
eighth Output Formatting 147

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

8 OUTPUT DESIGN AND FILE

PROCESSING

8.1 Output Formatting

The print statement we have been using in the previous chapters is a list-directed output

statement. In list-directed output, the output list determines the precise appearance of

printed output. In other words, we have no control over the format of the output. To

control the manner in which the output is printed or to produce an output in a more

readable form, we use FORMAT statements. To use a FORMAT statement, we must

modify the PRINT statement by replacing the '*' with a FORMAT statement label. The

general form of a formatted PRINT statement is

 PRINT K, expression list

The FORMAT statement number k identifies a format to be used by the print

statement. The statement number can be any positive INTEGER constant up to five

digits. Recall that statement numbers are placed in columns 1 through 5. The expression

list specifies the value(s) to be printed. The general form of the FORMAT statement is

K FORMAT(specification list)

A FORMAT statement is a non-executable statement. It can appear anywhere in the

program before or after the associated print statement. The specification list in the

FORMAT statement specifies both the vertical spacing and the horizontal spacing to be

used when printing an output. The first character of the specification list, called the

carriage control character, is used to control the vertical spacing. The rest of the

specification list consists of various format specifications and controls the horizontal

spacing.

FORTRAN provides format specifications for blank spaces, integer, real, character

and logical types. Commas are used to separate specifications in the specification list.

Before printing the line, the computer constructs each output line internally in a memory

area called the output buffer. The length of each line in the buffer is 133 characters. The

first character is used to control the vertical spacing and the remaining 132 characters

represent the line to be printed. The buffer is filled with blanks before it is used to

construct an output line.

The following are some of the carriage control characters used to control the vertical

spacing:

 ' ': single spacing (start printing at the next line)

 '0': double spacing (skip one line then start printing)

eighth Output Formatting 148

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

 '-': triple spacing (skip 2 lines then start printing)

 '1': new page (move to the top of the next page before printing)

 '+': no vertical spacing (start printing at the beginning of the current line

irrespective of what was printed before)

The six format specifications presented below allow the control of horizontal spacing.

In the following sections we will use

....+....1....+....2....+....3....+....4.

as a header to the output to indicate the horizontal spacing, Notes that the above line is

not part of the output.

8.1.1 I Specification

The I specification is used to print integer expressions. The general form of I

specification is {Iw}, where w is a positive integer representing the number of positions

to be used to print the integer value. To find the minimum number of positions

necessary to print a number, we count the number of digits in the integer including the

minus sign. For example, if we want to print -25, the value of w should be at least 3. In

the case where the value of w is more than 3, the number -25 is printed right-justified. If

the value of w is less than 3, the number -25 cannot be printed and asterisk (*)

characters appear in the output. In this case, the number of asterisks is equal to w.

In other words, to print an integer number using I specification, we start filling the

positions from right to left. The extra positions to the left of the integer (if any) will be

filled with blanks. If the positions are not enough to represent the number, the positions

are filled with asterisks indicating that the specification is not enough to print the integer

number.

Example 1: What is the minimum I specification needed to print each of the following

integers?

345, 67, -57, 1000, 123456

Solution:

Number I specification

345 I3

67 I2

-57 I3

1000 I4

123456 I6

Example 2: What will be printed by the following program?

 INTEGER M
 M = -356
 PRINT 10, M
10 FORMAT(' ', I4)
 END

Solution:
....+....1....+....2

-356

eighth Output Formatting 149

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Notice that the carriage control character ' ' did not appear in the output. This characters

indicates that the output line is single spacing.

Example 3: If the FORMAT statement in the previous example is modified as follows:

 FORMAT('1', I6)

What will be printed?

Solution:

The printed output in this case will start on a new page, because of the carriage control

character '1':

(new page)

....+....1....+....2....+....3....+....4.

-356

Example 4: If the FORMAT statement in the previous example is modified as follows:

 FORMAT('-', I3)

What will be printed?

Solution:

....+....1....+....2....+....3....+....4.

Notice that the printed output in this case has two empty lines before the data. The

reason is the carriage control character '-' which means triple spacing. Moreover, the

data is printed as three asterisks because the format specification I3 is not enough for

the number -356.

Example 5: Assume K = -244 and M = 12. The following PRINT statements will

produce the shown outputs.

a. PRINT 10, K
10 FORMAT(' ', I4)

....+....1....+....2....+....3....+....4.

-244

b. PRINT 20, K, M
20 FORMAT(' ', I5, I6)

....+....1....+....2....+....3....+....4.

 -244 12

c. PRINT 30, K
 PRINT 35, M
30 FORMAT(' ', I3)
35 FORMAT('0', I2)

....+....1....+....2....+....3....+....4.

12

d. PRINT 40, K + M
40 FORMAT(' ', I5)

eighth Output Formatting 150

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

....+....1....+....2....+....3....+....4.

 -232

e. PRINT 50, K / M
50 FORMAT(' ', I3)

....+....1....+....2....+....3....+....4.

-20

f. PRINT 60, M + 1.0
60 FORMAT(' ', I3)

ERROR MESSAGE: TYPE MISMATCH

g. PRINT 70, -345
70 FORMAT(' ', I7)

....+....1....+....2....+....3....+....4.

 -345

h. PRINT 80, -39 / 3 * 2
80 FORMAT(' ', I3)

....+....1....+....2....+....3....+....4.

