PAGE
11

King Fahd University of Petroleum and Minerals

College of Computer Science and Engineering

Information and Computer Science Department

ICS 202: Data Structures
Fall 2008-2009
Major Exam 1, Thursday November 20, 2008.

Name:

ID#:

Instructions:

1. This exam consists of 11 pages, including this page, containing 6 questions.

2. You have to answer all 6 questions.

3. The exam is closed book and closed notes. No calculators or any helping aides are allowed. Make sure you turn off your mobile phone and keep it in your pocket if you have one.

4. The questions are not equally weighed.

5. The maximum number of points for this exam is 150.

6. You have exactly 120 minutes to finish the exam.

7. Make sure your answers are readable.

8. If there is no space on the front of the page, feel free to use the back of the page. Make sure you indicate this in order for me not to miss grading it.

9. Page 11 is a reference sheet that you can detach and keep with you.

	Question
	Max

Points
	Points

	1
	30
	

	2
	25
	

	3
	20
	

	4
	20
	

	5
	20
	

	6
	35
	

	Total
	150
	

Q1 (30 points): Consider the following Book class:
public class Book implements Comparable{

 private String title;

 private int numOfPages;

 private int publishingYear;

 private MySearchableContainer topicsContainer;

 public Book(String t, int n, int year) {

title = t;

numOfPages = n;

publishingYear = year;

topicsContainer = new MySearchableContainer();

 }

 public MySearchableContainer getTopicsContainer() {

return topicsContainer;

 }

 public void insertTopic(String t) {

topicsContainer.insert (t);

 }

 public int compareTo(Object obj) {

Book b = (Book) obj;

return (this.publishingYear - b.publishingYear);

 }
 public String toString() {

return "{\"" + title + "\", " + numOfPages + ", " + publishingYear + ", with topics: " + topicsContainer + "}";

 }

}
a) (15 points) For the topicsContainer in the Book class, Write a visitor class, libraryVisitor, such that when the visitor class is instantiated with the input parameter, topic, it will print the book object upon finding the given topic belonging to the topicsContainer of that book. The constructor of this visitor class has the header:
public libraryVisitor(String topic)

b) (15 points) Write test code that

i. creates the following two instances of Book class

	
	Book #1
	Book #2

	Title
	"Data Structures"
	"Graph Theory"

	# of pages
	400
	280

	Publishing year
	2005
	1999

	Topics
	"lists", "trees", "graphs"
	"graphs", "applications"

ii. uses the libraryVisitor to display the book objects having "trees" as one of its topics.
Q2 (25 points): Consider this version of a linked list where reference tail does not exist:

public class Major1LinkedList{

 protected Element head;

 public void append(Object obj){

 // to be completed

 }
 ...

 public final class Element{

 Object data;

Element next;

Element(Object obj, Element element){

 data = obj;

 next = element;

}

public Object getData(){return data;}

public Element getNext(){return next;}

 }

}
a) (10 points) Write the implementation details of the append() method, by which Object obj is inserted at the end of an instance of Major1LinkedList.
b) (15 points) Write down the time complexity in Big O() notation of the following methods in MyLinkedList and Major1LinkedList, when the number of elements in the linked list equals n:
	
	getFirst
	getLast
	append
	prepend

	MyLinkedList
	
	
	
	

	Major1LinkedList
	
	
	
	

Q3 (20 points): Write a method, public static void duplicate(Stack stack), that will cause every element in the parameter stack to be duplicated. For example, if the stack contains integer objects [1, 2, 3, 4], after calling the method, it must contain [1, 1, 2, 2, 3, 3, 4, 4].

Q4 (20 points): Consider the following piece of code:

public static int method1(int [] array, int n) {

 for (i=1; i<=n; i++)

 for (j=1; j<=i; j*=2)

 method2(array, j);

}

public static int method2(int [] array, int k) {

 for (i=0; i<k; i++)

 if (array[i] < array[i+1]) {

 int temp = array[i];

 array[i] = array[i+1];

 array[i+1] = temp;

 }

}
a) (15 points) Analyze the time complexity of method1 by first finding the number of times the element comparison, if (array[i] < array[i+1]), gets executed.
b) (5 points) Express the time complexity of method1 using Big O() notation.
Q5 (20 points): Write a recursive method to compute the binomial coefficient according to the definition:

[image: image1.wmf]1if 0 or

11

otherwise

1

kkn

n

nn

k

kk

==

ì

æö

ï

=

--

æöæö

í

ç÷

+

èøç÷ç÷

ï

-

èøèø

î

Q6 (35 points): Consider the following method:

 public static void recursive(int n) {

if (n > 1) {

System.out.println(n);

recursive(n-1);

System.out.println(n+1);

recursive(n-1);

}

 }

a) (10 points) Express the number of times a println statement is excuted when running the method recursive as a recurrence relation.

b) (15 points) Find the time complexity of this method in terms of Big O() notation by first solving the recurrence relation in (a).

c) (10 points) Show the output of the method when it is called for n = 3, i.e. the output of recursive(3).
ICS 202 – Data Structures
Quick Reference Sheet

	public interface Iterator {

boolean hasNext();

Object next() throws NoSuchElementException;

}

public interface Visitor {

void visit (Object object);

boolean isDone();

}

public interface Container {

int getCount();

boolean isEmpty();

boolean isFull();

void purge();

void accept (Visitor visitor);

Iterator iterator();

}

public interface SearchableContainer extends Container {

boolean isMember (Comparable object);

void insert (Comparable object);

void withdraw (Comparable obj);

Comparable find (Comparable object);

}

public class Association implements Comparable

 public Association(Comparable key, Object val)

public Association(Comparable key)

public Comparable getKey()

public Object getValue()

 public void setKey(Comparable key)

public void setValue(Object value)

 public int compareTo(Object obj)
 public boolean equals(Object obj)

public String toString()

}
	public class MyLinkedList {

public void purge()

public Element getHead()

public Element getTail()

public Element find(Object obj)

public boolean isEmpty()

public Object getFirst()

public Object getLast()

public void prepend(Object obj)

public void append(Object obj)

public void assign(MyLinkedList list)

public void extract(Object obj)

 public void extractFirst()

 public void extractLast()

public String toString()

 public Iterator iterator()

public final class Element {

 public Object getData()

 public Element getNext()

 public void insertAfter(Object obj)

 public void insertBefore(Object obj)

 public void extract()

}

}

public interface Stack extends Container {

 Object getTop();

 void push(Object obj);

 Object pop();

}

public interface Queue extends Container {

 Object getHead();

 void enqueue(Object obj);

 Object dequeue();

}

[image: image2.wmf]2

)

1

(

1

+

=

å

=

n

n

i

n

i

,

[image: image3.wmf]6

)

1

2

)(

1

(

1

2

+

+

=

å

=

n

n

n

i

n

i

,

[image: image4.wmf](

)

2

1

3

2

1

÷

ø

ö

ç

è

æ

+

=

å

=

n

n

i

n

i

[image: image5.wmf]å

=

+

¹

-

-

=

n

i

n

i

a

a

a

a

0

1

1

where

1

1

,

[image: image6.wmf]b

a

b

a

log

log

log

-

=

,

[image: image7.wmf]b

a

a

b

ln

ln

log

=

[image: image8.wmf]log

a

b

ab

=

PAGE

_1113630937.unknown

_1120061994.unknown

_1288667107.unknown

_1288671377.unknown

_1113631024.unknown

_1113631089.unknown

_1113630977.unknown

_1113630880.unknown

