KHABEER (u23): An Object-Oriented Arabic
Expert System Shell

Mostafa M. Aref* and Husni A. AlI-Muhtaseb

Information and Computer Science Department
King Fahd University of Petroleum and Minerals
P.O. Box 1658, Dhahran 31261
Saudi Arabia

e-mail: aref(@ccse.kfupm.edu.sa
husni@ccse.kfupm.edu.sa

abai 8 4 slhaall Clnlul) jad s jigs 5 pall abai cUd ol Al o aaiad 3101 " ja" ki ey
Lan o3l pd ey LS AlalSie jlusdianl 45 g5 <A o aaing 5 2] alai 43 S elli g 3 5l
Geiad) " Axly ek skt o8 o A pal Aallly o) iy el s)) 86 Cum Ay ge
Aoa A ol s zleaiVl A geu s 48K Gl 5 JAT) sl (e Jail) A1Sa) Calaa

A8 yam e (BlEa 5 (Blea) A ye (Bl 1 3AEA) JaT () Hha (U] HUAKS ¢l Jeatuy
Anll sl Jb a0 Al Cas pumaal) cag il ddlia il g @l

3 Aaia (Al Ao Ciliaal Ciyjai (Says AL Ana il jud B MCana" 1] Gl g
A JS iy ey dalide (ailiad lal) oy Caiall 848 prall Ciland) aded 2 2a 0 Vg 20ee Gyl 53
3 jaal) CaliadU ciladlas Ciay jad (S) il g Al Jreand s o 330l 5 aaall 1 pailiadll oda (ha s
3ol jis dne csale) s due oo Jio CiliaY) e ae Jolaill J1sall (e a2l @llin Gxy) o) 5l
:Jie il il Aalall Ay e i< e il Lo A3l Jefi Aie Cada g Cilan 1S
Cliall-paead-285 dne-JSlad o dal-28 g Ciliell-dS-2a 5l g Ao -aa gl 5 de-(a-da

ABSTRACT

KHABEER (U=3) is an object-oriented Arabic expert system shell. KHABEER provides the basic
requirements of any expert system shell: production system, object-oriented and query language.
KHABEER is an Arabic tool, where all the syntax, commands and error messages are in Arabic.
KHABEER is written in C language to support the goals of high portability, low cost, and ease of
integration with external systems.

KHABEER, as a production system, has two methods to represent facts: ordered facts (is)
and non-ordered facts (z3«i). Rules (:=!s)are the primary knowledge representation scheme in
KHABEER. KHABEER uses agenda mechanism (=) for executing different rules. There are
seven different strategies («sl) for selection a rule to be fired.

KHABEER, as Object Oriented language, has 11 predefined classes and allows abstract and
concrete class definitions and multiple inheritance. Only available memory limits the number of
slots of an instance of a defined class in KHABEER. Various features of slots are supported by
KHABEER. These features include default values, cardinality, storage, access, inheritance
propagation and others. KHABEER allows the declaration of message-handlers for defined classes.
Four types of message-handler declarations are allowed. Each type has its certain purpose.
Manipulating instances of objects is supported through different functions in KHABEER. These
functions include creating instances, re-initializing existing instances, reading slots, setting slots,
deleting instances, instance query and other actions.

KHABEER, as a query language, provides six different types of queries. These queries, that
concern instances (<lue) of classes, are: iue-(e-da, ue-aayl, Gliall-JSaa)) dualds dne-J<36 and -gaesl-da
i),

KHABEER (u+3): An Object-Oriented Arabic Expert System Shell

1. INTRODUCTION

The past decade has seen expert systems progress from effort in research laboratories to products
built and deployed in industrial applications. Consequence to that, the number of tools for building
expert systems has increased significantly. Many of these tools are written in languages other than
LISP and executed on a variety of hardware platforms.

Expert systems tools are valuable because they provide rich software development
environments, and the knowledge representation and the inference engine are already built into
them [1-4]. KHABEER (Us3) is an Arabic CLIPS-based Expert System tool [5-8] where all the
commands and syntax are written in Arabic. CLIPS (C Language Integrated Production System) is
a C-based expert system tool developed by the Artificial Intelligence Section (now the software
Technology Branch) at NASA's Johnson Space Center [9,10].

KHABEER was developed using the conventional language C. KHABEER uses rules as its
primary knowledge representation approach and supports a rich pattern-matching language for
specifying rule conditions. The system has interface that supports pull-down menus. In this paper,
KHABEER as a production system is described in section 2 with the syntax and rules description.
Section 3 presents the object oriented features of KHABEER version 2.0. The query language of
the system 1is introduced in section 4. Section 5 presents several KHABEER examples and their
outputs. Section 6 presents implementation issues and the integration of KHABEER with other
programs. The conclusion and future work is given in section 7.

2. KHABEER AS A PRODUCTION SYSTEM

KHABEER may be considered as a production system [4], which provides pattern-directed control
of a problem-solving process. KHABEER consists of knowledge base, fact list, agenda, and cycle of
execution. The detail description of these components is as follows.

The Knowledge base contains a set of production rules (==!s). Each rule is a condition-action
pair. The condition part of the rule is a pattern that determines when that rule may be applied.
The action part defines the associated problem-solving step.

The Fact list (the working memory) (&sll) contains a description of the current state of the
problem. This description is a pattern that is matched against the condition part of the
production rule. When the condition part of the production rule is matched by the contents of
the working memory, the action part of that rule may be performed. The rule is said to be
enabled (activated). Facts are the basic form of data in KHABEER. Each Fact is constructed
of either several positional fields separated by spaces, or a word.