-26

i. PRINT 90, K
 PRINT 95, M
90 FORMAT(' ', I4)
95 FORMAT('+', I8)

....+....1....+....2....+....3....+....4.

-244 12

j. PRINT 98, K
 PRINT 98, M
98 FORMAT(' ', I4)

....+....1....+....2....+....3....+....4.

-244

 12

8.1.2 F Specification

The F specification is used to print real values. The general form of the F specification

is {Fw.d}, where w is a positive integer representing the total number of positions to be

used to print the real number and d represents the number of positions to be used to

print the fractional part of the real number. Note that w must satisfy the relation w  d +

1.

To find the number of positions needed to print a real number, we count the number

of significant digits in the real number including the decimal point and the minus sign.

For example, if we want to print -91.35, we need a total of six positions, two of them to

the right of the decimal point, so the specification should be at least F6.2. To print the

real number, we count from right to left d positions and place the decimal point at

position d+1. We start placing the integer part of the real number from right to left and

the fractional part of the real number from left to right. The extra positions to the left of

the decimal point (if any) are filled with blanks, while the extra positions to the right of

the decimal point (if any) are filled with zeros. If the number of positions to the left of

the decimal point is not enough to represent the integer part of the real number, all w

positions are filled with asterisks. If the number of positions to the right of the decimal

eighth Output Formatting 151

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

point is not enough to represent the fractional part of the real number, the number will

be rounded to just fill the specified number of decimal positions.

Example 1: What is the minimum F specification needed to print the following real

numbers?:

823.67509, 0.002, .05, -.05, -0.0008

Solution:

Number F specification

823.67509 F9.5

0.002 F5.3

.05 F3.2

-.05 F4.2

98. F3.0

98.0 F4.1

-0.0008 F7.4

Example 2: What will be printed by the following program?

 REAL X
 X = 31.286
 PRINT 10, X
10 FORMAT('1', F6.3)
 END

Solution:

The printed output on a new page is as follows:

....+....1....+....2....+....3....+....4.

31.286

Example 3: If the FORMAT statement in the previous example is modified as follows:

 FORMAT(' ', F8.3)

What will be printed?

Solution:

....+....1....+....2....+....3....+....4.

 31.286

Example 4: If the FORMAT statement in the previous example is modified as follows:

 FORMAT(' ', F8.4)

What will be printed?

Solution:

....+....1....+....2....+....3....+....4.

 31.2860

Example 5: If the FORMAT statement in the previous example is modified as follows:

 FORMAT(' ', F5.3)

What will be printed?

eighth Output Formatting 152

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Solution:

....+....1....+....2....+....3....+....4.

Example 6: If the FORMAT statement in the previous example is modified as follows:
 FORMAT(' ', F6.2)

What will be printed?

Solution:

....+....1....+....2....+....3....+....4.

31.29

Example 7: Assume X = -366.126, Y = 6.0 and Z = 20.97. The following PRINT

statements will produce the shown outputs.

a. PRINT 10, X
10 FORMAT(' ', F11.5)

....+....1....+....2....+....3....+....4.

 -366.12600

b. PRINT 20, X
20 FORMAT(' ', F8.3)

....+....1....+....2....+....3....+....4.

-366.126

c. PRINT 30, Z
 PRINT 35, Y
30 FORMAT(' ', F4.1)
35 FORMAT('0', F4.2)

....+....1....+....2....+....3....+....4.

21.0

6.00

d. PRINT 40, X / Y
40 FORMAT(' ', F7.3)

....+....1....+....2....+....3....+....4.

-61.210

e. PRINT 50, Y + 0.00001
50 FORMAT(' ', F7.5)

....+....1....+....2....+....3....+....4.

6.00001

f. PRINT 60, Z - 5
60 FORMAT(' ', F5.2)

....+....1....+....2....+....3....+....4.

15.97

g. PRINT 70, Z
70 FORMAT('+', I5)

ERROR MESSAGE: TYPE MISMATCH

h. PRINT 80, -144 / 24 + 35.2
80 FORMAT(' ', F4.1)

....+....1....+....2....+....3....+....4.

eighth Output Formatting 153

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

29.2

i. PRINT 85, Y
 PRINT 85, Z
85 FORMAT(' ', F6.2)

....+....1....+....2....+....3....+....4.

 6.00

 20.97

j. PRINT 90, Y
 PRINT 95, Z
90 FORMAT(' ', F6.2)
95 FORMAT('-', F6.2)

....+....1....+....2....+....3....+....4.

 6.00

 20.97

8.1.3 X Specification

The X specification is used to insert blanks between the values we intend to print. The

general form of this specification is nX, where n is a positive integer representing the

number of blanks.

Example 1: The following program:

 REAL A, B
 A = -3.62
 B = 12.5
 PRINT 5, A, B
5 FORMAT(' ', F5.2, F4.1)
 END

prints the following output:

....+....1....+....2....+....3....+....4.

-3.6212.5

The output is not readable because the two printed values are not separated by blanks. If

we modify the format statement using X specification as follows:

 FORMAT(' ', F5.2, 3X, F4.1)

the output becomes:

....+....1....+....2....+....3....+....4.

-3.62 12.5

The X specification can be used as a carriage control character. The following pairs of

FORMAT statements print the same output.

