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Abstract 
 
   In this paper, the issue of adding diacritics Tashkeel to undiacritized Arabic text using statistical methods for 
language modeling is addressed. The approach requires a large corpus of fully diacritized text for extracting the 
language monograms, bigrams, and trigrams for words and letters. Search algorithms are then used o find the best 
probable sequence of diacritized words of a given undiacritized word sequence. The word sequence of undiacritized 
Arabic text is considered an observation sequence from a hidden Markov Model, where the hidden states are the 
possible diacritized expressions of the words.  The optimal sequence of diacritized words (or states) is then 
efficiently obtained using Viterbi Algorithm. We present an evaluation of the basic algorithm using the Qur’an’s text, 
and discuss various ramifications for improving the performance of this approach. 

 
Introduction 

 
The absence of the diacritics in modern Arabic text is one of the most critical 

problems facing computer processing of Arabic text. Readers of Arabic can restore the 
proper diacritics of the text, but when it comes to computer processing, the computer 
still needs to be provided with algorithms to mimic the human ability to identify the 
proper diacritics of the text. Such tool is an essential infrastructure for applications such 
as Text-to-Speech (Elshafei el. 2002),  Automatic Translation (Trost 1991), and Arabic 
data mining applications ( Mustafa 1998). 

The problem of automatic generation of the Arabic diacritic marks, Al Tashkeel 
Al-Aly, is known in the literature under various translations, e.g., automatic 
vocalization, vowelization,  diacritization, accent restoration, and vowel restoration. In 
this paper the term diacritization will be used due to the fact that the missing symbols 
do not represent only the vowels but represent, in addition to that, gemination shaddah, 
lack of vowels sukoon, and Tanween n-suffixes. 

The formal approach to the problem of automatic restoration of the diacritic 
marks of Arabic text involves a complex integration of the Arabic morphological, 
syntactic, and semantic rules (El-Saadani and Hashis, 1988, Shatta, 1994, Khoja, 2001, 
and Farghali et. Al, 2003). A morphological rule matches the undiacritized word to 
known patterns or templates and recognizes prefixes and suffixes. Syntax applies 
specific syntactic rules to determine the word-final diacritic marks by applying Finite 
State Automata.  Semantics helps to resolve ambiguous cases and to filter out 
hypothesis.  Among the systems using the above approach is ArabDiac (T) of  RDI of 
Egypt [1], Al-Alamia of Kuwait [2] and CIMOS of France [3]. The second approach is 
the data-centered approach, where a large corpus of text is used to extract language 
statistics for estimating the missing diacritical marks, or used to train artificial neural 
networks. Among the later approach is the work of (Sultan, 2001)  who investigated 
application of Neural networks for vowel restoration of Arabic text.   
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The approach here falls under the general class of statistical methods in pattern 
recognition, and has been applied successfully in the speech recognition field. The 
system is first trained using a corpus of fully diacritized text, and preferably covering 
specific domains. The system generates word vocabulary list and determine the 
frequency of each word. It also generates word bigrams and trigrams, and performs 
other preprocessing and post processing steps to deal with exceptions and to overcome 
some known limitations.  

Arabic writing system consists of 36 letter forms which represent the Arabic 
consonants. These are:  ش , س , ز , ر , ذ , د , خ , ح , ج , ث , ت , ب , ة , ى , ء , ؤ   , ئ , إ , أ , آ ,ا 
 Each Arabic letter represents a . ي and  و , هـ , ن , م , ل , ك , ق , ف , غ , ع , ظ , ط , ض , ص ,
single consonant with some exceptions: ؤ , ئ , إ , أ  and ء  represent the glottal stop, but 
are written in different forms depending on the consonant position in the word and its 
adjacent phonemes. ا symbolizes the glottal stop or the long low vowel, depending on 
its position in the word and sentence. و and ي are long vowels when preceded by a 
vowel of its nature, i. e, dhammah and kasrah, respectively, and they are consonant 
otherwise.  

