
 1

Statistical Methods for Automatic diacritization
 of Arabic text

Moustafa Elshafei1, Husni Al-Muhtaseb1, and Mansour Alghamdi2
1-King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
2- King Abdulaziz City of Science and Technology, Riyadh, Saudi Arabia.

Keywords: Arabization, tashkeel, diacritization, vowel restoration, statistical methods.

Abstract

 In this paper, the issue of adding diacritics Tashkeel to undiacritized Arabic text using statistical methods for
language modeling is addressed. The approach requires a large corpus of fully diacritized text for extracting the
language monograms, bigrams, and trigrams for words and letters. Search algorithms are then used o find the best
probable sequence of diacritized words of a given undiacritized word sequence. The word sequence of undiacritized
Arabic text is considered an observation sequence from a hidden Markov Model, where the hidden states are the
possible diacritized expressions of the words. The optimal sequence of diacritized words (or states) is then
efficiently obtained using Viterbi Algorithm. We present an evaluation of the basic algorithm using the Qur’an’s text,
and discuss various ramifications for improving the performance of this approach.

Introduction

The absence of the diacritics in modern Arabic text is one of the most critical

problems facing computer processing of Arabic text. Readers of Arabic can restore the
proper diacritics of the text, but when it comes to computer processing, the computer
still needs to be provided with algorithms to mimic the human ability to identify the
proper diacritics of the text. Such tool is an essential infrastructure for applications such
as Text-to-Speech (Elshafei el. 2002), Automatic Translation (Trost 1991), and Arabic
data mining applications (Mustafa 1998).

The problem of automatic generation of the Arabic diacritic marks, Al Tashkeel
Al-Aly, is known in the literature under various translations, e.g., automatic
vocalization, vowelization, diacritization, accent restoration, and vowel restoration. In
this paper the term diacritization will be used due to the fact that the missing symbols
do not represent only the vowels but represent, in addition to that, gemination shaddah,
lack of vowels sukoon, and Tanween n-suffixes.

The formal approach to the problem of automatic restoration of the diacritic
marks of Arabic text involves a complex integration of the Arabic morphological,
syntactic, and semantic rules (El-Saadani and Hashis, 1988, Shatta, 1994, Khoja, 2001,
and Farghali et. Al, 2003). A morphological rule matches the undiacritized word to
known patterns or templates and recognizes prefixes and suffixes. Syntax applies
specific syntactic rules to determine the word-final diacritic marks by applying Finite
State Automata. Semantics helps to resolve ambiguous cases and to filter out
hypothesis. Among the systems using the above approach is ArabDiac (T) of RDI of
Egypt [1], Al-Alamia of Kuwait [2] and CIMOS of France [3]. The second approach is
the data-centered approach, where a large corpus of text is used to extract language
statistics for estimating the missing diacritical marks, or used to train artificial neural
networks. Among the later approach is the work of (Sultan, 2001) who investigated
application of Neural networks for vowel restoration of Arabic text.

 2

The approach here falls under the general class of statistical methods in pattern
recognition, and has been applied successfully in the speech recognition field. The
system is first trained using a corpus of fully diacritized text, and preferably covering
specific domains. The system generates word vocabulary list and determine the
frequency of each word. It also generates word bigrams and trigrams, and performs
other preprocessing and post processing steps to deal with exceptions and to overcome
some known limitations.

Arabic writing system consists of 36 letter forms which represent the Arabic
consonants. These are: ش , س , ز , ر , ذ , د , خ , ح , ج , ث , ت , ب , ة , ى , ء , ؤ , ئ , إ , أ , آ ,ا
 Each Arabic letter represents a . ي and و , هـ , ن , م , ل , ك , ق , ف , غ , ع , ظ , ط , ض , ص ,
single consonant with some exceptions: ؤ , ئ , إ , أ and ء represent the glottal stop, but
are written in different forms depending on the consonant position in the word and its
adjacent phonemes. ا symbolizes the glottal stop or the long low vowel, depending on
its position in the word and sentence. و and ي are long vowels when preceded by a
vowel of its nature, i. e, dhammah and kasrah, respectively, and they are consonant
otherwise.

In addition to the consonant symbols, there are 8 diacritics. A diacritic may be
placed above or below a letter (see Table 1). The first three diacritics represent the
Arabic short vowels, and the last three are the tanween that occur only in word-
final position.

Almost all modern Arabic texts are written using the consonant symbols only, i. e,
the letters without the vowel symbols or the diacritic marks. A word such as “علم” when
diacritized can be: “عَلَم” flag, “ ملْعِ ” science, “ مَلِعُ ” it was known, “َعَلِم” he knew, “ مَلَّعَ ” he
taught or “َعُلِّم” he was taught. Arabic readers infer the appropriate diacritics based on
the linguistic knowledge and the context. However in the case of a text-to-speech or
automatic translation system, Arabic letters need to be diacritized, otherwise, the
system will not be able to know which word to select.