10 FORMAT(' ', I2)

is equivalent to

10 FORMAT(1X, I2)

and
20 FORMAT(' ', 2X, F4.1)

is equivalent to

eighth Output Formatting 154

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

20 FORMAT(3X, F4.1)

8.1.4 Literal Specification

The literal specification is used to place character strings in a FORMAT statement as

part of the specification list. The character string must be enclosed between two single

quotation marks.

Example 1: What will be printed by the following program?

 REAL AVG
 AVG = 65.2
 PRINT 5, AVG
5 FORMAT(' ' ,'THE AVERAGE IS = ', F4.1)
 END

Solution:

....+....1....+....2....+....3....+....4.

THE AVERAGE IS = 65.2

Example 2: The following program prints the message FORTRAN77 on top of a new

page.

 PRINT 30
30 FORMAT('1', 'FORTRAN77')
 END

The output printed at the a new page is:

....+....1....+....2....+....3....+....4.

FORTRAN77

8.1.5 A Specification

The A specification is used to print character expressions. The general form of the A

specification is Aw, where w represents the length of the character string. If the string

has more than w characters, only the left-most w characters will appear in the output

line. On the other hand, if the string has fewer than w characters, its characters are right-

justified in the output line with blanks to the left. The integer w may be omitted. If w is

omitted, the number of characters is determined by the length of the character string.

Example 1: What will be printed by the following program?

 PRINT 55, 'ICS-101'
55 FORMAT(' ',A7)
 END

Solution:

....+....1....+....2....+....3....+....4.
ICS-101

Example 2: What will be printed by the following program?

 CHARACTER TEXT*5
 TEXT = 'KFUPM'
 PRINT 55, TEXT, TEXT, TEXT
55 FORMAT(' ', A, 3X, A3, 3X, A9)
 END

eighth Specification Repetition: Another Format Feature 155

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Solution:

....+....1....+....2....+....3....+....4.

KFUPM KFU KFUPM

8.1.6 L Specification

The L specification is used to print logical expressions. The general form of L

specification is Lw. The letter T or F is printed if the logical expression is true or false

respectively. The printed letter is right-justified.

Example 1: What will be printed by the following program?

 PRINT 5, .TRUE.
5 FORMAT(' ',L1)
 END

Solution:

....+....1....+....2....+....3....+....4.

T

Example 2: What will be printed by the following program?

 LOGICAL X, Y
 X = .TRUE.
 Y = .FALSE.
 PRINT 15, X, X
15 FORMAT(' ', L1, 2X, L5)
 PRINT 20, Y, Y
20 FORMAT(' ', L1, 2X, L7)
 END

Solution:

....+....1....+....2....+....3....+....4.

T T
F F

8.2 Specification Repetition: Another Format Feature

If we have consecutive identical specifications, we can replace them by an integer

constant followed by the identical specification(s) to indicate repetition. For example,

the specifications: I4, I4, I4 can be replaced by 3I4. Also, the specifications: I2, 3X, I2,

3X, I2, 3X, I2, 3X can be replaced by 4(I2, 3X). The following pairs of FORMAT

statements illustrate the use of repetition constants:

10 FORMAT('0', 3X, I2, 3X, I2)

is equivalent to

10 FORMAT('0', 2(3X, I2))

and

20 FORMAT(' ',F5.1, F5.1, F5.1, 5X, I3, 5X, I3, 5X, I3, 5X, I3)

is equivalent to

eighth File Processing 156

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

20 FORMAT(' ',3F5.1,4(5X, I3))

8.3 Carriage Control Specification

The carriage control character is normally specified as the first character in the format

specification list. It can be specified as a blank or the characters 0,1,-, +. But in the case

where it is not specified as part of the specification list, the first character in the buffer

output is taken as the carriage control character. If the first character of the buffer output

is one of the carriage control characters (a blank, 0, 1, +, -), then the proper action is

taken. If the first character is not among the carriage control characters, then the output

is system dependent. The following example illustrates a specification list where

carriage control character is missing:

Example:

 PRINT 10
10 FORMAT('1995')
 END

The output, on a new page, would be as follows:

....+....1....+....2....+....3....+....4.

995

Notice that the first character '1' was considered as a new page carriage control

character.

8.4 File Processing

In many applications, the amount of data read and/ or produced is huge. Providing data

interactively is not efficient, thus a different way to handle data is needed, namely, files.

Another reason for using files comes from the repetitive use of the same data every time

the program is run; making the data entry task very tedious. The third reason is that data

in many real applications is taken or recorded by instruments or devices then used for

analysis and computations.

8.4.1 Opening Files

Before using a file for input or output, it must be prepared for that operation. Files that

are used for input must exist prior to their usage. To prepare a file for input, the

following OPEN statement must precede any read statement from that file:

 OPEN(UNIT = INTEGER EXPR, FILE = FILENAME, STATUS = 'OLD')

where UNIT equals an integer expression in the range of 0 to 99. Avoid using 5 and 6 as

unit numbers since they are already assigned for the keyboard and the screen. The

filename is a character string containing the actual name of the file followed by the file

extension. In the IBM mainframe, the file name is separated from the file extension by a

space and if the extension is omitted, it is assumed to be FILE. Upon opening a file for

reading, the reading will take place from the beginning of the file.