In addition to the consonant symbols, there are 8 diacritics. A diacritic may be 
placed above or below a letter (see Table 1). The first three diacritics represent the 
Arabic short vowels, and the last three are the tanween that occur only in word-
final position. 

Almost all modern Arabic texts are written using the consonant symbols only, i. e, 
the letters without the vowel symbols or the diacritic marks. A word such as “علم” when 
diacritized can be: “عَلَم” flag, “ ملْعِ ” science, “ مَلِعُ ” it was known, “َعَلِم” he knew, “ مَلَّعَ ” he 
taught or “َعُلِّم” he was taught. Arabic readers infer the appropriate diacritics based on 
the linguistic knowledge and the context. However in the case of a text-to-speech or 
automatic translation system, Arabic letters need to be diacritized, otherwise, the 
system will not be able to know which word to select. 

There are general rules for diacritizating Arabic text. For example, Shaddah and 
sukoon do not follow a word-initial letter; tanween (last three diacritics in Table 1) 
comes only in word-final position. At the same time, certain letters have their own rules 
of diacritization: آ ,ا and ى are not followed by a diacritic; ء ,ة and إ are not followed by 
shaddah.   

Diacritic IPA Definition Sample 

 َ a fathah (low short vowel) َب 

 ُ u dhammah (high back rounded vowel) ُب 

 ِ i kasrah (high front vowel)  

 ّ : shaddah (geminate: consonant is doubled in duration)  

 ْ ∅ sukoon (the letter is not diacritized nor geminated)  

 ً an tanween fathah (low vowel + alveolar nasal) ًب 

 ٌ un tanween dhammah (high back rounded vowel + alveolar 
nasal) 

 بٌ

 ٍ in tanween kasrah  (high front vowel + alveolar nasal) ٍب 

Table 1. Arabic diacritics with their International Phonetic Alphabet 
representations (IPA), definitions and samples with the voiced bilabial letter ب.  
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 In Section 2 we present the formulation of the problem, while in Section 3 we 

outline the basic algorithm. In Section 4 we describe the training set and its processing, 
and in Section 5 we present detailed evaluation of the results and the modification to 
eliminate certain classes of restoration errors.  
 
Problem Formulation 
 

We assume we have a large training set of Arabic text with full diacritical 
marks, VT , and its corresponding undiacritized text, UT . We then generate a word list, 

vN
iv 1}{=VL , of fully diacritized vocabulary words in VT . We also generate a table, Vf ,  

of the frequency of occurrence of each word in VL ,  such that )(kVf  is the number of 
occurrence of kv  in the training text VT .  Similarly, we construct UL  of all 
undiacritized words in UT . Let UV LL →Γ :(.)  be the mapping from VL  to UL ; For 
each word UL∈ku   we define a subset  VL⊂kV  corresponding to all the diacritized 
words that are mapped to ku ,  i.e. })(;{ kVk uvvV =Γ∈= L .  
Now, given a word sequence  (without diacritical marks) 
 

MtwwwwW tM ,..,2,1;;.........21 =∈= UL  ;                                                (1) 
 
We wish to determine the most probable diacritized word sequence: 

MdddD ..........21=                                                                                      (2) 
Where )( jLvd Vjt ==  for some MtNj v ,...2,1for  and  ];,1[ =∈ . We assume that 

MtNkkLuw uukt ,...2,1for   ];,1[  somefor  )( =∈== , that is to say that all the words in 
(1) exist in UL . 
The word sequence D may be chosen to maximize the posteriori probability 

)|( WDP , i.e. the best diacritized word sequence, D̂ , satisfies 

)/(
maxargˆ WDP
D

D =                                                                               (3) 