There are general rules for diacritizating Arabic text. For example, Shaddah and
sukoon do not follow a word-initial letter; tanween (last three diacritics in Table 1)
comes only in word-final position. At the same time, certain letters have their own rules
of diacritization: آ ,ا and ى are not followed by a diacritic; ء ,ة and إ are not followed by
shaddah.

Diacritic IPA Definition Sample

 َ a fathah (low short vowel) َب

 ُ u dhammah (high back rounded vowel) ُب

 ِ i kasrah (high front vowel)

 ّ : shaddah (geminate: consonant is doubled in duration)

 ْ ∅ sukoon (the letter is not diacritized nor geminated)

 ً an tanween fathah (low vowel + alveolar nasal) ًب

 ٌ un tanween dhammah (high back rounded vowel + alveolar
nasal)

 بٌ

 ٍ in tanween kasrah (high front vowel + alveolar nasal) ٍب

Table 1. Arabic diacritics with their International Phonetic Alphabet
representations (IPA), definitions and samples with the voiced bilabial letter ب.

 3

 In Section 2 we present the formulation of the problem, while in Section 3 we

outline the basic algorithm. In Section 4 we describe the training set and its processing,
and in Section 5 we present detailed evaluation of the results and the modification to
eliminate certain classes of restoration errors.

Problem Formulation

We assume we have a large training set of Arabic text with full diacritical
marks, VT , and its corresponding undiacritized text, UT . We then generate a word list,

vN
iv 1}{=VL , of fully diacritized vocabulary words in VT . We also generate a table, Vf ,

of the frequency of occurrence of each word in VL , such that)(kVf is the number of
occurrence of kv in the training text VT . Similarly, we construct UL of all
undiacritized words in UT . Let UV LL →Γ :(.) be the mapping from VL to UL ; For
each word UL∈ku we define a subset VL⊂kV corresponding to all the diacritized
words that are mapped to ku , i.e. })(;{ kVk uvvV =Γ∈= L .
Now, given a word sequence (without diacritical marks)

MtwwwwW tM ,..,2,1;;.........21 =∈= UL ; (1)

We wish to determine the most probable diacritized word sequence:

MdddD21= (2)
Where)(jLvd Vjt == for some MtNj v ,...2,1for and];,1[=∈ . We assume that

MtNkkLuw uukt ,...2,1for];,1[somefor)(=∈== , that is to say that all the words in
(1) exist in UL .
The word sequence D may be chosen to maximize the posteriori probability

)|(WDP , i.e. the best diacritized word sequence, D̂ , satisfies

)/(
maxargˆ WDP
D

D = (3)

The conditional probability)|(WDP can be written as

)......;..|()............;|(
)......;|()......|(

)......|.....()/(

11121213

2112211

2121

mmmm

mm

mm

wwdddPwwwdddP
wwwddPwwwdP

wwwdddPWDP

−

=
=

 (4)
In Bigram language modeling, each word is assumed to depend only on its previous
word in a first order Markov chain (Huang et.al., 2001), i.e.

);|()|()......|.....(11
2

112121 tttt

m

t
mm wwddPwdPwwwdddP −−

=
∏= (5)

The search for the best sequence of diacritized words which maximizes (3) can
be illustrated with the help of Figure 1. The shown finite state diagram can be viewed
as a Hidden Markov Model (HMM), where the observation sequence is the

 4

undiacritized word sequence W, while the possible diacritized words, jtv , , of each word
wt represent the hidden states. The problem can then be formulated as finding the best
state sequence given the observation W. The solution of this problem is usually
approximated using Viterbi Algorithm VA, and can be seen as an application of
dynamic programming for finding a maximum probability path in a graph with
weighted arcs. The computation proceeds in a column-wise manner, at every input
word index t, it updates the scores of the nodes in a column by means of recursion
formulas, which involve the value of the probability of the best paths ending at the
previous column, and the transition probabilities of the words.

Figure 1.
HMM states
corresponding
to the word
sequence W.

w1 w2 wt WM

v1,1

v1,2

v1,ko

v2,1

V2,j

vt,1

vt,i

vM,1

vM,i

Let us define),(itφ to be the probability of the most likely partial state sequence
or path until time t, and ending at the ith state (the ith diacritized word corresponding to
wt.). The algorithm proceeds in the following steps:
Step 1: Initialization

)|(),1(1,1 wvPi i=φ (6)
Step 2: Induction
 Let tk be the index of the word tw in UL , i.e.);(tt kw UL= and let)(tnv be
the cardinal of the subset

tkV .