The Agenda (u-==<)is essentially a stack. Rules are pushed onto the stack when they are
activated. If the priority of the new rule is less than the priority of the rule currently on the

top of the stack, the new rule is pushed down the stack until all rules of higher priorities are
above it. Rules of equal or lower priorities remain below the new rule. The rules priorities
can be assigned by the programmer.

The Cycle of execution is the control structure of KHABEER. Once a knowledge base
(production rules) is built and the fact list is prepared, KHABEER is ready to execute rules.
The basic cycle of execution of KHABEER is as follows:

1- The knowledge base is examined to see if the conditions of any rule have been met.

2- All rules whose conditions, are currently met, are activated and placed on the agenda
based on the conflict resolution strategy.

3- The top rule on the agenda is selected, , and its actions are executed.

As a result of actions execution, new rules can be activated or deactivated. This cycle is
repeated until all rules that can be fired have done so or the rule limit is reached. The number of rule
firings allowed in a cycle may be set by the programmer.

2.1 KHABEER SYNTAX

KHABEER has a Lisp-like syntax as shown in Figure 1. It supports a rich pattern-matching
language for specifying rule conditions. The pattern-matching language operates on both single
fields (expressed as ¢ or ,=is?) and multifield (expressed as # or suie-uicf#) sequences composed of
strings, symbols and numbers. KHABEER pattern-matching operators range from a single operator
that will match any and every fact in the knowledge base to operators that only match facts that meet
specific constraints. Conditions can also be written such that a rule is activated only if a pattern
cannot be matched by any fact in the knowledge base. Thus, reasoning can be based on the absence
of information as well as its presence.

KHABEER also supports templates (z3«i) as a means of specifying rule conditions. Templates,
frame-like structures composed of named slots with values, support the specification of default
values and metaknowledge in the form of type information.

The condition side of KHABEER rules has an implicit logical AND between conditions
(wsk). KHABEER also supports the specification of explicit logical AND (5) and OR () conditions
for the condition-side of rules. If the conditions are specified as disjunctions (using an explicit OR
(4), the rule is a candidate to fire if any of the disjuncts are matched by facts.

Bacldllanl Bacli-caye) Maac @il Cay y2ill ddlial e glaa""
(1-—k) sac @l e JoW) il ¢
(2-cik) Gy e s sia
(3-<a,k) O 8 (o ik JS

=<
(1-d=3) sacldll e HAY) cailall ¢
(2-d=d) Jledl 3ac o (g ging ¢
((3-d+)

Figure 1. Syntax of 83=-—a e Construct

In addition, KHABEER provides procedural programming constructs (if .. then .. else)
(Yseelaee)d), while (W) on the action side of the rules. KHABEER provides debugging aids which
include commands that produce a trace of facts asserted in the knowledge base (e~),
rules placed on the agenda (x=!s# <)), and rules that fire (is<d). Break points (is-c=) can be
specified contingent on specific rules firing. A number of commands are available for displaying
entities in the knowledge base such as:

(Blas) displays the facts,

(==18) displays the rules in the knowledge base,
(axa) displays the rules in the agenda,
(@

b)) displays a list of facts that match each condition of a specified rule.

The (J~3) command can be executed with a positive integer that specifies the number of rules
to be fired, (1 J=&) results in single-step execution. KHABEER provides seven conflict resolution
strategies to put the activated rules of equal priority (&45)). These strategies are as follows:

«

G sl (depth): Newly activated rules are placed above all rules of the same priority.
b sl (breadth): Newly activated rules are placed below all rules of the same priority.

bt @l (simplicity): Newly activated rules are placed above all activations of rules with equal
or higher specificity (uas=3i). The specificity of a rule is determined by the number of
comparisons that must be performed on the first side of the rule.

@S A skl (complexity): Newly activated rules are placed above all activations of rules with
equal or lower specificity.

wadl-daal qglu) (LEX): Newly activated rules are placed using the OPSS5 strategy LEX. First the
recency of fact indices is used to determine where to place the activation. An activation with a
more recent fact index is placed before activations with less recent fact indices (&), If two
activations have the exact same recency, the activation with the higher specificity is placed
above the activation with the lower specificity (c=3).

1ehb-daal qsled (MEA): Newly activated rules are placed using the OPSS strategy MEA. First the
recency of the fact index associated with the first pattern is used to determine where to place the
activation. If two activations have the same fact index for the first pattern, then the LEX strategy
is used to determine placement of the activation.

sie qsll (random): Each activation is assigned a random number which is used to determine
its placement among activations of equal priority.

The default strategy is depth. The current strategy can be set by using the st command (which will
reorder the agenda based upon the new strategy).

2.2 KHABEER TERMS & VOCABULARY s (& cilathuaaall

KHABEER vocabulary and terms were chosen using the suggested headline points in [6]. Some of
these points are:

Use the smallest possible number of words such that the meaning will not be misunderstood.
Delete some functions that are not related to Arabic language such as wuppercase and
lowercase.

Use the shortest of the imperative (u«!) form and the gerund (L»=<) form. If their lengths are
equal, use the one which starts with uncommon letter.

Give the terms their actual and practical meanings which may be different than the
"dictionary" meaning.

e Do not use abbreviations.