The conditional probability )|( WDP  can be written as  
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In Bigram language modeling, each word is assumed to depend only on its previous 
word in a first order Markov chain (Huang et.al., 2001),  i.e. 
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The search for the best sequence of diacritized words which maximizes  (3) can 
be illustrated with the help of Figure 1.  The shown finite state diagram can be viewed 
as a Hidden Markov Model (HMM), where the observation sequence is the 
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undiacritized word sequence W, while the possible diacritized words, jtv , , of each word 
wt  represent the hidden states. The problem can then be formulated as finding the best 
state sequence given the observation W. The solution of this problem is usually 
approximated using Viterbi Algorithm VA, and can be seen as an application of 
dynamic programming for finding a maximum probability path in a graph with 
weighted arcs. The computation proceeds in a column-wise manner, at every input 
word index t, it updates the scores of the nodes in a column by means of recursion 
formulas, which involve the value of the probability of the best paths ending at the 
previous column, and the transition probabilities of the words. 
 
Figure 1.  
HMM states 
corresponding 
to the word 
sequence W. 
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Let us define ),( itφ  to be  the probability of the most likely partial state sequence 
or path until time t, and ending at the ith state ( the ith diacritized word corresponding to 
wt.).  The  algorithm proceeds in the following steps: 
Step 1: Initialization 

)|(),1( 1,1 wvPi i=φ                                                                                (6) 
Step 2:  Induction 
              Let tk  be the index of the word tw  in UL , i.e. );( tt kw UL= and let )(tnv  be 
the cardinal of  the subset 

tkV . 
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Step 3: Best Path 
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)(,...,2,1   )},({maxarg),( MnjjM
j

iMU vbest == φ                                 (9) 

Step 4: Back Tracking 
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By keeping track of the state j giving the maximum value in the recursion 

formulas (9) and (10), it is possible, at the end of the input sequence, to retrieve the 
states visited by the best path.  The Viterbi algorithms have a time complexity 

)*( 2
uKMO , where M is the length of the input sentence, and  uK  is the average 

number of the states corresponding to the words in the input sequence.  
All the probabilities needed for computing the Viterbi recursion can be obtained 

from the statistics of training sets, and stored for on line Viterbi calculations. The 
probabilities are basically the unigram and bigram that are derived from the frequency 
of occurrence of individual words or frequency of occurrence of joint words. 
 
The Training Database 

 
The system should be trained based on domains of knowledge, e. g. sports, 

weather, local news, international news, business, economics, religion, etc. For testing 
purpose we started by a fully diacritized transcript of The Holy Quran (HQ). HQ’s list 
file consists of 78,679 words and 607,849 characters with no spacing. The text is 
converted to a word list after removing numbers, special symbols, and the Arabic letter 
extension character. A word is defined here to be any sequence of letters and diacritical 
marks delimited by the space character or a punctuation mark. Next, a table of the 
vocabulary and their number of occurrence is constructed. Two words 

ba mm bbbBaaaA ....  and  ... 2121 ==   are considered identical in the regular sense if 
1),( =BAR , where ),( BAR  is defined as follows: 



 ===

=
otherwise     0

,...,2,1for    and    if   1
),( aiiba mibamm

BAR   

One problem with the above definition of word similarity is that the Sukoon 
diacritical mark does not consistently appear explicitly in the text. A metric is designed 
so that two words are still considered identical even if one of them is missing one or 
more Sukoon. Define the mapping VV LL →:(.)S  which strips words from Sukoon 
diacritical marks. Let 0)( AAS = , and 0)( BBS = .  Then two words A and B are said to 
be R0  identical,  R0(A,B)=1, if   R(A0,B0)=1. When generating VL , all words in VT  
which are  R0  identical are represented by a single word in the vocabulary VL . Next, 
each word in the table VL  is mapped to its undiacritized base UL . A database is 
generated which contains the undiacritized word bases, and a list of the corresponding 
diacritized words and their corresponding counts.  Next, we generated a table of the 
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word bigram. In this case, two two-word sequences are considered identical if their 
corresponding words are R0  identical. The data base generated is called “bigram_db”.  
 

