reading because, after the average is computed,

they have to be processed again (to list those below average). For a large number of

students, simple variables cannot be used to store the grades. We require structures such

as arrays. In this and the following chapter, we introduce data structures that allow

storage of large amounts of data.

In the previous chapters, we learnt that a variable represents a single location in the

memory. Unlike variables, a one-dimensional array (1-D array) represents a group of

memory locations. Each member of an array is called an element. An element in an

array is accessed by the array name followed by a subscript (also called an index)

enclosed in parentheses. Subscripts are integer constants or expressions that indicate the

location of the element within the array. All elements of an array store the same type of

data. Thus all elements in an integer array will contain integer values. In FORTRAN,

arrays must be declared at the beginning of a program or a subprogram.

6.1 One-Dimensional Array Declaration

Arrays must be declared using a declaration statement. If an integer array is to be

declared, then the INTEGER declaration statement is used. Similarly, for declaring

real, logical or character arrays, the respective declaration statement is used. Before

executing a program, a computer should know the total memory space required by the

program. Each array declaration informs the computer of the amount of memory space

required by that array. Therefore, all arrays must be declared.

Example 1: Declaration of an integer array LIST consisting of 20 elements.

 INTEGER LIST (20)

Example 2: Declaration of a logical array FLAG that consists of 30 elements.

 LOGICAL FLAG (30)

Example 3: Declaration of a character array NAMES that consists of 15 elements with

each element of size 20.

sixth One-Dimensional Array Initialization 110

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

 CHARACTER NAMES (15)*20

Example 1, declares an array LIST consisting of 20 elements. The first element has the

subscript 1 and the last element has the subscript 20. We may also declare arrays with

subscript beginning from any integer, positive or negative, other than 1.

Example 4: Declaration of a real array YEAR used to represent rainfall in years 1983

to 1994.

 REAL YEAR (1983 : 1994)

The array YEAR has 12 elements. If an array is declared in the format array_name

(m:n), we have to ensure that n must be greater than m. Also note that both m and n can

be either positive or negative integer as long as n is greater than m.

Example 5 : Declaration of a real array TEMP with subscript ranging from -20 to 20.

 REAL TEMP (-20:20)

A total of 41 elements in this array can be found using the formula n - m + 1 where n is

20 and m is -20.

The declaration statement DIMENSION is also used to declare arrays. This

statement assumes that the type of the array is implicitly defined. The DIMENSION

statement can be combined with an explicit type statement declaring the type of the

array. If an array is declared using the DIMENSION statement, and if the type of the

array is not mentioned, it is decided implicitly by the first character of the array name,

as in the case of undeclared variables.

Example 6 : Declaration of arrays using the DIMENSION statement.

 DIMENSION ALIST(100), KIT(-3:5), XYZ(15)
 INTEGER XYZ
 REAL BLIST(12), KIT

In this example, arrays ALIST, BLIST, and KIT are of type REAL. Array XYZ is of

type INTEGER. Since the type of array ALIST is not specified, it is treated as a real

variable using the default rule for implicit variables.

6.2 One-Dimensional Array Initialization

The purpose of declaring arrays is to specify the number of elements in each array. By

declaring an array, the memory space required by the array is only reserved and not

initialized. Arrays can be filled with data using either the assignment statement or the

READ statement.

6.2.1 Initialization Using the Assignment Statement

The following statements illustrate the initialization of arrays using the assignment

statement, in different ways:

Example 1: Declare a real array LIST consisting of 3 elements. Also initialize each

element of LIST with the value zero.

Solution:

 REAL LIST(3)
 DO 5 K = 1, 3
 LIST(K) = 0.0
5 CONTINUE

sixth One-Dimensional Array Initialization 111

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Example 2: Declare an integer array POWER2 with subscript ranging from 0 up to 10

and store the powers of 2 from 0 to 10 in the array.

Solution:

 INTEGER POWER2(0:10)
 DO 7 K = 0, 10
 POWER2(K) = 2 ** K
7 CONTINUE

6.2.2 Initialization Using the READ Statement

An array can be read as a whole or in part. To read the whole array, we may use the

name of the array without subscripts. We can read part of an array by specifying

specific elements of the array in the READ statement. We may also use the implied

loop in reading arrays. Implied loops provide an elegant approach to reading arrays of

varying lengths.

The rules that apply in reading simple variables also apply in reading arrays. Each

READ statement requires a new line of input data. If the data in the input line is not

enough, the READ statement ensures that the data is read from the immediately

following input line or lines, until all the elements of the READ statement are read.