Better to translate a negative word into a single Arabic word. For example wunusual is
translated to "3 " and not to "gie 2",
Some terms needs to be replaced totally. Left parenthesis is given the term gy o,

For more comprehensive details the reader may refer to [6].

3. KHABEER OBJECT ORIENTED LANGUAGE s (- il g3l) 4o

KHABEER supports Object oriented Language features. The primary five characteristics of any
object oriented language are [10]:

abstraction (2,3): is a higher level, more intuitive representation for a complex concept;
encapsulation (<4): is the process whereby the implementation details of an object are
masked by a well-defined external interface;

inheritance (%.5): where classes may be described in terms of other classes by use of
inheritance;

polymorphism (<l axi): is the ability of different objects to respond to the same
message in a specialized manner; and

dynamic binding (3 &:)): is the ability to defer the selection of which specific message-
handlers will be called for a message until run-time.

In KHABEER, the definitions of new classes (<t<l) allows the abstraction of new data types.
The slots () and message-handlers (<\slxs) of these classes describe the properties and behavior
of a new group of objects. KHABEER supports encapsulation by requiring message-passing for the
manipulation of instances of user-defined classes. An instance (iic) cannot respond to a message for
which it does not have a defined message-handler.

The user is allowed to specify some or all of the properties and behavior of a class in terms
of one or more superclasses (Jiiwi). This process is called multiple inheritance (<) amic),
KHABEER uses the existing hierarchy of classes to establish a linear ordering called the class
precedence list (50 sl 4ald) for a new class. Objects which are instances of this new class can
inherit properties (<lw) and behavior (<slx) from each of the classes in the class precedence list.
The word precedence implies that properties and behavior of a class first in the list override
conflicting definitions of a class later in the list.

Polymorphism implies that one KHABEER object can respond to a message in a completely
different way than another object. This is accomplished by attaching message-handlers with
differing actions but which have the same name to the classes of these two objects respectively. An
object reference in J«) (send) function call is not bound until run-time. This is called dynamic
binding. For example, an instance name or variable might refer to one object at the time a message
is sent and another at a later time.

A query system for determining, grouping and performing actions on sets of instances of
user-defined classes that meet user-defined criteria is provided by KHABEER. The query system
allows the user to associate instances that are either related or not. The user can use the query
system to determine if a particular association set exists, he can save the set for future reference, or
he can iterate an action over the set. KHABEER query language is discussed in section 4.0.

3.1 PREDEFINED SYSTEM CLASSES aliill Cilial

KHABEER provides eleven system classes (shown in Figure 2): Object (w2), User (s),
Primitive (&s'), External-Address (> a-olsi=_), Multifield (Js~), Number (4,), Integer (m~=),
Float (s~), Lexeme (32%_), Symbol (3+,_) and String (4l). These classes are abstract classes.
Thus, they are used only for inheritance. The Object (<12) class is a superclass of all other classes
including user-defined classes. A predefined class can not be modified nor deleted by a user.

PN

b] ect EUE

anltive

MultlﬁeldNumber External-Address Lexeme
NDé (Baga-TON i
Symbol Stnng
Integer lfloat . o e
ail I B b R&o RRE

Figure 2. Relationships between Classes

3.2 DEFINING CLASSES alial) iy jad

Classes can be defined using —usa-—3)= (define class) construct (as shown in Figure 3). This
construct consists of four elements: a name, a list of superclasses for which the new class inherits
slots and message-handlers, a specifier defining whether or not the creation of direct instances of the
new class is allowed, and a list of slots specific to the new class.

<ciiall aul> Ciiacs o) | <A ale[(+ <iliad anl> 5S)
] <Ak yaan> [(*<daud) yaai>
iy ue> (@) | (o) =
<Aanadl paat> (<f«.m..dl sailad> <Aadd) aul> w) =:
=1 <Al paibad>]<ga e[| |<oe>] | Jcopsas>] | <l | <>
| J<oras>|
< yide> (F<Alae> ey jide) | (F<ililae> a jie) =1
<dae > (J‘)SA) | (JJ::\A) =
S N
<lls> (e pumad) | (GSE) | (ba-E) =
<> (Los) | (oY) =
<me> (30| (S50 =
The underlined values are the default values.

Figure 3. Syntax of “&ua-—3 e Construct

Redefining an existing class deletes the current subclasses and all associated message-
handlers. An error will occur if instances of the class or any of its subclasses exist. Any old
message-handlers for the class which do not conflict with implicit slot-accessor message-handlers
in the new definition are reattached.

3.2.1 Multiple Inheritance ~ <% 325

<ia (class) in KHABEER inherits from iu.<i (superclass). Every user-defined class must have at
least one direct superclass. When a class has more than one direct superclass multiple inheritance
occurs. KHABEER establishes sV sl ias (a class precedence list) by examining the direct
superclass list for a new class. The new class inherits slots and message-handlers from each of the
classes in the class precedence list. Slots and message-handles of a class in the list override
conflicting definitions of another class found later in the list. A specific (2xx+) class is a class that
comes before another class in the list. <ia-caay function can be used to list the class precedence list.

3.2.2 Abstract and Concrete Classes 4aiiall g dagial) Ciliay)

No direct instances of a class can be created if this class is «& (abstract). A class of type @i
(concrete) can have direct instances. By default, a new class is gii.

