
ninth Sorting 174

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

9 APPLICATION

DEVELOPMENT: SORT &

SEARCH

In this chapter, we introduce a number of applications developed in FORTRAN. The

methodology we follow to develop these applications will be shown as we consider

each application in detail.

Sorting and Searching are two applications discussed in this chapter. When sorting,

we sort (order) elements of a list in either an increasing or a decreasing order.

Searching, on the other hand, is the process of finding an element within a list.

9.1 Sorting

Sorting is the process of ordering the elements of any list either in increasing (or

ascending) or decreasing (or descending) order. Here, we discuss a method for sorting a

list of elements (values) into order, according to their arithmetic values. It is also

possible to sort elements that have character values since each character has a certain

arithmetic value for its representation. This will be discussed in details in Chapter 10.

Sorting in increasing order means that the smallest element in value should be first in

the list. Then comes the next smallest element, followed by the next smallest and so on.

Figure 1 shows three lists: unsorted (unordered) list, the list sorted in increasing order,

and the same list sorted in decreasing order The exact reverse happens in sorting a list in

decreasing order. In the literature, one can find a number of well established techniques

for achieving this goal (sorting). Techniques such as insertion sort, bubble sort, quick

sort, selection sort, etc. differ in their complexity and speed. In the following section,

we introduce a simple sorting technique and its FORTRAN implementation.

Unsorted Increasing order Decreasing order

73 18 89

65 40 73

52 52 65

18 65 65

89 65 52

65 73 40

40 89 18

Figure 1: Unsorted and sorted lists

ninth Sorting 175

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

9.1.1 A Simple Sorting Technique

The idea of this sorting technique is to select the minimum (or the maximum depending

on whether the sorting is in increasing or decreasing order) value within the list and

assign it to be the first element of the list. Next, we take the remaining elements and

select the minimum among them and assign it to be the second element. This process is

repeated until the end of the list is reached. To select the minimum within a list of

elements, one has to compare all the elements and keep the minimum value updated.

In the following subroutine, this sorting technique is implemented. Two loops are

used in this procedure. The first moves through the elements of the array one after the

other and stops at the element before the last element in the array. For each of these

elements comparisons are conducted between that element and the rest of the array. So,

the second loop moves over the rest of the array elements starting at the element next to

the one being considered in the first loop. For example, if the first loop is at element

number 3, the second loop would move over the elements from 4 to the last. Within the

second loop, element 3 is compared with all the remaining elements starting from the

fourth element to the last to make sure that element 3 is less than all of them. If element

5, for example, was found to be less than element 3, we swap the two elements. As we

move ahead with the first loop, we are sure that the element we leave is the smallest

among the elements that follow it. The FORTRAN subroutine that implements this

sorting technique is as follows:

 SUBROUTINE SORT (A, N)
 INTEGER N, A(N), TEMP, K, L
 DO 11 K = 1, N - 1
 DO 22 L = K+1, N
 IF (A(K).GT.A(L)) THEN
 TEMP = A(K)
 A(K) = A(L)

 A(L) = TEMP
 ENDIF
22 CONTINUE
11 CONTINUE
 RETURN
 END

Let us now run the above subroutine when the value of N is 5 and the array A consists

of the following :

3 -2 4 9 0

After the first pass (the first iteration of the K-loop), the list becomes:

-2 3 4 9 0

After the second iteration of the K-loop, the list becomes:

-2 0 4 9 3

Notice that the 0, the smallest within the 4 remaining elements is the one swapped to the

second position. After the third iteration of the K-loop, the list becomes:

-2 0 3 9 4

After the fourth iteration of the K-loop, the list becomes:

ninth An Application: Maintaining student grades 176

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

-2 0 3 4 9

9.2 Searching

As part of any system, information or data might need to be stored in some kind of data

structure. One example is one-dimensional arrays. Assume that information about

students in some university is stored. Assume again that the IDs of students registered in

the current semester are stored in an array STUID. Suppose that an instructor asks the

registrar to check whether a student, who has an 882345 as his ID, is registered this

semester or not. For the registrar to conduct this check, he has to search within the array

STUID for the student who has the ID 882345.