Example 1: Read all the elements of an integer array X of size 4. The four input data

values are in a single input data line as follows
10, 20, 30, 40

Solution 1: (Without Array Subscript)

 INTEGER X(4)
 READ*, X

Solution 2: (Using an Implied Loop)

 INTEGER X(4), K
 READ*, (X(K), K = 1, 4)

Both READ statements read all four elements of the array X. However, in both

solutions, only one READ statement is executed. Ideally, the four input data values may

be placed in one input line. If the four values of the input data appear in more than one

input line, then reading continues until all four values are read. The two solutions are

equivalent with a subtle difference. The READ statement in Solution 2 may be used to

read all four elements of the array or fewer than four elements by modifying the implied

loop. In the next example, we will read one input data value per line.

Example 2: Read all the elements of an integer array X of size 4. The four input data

values appear in four input data lines as follows
10

20
30

40

Solution:

 INTEGER X(4), J
 DO 22 J = 1, 4
 READ*, X(J)
22 CONTINUE

sixth One-Dimensional Array Initialization 112

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Notice the layout of the input data. Since four READ statements are executed in the DO

loop, four input data lines are required each with one data value. The input data for this

example can also be used for the previous example (Example 1) but the input of the

previous example cannot be used for the current one. The next three examples further

illustrate reading of one-dimensional arrays.

Example 3: Read an integer one-dimensional array of size 100.

Solution 1: (Using a WHILE Loop)

 INTEGER A(100), K
 K = 0
66 IF (K.LT.100) THEN
 K = K + 1
 READ*, A(K)
 GOTO 66
 ENDIF

Note that we require 100 lines of input with one data value per line since the READ

statement is executed 100 times.

Solution 2: (Using a DO Loop)

 INTEGER A(100), K
 DO 77 K = 1, 100
 READ*, A(K)
77 CONTINUE

Note again that we require 100 lines of input with one data value per line since the

READ statement is executed 100 times.

Solution 3: (Using an implied Loop)

 INTEGER A(100), K
 READ*, (A(K), K = 1, 100)

Note that we require one line with 100 data values since the READ statement is

executed only once. Even if the input is given in 100 lines with one data value per line,

the implied loop will correctly read the input.

Example 4: Read the first five elements of a logical array PASS of size 20. The input is:
T, F, T, F, F

Solution:

 LOGICAL PASS(20)
 INTEGER K
 READ*, (PASS(K), K = 1, 5)

Example 5: Read the grades of N students into an array SCORE. The value of N is the

first input data value followed by N data values in the next input line. Assume the input

is:
6

55, 45, 37, 99, 67, 58

Solution:

 INTEGER SCORE(100), K, N
 READ*, N
 READ*, (SCORE(K), K = 1, N)

In this example, the value of N is 6 and the six grades in the second input line are stored

as the first six elements of the array SCORE. The rest of the array SCORE is not

sixth Printing One-Dimensional Arrays 113

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

initialized. Note that the value of N may range from 1 to 100 depending on the first data

value in the input. If the input data were given as follows:
4

42, 77, 89, 70

the value of N will be 4 and only four elements of the array SCORE are initialized. We

assume here that the value of N will never go beyond 100 and that there will k+1 data

values in the input where k represents the first data value.

6.3 Printing One-Dimensional Arrays

Just as in the case of reading an array, printing an array without subscripts will produce

the whole array as output. If some elements of the array are not initialized before

printing, question marks appear in the output indicating elements that do not have a

value. Each PRINT statement starts printing in a new line. If the line is not long enough

to print the array, the output is printed in more than one line.

Example : Read an integer array X of size 4 and print:

i. the entire array X in one line;

ii. one element of array X per line; and

iii. array elements greater than 0.