Another problem in creating the training databases is that there are many articles, 
and common short words that are not fully diacritized. The missing diacritical marks 
represent a serious problem. At the minimum it unnecessarily increases the size of VL , 
and creates ambiguity as it would not be clear if the missing diacritics is simple Sukoon 
or not. The problem is partially alleviated by creating a lexicon of exception cases of 
common words and articles which usually appear partially or totally undiacritized.   
 
Experimental Results 

 
The vocabulary list came to 18,623 diacritized words, composed of 179,910 

characters. The corresponding table of base words is made up of 15,006 words 
consisting of 80,864 characters. The maximum number of tashkeel words for any 
undiacritized word was found to be 12. The test set consists of 50 randomly selected 
sentences from the entire Quran text. The test set contains 995 words and 7657 
characters.  Initially, when applying the Viterbi algorithm in its basic form, it  produces 
230 errors in letter diacritization in 4234 undiacritized characters, that is 5.43% errors 
in diacritic marks of letters. The analysis of these errors is important to explore future 
directions of improving the basic algorithm.  

The first class of errors turned out to be due to inconsistent representation of 
tashkeel in the training data bases. Examples of these cases are  ،الاَّالَّا( )لا،لَا،لاَ(  ,(  . To 
overcome these errors, the training set is preprocessed to normalize these cases, and to 
insure consistent diacritization of words. Then we test the algorithm after preprocessing 
the training set and test set, the number of errors generated by the algorithm came down 
to 175 errors, or about 4.1% error rate in the diacritical marks restoration of letters.    

The second class of errors is caused mainly by a few articles and short words, and 
accounts for 41 cases, e.g., إنَّ، إن  ( ،) مَن ، مِن( ). The ambiguity in determining the proper 
form of these short words could hopefully be resolved by using higher order grams, and 
restricting some articles to a single diacritized form. The third class of errors occurs in 
determining the end cases of words. This class accounts for 94 errors. The formal 
approach to resolve these cases is to implement a syntax analyzer. The syntax 
processing can be inserted as a post processing stage after the Viterbi algorithm. It was 
noticed that a considerable number of these end-case errors were repeated, and 
occurred in a few frequently used words. Accordingly, a simple approach to reduce the 
number of end case errors could be devised based on higher order grams for those most 
frequently used words. For example, the error in resolving the end cases of the word 
Allah االله   accounts for 15 errors. The use of a trigram or 4-gram for such frequent 
words  is expected to resolve the majority of these cases. The rest of the cases are more 
difficult to resolve and may require higher order grams to resolve, or a post processing 
stage of the resulting diacritized text using knowledge-based morph-syntax word 
correction.  

In summary, the basic HMM approach achieves 4.1% letter error rate. The letter 
error rate could be further reduced to about 2.5 % by using a preprocessing stage, and 
using trigram for a selected number of short words and the most frequent words. 
Elimination of the rest of the errors may require a syntax analyzer and other more 
involved natural language processing.   
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Another important issue is that the proposed algorithm assumes that all the words 
in the given undiacritized word sequence W exist in UL . If a word is not in the list, the 
program may fail to give any reasonable estimation of the word sequence.  Similar 
statistical methods to generate a word with full diacritical marks can be developed 
based on knowledge of the unigram, bigram, and trigram of the letter sequence.  When 
we applied Viterbi algorithm to restore the diacritical marks of individual words based 
on the letter statistics, it gave success rate less than 72% .  

The algorithm presented in this paper assumes as well that the input word 
sequence is totally undiacritized. However, in reality, the input text may contain partial 
diacritization. The algorithm needs to be modified to take into consideration the 
presence of partial diacritization to improve the efficiency of the algorithm and enhance 
its performance.  
 
Conclusion 

 
The paper proposes the use of HMM approach to solve the problem of automatic 

generation of  the diacritical marks of the Arabic text. The basic form of the algorithm 
achieves an error rate of about 4.1%. The use of a preprocessing stage and trigrams for 
selected number of words and articles may improve the performance to about 2.5% 
error rate. Further improvement may require some knowledge-based tools involving 
morphology-syntax analysis.  
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