A number of search techniques are well known in computer science. These

techniques locate a value within a set of values stored in some data structure. A simple

searching technique, namely sequential search, is introduced in the next section.

9.2.1 Sequential Search

Sequential search starts at the beginning of a list (array) and looks at each element

sequentially to see if it is the one being searched. This process continues until either the

element is found or the list ends, that is all the elements in the list have been checked.

The FORTRAN function that implements this algorithm follows. The function

SEARCH searches for the element K in the array A of size N. If the element is found,

the index of the element is returned. Otherwise, a zero value is returned.

 INTEGER FUNCTION SEARCH(A, N, K)
 INTEGER N, A(N), K, J
 LOGICAL FOUND
 SEARCH = 0
 J = 1

 FOUND = .FALSE.
10 IF (.NOT. FOUND .AND. J .LE. N) THEN
 IF (A(J) .EQ. K) THEN
 FOUND = .TRUE.

 SEARCH = J
 ELSE
 J = J + 1
 ENDIF
 GOTO 10
 ENDIF
 RETURN
 END

When the element K is found, the function returns with the position of K. Otherwise,

after all the elements have been checked, the function returns with the value zero.

9.3 An Application: Maintaining student grades

Question: Write a program that reads IDs of students together with their grades in some

exam. The number of students is read first. The input is given such that each line

contains the ID of the student and his grade. Assume the following input :
7

886767 94

878787 35
898982 82
867878 63

ninth An Application: Maintaining student grades 177

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

867676 55

898777 75
886788 22

After reading the IDs and the grades, the program must allow us to interactively do the

following:

1. SORT according to ID

2. SORT according to GRADES

3. CHANGE a GRADE

4. EXIT the program

Solution:

We will first write a subroutine MENU that gives us the various options listed in the

problem and also reads an option. The subroutine MENU is as follows :

 SUBROUTINE MENU (OPTION)
 INTEGER OPTION
 PRINT*, 'GRADES MAINTENANCE SYSTEM '
 PRINT*, ' 0. EXIT THIS PROGRAM'
 PRINT*, ' 1. SORT ACCORDING TO ID '
 PRINT*, ' 2. SORT ACCORDING TO GRADES '
 PRINT*, ' 3. CHANGE A GRADE '
 PRINT*, ' ENTER YOUR CHOICE :'
 READ*, OPTION
 RETURN
 END

We will now rewrite the subroutine SORT since we need to sort one array and also

make the corresponding changes to another array. For example, if we are sorting the

array of grades, the swapping of elements in this array must be reflected in the array of

IDs as well. Otherwise, the grade of one student would correspond to the ID of another.

After sorting, we will print the two arrays in the subroutine. The new subroutine

TSORT is as follows:

 SUBROUTINE TSORT (A, B, N)
 INTEGER N, A(N), B(N), TEMP, J, K, L
 DO 11 K = 1, N - 1
 DO 22 L = K+1, N
 IF (A(K).GT.A(L)) THEN
 TEMP = A(K)

 A(K) = A(L)
 A(L) = TEMP
 TEMP = B(K)

 B(K) = B(L)
 B(L) = TEMP
 ENDIF
22 CONTINUE
11 CONTINUE
 PRINT*, 'SORTED DATA : '
 DO 33 J = 1, N
 PRINT*, A(J), B(J)
33 CONTINUE
 RETURN
 END

Note that we are sorting array A but making all the corresponding changes in array B.

To this subroutine, we can pass the array of grades as array A and the array of IDs as

array B. The subroutine then returns the array of grades sorted but at the same time

ninth Exercises 178

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

makes the corresponding changes to the array of IDs. If to this subroutine, we pass the

array of IDs as array A and the array of grades as array B, the subroutine returns the

array of IDs sorted but at the same time makes the corresponding changes to the array of

grades.

To change a grade, we are given the ID of the student. We need to search the array of

IDs for the given ID. We can use the function SEARCH we developed in Section 9.2.

We can pass the array of IDs to the dummy array A and the ID to be searched to the

dummy argument K. Note that the function SEARCH returns a zero if the ID being

searched is not found.