Solution:

 INTEGER X(4), K
 READ*, X
C PRINTING THE ENTIRE ARRAY IN ONE LINE
 PRINT*, 'PRINTING THE ENTIRE ARRAY'
 PRINT*, X
C PRINTING ONE ARRAY ELEMENT PER LINE
 PRINT*, 'PRINTING ONE ARRAY ELEMENT PER LINE'
 DO 33 K = 1, 4
 PRINT*, X(K)
33 CONTINUE
C PRINTING ARRAY ELEMENTS GREATER THAN 0
 PRINT*, 'PRINTING ARRAY ELEMENTS GREATER THAN 0'
 DO 44 K = 1, 4
 IF(X(K) .GT. 0) PRINT*, X(K)
44 CONTINUE
 END

If the input is given as
7, 0, 2, -4

the output of the program is as follows:
PRINTING THE ENTIRE ARRAY

7 0 2 -4

PRINTING ONE ARRAY ELEMENT PER LINE
7
0

2
-4
PRINTING ARRAY ELEMENTS GREATER THAN 0

7
2

seventh Complete Examples on One-Dimensional Arrays 114

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

6.4 Errors in Using One-Dimensional Arrays

There are many errors that may occur in the use of arrays. These errors may appear, if

the following rules are not followed:

 Array subscripts must not go beyond the array boundaries.

 Array subscripts must always appear as integer expressions.

 The value assigned to an array element, either using the READ statement or the

assignment statement, must match in type with the array type. This rule, as in

the case of simple variables, does not hold for integer and real variables.

 Arrays must be declared before its elements are initialized.

We will now illustrate a few errors through examples. Assume the following

declarations:

 INTEGER GRADE(25), LIST(3)
 LOGICAL MEM(20)
 CHARACTER TEXT(5) * 3

The following statements illustrate incorrect initializations of arrays:

Initialization Type of Error
GRADE(26) = 0.0 array subscript 26 is out of range
LIST(2.0) = X * 3 array subscript 2.0 is not an integer
TEXT(4) = 100 array TEXT is a character array
MEM(3) = 'WRONG' array MEM is a logical array
READ*, (GRADE(K), K = 1, 100) array GRADE has only 25 elements
ARR(2) = 3 ARR is not declared as an array

6.5 Complete Examples on One-Dimensional Arrays

In this section, we illustrate the use of one-dimensional arrays through complete

examples.

Example 1: Counting Odd Numbers: Read an integer N and then read N data values

into an array. Print the count of those elements in the array that are odd.

Solution:

 INTEGER A(50), COUNT, N , K
 READ*, N, (A(K), K = 1, N)
 COUNT = 0
 DO 44 K = 1, N
 IF (MOD (A(K), 2) .EQ. 1) COUNT = COUNT + 1
44 CONTINUE
 PRINT 'COUNT OF ODD ELEMENTS = ', COUNT
 END

If the input is:
7, 35, 66, 83, 22, 33, 1, 89

The value of variable N in this example is 7. The next seven input data values are placed

in the array. There are 5 odd values among the seven elements of the array. For the

given input, the output is as follows:
COUNT OF ODD ELEMENTS = 5

seventh Complete Examples on One-Dimensional Arrays 115

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Example 2: Reversing a One-Dimensional Array: Write a FORTRAN program that

reads an integer one-dimensional array of size N. The program then reverses the

elements of the array and stores them in reverse order in the same array. For example,

if the elements of the array are:

33 20 2 88 97 5 71

the elements of the array after reversal should be:

71 5 97 88 2 20 33

The program prints the array, one element per line.

Solution:

 INTEGER NUM(100), TEMP
 READ*, N, (NUM(L), L = 1, N)
 DO 41 K = 1, N / 2
 TEMP = NUM(K)

 NUM(K) = NUM(N + 1 - K)
 NUM(N + 1 - K) = TEMP
41 CONTINUE
 DO 22 L = 1, N
 PRINT*, NUM(L)
22 CONTINUE
 END

Note that we used an implied loop to read the array and a DO loop to print the array.

Since the problem asks for an array of size N to be read, we first read N and then use an

implied loop to read N elements into the array. One common mistake here is to declare

an array of size N. This is not allowed since the size of an array in a declaration

statement must be an integer constant (except in the case of subprograms where it may

be a dummy argument as we shall see in an example later in this chapter). The array is

reversed by exchanging the elements of the array. The expression N+1-K gives the

index of the element corresponding to K from the end of the array. Thus, using this

expression, the first element is exchanged with the last, the second element is

exchanged with the second last and so on. This operation is called swapping. The

swapping of elements in the array stops at the middle element.

Example 3: Manipulating One-Dimensional Arrays: Write a FORTRAN program that

reads a one-dimensional integer array X of size 10 elements and prints the maximum

element and its index in the array.

