PAGE
12

King Fahd University of Petroleum and Minerals

College of Computer Science and Engineering

Information and Computer Science Department

ICS 202: Data Structures
Fall 2008-2009
Major Exam 2, Sunday January 11, 2009.

Name:

ID#:

Instructions:

1. This exam consists of 13 pages, including this page, containing 6 questions.

2. You have to answer all 6 questions.

3. The exam is closed book and closed notes. No calculators or any helping aides are allowed. Make sure you turn off your mobile phone and keep it in your pocket if you have one.

4. The questions are not equally weighed.

5. The maximum number of points for this exam is 150.

6. You have exactly 120 minutes to finish the exam.

7. Make sure your answers are readable.

8. If there is no space on the front of the page, feel free to use the back of the page. Make sure you indicate this in order for me not to miss grading it.

9. Pages 12 and 13 are reference sheets that you can detach and keep with you.

	Question
	Max

Points
	Points

	1
	20
	

	2
	30
	

	3
	15
	

	4
	40
	

	5
	25
	

	6
	20
	

	Total
	150
	

Q1 (20 points): Consider the following AVL tree Tv:
 SHAPE * MERGEFORMAT

a) (2 points) What is meant by the balance factor of a node in an AVL tree?

b) (3 points) Show the balance factor on each node of the AVL tree Tv.

c) (2 points) Mention one advantage of using AVL-trees over Binary Search trees.

d) (5 points) Show the resulting AVL tree after deleting the node with key 17 from Tv.

 SHAPE * MERGEFORMAT

e) (8 points) Show the resulting AVL tree after inserting the nodes with key 14 and key 16 into Tv, respectively.

Q2 (30 points): Consider the following B+ tree of order 3, where leaf nodes can hold up to 5 keys:

 SHAPE * MERGEFORMAT

a) (5 points) Define what is meant by a B+ tree of order m.

b) (5 points) How are B+ trees different from B-trees?

c) (3 points) Mention one advantage of using B+ trees over AVL trees.
d) (3 points) Mention one advantage of using B+ trees over B-trees.

 SHAPE * MERGEFORMAT

e) (8 points) Show the resulting B+ tree after inserting the node with key 8 to the above B+ tree.
 SHAPE * MERGEFORMAT

f) (6 points) Show the resulting B+ tree after deleting the node with key 60 from the above B+ tree.

Q3 (15 points): Write an algorithm using pseudo-code (or a Java method) that will print the keys for each node in a binary tree in reverse-level order traversal. A reverse-level order traversal is defined as visiting the nodes starting from level i from the right-most sibling to the left-most sibling for i = 0, 1, ..., height - 1. For example, the reverse-level order traversal of the tree below visits the keys in the following order:
5 - 6 - 9 - 2 - 7 - 3 - 10 - 8
 SHAPE * MERGEFORMAT

Q4 (40 points) For the following graph below, answer the following questions:

 SHAPE * MERGEFORMAT

a) (8 points) Show the result of running the general post-order depth-first traversal algorithm on this graph, where the visit method will print the label of each node, starting from vertex a.
b) (13 points) Based on (a), draw the post-order depth first traversal tree of the graph, and classify the rest of its edges into back, forward, and cross edges.
 SHAPE * MERGEFORMAT

c) (19 points) Apply the algorithm for finding the strongly connected components on the above graph. Show all intermediate steps, making sure that at the end, you indicate the label for each component on each vertex in the graph.

Q5 (25 points) For the following graph below, answer the following questions:
 SHAPE * MERGEFORMAT

a) (19 points) Carry out Prim’s algorithm starting from vertex c, filling the table below, and finally draw the resulting minimum spanning tree.
	Pass:
	a
	b
	c
	d
	e
	f
	g
	h

	Initial
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	Edge Weight
	
	
	
	
	
	
	
	

	Predecessor
	
	
	
	
	
	
	
	

b) (6 points) If we use Kruskal’s algorithm to find the minimum spanning tree for the above graph, do you think we will get the same minimum spanning tree as that resulting from running Prim’s algorithm? Justify your answer.
Q6 (20 points)
a) (12 points) Develop an algorithm that takes as input a graph G and returns the value of the shortest distance between every pair of vertices in G. (Note that you may use any algorithm we have studied in class).
b) (8 points) Analyze the time complexity of your algorithm and find it in terms of Big O() notation.