Files that are used for output may not exist before being used. If the file does not

exist, it will be created whereas if it exists its contents will be erased. To prepare a file

for output, the following statement must precede any write statement to that file:

eighth File Processing 157

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

 OPEN(UNIT = INTEGER EXPR, FILE = FILENAME, STATUS = 'NEW')

or

 OPEN(UNIT = INTEGER EXPR, FILE = FILENAME, STATUS ='UNKNOWN')

The second statement is preferred in our system because the first one assumes that the

file does not exist and, therefore, if it exists an error occurs.

Example 1: Assume that you want to use file POINTS DATA as an input file. The

following statement will then appear before any read statement from the file:

 OPEN(UNIT = 1, FILE = 'POINTS DATA', STATUS = 'OLD')

Example 2: Assume that you want to use file RESULT DATA as an output file. The

following statement will then appear before any write statement to the file:

 OPEN(UNIT = 1, FILE = 'RESULT DATA', STATUS = 'UNKNOWN')

8.4.2 Reading from Files

To read from a file, the file must have been opened. The READ statement will be in the

following form:

 READ(UNIT, *) VARIABLE LIST

where UNIT is the same value that is used in the open statement. The rules of reading

are exactly the same as the ones you have already seen, the only difference being that

data is taken from the file.

Example 1: Find the sum of three exam grades taken from file EXAM DATA.

Solution:

 INTEGER EXAM1, EXAM2, EXAM3, SUM
 OPEN(UNIT = 10, FILE = 'EXAM DATA', STATUS = 'OLD')
 READ(10, *) EXAM1, EXAM2, EXAM3
 SUM = EXAM1 + EXAM2 + EXAM3
 PRINT*, SUM
 END

In many cases, the number of data values in a file is not known and we would like to do

some calculations on the data values the file contains. For these cases, the read

statement will look as follows:

 READ(UNIT, *, END = NUMBER) VARIABLE LIST

where number is the label of the statement where control will be transferred after all the

data from the file is read.

Example 2: Find the average of real numbers that are stored in file NUMS DATA.

Assume that we do not know how many values are in the file and that every value is

stored on a separate line.

eighth File Processing 158

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Solution:

 REAL NUM, SUM, AVG
 INTEGER COUNT
 OPEN(UNIT = 12, FILE = 'NUMS DATA', STATUS = 'OLD')
 SUM = 0.0

 COUNT = 0
333 READ(12, *, END = 999) NUM
 SUM = SUM + NUM
 COUNT = COUNT + 1
 GOTO 333
999 AVG = SUM / COUNT
 PRINT*, AVG
 END

8.4.3 Writing to Files

To write to a file, the file must have been opened using an OPEN statement and the

WRITE statement must be used in the following form:

 WRITE(UNIT, *) EXPRESSION LIST

where UNIT is the same value that is used in the OPEN statement. The rules of writing

to a file are exactly the same as those of the print statement. The * in the WRITE

statement indicates that the output is free formatted. If format is needed, the format

statement number is used instead.

Example: Create an output file CUBES DATA that contains the table of the cubes of

integers from 1 to 20 inclusive.

Solution:

 INTEGER NUM
 OPEN(UNIT = 20, FILE = 'CUBES DATA', STATUS = 'UNKNOWN')
 DO 22 NUM = 1, 20
 WRITE(20, *) NUM, NUM**3
22 CONTINUE
 END

Format statement could be used with the write statement in the same way it is used with

the print statement. The * in the write statement is replaced with the format statement

number.

8.4.4 Working with Multiple Files

In any program, more than one file may be open at the same time for either reading or

writing. The same unit number that is used in one file should not be used with any other

file in the same program. The number of the files that can be open at the same time is

limited by the number of units, which is dependent on the computer you are using.

Example: Create an output file THIRD that contains the values in file FIRST followed

by the values in file SECOND. Assume that every line contains one integer number and

we do not know how many values are stored in files FIRST and SECOND.

ninth Exercises 159

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Solution:

 INTEGER NUM
 OPEN(UNIT = 15, FILE = 'FIRST', STATUS = 'OLD')
 OPEN(UNIT = 17, FILE = 'SECOND', STATUS = 'OLD')
 OPEN(UNIT = 19, FILE = 'THIRD', STATUS = 'UNKNOWN')
123 READ(15, *, END = 456) NUM
 WRITE(19, *) NUM
 GOTO 123
456 READ(17, *, END = 789) NUM
 WRITE(19, *) NUM
 GOTO 456
789 STOP
 END

8.4.5 Closing Files

After using a file in our program, that file must be closed. The operating system of the

computer we are using normally closes all the files that are open at the end of the

program execution. But in some cases, we may need to read the data in the file more

than one time. This can be done by closing the file after we finish reading from it and

then re-opening the file to read the same data again. We may also need to read from

files that were created by our program. This is achieved by closing the file as an output

file then re-opening it as an input file. The CLOSE statement looks as follows:

 CLOSE(UNIT)

where unit is the same value that is used in the open statement. You can only close files

that are already open.

8.4.6 Rewinding Files

After reading from the file the reading head moves forward towards the end of the file.

In certain situations, we may need to restart reading from the beginning of the file which

is done by closing the file then re-opening it again. Another method of doing the same

thing is through the REWIND statement:

 REWIND(UNIT)

where unit is the same value that is used in the open statement. You can rewind files

that are open for reading only.