Solution:

 INTEGER X(10), MAX, INDEX, K
 READ*, X
 MAX = X(1)
 INDEX = 1
 DO 1 K = 2, 10
 IF (X(K) .GT. MAX) THEN
 INDEX = K
 MAX = X(K)
 ENDIF
1 CONTINUE
 PRINT*, 'MAXIMUM:', MAX, ' INDEX:',INDEX
 END

In the above program, we need to keep track of the position of the maximum element

within the array. The variable MAX stores the current maximum and the variable

seventh One-Dimensional Arrays and Subprograms 116

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

INDEX represents the position of the maximum element in the array. Whenever a new

maximum is found by the IF statement condition, we update both variables MAX and

INDEX.

Example 4: Printing Perfect Squares: Read 4 data values into an array LIST (of size

10) and print those values that are perfect squares (1, 4, 9, 25 .. are perfect squares).

Assume that the input is:
81, 25, 10, 169

Solution:

 INTEGER LIST(10), N, K
 LOGICAL PSQR
C STATEMENT FUNCTION TO CHECK FOR PERFECT SQUARES
 PSQR(N) = INT(SQRT(REAL(N))) ** 2 .EQ. N

 READ*, (LIST(K), K = 1, 4)
 K = 0
55 IF (K .LE. 4) THEN
 IF(PSQR(LIST(K))) PRINT*, LIST(K)
 K = K + 1
 GOTO 55
 ENDIF
 END

In this example, only four elements of the array LIST are initialized by the READ

statement. The other six elements are not initialized. Notice the use of the logical

statement function PSQR that checks whether its argument N is a perfect square. The

simple IF statements check if the four elements of the array LIST are perfect squares.

For the given input, the output is as follows:
81

25

169

6.6 One-Dimensional Arrays and Subprograms

One-dimensional arrays can be passed to a subprogram or can be used locally within a

subprogram. In both the cases, the array must be declared within the subprogram. The

size of such an array can be declared as a constant or as a variable. Variable-sized

declaration of one-dimensional arrays in a subprogram is allowed only if both the

variable size is a dummy argument and the array itself is a dummy argument. The

following examples illustrate the use of one-dimensional arrays in a subprogram.

Example 1: Summation of Array Elements: Read 4 data values into an array LIST (of

size 10) and print the sum of all the elements of array LIST using a function SUM.

seventh One-Dimensional Arrays and Subprograms 117

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Solution:

 INTEGER LIST(10), SUM, K
 READ*, (LIST(K), K = 1, 4)
 PRINT*, SUM(LIST, 4)
 END
 INTEGER FUNCTION SUM(MARK, N)
 INTEGER N, MARK(N)
 SUM = 0
 DO 13 J = 1, N
 SUM = SUM + MARK(J)
13 CONTINUE
 RETURN
 END

In this example, four elements of the array LIST are read by the READ statement. The

function SUM is called and the sum of the first four elements of array LIST is printed.

The first argument to the function is the one-dimensional array LIST. The second

argument is passed as the size of the array. In function SUM, the argument N is used in

the declaration of the array MARK. The declaration INTEGER MARK(N) implies that

the size of the array MARK is the value of N. This type of declaration is allowed in

functions and subroutines only. The elements of the array MARK are added and the

result is returned as the function value.

If the input to this program is as follows:
19, 25, 10, 82

the output would be as follows:
136

Example 2: A Function to Compare One-Dimensional Arrays: Write a program that

has a logical function COMPAR. The function gets A, B, and N as arguments. A and B

are integer one-dimensional arrays of equal size. N is an integer that represents the size

of arrays A and B. The function compares the elements of A and B. If all elements of A

are equal to the corresponding elements of B, the function returns the value .TRUE..

Otherwise, it returns a .FALSE. value. In the main program, N is read. The program

also reads two one-dimensional arrays (each of maximum size 100). Only N elements of

each array are read. The program then calls the function COMPAR. If the value

returned is .TRUE., it prints one of the arrays. Otherwise, it prints the two arrays.

seventh One-Dimensional Arrays and Subprograms 118

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Solution:

 LOGICAL FUNCTION COMPAR(A, B, N)
 INTEGER N, A(N), B(N), K
 COMPAR = .TRUE.
 DO 10 K = 1, N
 IF (A(K).NE.B(K)) THEN
 COMPAR = .FALSE.
 RETURN
 ENDIF
10 CONTINUE
 RETURN
 END
 LOGICAL COMPAR
 INTEGER A(100), B(100), K, N
 READ*, N, (A(K), K=1,N), (B(K), K=1,N)
 IF (COMPAR(A,B,N)) THEN
 PRINT*, 'A = B = ', (A(K), K=1,N)
 ELSE
 PRINT*, 'A = ', (A(K), K=1,N)
 PRINT*, 'B = ', (B(K), K=1,N)
 ENDIF
 END

Notice how the array declarations are different in the main program from the

subprogram. Array A is declared as A(100) in the main program while it is declared

with variable size as A(N) in the subprogram.