3.2.3 Slots and their facets W4aiuad g Slawd)

Values associated with instances (<t=) of a user-defined class are stored in slots (). To determine
the set of slots for an instance, the class precedence list for the instances is examined in order from

most specific to most general (right to left). A class is more specific than its superclasses. Slots
specified in any of the classes in the class precedence list are given to the instance, with the
exception of no-inherit (&,5Y) slots. If a slot is inherited from more than one class, the definition
given by the more specific class takes precedence, with the exception of composite (<5 _) slots.

Facets (u=it=all) describe various features of a slot. These facets are: v=is (default value), 2=
(cardinality), cx3a3 (storage), <l (access), 4,5 (inheritance propagation) and L=« (source) of other
facets. With the exception of shared slots (41l <), each object can still have its own value for a
slot .

Default Value Facets 4 yidal) adll (ailad

The facets o=« (default) and _sis-(= s (default-dynamic) can be used to specify an initial value
given to a slot when an instance 1is created or initialized. The specified expression in _sie- = sis is
evaluated every time an instance is created, and the result is assigned to the appropriate slot.

Cardinality Facets =~ 33 pailad

The facet »»i (multiple) specifies that a slot can hold zero or more values, and the facet 2,: (single)
specifies that the slot can hold zero or one value. Slots with 2xis facets are called Jsis slots. Jsis slot
values can be manipulated with the standard Js~ functions, such as ,=i= and Jsb. KHABEER also
provides functions for setting Jsi= slots.

Storage Facets (3 AN pailad

The facet >~ (local) specifies that the value be stored with the instance. The facet <. (shared)
specifies that the value be stored with the class. In the s« facet, each instance can have a separate
value for the slot. in the other facet, all instances will have the same value for the slot.

Access Facets —&lwal) pailad

The access facets types are —<i-ljs (read-write), L& (read-only), and bi- =3 (initialize-only)
where the slot can be read and set by slot overrides in 4ue-Jds= call and j¢> message-handlers.

Inheritance Propagation Facets &), 8h paibad

The facet <, 5 (inherit) specifies whether a slot in a class can be given to instances of other classes
that inherit from the first class or not. The facet &, s¥ (no-inherit) says that only direct instances of
this class will get the slot.

Source Facets Juadll yailad

The -2i. (exclusive) facet says that take the facets from the most specific class which gives the slot
and give default values to any unspecified facets. The «s,« (composite) facet causes facets which
are not explicitly specified by the most specific class to be taken from the next most specific class.

3.3 DEFINING MESSAGE-HANDLERS <lallaal) ciy g

10

The construct -, is used for specifying the behavior of a class of objects in response to a
particular message (shown in Figure 4). This construct consists of the following seven elements: a
class name (-uall ~ul) to which attach the handler , a message name (4wl aul) to which the handler
will response, a handler type, an optional comment, a list of parameter that will be passed to the
handler during execution, an optional wild card parameter, and series of expressions which are
executed when the handler is called.

<Al aul> <caiall aul> mllae-cije)[<alladl g s> |<dbals|
*< ie>) Jole-omia [*<dad> (
<¢AB\-)£HA> = <_ie>
<gllaall-g g> | oty | dE | P =
<Jsia- yrie> = <ale- juic>

Figure 4. Syntax of Message handlers.

Message handlers are uniquely identified by class, name and type. All message handlers
have an implicit parameter called ¢ (self) which binds the active instance for a message. This
parameter name is reserved and cannot be explicitly listed in the message handler's parameter.
There are three primary message handlers that are attached to the class a3 ;' uasi (initialize), s
(delete), and &k (print).

There are four categories of message handlers: i, (primary), Jé (before), » (after) and Js=
(around). The return values of Js and = handlers are always ignored. Jé handlers execute before the
i, ones, and =~ message-handlers execute after the i, ones. The return value of a message is
generally given by the i, message-handlers, but Js~ handlers can also return a value. Js» message-
handlers allow the user to wrap code around the rest of the handlers. They begin execution before
the other handlers and pick up again after all the other message-handlers have finished.

The body of &l is a sequence of expressions that are executed in order when the
handler is called. zl=s-< = returns the value of the last expression in the body. The body of <=
==« may directly manipulate slots of the active instance.

3.3.1 Slot accessor Handlers —<\awd) u‘-’-‘

For every slot in «iia-ca e two primary message-handlers are created implicitly: <iew aui>-das to read
slot values in instances of a class and <ie. aul>-xca to set slot values in instances of a class. awl>-das
<ies handler returns the value of the slot, or the symbol Uss if the slot has no value. <iew aul>-xa
returns the symbol == if the slot was successfully set, or the symbol s otherwise.

3.3.2 Predefined System Message handlers 48 pal) Cilallaall

11

KHABEER has three primary message-handlers that are attached to the class aiu . These handlers
are e, <3 and ~k. These handlers cannot be deleted or modified. The first handler = is used for
instance initialization with class default values after creation. The second handler <~ is used for
instance deletion. The third handler «~k is used for displaying slots of an instance and their values.

3.4 MESSAGE DISPATCH Adbu) jlad)

KHABEER uses the roles (Js (around), Ji# (before), i, (primary) and . (after)) to establish a
complete set of message handlers which are applicable to a given message (sent by the command
Jdwl). This is done by examining i\, i il i (class precedence list) of the active instances class.
This process is referred to as the message dispatch (Ul slsil).,

3.4.1 Message handler Precedence clalleal) <l ol o)

The order of execution of message handlers begins with Js~ handlers from most specific to most
general, then J3 handlers execute from most specific to most general, then -, handlers begin
execution from most specific to most general, after they finish execution from most general to most
specific, 2 handlers execute from most general to most specific and Js~ handlers finish execution
from most general to most specific.

