
 1

MACHINE GENERATION OF ARABIC DIACRITICAL MARKS

Moustafa Elshafei1, Husni Al-Muhtaseb2, and Mansour Alghamdi3

Submitted to: The 2006 International Conference on Machine Learning; Models,
Technologies & Applications (MLMTA’06)

Authors:
1- Moustafa Elshafei (presenter)
Department of Systems Engineering
King Fahd University of Petroleum and Minerals
Dhahran 3161, Saudi Arabia
Email: elshafei@ccse.kfupm.edu.sa
Tel: 966 3 860 4515, Fax: 966 3 860 2965
Or melshafei@xobotics.com

2- Husni Al-Muhtaseb
Department of Information and Computer Science
King Fahd University of Petroleum and Minerals
Dhahran 3161, Saudi Arabia
Email: husni@ccse.kfupm.edu.sa
Tel: 966 3 860 2624

3- Mansour Alghamdi
King Abdulaziz City of Science and Technology
P. O. Box 45314
Riyadh 11512, Saudi Arabia
Email: mghamdi@mghamdi.com

Key Words: Arabic natural language, Text diacritization, Arabic HMI, Arabic text-to-Speech,
machine translation.

 2

MACHINE GENERATION OF ARABIC DIACRITICAL MARKS

Moustafa Elshafei1, Husni Al-Muhtaseb1, and Mansour Alghamdi2

1-King Fahd University of Petroleum and Minerals, KSA
 2-King Abdulaziz City of Science and Technology, KSA.

ABSTRACT

The absence of the vowelization marks from the modern Arabic text represents a major
obstacle in machine translation and other text understanding applications. In this paper we
present a formulation of the problem of automatic generation of the Arabic diacritic marks
from unvoweled text using a Hidden Markov Model (HMM) approach. The model considers
the word sequence of unvoweled Arabic text as an observation sequence, and the possible
diacritized expressions of the words as hidden states. The optimal sequence of diacritized
words (or states) is then obtained efficiently using a dynamic programming algorithm. We
present the basic algorithm and its evaluation, and discuss its limitations as well as various
ramifications for improving its performance.

1. INTRODUCTION

One of the problems facing computer processing of Arabic text is the absence of the
diacritical marks in the modern printed text. Native Arabic readers can identify the proper
vocalization of the text, but when it comes to computer processing, the computer still needs
to be provided with algorithms to mimic the human ability to identify the proper vocalization
of the text. Such tool is an essential infrastructure for many applications as Text-to-Speech
[1,2], and Automatic Translation [3,4].

 Arabic writing system consists of 36 letter forms which represent the Arabic consonants.
These are: ظ , ط , ض , ص , ش , س , ز , ر , ذ , د , خ , ح , ج , ث , ت , ب , ة , ى , ء , ؤ , ئ , إ , أ , آ , ا ,

و, هـ , ن , م , ل , ك , ق , ف , غ , ع and ي. Each Arabic letter represents a single consonant with
some exceptions: ؤ, ئ , إ , أ and ء represent the glottal stop, but are written in different forms
depending on the consonant position in the word and its adjacent phonemes. Almost all
modern Arabic texts are written in using the consonant symbols only, i. , the letters without
the vowel symbols or the diacritical marks. Arabic diacritical marks are the vowelization
marks {Sukoon ْـ , Fatha َـ , Kasra ِِـ , Dhamma ُـ }, the gemination mark {Shaddah ّـ }, and
the suffixes { tan ًـ , ten ـ ٍ , ton The gemination diacritic is followed by a vowel diacritic .{ ٌـ
(except Sukoon), or by a suffix diacritic. A word such as “علم” when diacritized can be: “عَلَم”
flag, “عِلْم” science, “َعُلِم” it was known, “َعَلِم” he knew, “َعَلَّم” he taught or “ مَعُلِّ ” he was
taught. Arabic readers infer the appropriate diacritics based on the linguistic knowledge and
the context.