Example 3: Counting Negative Numbers within a One-Dimensional Array: Write a

subroutine FIND that takes a one-dimensional array and its size as two input

arguments. It returns the count of the negative and non-negative elements of the array.

Solution:

 SUBROUTINE FIND(A, N, COUNT1, COUNT2)
 INTEGER N, A(N), COUNT1, COUNT2, K
 COUNT1 = 0
 COUNT2 = 0
 DO 13 K = 1,N
 IF (A(K).LT.0) THEN
 COUNT1= COUNT1 + 1
 ELSE
 COUNT2= COUNT2 + 1
 ENDIF
13 CONTINUE
 RETURN
 END

The variable COUNT1 counts the negative numbers in the array. The variable COUNT2

counts the non-negative integers in the array.

Example 4: Updating the Values in a One-Dimensional Array: The two input

arguments to a certain subroutine UPDATE is an array A of real numbers and its size

N. The subroutine replaces the value of every element in A with its absolute value.

Write the subroutine UPDATE and a main program which will invoke (call) the

subroutine. The maximum size of the array is 100.

seventh Exercises 119

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Solution:
 SUBROUTINE UPDATE(A,N)
 INTEGER K, N
 REAL A(N)
 DO 44 K = 1,N
 A(K) = ABS(A(K))
44 CONTINUE
 RETURN
 END
 INTEGER J, N
 REAL A(100)
 READ*, N, (A(J),J=1,N)
 PRINT*, 'THE ORIGINAL ARRAY: ', (A(J),J=1,N)
 CALL UPDATE(A,N)
 PRINT*, 'THE NEW ARRAY: ', (A(J),J=1,N)
 END

6.7 Exercises

1. What is printed by the following programs?

1. INTEGER A(3), J
 A(1) = 1
 DO 30 J = 2, 3
 A(J) = 3 * A(J - 1)
30 CONTINUE
 PRINT*, A
 END

2. INTEGER X(3), Y(3), K
 LOGICAL Z(3)
 READ*, X
 READ*, Y
 DO 80 K = 1, 3
 Z(K) = X(K) .EQ. Y(K)
80 CONTINUE
 IF(Z(1) .AND. Z(2) .AND. Z(3)) THEN
 PRINT*, 'EQUAL ARRAYS '
 ELSE
 PRINT*, 'DIFFERENT ARRAYS'
 ENDIF
 END

Assume the input for the program is:
1, 5, 7

7, 5, 1

3. INTEGER A(4), B(4), G, K, N

 G(K) = K ** 2

 READ*, A
 DO 60 N = 1, 4
 B(N) = G(A(5 - N))
60 CONTINUE
 PRINT*, B
 END

Assume the input for the program is:
10, 20, 30, 40

seventh Exercises 120

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

4. SUBROUTINE FUN(A)
 INTEGER A(4), TEMP
 TEMP = A(1)
 A(1) = A(2)
 A(2) = A(3)

 A(3) = A(4)
 A(4) = TEMP
 RETURN
 END
 INTEGER LIST(4)
 READ*, LIST
 CALL FUN (LIST)
 PRINT*, LIST
 END

Assume the input for the program is:
3, 6, 9, 2

5. INTEGER X(3), Y(3)
 LOGICAL EQUAL
 READ*, X
 READ*, Y
 IF (EQUAL (X, Y))THEN
 PRINT*, 'EQUAL ARRAYS '
 ELSE
 PRINT*, 'DIFFERENT ARRAYS'
 ENDIF
 END
 LOGICAL FUNCTION EQUAL(X, Y)
 INTEGER X(3), Y(3), K
 LOGICAL Z(3)
 DO 45 K = 1, 3
 Z(K) = X(K) .EQ. Y(K)
 45 CONTINUE
 EQUAL = Z(1) .AND. Z(2) .AND. Z(3)
 RETURN
 END

Assume the input for the program is:
1, 5, 7
7, 5, 1

6. INTEGER A(2), B(3), C(4), D(3)
 READ*, A, D(1)
 READ*, B, D(2)
 READ*, C, D(3)
 PRINT*, A
 PRINT*, B
 PRINT*, C
 PRINT*, D
 END