8.5 Exercises

8.5.1 Exercises on Output Design

1. What will be printed by each of the following programs?

1. REAL X
 X = 123.8367
 PRINT 10, X, X, X
10 FORMAT(' ', F7.2, 2X, F6.2, F9.5)
 END

ninth Exercises 160

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

2. INTEGER J, K, N
 K = 123
 J = 456

 N = 789
 PRINT 10, K
 PRINT 11, J
 PRINT 12, N
10 FORMAT(' ', I3)
11 FORMAT('+', 3X, I3)
12 FORMAT('+', 6X, I3)
 END

3. REAL X1, X2
 INTEGER N1, N2
 READ*, X1, X2
 READ*, N1, N2
 PRINT 10, X1, X2
 PRINT 11, N1, N2
 PRINT 12, X1/X2
10 FORMAT('1',F5.2, 2X, F3.1)
11 FORMAT('0', I3, 2X, I2)
12 FORMAT('+', 12X, F6.2)
 END

Assume the input for the above program is:
81.6 9.2

-125 48

4. PRINT 20, -35, 0.0, 12 * 10.0, 125 / 5
20 FORMAT(1X, I3, „+‟, F3.1, „IS NOT EQUAL‟, F6.1,'-',I2)
 END

5. LOGICAL FLAG, P, Q
 READ*, P, Q
 FLAG = .NOT. P .AND. .NOT. Q
 PRINT 33, P, 'AND', Q
 PRINT 44, P .OR. Q, FLAG
33 FORMAT(' ', L2, 2X, A, L3)
44 FORMAT('-', L1, 2X, L1)
 END

Assume the input for the above program is:
T F

6. REAL X, Y
 INTEGER N
 X = 25.0

 Y = -35.0
 N = -35

 PRINT 40, X, SQRT(X)
 PRINT 50, Y, ABS(Y)
 PRINT 60, N, ABS(N)
40 FORMAT(' ', 'X=', 2X, F4.1, 2X, 'SQUARE ROOT = ', F4.1)
50 FORMAT(' ', 'Y=', 2X, F5.1, 2X, 'ABSOLUTE VALUE = ',F5.1)
60 FORMAT(' ', 'N=', 2X, I3, 2X, 'ABSOLUTE VALUE = ', I2)
 END

7. CHARACTER*6 CITY
 CITY = 'RIYADH'
 PRINT 1, 'THE CAPITAL IS', 2X, CITY
1 FORMAT(' ', A, 2X, A4)
 END

ninth Exercises 161

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

8. INTEGER ARR(5), K
 READ*, (ARR(K), K = 1, 5)
 DO 70 K = 1, 5
 PRINT 10, ARR(K)
70 CONTINUE
10 FORMAT(' ', I4)
 END

Assume the input for the above program is:
10 20 30 40 50

9. INTEGER ARR(5), K
 READ*, (ARR(K), K = 1, 5)
 PRINT 10, (ARR(K), K = 1, 5)
10 FORMAT(' ', 5I2)
 END

Assume the input for the program is:
10 20 30 40 50

10. INTEGER ARR(5), K
 READ*, (ARR(K), K = 1, 5)
 PRINT 10, (ARR(K), K = 1, 5)
10 FORMAT(' ', 5(I2,2X))
 END

Assume the input for the program is:
10 20 30 40 50

11. REAL MAT(2,3), I, J
 READ*,((MAT(I, J), I=1,2),J=1,3)
 DO 10 I= 1, 2
 PRINT 55, (MAT(I, J), J=1,3)
10 CONTINUE
55 FORMAT(' ', 3(F4.1, 2X))
 END

Assume the input for the program is:
10 20 30 40 50 60

12. REAL A(30), B(30), DOT, Z
 INTEGER K, N
 READ*, N, (A(K), B(K), K=1, N)
 Z = DOT(N, A, B)
 PRINT 10, Z
10 FORMAT('1', 'DOT PRODUCT = ', F5.1)
 END
 REAL FUNCTION DOT(M, X, Y)
 INTEGER M, I
 REAL X(M),Y(M), SUM
 SUM = 0.0
 DO 123 I = 1, M
 SUM = SUM + X(I)* Y(I)
123 CONTINUE
 DOT = SUM
 RETURN
 END

Assume the input for the program is:
4 1 2 3 4 5 6 7 8

ninth Exercises 162

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

13. INTEGER N1, N2
 REAL S1, S2
 READ*, N1, N2
 READ*, S1
 READ*, S2
 READ*, N1
1 FORMAT('0', I4, '+', I2, 2X, '=', I4)
2 FORMAT(' ', A, 3X, F5.2)
3 FORMAT('+', 7X, F10.2)
 PRINT 1, N1, N2, N1+N2
 PRINT 2, 'S1', S1
 PRINT 3, S2
 END

Assume the input for the program is:
37

101 4113 25.0
-30.459 210.0

427.5 48
23

2. Indicate the validity of the following statements:

1. The FORMAT statement can be placed anywhere between the declaration

statements and the END statement of a FORTRAN77 program.

2. Two or more PRINT statements can refer to the same format statement. For

example, if X and Y are real variables then the following program segment:

 PRINT 5, X
 PRINT 5, Y
5 FORMAT(4X, F5.2)

is correct.