ICS 202 – Data Structures
	public interface Iterator {

boolean hasNext();

Object next() throws NoSuchElementException;

}

public interface Visitor {

void visit (Object object);

boolean isDone();

}

public interface Container {

int getCount();

boolean isEmpty();

boolean isFull();

void purge();

void accept (Visitor visitor);

Iterator iterator();

}

public interface SearchableContainer extends Container {

boolean isMember (Comparable object);

void insert (Comparable object);

void withdraw (Comparable obj);

Comparable find (Comparable object);

}

public class Association implements Comparable

 public Association(Comparable key, Object val)

public Association(Comparable key)

public Comparable getKey()

public Object getValue()

 public void setKey(Comparable key)

public void setValue(Object value)

 public int compareTo(Object obj)

 public boolean equals(Object obj)

public String toString()

}

public interface Stack extends Container {

 Object getTop();

 void push(Object obj);

 Object pop();

}

	public class MyLinkedList {

public void purge()

public Element getHead()

public Element getTail()

public Element find(Object obj)

public boolean isEmpty()

public Object getFirst()

public Object getLast()

public void prepend(Object obj)

public void append(Object obj)

public void assign(MyLinkedList list)

public void extract(Object obj)

 public void extractFirst()

 public void extractLast()

public String toString()

 public Iterator iterator()

public final class Element {

public Object getData()

public Element getNext()

public void insertAfter(Object obj)

public void insertBefore(Object obj)

public void extract()

}

}

public interface Queue extends Container {

 Object getHead();

 void enqueue(Object obj);

 Object dequeue();

}

public class AVLTree extends BinarySearchTree {

 public AVLTree()

 public int getHeight()

 public void insert(Comparable comparable)

 public void attachKey(Object obj)

 public Object detachKey()

}

Quick Reference Sheet

	public class BinaryTree extends AbstractContainer implements Comparable{ public BinaryTree(Object obj, BinaryTree left, BinaryTree right)

 public BinaryTree()

 public BinaryTree(Object obj)

 public void purge()

 public boolean isLeaf()

 public boolean isEmpty()

 public Object getKey()

 public BinaryTree getLeft()

 public BinaryTree getRight()

 public void attachKey(Object obj)

 public Object detachKey()

 public void preorderTraversal(Visitor v)

 public void inorderTraversal(Visitor v)

 public void postorderTraversal(Visitor v)

 public void breadthFirstTraversal(Visitor visitor)

 public void accept(Visitor visitor)

 public boolean isMember(Object obj)

 public int getHeight()

}

public class BinarySearchTree extends BinaryTree {

 private BinarySearchTree getLeftBST()

 private BinarySearchTree getRightBST()

 public boolean isMember(Comparable c)

 public Comparable find(Comparable c)

 public Comparable findMin()

 public Comparable findMax()

 public void attachKey(Object obj)

 public void insert(Comparable comparable)

 public void withdraw(Comparable comparable)

}

// implemented by MinHeap

public interface PriorityQueue extends Container{

 public abstract void enqueue(Comparable c);

 public abstract Comparable findMin();

 public abstract Comparable dequeueMin();

}

public abstract class AbstractGraph implements Graph {

public AbstractGraph(boolean directed)

}

public class GraphAsArrayLists extends AbstractGraph {

 public GraphAsArrayLists(int size, boolean directed)

}
	public interface Graph{

 public int getNumberOfEdges();

 public int getNumberOfVertices();

 public Iterator getVertices();

 public Iterator getEdges();

 public void addVertex(String label);

 public void addVertex(String label, Comparable weight);

 public Vertex getVertex(String label);

 public int getIndex(Vertex v);

 public void addEdge(String from, String to);

 public void addEdge(String from, String to, Comparable weight);

 public Edge getEdge(String from, String to);

 public boolean isReachable(String from, String to);

 public boolean isDirected();

 public boolean isWeighted();

 public boolean isConnected();

 public abstract boolean isStronglyConnected();

 public abstract boolean isWeaklyConnected();

 public boolean isCyclic();

 public void preorderDepthFirstTraversal(Visitor visitor, Vertex start);

 public void postorderDepthFirstTraversal(Visitor visitor, Vertex start);

 public void breadthFirstTraversal(Visitor visitor, Vertex start);

 public abstract int topologicalOrderTraversal(Visitor visitor);

}

public interface Edge extends Comparable{

 public abstract Vertex getFromVertex();

 public abstract Vertex getToVertex();

 public abstract Comparable getWeight();

 public abstract boolean isDirected();

 public abstract Vertex getMate(Vertex vertex);

}

public interface Vertex extends Comparable{

 public String getLabel();

 public Comparable getWeight();

 public Iterator getIncidentEdges();

 public Iterator getEmanatingEdges();

 public Iterator getPredecessors();

 public Iterator getSuccessors();

}

17

13

19

11

9

20

15

60

62

64

10

12

15

17

19

23

25

27

29

32

34

38

40

42

45

49

50

52

49

23

34

60

8

10

6

3

9

7

5

2

a

b

f

g

d

e

h

c

a

b

f

g

d

e

h

c

1

2

3

5

6

7

9

10

8

12

11

4

13

Tv

60

62

64

10

12

15

17

19

23

25

27

29

32

34

38

40

42

45

49

50

52

49

23

34

60

60

62

64

10

12

15

17

19

23

25

27

29

32

34

38

40

42

45

49

50

52

49

23

34

60

17

13

19

11

9

20

15

Tv

a

b

f

g

d

e

h

c

PAGE