Assume the input for the program is:
1,2,3,4,5

6,7,8,9,10
11,12,13,14,15

16,17,18,19,20

seventh Exercises 121

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

7. INTEGER A(3), K
 READ*, A
 DO 10 K = 1,3
 A(3) = A(3) + A(K)
10 CONTINUE
 PRINT*, A(3)
 END

Assume the input for the program is:
10,20,30

8. INTEGER X(5), Y(5), N, K
 READ*, N, (X(K),Y(K),K=1,N)
 DO 5 K=X(N),Y(N)
 PRINT*, ('X',J=X(K),Y(K))
5 CONTINUE
 END

Assume the input for the program is:
4,1,2,3,3,3,4,2,4

9. NTEGER A(0:4), K
 DO 10 K = 1,2
 READ*, A
10 CONTINUE
 READ*,(A(K), K = 0,2)
 DO 30 K = 1,20,3
 A(MOD(K,4)) = A(MOD(K,5))
30 CONTINUE
 PRINT*, A
 END

Assume the input for the program is:
1,2,3,4,5,6,7,8

9,10,11

12,13,14,15
18,19,20

10. LOGICAL X(0:4)
 INTEGER J, K
 X(0) = .TRUE.
 DO 30 J = 0,4
 K = MOD(J+1,5)
 X(K) = .NOT. X(J)
30 CONTINUE
 PRINT*, X
 END

seventh Exercises 122

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

11. INTEGER A(5), B(5), K
 REAL F, Z
 READ*, (A(K),K=1,4), (B(K),K=1,4)
 Z = F(A,B)
 PRINT*, Z
 END
 REAL FUNCTION F(L,M)
 INTEGER L(5), M(5), K
 F = 0
 DO 10 K = 1,4
 IF (L(K).EQ.M(L(K))) THEN
 F = M(K) + K
 ELSE
 RETURN
 ENDIF
10 CONTINUE
 F = F + K
 RETURN
 END

Assume the input for the program is:
3,1,2,4,1,2,3,4

12. INTEGER A(100), I, J, N
 REAL ENDAVE
 DO 2 I=1,4
 READ*, N, (A(J),J=1,N)
 PRINT*, ENDAVE(A,N)
2 CONTINUE
 END
 FUNCTION ENDAVE(X,V)
 INTEGER V, X(V)
 REAL ENDAVE
 ENDAVE = (X(1)+X(V)) / 2.0
 END

Assume the input for the program is:
4 5 7 3 1

5 7 3 1 4 5
3 1 5 4

1 2

13. INTEGER FUNCTION SUM(X,N)
 INTEGER J, N
 REAL X(N), Z
 Z = 0
 DO 10 J = 1,N
 Z = Z +X(J)
10 CONTINUE
 SUM = Z
 RETURN
 END
 INTEGER SUM
 REAL A(4), B(4)
 READ*, A, B
 PRINT*, SUM (A,2)/SUM(B,3)
 END

Assume the input for the program is:
4 5 3 4 2 1 1 0

seventh Exercises 123

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

14. SUBROUTINE EXCESS(RESULT, OPA, OPB, N)
 INTEGER OPA(10), OPB(10), RESULT(10), CARRY
 CARRY = 0
 DO 10 K = N,1,-1
 RESULT(K+1) = MOD(OPA(K)+OPB(K)+CARRY,10)
 CARRY = (OPA(K)+OPB(K)+CARRY) / 10
10 CONTINUE
 RESULT(1) = CARRY
 RETURN
 END
 INTEGER A(10), B(10), C(10)
 READ*, N
 READ*, (A(K),K=1,N)
 READ*, (B(K),K=1,N)
 CALL EXCESS(C,A,B,N)
 PRINT*,(C(K), K=1,N+1)
 END

Assume the input for the program is:
7

4 5 6 7 0 9 4
8 3 7 5 2 0 8

15. SUBROUTINE INTER(A, NA, B, NB, C, NC)
 INTEGER NA, NB, A(NA), B(NB), C(NA), K, M, NC
 NC = 0
 DO 10 K = 1, NA
 DO 20 M = 1, NB
 IF (A(K).EQ. B(M)) THEN
 NC = NC + 1
 C(NC) = A(K)
 GOTO 10
 ENDIF
20 CONTINUE
10 CONTINUE
 RETURN
 END
 INTEGER X(9), Y(9), Z(9), L, NX, NY, NZ
 READ*, NX, (X(L), L = 1,NX)
 READ*, NY, (Y(L), L = 1,NY)
 CALL INTER (X,NX,Y,NY,Z,NZ)
 PRINT*, (Z(J), J = 1,NZ)
 END