The problem of automatic generation of the Arabic diacritic marks is known in the
literature under various translations, e.g., automatic vocalization, vowelization, diacritization,
accent restoration, and vowel restoration. The formal approach to the problem of restoration
of the diacritical marks of Arabic text involves a complex integration of the Arabic
morphological, syntactic, and semantic rules [5,6,7]. For example, Vergyri and Kirchhoff, [6]
reported a word eror rte of 27.3% and a character error rate of 11.54%, using acoustic +
morphological + contextual methods. A morphological rule matches the undiacritized word to
known patterns or templates and recognizes prefixes and suffixes [8]. Syntax applies specific

 3

syntactic rules to determine the final diacritical marks by applying Finite State Automata [9].
Semantics help to resolve ambiguous cases and to filter out hypothesis [10,11].

 The approach of this paper falls under the general class of statistical methods in pattern

recognition, and has been applied successfully in speech recognition field. Our argument here
is that Arabic natives rely mainly on the human pattern matching power to select the right
vowelization of words based mainly on its context. The word sequence of unvoweled Arabic
text is considered an observation sequence from a Hidden Markov Model, where the hidden
states are the possible diacritized expressions of the words. The optimal sequence of
diacritized words (or states) are then selected to maximize the probability of the state
sequence given the observation sequence. The HMM approach was also proposed by Gal in
[12] for vowel restoration of the diacritical marks in Arabic and Hebrew. The text corpus
was Qur’an, for which he reported a word accuracy of 86 % .

The Qur’an diacritization style and symbols differ in many aspect from the modern Arabic.
The qur’an script contains diacritical marks which are particularly intended for recitation
purpose. Our study is based on a corpus supplied by King Abdulaziz City of Science and
Technology (KACST), SA, and was manually diacritized by professionals. The corpus is
currently being expanded to include at least 50,000 Arabic sentences. The objective of this
study is to provide the mathematical formulation of the HMM approach, and to evaluate it on
a modern Arabic text. In this study we did not consider the generation of end case. Once the
diacriticized text is generated, the generation of the end case can be performed by a separate
post processing stage [9]. The HMM method achieves WER less than 0.5% when tested on
sentences from the corpus, and WER of about 5.5% when tested on sentences from outside
the corpus.
 In Section 2 we present the formulation of the problem, while in Section 3 we outline the
basic algorithm. In Section 4 we describe the training set and its processing, and in Section 5
we present detailed evaluation of the results and various modification to eliminate certain
classes of restoration errors.

2. PROBLEM FORMULATION

We assume we have a large training set of Arabic text with full diacritical marks, VT , and its
corresponding unvowelized text, UT . We then generate a word vocabulary list, vN

iv 1}{=VL ,
of the unique and fully vowelized words in VT . We also generate a table, Vf , of the
frequency of occurrence of each word in VL , such that)(kVf is the number of occurrence of

kv in the training text VT . Similarly, we construct UL of all unvowelized vocabulary words
in UT . Let UV LL →Γ :(.) be the mapping from VL to UL ; For each word UL∈ku we
define a subset VL⊂kV corresponding to all the vowelized words that are mapped to ku ,
i.e. })(;{ kVk uvvV =Γ∈= L .
Now, given a word sequence (without diacritical marks)

MtwwwwW tM ,..,2,1;;.........21 =∈= UL (1)
We wish to determine the most probable diacritized word sequence:

MdddD21= (2)
Where)(jLvd Vjt == for some];,1[vNj∈ for t=1,2,..M We also assume)(kLuw ukt == for
some];,1[uNk ∈ and Mt ,...2,1for = , that is to say that all the words in (1) exist in UL .