3.5 MANIPULATING INSTANCES <lisll dallaa

Manipulation of objects is done by sending them messages. This is achieved by using J-) (send)
function (shown in Figure 5), which takes as arguments the destination object for the message, .
(message) itself and any arguments which are to be passed to handlers. The return value of J« is
the result of the message.

| (* <> <Al pll-pul- pai> <Clia pai> Jul) |

Jw_)) Figure 5. Syntax of

The slots of <l (object) may be read or set directly only within the body of a message
handler that is executing on behalf of a message that was sent to that object. By this way,
KHABEER implements the notion of encapsulation. Any action performed on an object by an
external source must be done with messages. Creation and initialization of an instance of a user
defined class are performed by the function iue-J«e (make instance).

3.5.1 Creating Instances <\ Jas

Instances (<) of user defined classes (<tal) must be explicitly defined by the user. All instances
are deleted during =~ (reset) command, and they can be loaded and saved similarly to facts. All
operations involving instances require message passing using J~)) (send) function except for
creation.

(<Rae-chy > Ane-dac)
*<haw- Jlal> <Cllamande juat> 0 <Aeeaule juat> =1 <Ale-chy >
(*<omat> <Ahe-aul pai>) = <dew- s>

12

Figure 6. Syntax of 4e-Jac

A function called 4ie-Jee (make instance) is used to create and initialize a new instance
(shown in Figure 6). This function sends an initialization message to the new object after allocation,
and the user can customize instance initialization. 4we-de= allows changing any predefined
initialization for a particular instance.

due-Jee returns the name of the new instance on success or the symbol s (false) on failure.
The evaluation of <iie-au)-22> can either be an instance name or a symbol. When 4ie-Jee creates a
new instances it performs the following steps:

1) If the instance exists, that instance receives a delete message, (s <due-aul> Jdu).
2) An uninitialized instance of the specified class is created.

3) All 4 lisl (slot overrides) are evaluated and placed by -~= messages, e.g.
(F<opi><Aawpul>-pia <die-aul> Ju),

4) The new instance receives the Je message, €.g. (Je <iie-aui>Jw))) for initialization. The
handler attached to class #2a3.s will respond to this message. This handler calls the -
<l function. This function uses defaults from the class definition - if any - for any slots
which do not have 4..-jtisl. The class defaults are placed directly without the use of
messages.

Defining instances Construct —<\iad) iy gl

«lie-cise construct allows the specification of instances which will be created every time =~ (reset)
command is executed (shown in Figure 7). Whenever = is issued, all current instances receive
< message, and the equivalent of 4i=-Jee function call is made for every instance specified in -
«lie (define instances) constructs. Instances of <lie-—a e are created in order, and if any individual
creation fails, the remainder of the instances will be aborted.

<Clie-Ciy prianl> alie-cie)] <ialo|(*<die-gzd s>

(<hae-ay xi>) =i <Aie-zd >
Gle-Jee Figure 7. Syntax of
3.5.2 Re-initializing Existing Instances Gliaml) agad

To provide the ability to reinitialize an existing instance with class defaults and new slot overrides,
the function iie- > is used (shown in Figure 8). The return value of 4ic- %> is the name of the new
instance on success or the symbol Uss (false) on failure. The evaluation of <iue-ai-ua3> can either
be an instance name or a symbol.

|(* <haw- > <Aie-aul pet> dle-)

due- ¢ Figure 8. Syntax of

13

3.5.3 Reading and setting Slots Clacdl (s g 35 3

Rules, defined functions or any sources external to an object, can read or write an objects slots only
by sending the object -Jw=s (get) or -~= (put) messages. Message handles executing on the behalf of
an object can either use messages or direct access to read the objects slots. An attempt to read a slot
which does not have a value will generate an error. There are ways of testing the existence of slots
and their values.

3.5.4 Deleting Instances Giliml) cdda

Sending <~ (delete) message to an instance removes it from the system (shown in Figure 9). Within
a message handler, 4u=-—23s function can be used to delete the active instance for a message.

(o)
(S <due> Juy)

de-Cads Figure 9. Syntax of
4.0 KHABEER QUERY LANGUAGE

KHABEER has a useful query system for determining and performing actions on sets of instances of
user defined classes. The instance query system in KHABEER provides six functions. These six
functions are as follows.

Function Purpose

e-Ge-da finds if one or more instance sets satisfy a query.

Aoyl gives the first instance set that satisfies a query.

Cligall-JS-2a Groups and returns all instance sets which satisfy a query.

Al-28 Performs an action for the first instance set which satisfies a query.
e -S040 Performs an action for every instance set which satisfies a query as

they are found.

Clipall-gpand- s Groups all instance sets which satisfy a query and then iterates an
action over this group.

The syntax of the query includes the name of the query, instance set constrains, query
conditions and query actions (shown in Figure 10). <l 43 (instance set) is an ordered collection of
instances of a set of classes defined by the user. KHABEER uses straightforward permutations to
generate instance sets. Y <5k (queries) are user defined Boolean expressions applied to an
instance set to determine if the instance set meets further user defined restrictions. If the evaluation
of these expressions for an instance set is anything but the symbol W (false), the instance set is said
to satisfy the query. Since only instance sets which satisfy a query are of interest, and the query is
evaluated for all possible instance sets, the query should not have any side effects.