Assume the input for the program is:
5 12 23 45 65 67 84

4 84 64 12 21

2. The following program segments may or may not have errors. For each one of the

segments, identify the errors(if any). Assume the following declarations :

 INTEGER M(4)
 LOGICAL L

a. DO 5 K = 2,5,2
 READ*, M(K-1)
5 CONTINUE

Assume the input for the program is:
20,40,50,30,60

seventh Exercises 124

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

b. DO 10 K = 1,4
 M(K+1) = -K
10 CONTINUE
 END

3. Consider the following subroutine :

 SUBROUTINE CHECK(A,B,C,N)
 INTEGER A(10), B(5)
 C = 0
 DO 10 M = 1,N
 C = C + A(M)*B(M)
10 CONTINUE
 RETURN
 END

If the only declaration and assignment statement in the main program are the

following:

 INTEGER X(5), M(10), A
 A = 3

Which of the following CALL statements is correct assuming that X and M have

some value ?
A) CALL CHECK(M,X,C)

B) CALL CHECK(M(10),X(5),C,5)

C) CALL CHECK(M,X,B,A+2)

D) CALL CHECK(M,X,N,A)

E) CALL CHECK

4. The following function returns TRUE if the integer number X is found in an integer

array A which has N elements. It returns FALSE otherwise. Complete the missing

line.

 LOGICAL FUNCTION FOUND(A, X, N)
 INTEGER N, A(N), X, K
 DO 20 K=1,N
 IF(A(K) .EQ. X) THEN
 FOUND = .TRUE.

 ENDIF
20 CONTINUE
 FOUND = .FALSE.

 RETURN
 END

5. The following subroutine has 4 parameters: A, N, X and Y, where A is an integer

array of size N and X and Y are integer numbers. The subroutine changes each

element of A that has the value X by the value Y. Complete the missing line.

 SUBROUTINE CHANGE(A, N, X, Y)
 INTEGER N, A(N), X, Y, K
 DO 20 K=1,N
 IF(A(K) .EQ. X) THEN

 ENDIF
20 CONTINUE
 RETURN
 END

seventh Solutions to Exercises 125

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

6. Write a program to initialize a real 1-D array SERIES with the first 8 terms of the

series 1, 4, 16, 64,

7. Write a logical function subprogram ZERO that takes a 1-D integer array LIST of

size 5 and checks if all the elements of array LIST are zero. Write a main program to

test the function.

8. Write a program to read a 1-D integer array X and check if all the elements of array X

are in increasing order. Print a proper message.

9. Write a subroutine REVRSE to reverse a 1-D real array DAT with 5 elements. Write

a main program to test the subroutine.

10. Write a program which reads the elements of three 1-Dimensional arrays A, B and

C each of size N (where N<10). The program stores these elements in an array D

of size M (where M = 3N) such that the elements of D array will be as follows :

A(1) B(1) C(1) A(2) B(2) C(2) ... A(N) B(N) C(N)

11. Write a program that reads a 1-D integer array of 10 elements and prints the

element that appears the maximum number of times. (If there is more than one

element, it prints the first one only).

12. Write a program to read a 1-D array AR1 of size 15 and another 1-D array AR2 of

size 75. The program then finds and prints the number of occurrences of the array

AR1 in the array AR2.

13. Write a program that reads ten integers and stores them into a one-dimensional

array X.. The main program then calls a subroutine SUMS passing it the one-

dimensional array. The subroutine computes the sum S of all the ten elements and

the sum of the square of these ten values. Finally the main program prints the sum

S and the sum of the squares S2.

6.8 Solutions to Exercises

Ans 1.

1. 1 3 9

2. DIFFERENT ARRAYS

3. 1600 900 400 100

4. 6 9 2 3

5. DIFFERENT ARRAYS

6. 1 2

 6 7 8

 11 12 13 14

 3 9 15

7. 120

8. X

 XX

 XXX

9. 20 20 13 13 13

seventh Solutions to Exercises 126

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

10. F F T F T

11. 13.0

12. 3.0

 6.0

 2.5

 2.0

13. 2

14. 1 2 9 4 2 3 0 2

15. 12

Ans 2.

a) End of file encountered (The program needs 2 lines of input)

b) Subscript out of range; m(5) is undefined

Ans 3.