Mttnj

wwvvPjt
j

it

v

ttjtit

,..3,2 and);(,...,2,1

)},;|(),1({
max

),(1,1,

==

−= −−φφ
 (7)

Mttnj

wwvvPjt
j

itU

v

ttjtit

,..3,2 and);(,...,2,1

)},;|(),1({maxarg),(1,1,

==

−= −−φ
 (8)

Step 3: Best Path

 5

)(,...,2,1)},({maxarg),(MnjjM
j

iMU vbest == φ (9)

Step 4: Back Tracking

M

i

ttitt

bestM

dddD

vd

MMtitUivd
ii

t

.........

2,......1,for);,(and ,

21

,11

1,

1

=

=

−===
=

− (10)

By keeping track of the state j giving the maximum value in the recursion

formulas (9) and (10), it is possible, at the end of the input sequence, to retrieve the
states visited by the best path. The Viterbi algorithms have a time complexity

)*(2
uKMO , where M is the length of the input sentence, and uK is the average

number of the states corresponding to the words in the input sequence.
All the probabilities needed for computing the Viterbi recursion can be obtained

from the statistics of training sets, and stored for on line Viterbi calculations. The
probabilities are basically the unigram and bigram that are derived from the frequency
of occurrence of individual words or frequency of occurrence of joint words.

The Training Database

The system should be trained based on domains of knowledge, e. g. sports,

weather, local news, international news, business, economics, religion, etc. For testing
purpose we started by a fully diacritized transcript of The Holy Quran (HQ). HQ’s list
file consists of 78,679 words and 607,849 characters with no spacing. The text is
converted to a word list after removing numbers, special symbols, and the Arabic letter
extension character. A word is defined here to be any sequence of letters and diacritical
marks delimited by the space character or a punctuation mark. Next, a table of the
vocabulary and their number of occurrence is constructed. Two words

ba mm bbbBaaaA and ... 2121 == are considered identical in the regular sense if
1),(=BAR , where),(BAR is defined as follows:



 ===

=
otherwise 0

,...,2,1for and if 1
),(aiiba mibamm

BAR

One problem with the above definition of word similarity is that the Sukoon
diacritical mark does not consistently appear explicitly in the text. A metric is designed
so that two words are still considered identical even if one of them is missing one or
more Sukoon. Define the mapping VV LL →:(.)S which strips words from Sukoon
diacritical marks. Let 0)(AAS = , and 0)(BBS = . Then two words A and B are said to
be R0 identical, R0(A,B)=1, if R(A0,B0)=1. When generating VL , all words in VT
which are R0 identical are represented by a single word in the vocabulary VL . Next,
each word in the table VL is mapped to its undiacritized base UL . A database is
generated which contains the undiacritized word bases, and a list of the corresponding
diacritized words and their corresponding counts. Next, we generated a table of the

 6

word bigram. In this case, two two-word sequences are considered identical if their
corresponding words are R0 identical. The data base generated is called “bigram_db”.

Another problem in creating the training databases is that there are many articles,
and common short words that are not fully diacritized. The missing diacritical marks
represent a serious problem. At the minimum it unnecessarily increases the size of VL ,
and creates ambiguity as it would not be clear if the missing diacritics is simple Sukoon
or not. The problem is partially alleviated by creating a lexicon of exception cases of
common words and articles which usually appear partially or totally undiacritized.

Experimental Results

The vocabulary list came to 18,623 diacritized words, composed of 179,910

characters. The corresponding table of base words is made up of 15,006 words
consisting of 80,864 characters. The maximum number of tashkeel words for any
undiacritized word was found to be 12. The test set consists of 50 randomly selected
sentences from the entire Quran text. The test set contains 995 words and 7657
characters. Initially, when applying the Viterbi algorithm in its basic form, it produces
230 errors in letter diacritization in 4234 undiacritized characters, that is 5.43% errors
in diacritic marks of letters. The analysis of these errors is important to explore future
directions of improving the basic algorithm.

The first class of errors turned out to be due to inconsistent representation of
tashkeel in the training data bases. Examples of these cases are ،الاَّالَّا()لا،لَا،لاَ(,(. To
overcome these errors, the training set is preprocessed to normalize these cases, and to
insure consistent diacritization of words. Then we test the algorithm after preprocessing
the training set and test set, the number of errors generated by the algorithm came down
to 175 errors, or about 4.1% error rate in the diacritical marks restoration of letters.