14

[(Clind 46 258) Slaita¥lAoa) (A Jd) (Sl iy k)

Figure 10. Query Syntax

Al J=8) (distributed actions) are a user-defined expressions evaluated for each instance set which
satisfies a query. Unlike queries, distributed actions must use messages to read slots of instance set
members. If more than one action is required. An instance set query function can be called from
anywhere that a regular function can be called. If a variable from an outer scope is not masked by an
instance set member variable, then that variable may be referenced within the query and action. In
addition, rebinding variables within an instance set function action is allowed. However, attempts to
rebind instance set member variables will generate errors. Binding variables are not allowed within a
query. Instance set query functions can be nested.

Instance set member variables are only in scope within the instance set query function.
Attempting to use instance set member variables in an outer scope will generate an error. If an error
occurs during an instance set query function, the function will be immediately terminated and the
return value will be the symbol U (false). The instance query system in KHABEER provides six
functions. For a given set of instances, all six query functions will iterate over these instances in the
same order. However, if a particular instance is deleted and recreated, the iteration order will
change.

4.1 due-0e-da: This function applies a query to each instance set which matches the template (shown
in Figure 11). If an instance set satisfies the query, then the function is immediately terminated, and
the return value is the symbol == (true). Otherwise, the return value is the symbol W (false).

| die-cp-da) (Sl 28 358) (L)) (|

Figure 11. Syntax of 4ue-e-Ja

4.2 “ue-2a 5 This function applies a query to each instance set which matches the template (shown in
Figure 12). If an instance set satisfies the query, then the function is immediately terminated, and the
instance set is returned in a multifield value. Otherwise, the return value is a zero-length multifield
value. Each field of the multifield value is an instance name representing an instance set member.

| ieang)) (cilindl 8 258) ((JleiinY) |

Figure 12. Syntax of 4e-2 4|
4.3 «lall-J-a: This function applies a query to each instance set which matches the template
(shown in Figure 13). Each instance set which satisfies the query is stored in a multifield value. This
multifield value is returned when the query has been applied to all possible instance sets. If there are
n instances in each instance set, and m instance sets satisfied the query, then the length of the
returned multifield value will be n * m. The first n fields correspond to the first instance set, and so
on. Each field of the multifield value is an instance-name representing an instance set member. The

15

multifield value can consume a large amount of memory due to permutational explosion, so this
function should be used judiciously.

[(Cliwd 48 358) clilldSangl) ((UiiwY)) |

Figure 13. Syntax of <lall-JS-aa

4.4 =130 This function applies a query to each instance set which matches the template (shown in
Figure 14). If an instance set satisfies the query, the specified action is executed, and the function is
immediately terminated. The return value is the evaluation of the action. If no instance set satisfied
the query, then the return value is the symbol W (false).

[Gtim) (Qu) Ceid) (Sl 28 3,9)

Figure 14. Syntax of diual-243

4.5 4e-Jd-3a This function applies a query to each instance set which matches the template (shown
in Figure 15). If an instance set satisfies the query, the specified action is executed. The return value
is the evaluation of the action for the last instance set which satisfied the query. If no instance set
satisfied the query, then the return value is the symbol U (false).

| dae-d<l-sas) (Gl 28 358) ((D) (Sl |

Figure 15. Syntax of 4ke -J<- 343

4.6 “limll-peal-dir This function is similar to 4we-JS--3 except that it groups all instance sets which
satisfy the query into an intermediary multifield value (shown in Figure 16). If there are no instance
sets which satisfy the query, then the function returns the symbol s (false). Otherwise, the specified
action is executed for each instance set in the multifield value, and the return value is the evaluation
of the action for the last instance set to satisfy the query. The intermediary multifield value is
discarded. This function can consume large amounts of memory in the same fashion as <iall-JS-as),
This function should be used in lieu of iue-J<-3s when the action applied to one instance set would
change the result of the query for another instance set (unless that is the desired effect).

[((Jwdl) (JliiaV)) (i) 38 358) Clisllgaanl i) |

Figure 16. Syntax of <iliall-giaal-2as

5.0 EXAMPLES

To show the syntax of KHABEER, several examples are given bellow. The output of each example
is shown after it.

16

5.1 A Simple Example

This example shows a simple rule and two facts. The rule will be activated and fired. A new fact is
added to the fact list (shown in Figure 17).

(3slme 4D) 5il) AnDE-Als Gilia-cise)
(g e 2301 ol
Bacli-ca o) sacld-Jlia
(3slma a3) 5i)
(zside 438N)
<= (e JS\) o)

() <ma

(38) <

(Bs) < md

(3 s1-388s) 0-¢)

((3;1..'4.4 2;)31\)‘JJ\) l-c)
(Tt 4230 L) 2-¢)
(s 438l J91) 3-¢z)

4 Glaallg sane

Figure 17. Simple example

5.2 An Example on Rules definitions

This example shows a set of 6 rules. These rules are applied on different set of facts and the
response of these rules are shown as output. The rules concern the diagnosis of a pump (shown in
Figure 18).