3. Complete the following programs in order to get the required outputs:

1. REAL X

 X = 5.98
 PRINT 1, X
 PRINT 2, X
1 FORMAT(__________________________)
2 FORMAT(__________________________)
 END

The required output is:

....+....1....+....2....+....3....+....4.

 X=5.980 X=6.0

2. INTEGER B
 REAL A, C
 A = 3.1
 B = 12.5

 C = 127.66
 PRINT 1520, A, B, C
1520 FORMAT(_____________________________)
 END

The required output is:

....+....1....+....2....+....3....+....4.

 3.10 12 127.7

ninth Exercises 163

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

3. REAL A,
 INTEGER J
 A = -5.62705
 J = 23
 PRINT 5, A, J
5 FORMAT(________________________)
 END

The required output is:

....+....1....+....2....+....3....+....4.
 -5.63 23

4. INTEGER Z
 REAL X, Y
 X = 5.00

 Y = 59.996

 Z = 3125
 PRINT 5, X, Y, Z
5 FORMAT(________________________________)
 END

The required output is:

....+....1....+....2....+....3....+....4.
X= 5.00 Y= 60.00 Z= ***

5. PRINT 1, 'FORTRAN'
 PRINT 2, 'I LIKE'
1 FORMAT(_____________________________)
2 FORMAT(_____________________________)
 END

THE REQUIRED OUTPUT IS:

....+....1....+....2....+....3....+....4.

 I LIKE FORTRAN

6. INTEGER Y
 REAL X
 X = -20.2451
 Y = 25
 PRINT 6, X, 'AND', Y
6 FORMAT(____________________________)
 END

The required output is:

....+....1....+....2....+....3....+....4.
 -20.25 AND 25

4. Write a program segment to print the heading "FORTRAN-77--LANGUAGE"

centered at the top of a new page. assume the output line contains 80 characters.

5. Write a program that reads any real number, separates the integer and real parts of the

number and prints it in the format shown below. For example, if the input is as

follows:
123.45

your formatted output should be as follows:

....+....1....+....2....+....3....+....4.

123.450=123+0.450

6. Consider the following program

ninth Exercises 164

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

 INTEGER X
 REAL Y
 X = 469
 Y = 17.38
 PRINT2, X, Y
2 FORMAT(__________________)
 END

Given the following format statements below:

a. 2 FORMAT(5X, I3, 2X, F4.1)

b. 2 FORMAT(6X, I3, 2X, F4.1)

c. 2 FORMAT(1X, I8, F6.1)

Which of the above FORMAT statements can be used in place of the FORMAT

statement in the program to print the output as follows?

....+....1....+....2....+....3....+....4.
 469 17.4

7. The output of the program given below is as follows

....+....1....+....2....+....3....+....4.

 TEST = -3.527 M=***

M = 2531 TEST = -3.5270
 M = -3.53 M=2531

Place the proper FORMAT statement numbers with the PRINT statements such that

the output is as given above.

 REAL TEST
 INTEGER M

 TEST = -3.527
 M = 2531
 PRINT___A___, TEST, M
 PRINT___B___, M, TEST
 PRINT___C___, TEST, M
10 FORMAT(2X, 'TEST = ',F6.3, 2X, 'M=', I3)
20 FORMAT(2X, 'M = ',F8.2, 2X, 'M=', I4)
30 FORMAT('0','M =',I5, 2X, 'TEST = ', F7.4)
 END

8.5.2 Exercises on FILES

1. Consider the following statement:

 READ(8, *, END = 10) A

Which of the following statements is (are) correct about the above statement?

1. The value of A will be read from the area after Assume the input for the program

is:.

2. At the end of the file, this read statement will transfer control to statement labeled

10.

3. The value of A will be read from the file linked to unit 8.

2. Which of the following statements is/are FALSE about files:

1. The statement that assigns unit number 9 to the input file "DATA" is:

ninth Exercises 165

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

OPEN (UNIT = 9, FILE = 'DATA', STATUS = 'OLD')

2. The OPEN statement for a data file must precede any READ or WRITE

statements that uses that file.

3. A statement that reads two numbers from a file may look like:

READ (9, *, END = 31) K, L

4. The OPEN statement for a file should be executed only once in the program.

5. A statement that writes two numbers into a file may look like:

PRINT(9, *) K, L

6. A file is a collection of data records.

7. A file is usually used only once.

8. A file can be opened at the same time with two different unit numbers.

9. Two files with the same unit number can not be opened at the same time.

10. We store data in files when we do not need them any more.

3. What will be printed by the following programs?

1. INTEGER M, K
 OPEN (UNIT = 10, FILE = 'INPUT DATA', STATUS = 'OLD')
 READ (10, *, END = 10) (M, K = 1,100)
10 PRINT*, M, K-1
 END

Assume that the file 'INPUT DATA' contains the following:
1 2 3

4 5

6 7 8 9

6

2. INTEGER J, K
 OPEN (UNIT = 3, FILE = 'FF1', STATUS = 'OLD')
 DO 50 J=1,100
 READ (3,*,END = 60) K
50 CONTINUE
60 PRINT*,'THE VALUES ARE:'
 PRINT*,K,J
 END