The second class of errors is caused mainly by a few articles and short words, and
accounts for 41 cases, e.g., إنَّ، إن (،) مَن ، مِن(). The ambiguity in determining the proper
form of these short words could hopefully be resolved by using higher order grams, and
restricting some articles to a single diacritized form. The third class of errors occurs in
determining the end cases of words. This class accounts for 94 errors. The formal
approach to resolve these cases is to implement a syntax analyzer. The syntax
processing can be inserted as a post processing stage after the Viterbi algorithm. It was
noticed that a considerable number of these end-case errors were repeated, and
occurred in a few frequently used words. Accordingly, a simple approach to reduce the
number of end case errors could be devised based on higher order grams for those most
frequently used words. For example, the error in resolving the end cases of the word
Allah االله accounts for 15 errors. The use of a trigram or 4-gram for such frequent
words is expected to resolve the majority of these cases. The rest of the cases are more
difficult to resolve and may require higher order grams to resolve, or a post processing
stage of the resulting diacritized text using knowledge-based morph-syntax word
correction.

In summary, the basic HMM approach achieves 4.1% letter error rate. The letter
error rate could be further reduced to about 2.5 % by using a preprocessing stage, and
using trigram for a selected number of short words and the most frequent words.
Elimination of the rest of the errors may require a syntax analyzer and other more
involved natural language processing.

 7

Another important issue is that the proposed algorithm assumes that all the words
in the given undiacritized word sequence W exist in UL . If a word is not in the list, the
program may fail to give any reasonable estimation of the word sequence. Similar
statistical methods to generate a word with full diacritical marks can be developed
based on knowledge of the unigram, bigram, and trigram of the letter sequence. When
we applied Viterbi algorithm to restore the diacritical marks of individual words based
on the letter statistics, it gave success rate less than 72% .

The algorithm presented in this paper assumes as well that the input word
sequence is totally undiacritized. However, in reality, the input text may contain partial
diacritization. The algorithm needs to be modified to take into consideration the
presence of partial diacritization to improve the efficiency of the algorithm and enhance
its performance.

Conclusion

The paper proposes the use of HMM approach to solve the problem of automatic

generation of the diacritical marks of the Arabic text. The basic form of the algorithm
achieves an error rate of about 4.1%. The use of a preprocessing stage and trigrams for
selected number of words and articles may improve the performance to about 2.5%
error rate. Further improvement may require some knowledge-based tools involving
morphology-syntax analysis.

Acknowledgment

 The authors would like to acknowledge King Abdulaziz City for Science and
Technology and King Fahd University of Petroleum and Minerals for their support.

References

El-Barhamttoushi, H. M. (2002), ”Arabic speech lexical engine”, International
Conference on Intelligent Computing & Information Systems. 1st. Cairo,Egypt, Jun 24-
26.

El-Saadani, T. A. Hashish, M. A, (1988), “Semiautomatic vowelization of Arabic
verbs “, Egyptian Computer ... p88-93.

Elshafei , Moustafa, Husni Al-Muhtaseb, Mansour Al-Ghamdi, (2002)" Techniques for
high quality Arabic speech synthesis", Information Sciences 140(3-4),pp. 255-267.
Farghaly, A. and J. Snellar (2003),”Intuitive Coding of the Arabic Lexicon”,
SYSTRAN, MT, Summit IX Workshop, Machine Translation for Semitic Languages:
Issues and Approaches, New Orleans, Louisiana, U.S.A.

Huang, X., Acero, A., and Hon, H. (2001), “Spoken Language Processing”, Prentice
Hall PTR, New Jersey, USA.

Khoja, Shereen. (2001),” APT: Arabic Part-of-speech Tagger”, Proceedings of the
Student Workshop at the Second Meeting of the North American Chapter of the

 8

Association for Computational Linguistics (NAACL2001), Carnegie Mellon
University, Pittsburgh, Pennsylvania. June 2001.

Mustafa, Suleiman Hussein (1998), “Arabic string searching in the context of character
code standards and orthographic variations”, Computer Standards & Interfaces,
Volume 20, Issue 1, 16 November, pp. 31-51

Shatta, Usama, (1994), “A systemic functional syntax analyzer and case-marker
generator for speech acts in Arabic”, International Conference for Statistics, Computer
Science, Scientific & Social Applications. 19th. Cairo, Egypt, Apr 9-14.

Sulttan, H, (2001), “Automatic Arabic diacritization using neural networks”, Scientific
Bulletin of Faculty of Engineering Ain-Shams University : Electrical Engineering. v36
n4 pt2 pp 501-510.

Trost, Harald (1991), “Recognition and generation of word forms for natural language
understanding systems. Integrating two-level morphology and feature unification”,
Applied Artificial Intelligence, v 5, n 4, October, pp. 411-457

[1] http://www.rdi-eg.com/rdi/Research/Research.asp
[2] http://www.sakhr.com/
[3] http://www.cimos.com/