 4

The word sequence D may be chosen to maximize the posteriori probability)|(WDP , i.e. the
best diacritized word sequence, D̂ , satisfies

)}/(
max

arg{ˆ WDP
D

D = (3)

 It is normally assumed in language modeling that the sequence of words obey the
Markovian assumption, that is at any given t, wt depends only on the previously words. In
Bigram language modeling, each word is assumed to depend only on its previous word in a
first order Markov chain, i.e. The conditional probability)|(WDP can be written as

);|()|()......|.....(11
2

112121 tttt

m

t
mm wwddPwdPwwwdddP −−

=
∏= (4)

 The search for the best sequence of vowelized words which maximizes (3) considers the
unvowelized text is generated from an HMM, where the observation sequence is the
undiacritized word sequence W, while the possible vowelized words, jtv , , of each word wt
represent the hidden states. The problem can then be formulated as finding the best state
sequence given the observation W. The solution of this problem is usually approximated
using the Viterbi Algorithm VA [13].
 Let us define),(itφ to be the probability of the most likely partial state sequence or path
until time t, and ending at the ith state (the ith diacritized word corresponding to wt.).
The algorithm proceeds in the following steps:

Step 1: Initialization

)|(),1(1,1 wvPi i=φ (5)
Step 2: Induction
 Let tk be the index of the word tw in UL , i.e.);(tt kw UL= and let)(tnv be the
cardinal of the subset

tkV , then),(itφ can be recursively obtained as follows

Mttnj

wwvvPjt
j

it

v

ttjtit

,..3,2 and);(,...,2,1

)},;|(),1({
max

),(1,1,

==

−= −−φφ (6)

Mttnj

wwvvPjt
j

itU

v

ttjtit

,..3,2 and);(,...,2,1

)}},;|(),1({
max

arg{),(1,1,

==

−= −−φ (7)

Step 3: Best Path
)}}(,...,2,1)},({

max
arg{),(MnjjM

j
iMU vbest == φ (8)

Step 4: Back Tracking

M

i

ttitt

bestM

dddD

vd

MMtitUivd
ii

t

.........

2,......1,for);,(and ,

21

,11

1,

1

=

=

−===
=

− (9)

 Several observations can help in simplifying the Viterbi recursions. First, we notice that
the conditional probability appearing in (6) can be written as:

)|(
)|(

)|(
)|(

);|(
1,1

1,1,

1,1

1,1,
1,1,

−−

−−

−−

−−
−− ==

tjt

ttjtit

ttjt

ttjtit
ttjtit wvP

wwvvP
wwvP

wwvvP
wwvvP (10)

Since each vowelized word is mapped to one unvowelized base, this implies that
1)|(, =jtt vwP . We can then simplify further Equation (10) as follows:

 5

)|(
)|(

);|(
1

,1,
1,1,

−

−
−− =

tt

jtit
ttjtit wwP

vvP
wwvvP (11)

Moreover, it is clear then the denominator of (11) is not part of the maximization in (6). This
leads to a further simplification of the recursion (6) as follows:

Mttnj

vvPjt
j

it

v

jtit

,..3,2 and);(,...,2,1

 },|(),1({
max

),(,1,

==

−= −φφ (12)

In other words, the evaluation of the recursion, (6) and (7), can be performed using the
conditional probability of the vowelized words only. All the probabilities needed for
computing the Viterbi recursion can be obtained from the statistics of training sets, and stored
for on line Viterbi calculations.

3. THE TRAINING DATABASE

For testing purpose we started by a fully diacritized Arabic corpus. The corpus consists of

100 articles collected from magazines and news papers covering various subjects. The text
was annually diacritized by Arabic language specialists. The corpus was developed by king
Abdulaziz City of Science and technology, and is currently being expanded to include at least
50,000 sentences.