Using the subroutines MENU and TSORT, and the function SEARCH, we develop

the main program as follows :

 INTEGER GRADES(20), ID(20)
 INTEGER SEARCH, SID, NGRADE, OPTION, K, N
 PRINT*, 'ENTER NUMBER OF STUDENTS'
 READ*, N
 DO 10 K = 1, N
 PRINT*, 'ENTER ID AND GRADE OF STUDENT ', K
 READ*, ID(K), GRADES(K)
10 CONTINUE
 CALL MENU (OPTION)
15 IF (OPTION .NE. 0) THEN
 IF (OPTION .EQ. 1) THEN
 CALL TSORT(ID, GRADES, N)
 ELSEIF (OPTION .EQ. 2) THEN
 CALL TSORT(GRADES, ID, N)
 ELSEIF (OPTION .EQ. 3) THEN
 PRINT*, 'ENTER ID \& THE NEW GRADE'
 READ*, SID, NGRADE
 K = SEARCH(ID, N, SID)
 IF (K.NE.0) THEN
 GRADES(K) = NGRADE
 ELSE
 PRINT*, 'ID : ' ,SID, ' NOT FOUND'
 ENDIF
 ELSE
 PRINT*, 'INPUT ERROR '
 ENDIF
 CALL MENU (OPTION)
 GOTO 15
 ENDIF
 END

The main program first reads the two arrays ID and GRADES each of size N. Then it

displays the menu and reads an option from the screen into the variable OPTION using

subroutine MENU. If the input option is 1, the subroutine TSORT is called in order to

sort IDs. If the input option is 2, the subroutine TSORT is called in order to sort the

grades. If the input option is 3, the ID to be searched (SID) and the new grade

(NGRADE) are read, and the function SEARCH is invoked. If the ID is found, the

corresponding grade in array GRADES is changed. Otherwise, a message indicating

that the SID is not found is printed. The main program runs until option 4 is chosen.

9.4 Exercises

1. Modify the application given in Section 9.3 as follows:

ninth Exercises 179

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

a. Add an option that will list the grade of a student given his ID.

b. Given a grade, list all IDs who scored more than the given grade.

c. Add an option to find the average of all the grades.

d. Add an option to find the maximum grade and the corresponding ID.

e. Add an option to find the minimum grade and the corresponding ID.

f. Add an option to list the IDs of all students above average.

2. The seating arrangement of a flight is stored in a data file FLIGHT containing six

lines. each line contains three integers. a value of 1 represents a reserved seat, and a

value of 0 represents an empty seat. the contents of flight are:
1 0 1

0 1 1

1 0 0
1 1 1

0 0 1
0 0 0

write an interactive program which has a menu with the following options:

0. Exit

1. Show number of empty seats

2. Show Empty seats

3. Reserve a seat

4. Cancel a seat

The program first reads from the data file FLIGHT and stores the data in a two-

dimensional integer array seats of size 6  3 row-wise. then:

a. If option 1 is chosen, the main program passes the array seats to an integer function

NEMPTY which returns the number of empty seats. Then the main program prints

this number.

b. If option 2 is chosen, the main program passes the array seats to a subroutine

ESEATS which returns the number of empty seats and the positions of all empty

seats in a two-dimensional integer array EMPTY of size 18  2. Then, the main

program prints the array EMPTY row-wise.

c. If option 3 is chosen, the user is prompted to enter the row number and the column

number of the seat to be reserved. the main program then passes these two integers

together with the array SEATS to a logical function RESERV which reserves a seat

if it is empty and returns the value .true. to the main program. If the requested seat is

already reserved or if the row or column number is out of range the function returns

the value .false. to the main program. The main program then prints the message

SEAT RESERVED or SEAT NOT AVAILABLE respectively.

d. If option 4 is chosen, the user is prompted to enter the row number and the column

number of the seat to be canceled. the main program then passes these two integers

together with the array SEATS to a logical function CANCEL which cancels a seat if

it is reserved and returns the value .true. to the main program. if the requested seat is

already empty or if the row or column number is out of range the function returns the

tenth Solutions to Exercises 180

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

value .false. to the main program. The main program then prints the message SEAT

CANCELED or WRONG CANCELLATION respectively.

e. If option 0 is chosen, the main program stops immediately if no changes were made

to the array seats. otherwise, the main program closes the data file flight and then

opens it to write into the data file the new seating arrangement stored in the array

seats before stopping.