)3 sai-c e daadl)dia Ai((
oaeli-a e 1-pUaill- f-cue
Jadll-Alla g man e (
) Yol all-da s Al (aleal) HsuSa() Adcaall)Adad) dstaa(((

o e M e s i

Yoaeli-ca e 2-aUaill- -cue
Jadll-Alls Cag ymam e (
) Al)l dslia((
<= ek U2 e s AR

)SJ&: G5 e 3-plaille Aecue

Jasdl-dlls a5 yma e (
Jelasall JsuSa(
o e e e s A

Yoaeli-cs e 4ol e
Jadll-Alla g man e (
Yl sadl-da s Adle(
<= ek B e e iy A S

)Sm\ﬁ-q).c 5-alaille Acue
)&;AJ\-QUIA :_’_\Z\A(
Y) Yeshala s de(Yolaal) 3l
)j)2;‘)\‘);.\\-5\;‘)4 Mz._m()?Lu.n C_,SS.A(((

So e SR e e A S

Yoo i e adl-Jaxall
)EJ\);.“—R;JJ 4.1&1.:(
Yool ¢ s
Jomd) sl
<=)b b e 5l e o Y planall e i o

Yaall-dlla) daimall-dla Giliancie Cag e e (
) 5l pallda s dlle(
) Aaiadll) sl Aa gida((
) elesall G3lis((

(p>) <md

(385) <ms

loue e (g siag ol
doue e g sing Al

Figure 18. Example of rules definition

diadilla Glia-ciye))dadlldlls Ao
) ol allds s ddle (
) damall) Alall da giba((
) sl i

(p=s) <ms
(a3) < s
PACRA k_Ax: (}5)3;& ?LL'."“

Uaij\-:dla) Al mall-ddls éa\.ﬁ;-u)c) :\4.\.\.4-)49(
) 3l yall-ds jo ;_..\SL::(
) Aaiaall) sl da gida((
) e

(p=s) <md
(383) <_ma
:\:\.‘Lc E)‘)a.“ :\é‘)ﬁ uy eLA..AII Cg)\:.h c...a.e

17

18

Figure 18. Example of rules definition (continuation)

5.3 An Example on instances and message handlers

This example shows the definition of a class and a message handler. Then, an instance is made of
that class. The contents of the instance is filled by the message handler and is printed out (shown in
Figure 19).

Jia-ci e 3ok) O padiuua(
)fu..,. g‘.w\-;,_u\(
)5\.“ K) };:M.) JJ::\A((
Yaans 3 stiall- -l ga¥l-aae ((
)adlaemcie 3k 8 lanalle 8-0) sall-pun)AEICH Salaf(
)d.u‘)\ um? GAMY\-M\-@A 'SJ\.A?(
Yoo} G 3 saiaanuia Al (
)l i€ (3 sainall- -l ga¥l-are-aua) Jsha Ai(((
< b JAhe-dae Vs s (e B lm(
] [Ens
<)§g';)d.uu| [Gisa 53] B kol S-3) gall-pa Adais Ual @LA}LA-M(

(‘a#-l

J) <o [525] e
Usash (e 8 ke

) ela¥l-anial) (dail

Dl 3 3im) (pne shis-idais
(2 QJM\-‘;-QUJYLJ.\;)

Figure 19. Example on instances and message handlers

Jieie oait JosSede) (et Jo oomlilE) (im((Y oe((
Jaie B JosSomsi(eie) (e o) wSe) (e SBI(((
Y S)osSomsd) (e e pin)eSin) ((omsie S
Jeie o ok Jiae o) G ia 4) (g5 #5) (s 17.9 0.0 ((
)i e e)osS SHI(Yoo o) b= ibe 25) (g5 i) (3« 100.0 18.0 (((
Jeied o Sy oo me)im st 4) (g5) (s 176 0.0 ((
)i e da) S oy Yo e) e 25) (g5 08-) ((100.0 18.0 s (((
)LL\L'\,_\:;-&J)Q oaldd)

)-day o da)) 18 = (() 2-das o dal) 60 = ((

)16 4] 0 8lal) 18 = (() 2-315a) e 3lal) 60 = ((

)3-315al G sl_al(

)1-a5 (e A)8 = (()2-315 O als(

)3-al Oe aly()4-al s e Al y(

Y-y e iy) 8 = (()2t o ca((
(=) <ms

< Jie -S4) sh-da 8 aly da) (s 81yl i 1 al((

duyl) =) A gh-da 8 see-daas(Jusl) i gl al€ jae-daan((
)Q—‘LU; ll)ll A-‘}'}\-d%‘)? nn (L\..L.I—)‘—Bi‘).d;‘? n (llJL“((
([1-=s[1-2])

([2-=<[2-214])

([2-=<[3-215])

([2-<c[4-215])

([1-81l]¢[1-d>])

([2-31][1-d>0])

<md JAe - JSE38))alg gh-da Ay da) (i bl al€ i 31 al((
e 1al g gh-da 8 =) e i 5l alf(
Yok i ")" A ghdat Mt i sl alf (" (.