The contents of the file 'FF1' are:
20 50 67 45 18 -2 -20

88 66 77 105 55 300

3. INTEGER M
 OPEN (UNIT = 10, FILE = 'INPUT',STATUS = 'OLD')
 READ (10,*) M
20 IF (M.NE.-1) THEN
 PRINT*,M
 READ(10, *, END = 30) M
 GOTO 20
 ENDIF
 PRINT*, 'DONE'
30 PRINT*, 'FINISHED'
 END

Assume that the file 'INPUT' contains the following :
7

ninth Exercises 166

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

3

9
4
-1

4. INTEGER N, K
 OPEN (UNIT = 12, FILE = 'INFILE', STATUS = 'OLD')
 READ*,N
 DO 10 K=1,N
 PRINT*, N
 READ(12,*,END = 15) N
10 CONTINUE
 PRINT*,N
15 CONTINUE
 END

Assume the input for the program is:
4

Given that the file 'INFILE' contains the following data
2

3

5 INTEGER A, B
 OPEN (UNIT = 10, FILE = 'INPUT DATA', STATUS = 'OLD')
 OPEN (UNIT = 11, FILE = 'OUTPUT DATA', STATUS = 'NEW')
 READ*,A,B
 READ(10,*) A,B,A
 WRITE(11,*) A, B
 READ(10, *, END = 10) A, B
10 WRITE(11,*) A, B
 END

Assume the input for the program is:
10 11

Assume that the file 'INPUT DATA' contains the following data
4 5

6 7

8

What will be written in the file 'OUTPUT DATA' file ?

6. INTEGER S, T, U
 OPEN (UNIT = 10, FILE = 'INPUT',STATUS = 'OLD')
10 READ(10, *, END = 30) S, T
 U = S
 T = U

 U = S
 IF (S.NE.T) THEN
 U = 1
 ELSE
 U = 0
 ENDIF
 GOTO 10
30 PRINT*, U, S, T
 END

Assume the file 'INPUT' contains the following data:
3

4

5
6
7

ninth Exercises 167

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

8

7. INTEGER X(6), M, K
 OPEN (UNIT = 10, FILE = 'INPUT1', STATUS = 'OLD')
 OPEN (UNIT = 11, FILE = 'INPUT2', STATUS = 'OLD')
 M = 0
10 M = M + 1
 READ(10,*) X(M)
 IF (X(M).GT.0) GOTO 10
20 M = M + 1
 READ(11,*) X(M)
 IF (X(M).GT.0) GOTO 20
 PRINT 1, (X(K),K=1,M)
1 FORMAT(' ',I2,I2,I2,I2,I2,I2)
 END

Assume you have two files 'INPUT1' and 'INPUT2' with the following data:

INPUT1 INPUT2

3 6

8 0

0 7

5 0

8. INTEGER N, K
 OPEN(UNIT=22, FILE = 'INPUT', STATUS = 'OLD')
33 READ (22,*) N
 IF (N.EQ.0) GOTO 44
 PRINT*, ('*', K=1,N)
 GOTO 33
44 PRINT*, 'HISTOGRAM'
 END

Given that the file 'INPUT' contains the following data
5

2
4
0

4. A set of three real numbers are read from the file TEST and the number associated to

the file is 10. The output is then written to a new file called REST and the number

associated to the file is 12. Write a FORTRAN 77 program to do the above

operations.

5. Write a FORTRAN 77 program to copy an old file "TEST1" to a new "TEST2". It is

assumed that each line of "TEST1" contains a student ID and his garde out of 100.

The number of data lines in the old file is not known.

6. Write a FORTRAN 77 program which will read values from a data file, the file name

is: INPUT and its type is DATA.

1. Open the INPUT file.

2. Open a new output file called: ODD DATA.

3. open a new output file called: EVEN DATA. It is not known exactly how

many data there is in the INPUT file.

4. Use the read (... END =..) to read the values from the file one by one and

5. If the value is odd, write it in the file: ODD DATA.

6. If the value is even, write it in the file: EVEN DATA.

ninth Solutions to Exercises 168

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

7. A file called INPUT is assumed to contain an unknown number of lines, however, we

know that every line contains exactly two numbers. Write a program that reads each

line from file INPUT and prints the smaller of the two numbers in a file called

SMALL and the larger in a file called BIG.

8. The following incomplete program was written to compare two files 'INFOR1' and

'INFOR2'. If the data in the files is the same then the program prints the message

'SAME FILES'. Otherwise the program prints 'DIFFERENT FILES'. Each line in

both files contain two integer numbers followed by one logical value. Assume both

files have the same number of records. Complete the program:
 INTEGER X1, X2, X3, X4
 LOGICAL __(1)__, __(2)__,FLAG
 OPEN (UNIT = 1, FILE = 'INFOR1', STATUS = 'OLD')
 _________________(3)_________________

 FLAG = __(4)__
10 READ (1,*,END = __(5)__) X1, X2, VAL1
 READ (2,*) X3, X4, VAL2
 IF (X1.EQ.X3 .AND. ________(6)__________) THEN
 GOTO 10
 ELSE
 FLAG = .FALSE.
 ENDIF
20 IF (FLAG) THEN
 PRINT*,____(7)____
 ELSE
 PRINT*,____(8)____
 ENDIF
 END

8.6 Solutions to Exercises

8.6.1 Solutions to Exercises on Output Design

Ans 1.

1.

....+....1....+....2....+....3....+....4.

 123.84 123.84123.83670

2.

....+....1....+....2....+....3....+....4.