The total number of words in the corpus came to 102k words. The raw training transcript
is first processed to remove numbers and special symbols. The Arabic letter extension
character is also removed. All punctuation marks were replaced by one symbol. The
transcript was manually checked to correct partially vowelized words, and a few
inconsistencies in the diacritization styles. The net training data consists of about 804K
characters. The vowelized vocabulary list consists of about 29,500 words. Tables of the
frequencies of the vowelized and uvowelized vocabulary are also generated. A word is
defined here to be any sequence of letters and diacritical marks delimited by the space
character or a punctuation mark. The maximum number of voweled words for any
undiacritized word was found to be 6.

Although several cycles of inspection and checking has been performed on the corpus, but
the corpus is still far from the flawless state.
Two words

ba mm bbbBaaaA and ... 2121 == are considered identical in the regular sense if

1),(=BAR , where),(BAR is defined as follows:

⎩
⎨
⎧ ===

=
otherwise 0

,...,2,1for and if 1
),(aiiba mibamm

BAR

One problem with the above definition of word similarity is that the Sukoon diacritical mark
does not consistently appear explicitly in the text. A metric is designed so that two words are
still considered identical even if one of them is missing one or more Sukoon. Define the
mapping VV LL →:(.)S which strips words from Sukoon diacritical marks. Let 0)(AAS = ,
and 0)(BBS = . Then two words A and B are said to be R0 identical, R0(A,B)=1, if
R(A0,B0)=1. When generating VL , all words in VT which are R0 identical are represented by
a single word in the vocabulary VL . The vocabulary word is selected or generated to be the
one with all its Sukoon cases removed for efficient memory utilization. Finally, each word in
the table VL is mapped to its undiacritized base UL . A database is generated which contains
the undiacritized word bases, lists of the corresponding diacritized words, and the counts of
each diacritized word. A Matlab program is built to automate building of this database. This

 6

database is called “uvwowled words database”. UVWDB. Next, a database is generated for
each unique sequence of two words in the list file VT together with its number of
occurrences. In this case, two two-word sequences are considered identical if their
corresponding words are R0 identical. The database generated is called Bigram Database
BIGDB. The BIGDB is constructed in such a way that for every voweled word in VL it lists
all its bigrams and their corresponding frequencies.

Another problem in creating the training databases is that there are many articles, and
common short words are not fully diacritized. The missing of diacritical marks represents a
serious problem. At the minimum it unnecessarily increases the size of the vocabulary, and
creates ambiguity as it would not be clear if the missing diacritics is simple Sukoon or not.
The problem is partially alleviated by creating a lexicon of exception cases of common words
and articles which usually appear partially or totally undiacritized.

4. EXPERIMENTAL RESULTS

The method was first tested using randomly selected sentences from the training corpus.
The word error rate came to less than 0.5%. In fact most of the errors were due to errors in
the corpus itself, e.g. extraneous diacritics or missing diacritics. Next the algorithm was
evaluated using a testing text from outside the training corpus. The algorithm in its current
form can only generate diacritic marks if all the unvoweled words exist in its UVWDB.
Accordingly, in the testing text, sentences containing unlisted words are excluded from the
test. However, we are currently investigating two approaches to solve his problem. In the first
approach we synthesize a word-level diacritization based on letter/diacritics statistics using
again an HMM technique. In the second approach, the unknown unvowelized word is
matched to a one of a given set of morphological patterns. Since many word sequences in the
test set did not occur in the training corpus, we employed a simple bigram smoothing method
together with deleted interpolation smoothing [13]. The parameters of the deleted
interpolation smoothing were determined experimentally.

The word error rate came to about 5.5%. Analysis of the errors reveals the following
classes of errors. The first class of errors turned out to be due to inconsistent representation
of diacritical marks in the training data bases, missing diacritical marks, or extraneous
diacritical marks. The majority of the repeated errors are caused mainly by a few articles and
short words. The ambiguity in determining the proper form of these short words could
hopefully be resolved by using higher order grams, and restricting some articles to a single
diacritized form. The rest of the cases are more difficult to resolve and may require higher
order grams or post processing stage of the resulting diacritized text using knowledge-based
morph-syntax word correction.