C

Ans 4.

 RETURN

Ans 5.
 A(K) = Y

Ans 6.

 REAL SERIES(8)
 INTEGER K
 DO 12 K = 1, 8
 SERIES(K) = 4**(K-1)
12 CONTINUE
 END

Ans 7.

 LOGICAL FUNCTION ZERO(LIST, N)
 INTEGER N, LIST(N), K
 ZERO = .TRUE.
 K = 0
18 IF (K .LE. N .AND. ZERO) THEN
 IF(LIST(K) .NE. 0) ZERO = .FALSE.
 K = K + 1
 GOTO 18
 ENDIF
 RETURN
 END
 LOGICAL ZERO
 INTEGER LIST(5)
 IF (ZERO(LIST, 5)) THEN
 PRINT*, 'ALL ELEMENTS ARE ZEROS'
 ELSE
 PRINT*, 'NOT ALL ELEMENTS ARE ZEROS'
 ENDIF
 END

seventh Solutions to Exercises 127

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Ans 8.

 INTEGER X(3)
 READ*, X
 IF(X(1) .LT. X(2) .AND. X(2) .LT. X(3)) THEN
 PRINT*, 'INCREASING ORDER'
 ELSE
 PRINT*, 'NOT INCREASING ORDER'
 ENDIF
 END

Ans 9.

 SUBROUTINE REVERSE (DAT)
 REAL DAT(5), TEMP
 TEMP = DAT(5)
 DAT(5) = DAT(1)

 DAT(1) = TEMP
 TEMP = DAT(2)
 DAT(2) = DAT(4)

 DAT(4) = TEMP
 RETURN
 END
 REAL DAT(5)
 READ*, DAT
 CALL REVERSE(DAT)
 PRINT*, DAT
 END

Ans 10.

 INTEGER A(10) , B(10) , C(10) , D(30), N, M, K, J
 READ*, N
 M = 3 * N

 J = 1
 READ*, (A(K), K= 1 ,N),(B(K),K=1,N),(C(K),K=1,N)
 DO 10 K = 1 , N
 D(J) = A(K)

 D(J+1) = B(K)
 D(J+2) = C(K)
 J = J + 3
10 CONTINUE
 PRINT*, (D(K) , K = 1 ,M)
 END

seventh Solutions to Exercises 128

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Ans 11.

 INTEGER A(10) , FREQ(10) , MAXFRQ , LOC, I, J
 READ*, A
 DO 10 I = 1 ,10
 FREQ(I) = 0
10 CONTINUE
 DO 20 I = 1 ,10
 DO 30 J = 1 ,10
 IF(A(J) .EQ. A(I)) FREQ(I) = FREQ(I) + 1
30 CONTINUE
20 CONTINUE
 MAXFRQ = FREQ(1)
 LOC = 1
 DO 40 J = 1 ,10
 IF(MAXFRQ .LT. FREQ(J)) THEN
 MAXFRQ = FREQ(J)

 LOC = J
 ENDIF
40 CONTINUE
 PRINT*, ' THE ELEMENT WITH IS MAX APPEARANCE IS ',A(LOC)
 END

Ans 12.

 INTEGER COUNT , AR1(15),AR2(75), K, COUNT, M
 LOGICAL FOUND
 READ*,AR1
 READ*,AR2
 COUNT = 0
 DO 10 K=1,61
 FOUND = .TRUE.
 DO 20 M = K,K+14
 IF(AR1(M-K+1).NE. AR2(M)) FOUND=.FALSE.
20 CONTINUE
 IF(FOUND) COUNT = COUNT+1
10 CONTINUE
 PRINT*,'COUNT = ' , COUNT
 END

Ans 13.

 INTEGER X(10) , S , S2, J
 READ*, (X(J), J =1,10)
 CALL SUMS(X , S ,S2)
 PRINT*, ' THE SUM OF VALUES =', S
 PRINT*, ' THE SUM OF THE SQUARE OF VALUES =', S2
 END
 SUBROUTINE SUMS (X , S ,S2)
 INTEGER X(10) , S , S2, K
 S = 0

 S2 = 0
 DO 20 K = 1 ,10
 S = S + X(K)

 S2 = S2 + X(K) ** 2
20 CONTINUE
 RETURN
 END

129