([1-=]<[1-215])

([2-=<[2-214])

([2-=][3-215])

([2-=]<[4-215])

([1-31l]¢[1-d>])

([2-31 1] <[1-d>])

19

YAl e Gligall-clun) Caial(
)ad (0 Sleat
Jaedm et it (o5)sichat) +obat 1 (((
(Sluat
)zuu_q e z_atgdl_g._.m)qm?(
Jsk) sbimlldSan o) Jiret ciist ((o3((

Figure 20. Example on Query Language

<pd)lill-clua sl _al(

3

<‘):\,\';)¢|U=\d\-gm A.b(

4

<d ol) 2-lisadl-Clls(

3

<wd)l 2-liall-cilua(

4

<md)iie-ge-da)) S <) (2o e 30 ((
i

<o) de-ag)) fda)) ((Fia ((3) et seeief((
[1-d=0]) ([1-3141]
<) clisl-diaa))f dog) (of BA((5) semi st eetef((
[1-d>0]) [1-d2] [1-81 1] ([1-81]
<md) Aaldin)) B padd) (2059 padd) (3uiS padi((
)3) = el pee 1205 yee13058(
JSa (2058 1058
Jda (3L 105
)da (3uEe 208
Yk " " 1R Mt 208 b 3038((
[2-<i] 5 [3-3]5 [2-14]
(Sle) <uws
1-&u

2-&dy

20

5 ya)-caia
131 sl

2-51 5]

35l)

s -aia
1-da)

2-d>)

11 g sane

Figure 20. Example on Query Language (continuation)

5.4 An Example on Query Language

This example shows the definition of several classes and several instances of these classes.
KHABEER query language is used to request some information. Some functions are defined and
applied on these instances. At the end, the command (<le) is used to print all instances in
KHABEER (shown in Figure 20).

6.0 IMPLEMENTATION ISSUES

KHABEER consists of 63 C files and 62 header files. The size of all source code files is 2.3
Mbytes. Microsoft C++ is used to compile KHABEER source files. The size of the executable
code of KHABEER which support object oriented language is 1.3M bytes. The system runs under
MS-Windows 3.1. Error messages within KHABEER system are generated in Arabic. Reference
Manual for the system is under development [7]. There are three ways for integrating KHABEER
with other programs. First, since KHABEER is written in C, an integrating subprogram may be
written in C and complied with the system. Second, a Dynamic Linked Library (DLL) may be
generated for KHABEER. Therefore other external system may use it. Third, since KHABEER is a
Microsoft windows application, communication between MS windows applications can be done
through message passing.

7.0 CONCLUSION AND FUTURE WORK

The number of tools for building expert systems has increased significantly after the progress of
expert systems in industry. Yet, there are few works about Arabic expert system shells. This paper
presents KHABEER as one of pioneer projects of Arabic expert system tools. KHABEER is
written in C language, which supports the goals of high portability, low cost, and ease of
integration with external systems. KHABEER, supports Object Oriented Programming where it has
11 predefined classes and allows abstract and concrete class definitions and multiple inheritance.

21

Various features of slots are supported by KHABEER. KHABEER allows the declaration of
message-handlers for defined classes. Manipulating instances of objects is supported through
different functions in KHABEER. These functions include creating instances, re-initializing
existing instances, reading slots, setting slots, deleting instances, instance query and other actions.
These functions and other Object Oriented features are supported in Arabic by KHABEER version
2.

KHABEER provides a query system for determining, grouping and performing actions on
sets of instances of user-defined classes that meet user-defined criteria. The user can use the query
system to determine if a particular association set exists, he can save the set for future reference, or
he can iterate an action over the set. KHABEER has Windows interface under running under MS.
Windows. Researchers who are working in research areas, such as Arabic Language
Understanding, Machine Translation, Semantic Representation of Arabic language and others, will
find KHABEER as a good tool for them.

ACKNOWLEDGMENT

The Authors wish to acknowledge King Fahd University of Petroleum and Minerals (KFUPM) for
utilizing the various facilities in preparation of this paper.

REFERENCES

[1] David W. Rolston, "Principles of Artificial Intelligence and Expert Systems Development",
McGraw-Hill Book Company. 1988.

[2] William Mettrey, "A comparative Evaluation of Expert System tools," IEEE Computer
Magazine, Vol 24, No. 2, pp19-31, Feb .1991.

[3] Chung S. Kim and Youngohc Yoon, "Selection of a good expert system shell for instructional
purposes in business," Information and Management 23, pp 249-262, 1992.

[4] A. C. Stylianou, G. R. Madey and R. S. Smith, "Selection Criteria for Expert System Shells: A
Socio-Technical Framework," Communications of The ACM, Vol. 35, No. 10, pp 30-48, October
1992.

[5] Mostafa M. Aref and Husni Al-muhtaseb, "KHABEER: (_x3) An Arabic Expert System
Shell", The 18th International Conference For Statistics, Computer Science, Scientific & Social
Applications, Cairo, Egypt, April, 1993.

[6] Husni A. Al-Muhtaseb and Mustafa M. Aref, "Arabic Technical Terms in Arabic Formal
Languages", Proceedings of The 3rd International Conference on Multi-lingual Computing,
University of Durham, UK, December 1992.

[7] Mostafa Aref and Husni Al-Muhtaseb, "KHABEER Reference Manual," A Technical Report,
ICS Department, KFUPM, Dhahran, Saudi Arabia, (to be published)

[8] Husni A. Al-Muhtaseb, Mustafa M. Aref, and Ali Al-Kulaib, "Khool: KHABEER (_&3) Object
Oriented Language", Proceedings of the 4th International Conference and Exhibition on Multi-
lingual Computing, London, UK, April 1994.

22

[9] "CLIPS Reference Manual Version 4.3", Mission Planning and Analysis Division, Artificial
Intelligence Section. NASA Johnson Space Flight Center, USA, 1989.

[10] "CLIPS Reference Manual Version 5.1", Software Technology Branch, Lyndon B. Johnson
Space Center, USA, September 1991.

[11] George F. Luger, William A. Stubblefield, "Artificial Intelligence and the design of Expert
System", The Benjamin/Cummings publishing Company¢ 1989.