 The algorithm presented in this paper assumes as well that the input word sequence is
totally undiacritized. However, in reality, the input text may contain partial diacritization. The
algorithm needs to be modified to take into consideration the presence of partial diacritization
to improve the efficiency of the algorithm and enhance its performance. Finally, the
algorithm generates diacritized text with undetermined end case. The formal approach to
resolve these end cases is to implement a syntax analyzer [9]. The syntax processing can be
inserted as a post processing stage after the Viterbi algorithm.

5. CONCLUSION

The paper presents an HMM based method to solve the problem of generating the diacritical
marks of the Arabic text. The basic form of the algorithm achieves a word error rate of about

 7

5.5%. The use of higher order grams for frequent words with multiple voweled versions
could lead to a substantial improvement in the performance. The algorithm needs as well a
preprocessing stage to synthesize voweled forms for the unlisted words, and a post processing
stage to generate the end cases.

10. ACKNOWLEDMENT

The authors would like to acknowledge King Abdulaziz City for Science and Technology
and King Fahd University of Petroleum and Minerals for their support

11. REFERENCES

[1] Moustafa Elshafei, Husni Al-Muhtaseb, Mansour Al-Ghamdi," Techniques for high
quality Arabic speech synthesis", Information Sciences 140(3-4): 255-267 (2002).

[2] M. Elshafei Ahmed, " Toward an Arabic Text-to-Speech System", in the special issue on
Arabization, the Arabian Journal of Science and Engineering, Vol. 16, No. 4B, pp.565-583,
October 1991.

 [3] Trost, Harald, “Recognition and generation of word forms for natural language
understanding systems. Integrating two-level morphology and feature unification”, Applied
Artificial Intelligence, v 5, n 4, Oct-Dec, 1991, p 411-457.

[4] Farghaly, A. and J. Snellart. Intuitive Coding of the Arabic Lexicon, SYSTRAN, MT,
Summit IX Workshop, Machine Translation for Semitic Languages: Issues and Approaches,
Tuesday September 23, 2003, New Orleans, Louisiana, U.S.A.

[5] El-Saadani, T. A. Hashish, M. A, “Semiautomatic vowelization of Arabic verbs “,
Egyptian Computer... p88-93, Apr 1988.

[6] D. Vergyri and K. Kirchhoff, "Automatic diacritization of Arabic for acoustic modeling in
speech recognition," in COLING Workshop on Arabic-script Based Languages, (Geneva,
Switzerland), August 2004.

[7] F. Debili and H. Achour "Voyellation automatique de l'arabe", Proc. of the workshop on
Computation approaches to Semitic languages, COLING-ACL '98.

[8] Beesley, K. 1998. "Arabic finite-state morphological analysis and generation," in
COLING-96 Proceedings 1 : 89-94, Copenhagen.

[9] Shatta, Usama, “A systemic functional syntax analyzer and case-marker generator for
speech acts in Arabic”, International Conference for Statistics, Computer Science, Scientific
& Social Applications. 19th. Cairo(EGY). Apr 9-14, 1994

[10] Khoja, Shereen. APT: Arabic Part-of-speech Tagger. Proceedings of the Student
Workshop at the Second Meeting of the North American Chapter of the Association for
Computational Linguistics (NAACL2001), Carnegie Mellon University, Pittsburgh,
Pennsylvania. June 2001..

 8

[11] El-Barhamttoushi, H. M. Arabic speech lexical engine, International Conference on
Intelligent Computing & Information Systems. 1st. Cairo (EGY). Jun 24-26, 2002.

[12] Gal, Ya'akov, "An HMM Approach to Vowel Restoration in Arabic and Hebrew",
Proceedings of the Workshop on Computational Approaches to Semitic Languages, ACL,
July 2002, Philadelphia.

[13] X. Huang, A. Acero, and H. Hon, Spoken Language Processing, Prentice Hall PTR,
New Jersey, 2001.