123456789

3.

(new page)

....+....1....+....2....+....3....+....4.

81.60 9.2

*** 48 8.87

4.

....+....1....+....2....+....3....+....4.

 -35+0.0IS NOT EQUAL 120.0-25

ninth Solutions to Exercises 169

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

5.

....+....1....+....2....+....3....+....4.

 T AND F

T F

6.

....+....1....+....2....+....3....+....4.

X= 25.0 SQUARE ROOT = 5.0
Y= -35.0 ABSOLUTE VALUE = 35.0

N= -35 ABSOLUTE VALUE = 35

7.

....+....1....+....2....+....3....+....4.

THE CAPITAL IS RIYA

8.

....+....1....+....2....+....3....+....4.

 10
 20
 30

 40
 50

9.

....+....1....+....2....+....3....+....4.

1020304050

10.

....+....1....+....2....+....3....+....4.

10 20 30 40 50

11.

....+....1....+....2....+....3....+....4.

10.0 30.0 50.0
20.0 40.0 60.0

12.

(new page)

....+....1....+....2....+....3....+....4.

DOT PRODUCT = 100.0

13.

....+....1....+....2....+....3....+....4.

23+** = 124

S1 ***** 427.50

ninth Solutions to Exercises 170

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Ans 2.

1. VALID

2. VALID

Ans 3.

1.

1 FORMAT (5X, 'X=',F5.3)
2 FORMAT ('+', 14X, 'X=', F3.1)

2.

1520 FORMAT (3X, F4.2, 2X, I2, 1X, F5.1)

3.

5 FORMAT (' ', 9X, F5.2, 5X, I2)

4.

5 FORMAT (3X, 'X= ', F4.2,1X, 'Y= ',2X,F5.2, 2X,'Z= ', I3)

5

1 FORMAT (' ', 8X, A)
2 FORMAT ('+', 1X, A)

6.

6 FORMAT (' ', 4X, F6.2, 3X, A, 3X, I2)

Ans 4.

 PRINT 10
10 FORMAT('1', 30X, 'FORTRAN-77--LANGUAGE')

Ans 5.

 REAL X, RPART
 INTEGER IPART
 READ*, X
 IPART = X
 RPART = X - IPART
 PRINT 5, X, IPART, RPART
5 FORMAT (' ', F7.3, '=', I3, '+', F5.3)
 END

Ans 6.

b or c

Ans 7.

(a) 10

(b) 30

(c) 20

8.6.2 Solutions to Exercises on Files

Ans 1.

 2 3

ninth Solutions to Exercises 171

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Ans 2.

 4 5 7 8 10

Ans 3.

 6 10

 THE VALUES ARE:

 88 3

 7

 3

 9

 4

 DONE

 FINISHED

 4

 2

 3

 6 5

 8 5

 0 7 7

 3 8 0 6 0

 **

 HISTOGRAM

Ans 4.

 REAL RN1, RN2, RN3
 OPEN(UNIT = 10, FILE = 'TEST', STATUS = 'OLD')
 OPEN(UNIT = 12, FILE = 'REST', STATUS = 'UNKNOWN')
 READ(10, *) RN1, RN2, RN3
 WRITE(12, *) RN1, RN2, RN3
 END

Ans 5.

 INTEGER ID, GRD
 OPEN(UNIT = 1, FILE = 'TEST1', STATUS = 'OLD')
 OPEN(UNIT = 2, FILE = 'TEST2', STATUS = 'UNKNOWN')
5 READ(1, *, END = 10) ID, GRD
 WRITE(2, *) ID, GRD
 GOTO 5
10 PRINT*, 'DONE'
 END

ninth Solutions to Exercises 172

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Ans 6.

 INTEGER NUM
 OPEN(UNIT = 20, FILE = 'INPUT DATA', STATUS = 'OLD')
 OPEN(UNIT = 30, FILE = 'ODD DATA', STATUS = 'UNKNOWN')
 OPEN(UNIT = 40, FILE = 'EVEN DATA', STATUS = 'UNKNOWN')
100 READ(20, *, END = 200) NUM
 IF (MOD(NUM, 2) .EQ. 1) THEN
 WRITE(30, *) NUM
 ELSE
 WRITE(40, *) NUM
 ENDIF
 GOTO 100
200 PRINT*, 'DONE'
 END

Ans 7.

 INTEGER N1, N2
 OPEN(UNIT = 11, FILE = 'INPUT', STATUS = 'OLD')
 OPEN(UNIT = 12, FILE = 'SMALL', STATUS = 'UNKNOWN')
 OPEN(UNIT = 13, FILE = 'BIG', STATUS = 'UNKNOWN')
20 READ(11, *, END = 25) N1, N2
 IF (N1 .LT. N2) THEN
 WRITE(12, *) N1
 WRITE(13, *) N2
 ELSE
 WRITE(12, *) N2
 WRITE(13, *) N1
 ENDIF
 GOTO 20
25 PRINT*, 'DONE'
 END

Ans 8.

1. VAL1

2. VAL2

3. OPEN(UNIT = 2, FILE = 'INFOR2', STATUS = 'OLD')

4. TRUE.

5. 20

6. X2 .EQ. X4 .AND. VAL1 .EQV. VAL2

7. 'SAME FILES'

8. 'DIFFERENT FILES'

173