9.5 Solutions to Exercises

1. For each of the following subprograms, appropriate changes must be made to the

subroutine MENU on page 190 and the main program on page 192.

a.

 SUBROUTINE LISTGR(ID, GRADES, N)
 INTEGER N, GRADES(N), ID(N), SID, SEARCH, K
 PRINT*, 'ENTER STUDENT ID'
 READ*, SID
C USING SEARCH FUNCTION ON PAGE 189
 K = SEARCH(ID, N, SID)
 IF (K .NE. 0)THEN
 PRINT*,'GRADE OF ID #', SID,' IS ', GRADE(K)
 ELSE
 PRINT*,'ID #', SID,' DOES NOT EXIST'
 ENDIF
 RETURN
 END

b.

 SUBROUTINE LISALL(ID, GRADES, N)
 INTEGER N, GRADES(N), ID(N), SGR, SEARCH, K
 PRINT*, 'ENTER STUDENT GRADE'
 READ*, SGR
 PRINT*,'ID OF STUDENTS WITH GRADE = ', SGR
 DO 10 K = 1, N
 IF(GRADE(K) .GE. SGR) PRINT*, ID(K)
10 CONTINUE
 RETURN
 END

c.

 REAL FUNCTION AVERAG(GRADES, N)
 INTEGER N, GRADES(N), K
 REAL SUM
 SUM = 0
 DO 10 K = 1, N
 SUM = SUM + GRADE(K)
10 CONTINUE
 AVERAG = SUM / N
 RETURN
 END

tenth Solutions to Exercises 181

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

d.

 SUBROUTINE LISMAX(ID, GRADES, N)
 INTEGER N, GRADES(N), ID(N), INDEX, MAXGRD, K
 INDEX = 1
 MAXGRD = GRADES(1)
 DO 10 K = 1, N
 IF(GRADES(K) .GT. MAXGRD) THEN
 MAXGRD = GRADES(K)
 INDEX = K
 ENDIF
10 CONTINUE
 PRINT*,'MAXIMUM GRADE = ', MAXGRD
 PRINT*,'ID OF STUDENT WITH MAXIMUM GRADE = ', ID(INDEX)
 RETURN
 END

e.

 SUBROUTINE LISMIN(ID, GRADES, N)
 INTEGER N, GRADES(N), ID(N), INDEX, MINGRD, K
 INDEX = 1
 MINGRD = GRADES(1)
 DO 10 K = 1, N
 IF(GRADES(K) .LT. MINGRD) THEN
 MINGRD = GRADES(K)
 INDEX = K
 ENDIF
10 CONTINUE
 PRINT*,'MINIMUM GRADE = ', MINGRD
 PRINT*,'ID OF STUDENT WITH MINIMUM GRADE = ', ID(INDEX)
 RETURN
 END

f.

 SUBROUTINE LISIDS(ID, GRADES, N)
 INTEGER N, GRADES(N), ID(N), K
 REAL AVERAG, AVG
C USING AVERAGE FUNCTION IN PART C
 AVG = AVERAG (GRADES, N)
 PRINT*, 'ID OF STUDENTS ABOVE AVERAGE'
 DO 10 K = 1, N
 IF(GRADE(K) .GT. AVG) PRINT*, ID(K)
10 CONTINUE
 RETURN
 END

tenth Solutions to Exercises 182

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

Ans 2.

 INTEGER SEATS(6,3), EMPTY(18,2), NEMPTY, OPTION,ROW,CLMN
 INTEGER J, K
 LOGICAL RESERV, CANCEL, CHANGE
 OPEN(UNIT=40, FILE = 'FLIGHT', STATUS = 'OLD')
 DO 10 J = 1, 6
 READ(40,*)(SEATS(J,K), K=1,3)
10 CONTINUE
 CHANGE = .FALSE.
 CALL MENU(OPTION)
15 IF(OPTION .NE. 0)THEN
 IF(OPTION .EQ. 1)THEN
 PRINT*,'THE NUMBER OF EMPTY SEATS = ', NEMPTY(SEATS)
 ELSEIF(OPTION .EQ. 2)THEN
 CALL ESEATS(SEATS, EMPTY, N)
 PRINT*,'EMPTY SEATS:'
 DO 20 J = 1, N
 PRINT*,(EMPTY(J,K), K = 1, 2)
20 CONTINUE
 ELSEIF(OPTION .EQ. 3)THEN
 PRINT*,'ENTER NEEDED SEATS ROW AND COLUMN NUMBER'
 READ*,ROW, CLMN
 IF(RESERV(SEATS, ROW, CLMN))THEN
 PRINT*,'SEAT RESERVED'
 CHANGE = .TRUE.
 ELSE
 PRINT*,'SEAT NOT AVAILABLE'
 ENDIF
 ELSEIF(OPTION .EQ. 4)THEN
 PRINT*,'ENTER ROW# AND COLUMN# OF THE SEAT TO CANCEL'
 READ*,ROW, CLMN
 IF(CANCEL(SEATS, ROW, CLMN))THEN
 PRINT*,'SEAT CANCELED'
 CHANGE = .TRUE.
 ELSE
 PRINT*,'WRONG CANCELLATION'
 ENDIF
 ELSE
 PRINT*,'WRONG OPTION'
 ENDIF
 CALL MENU(OPTION)
 GOTO 15
 ENDIF
 IF(CHANGE)THEN
 CLOSE(40)
 OPEN(UNIT=40, FILE = 'FLIGHT', STATUS = 'OLD')
 DO 25 J = 1, 6
 WRITE(40,*)(SEATS(J,K), K = 1, 3)
25 CONTINUE
 ENDIF
 END

tenth Solutions to Exercises 183

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

 SUBROUTINE MENU(OPTION)
 INTEGER OPTION
 PRINT*,'***** FLIGHT RESERVATION *****'
 PRINT*,'1. NUMBER OF EMPTY SEATS'
 PRINT*,'2. EMPTY SEATS '
 PRINT*,'3. RESERVE SEAT'
 PRINT*,'4. CANCEL SEAT'
 PRINT*,'5. EXIT'
 PRINT*,' ENTER YOUR OPTION:'
 READ*,OPTION
 RETURN
 END

 INTEGER FUNCTION NEMPTY(SEATS)
 INTEGER SEATS(6,3), J, K
 NEMPTY = 0
 DO 30 J = 1 , 6
 DO 35 K = 1 , 3
 IF(SEATS(J,K) .EQ. 0)THEN
 NEMPTY = NEMPTY + 1
 ENDIF
35 CONTINUE
30 CONTINUE
 RETURN
 END

 SUBROUTINE ESEATS(SEATS, EMPTY, N)
 INTEGER N, SEATS(6,3), EMPTY(18,2), J, K
 N = 1
 DO 40 J = 1, 6
 DO 45 K = 1, 3
 IF(SEATS(J,K) .EQ. 0)THEN
 EMPTY(N,1)= J EMPTY(N,2)= K

 N = N + 1
 ENDIF
45 CONTINUE
40 CONTINUE
 N = N - 1
 RETURN
 END

 LOGICAL FUNCTION RESERV(SEATS, ROW, CLMN)
 INTEGER SEATS(6,3), ROW, CLMN
 RESERV = .FALSE.
 IF(ROW .GE. 1 .AND. ROW .LE. 6)THEN
 IF(CLMN .GE. 1 .AND. CLMN .LE. 3)THEN
 IF(SEATS(ROW,CLMN) .EQ. 0)THEN
 SEATS(ROW,CLMN) = 1

 RESERV = .TRUE.
 ENDIF
 ENDIF
 ENDIF
 RETURN
 END

tenth Solutions to Exercises 184

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative

 LOGICAL FUNCTION CANCEL(SEATS, ROW, CLMN)

 INTEGER SEATS(6,3), ROW, CLMN
 CANCEL = .FALSE.
 IF(ROW .GE. 1 .AND. ROW .LE. 6)THEN
 IF(CLMN .GE. 1 .AND. CLMN .LE. 3)THEN
 IF(SEATS(ROW,CLMN) .EQ. 1)THEN
 SEATS(ROW,CLMN) = 0
 CANCEL = .TRUE.
 ENDIF
 ENDIF
 ENDIF
 RETURN
 END

185

